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Distributed Mirror Descent Algorithm with Bregman Damping for

Nonsmooth Constrained Optimization

Guanpu Chen, Weijian Li, Gehui Xu, and Yiguang Hong, Fellow, IEEE

Abstract— To solve distributed optimization efficiently with
various constraints and nonsmooth functions, we propose a
distributed mirror descent algorithm with embedded Breg-
man damping, as a generalization of conventional distributed
projection-based algorithms. In fact, our continuous-time al-
gorithm well inherits good capabilities of mirror descent ap-
proaches to rapidly compute explicit solutions to the problems
with some specific constraint structures. Moreover, we rigor-
ously prove the convergence of our algorithm, along with the
boundedness of the trajectory and the accuracy of the solution.

I. INTRODUCTION

Distributed optimization has served as a hot topic in

recent years for its broad applications in various fields

such as sensor networks and smart grids [1]–[7]. Under

multi-agent frameworks, the global cost function consists of

agents’ local ones, and each agent shares limited information

with its neighbors through a network to achieve an optimal

solution. Meanwhile, distributed continuous-time algorithms

have been well developed thanks to system dynamics and

control theory [8]–[12].

Up to now, various approaches have been employed for

distributed design of constrained optimization. Intuitively,

implementing projection operations on local constraints is

a most popular method, such as projected proportional-

integral protocol [8] and projected dynamics with constraints

based on KKT conditions [9]. In addition, other approaches

such as distributed primal-dual dynamics and penalty-based

algorithms [10]–[12] also perform well provided that con-

straints are endowed with specific expressions. However,

time complexity in finding optimal solutions with complex

or high-dimensional constraints forces researchers to exploit

efficient approaches for special constraint structures, such as

the unit simplex and the Euclidean sphere.
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In fact, the mirror descent (MD) method serves as a pow-

erful tool for solving constrained optimization. As we know,

first introduced in [13], MD is regarded as a generalization

of (sub)gradient methods. With mapping the variables into

a conjugate space, MD employs the Bregman divergence

and performs well in handling local constraints with spe-

cific structures [14]–[16]. This process results in a faster

convergence rate than that of projected (sub)gradient descent

algorithms, especially for large-scale optimization problems.

Undoubtedly, as such an important tool, MD has played a

crucial role in various distributed algorithm designs, as given

in [17]–[20].

In recent years, continuous-time MD-based algorithms

have also attracted much attention. For example, [14] pro-

posed the acceleration of a continuous-time MD algorithm,

and afterward, [21] showed continuous-time stochastic MD

for strongly convex functions, while [22] proposed a dis-

counted continuous-time MD dynamics to approximate the

exact solution. In the distributed design, although [19] pre-

sented a distributed MD dynamics with integral feedback, the

result merely achieved optimal consensus and part variables

turn to be unbounded. Due to the booming development

and extensive demand of distributed design, distributed

continuous-time MD-based methods need more exploration

and development actually.

Therefore, we study continuous-time MD-based algo-

rithms to solve distributed nonsmooth optimization with local

and coupled constraints. The main contributions of this note

can be summarized as follows. We propose a distributed

continuous-time mirror descent algorithm by introducing the

Bregman damping, which can be regarded as a generalization

of classic distributed projection-based dynamics [8], [23] by

taking the Bregman damping in a quadratic form. Moreover,

our algorithm well inherits the good capabilities of MD-

based approaches to rapidly compute explicit solutions to

the problems with some concrete constraint structures like

the unit simplex or the Euclidean sphere. With the designed

Bregman damping, our MD-based algorithm makes all the

variables’ trajectories bounded, which could not be ensured

in [14], [19], and avoids the inaccuracy of the convergent

point occurred in [22].

The remaining part is organized as follows. Section II

gives related preliminary knowledge. Next, Section III for-

mulates the distributed optimization and provides our al-

gorithm, while Section IV presents the main results. Then,

Section V provides illustrative numerical examples. Finally,

Section VI gives the conclusion.

http://arxiv.org/abs/2108.12136v1


II. PRELIMINARIES

In this section, we give necessary notations and related

preliminary knowledge.

A. Notations

Denote R
n (or R

m×n) as the set of n-dimensional (or

m-by-n) real column vectors (or real matrices), and In
as the n × n identity matrix. Let 1n (or 0n) be the n-

dimensional column vector with all entries of 1 (or 0).

Denote A⊗B as the Kronecker product of matrices A and B.

Take col{x1, . . . , xn} = col{xi}ni=1 = (xT1 , . . . , x
T
n )

T, ‖ · ‖
as the Euclidean norm, and rint(C) as the relative interior of

the set C [24].

An undirected graph can be defined by G(V , E), where

V = {1, . . . , n} is the set of nodes and E ⊂ V × V is the

set of edges. Let A = [aij ] ∈ R
n×n be the adjacency matrix

of G such that aij = aji > 0 if {j, i} ∈ E , and aij = 0,

otherwise. The Laplacian matrix is Ln = D − A, where

D = diag{Dii} ∈ R
n×n with Dii =

∑n

j=1 aij . If the graph

G is connected, then ker(Ln) = {k1n : k ∈ R}.

B. Convex analysis

For a closed convex set Ω ⊆ R
n, the projection map

PΩ : Rn → Ω is defined as PΩ(x) = argminy∈Ω‖x − y‖.

Especially, denote [x]+ , PR
n
+
(x) for convenience. For

x ∈ Ω, denote the normal cone to Ω at x by

NΩ(x) =
{

v ∈ R
n : vT(y − x) ≤ 0, ∀y ∈ Ω

}

.

A continuous function f : Rn → R is ω-strongly convex on

Ω if

(x− y)T(gx − gy) ≥ ω‖x− y‖2, ∀x, y ∈ C,

where ω > 0, gx ∈ ∂f(x), and gy ∈ ∂f(y).

The Bregman divergence based on the differentiable gen-

erating function f : Ω → R is defined as

Df (x, y) = f(x)− f(y)−∇f(y)T (x− y), ∀x, y ∈ Ω.

The convex conjugate function of f is defined as

f∗(z) = sup
x∈Ω

{

xT z − f(x)
}

.

The following lemma reveals a classical conclusion about

convex conjugate functions, of which readers can find more

details in [13], [15].

Lemma 1: Suppose that a function f is differentiable and

strongly convex on a closed convex set Ω. Then f∗(z) is

convex and differentiable, and f∗(z) = minx∈Ω

{

− xT z +

f(x)
}

. Moreover, ∇f∗(z) = Πf
Ω(z), where

Πf
Ω(z) , argmin

x∈Ω

{

− xT z + f(x)
}

. (1)

C. Differential inclusion

A differential inclusion is given by

ẋ(t) = F(x(t)), x(0) = x0, t ≥ 0, (2)

where F : Rn ⇒ R
n is a set-valued map. F is upper semi-

continuous at x if there exists δ > 0 for all ǫ > 0 such

that

F(y) ⊂ F(x) +B(0; ǫ), ∀y ∈ B(x; δ)

and it is upper semi-continuous if it is so for all x ∈ R
n. A

Caratheodory solution to (2) defined on [0, τ) ⊂ [0,+∞) is

an absolutely continuous function x : [0, τ) → R
n satisfying

(2) for almost all t ∈ [0, τ) in Lebesgue measure [25]. The

solution x(t) is right maximal if it has no extension in time.

A set M is said to be weakly (strongly) invariant with respect

to (2) if M contains a (all) maximal solution to (2) for any

x0 ∈ M. If 0n ∈ F(xe), then xe is an equilibrium point of

(2). The existence of a solution to (2) is guaranteed by the

following lemma [25].

Lemma 2: If F is locally bounded, upper semicontinuous,

and takes nonempty, compact and convex values, then there

exists a Caratheodory solution to (2) for any initial value.

Let V : R
n → R be a locally Lipschitz continuous

function, and ∂V (x) be the Clarke generalized gradient of

V at x. The set-valued Lie derivative for V is defined by

LFV (x) , {a ∈ R : a = pT v, p ∈ ∂V (x), v ∈ F(x)}. Let

maxLFV (x) be the largest element of LFV (x). Referring

to [25], we have the following invariance principle for (2).

Lemma 3: Suppose that F is upper semi-continuous and

locally bounded, and F(x) takes nonempty, compact, and

convex values. Let V : Rn → R be a locally Lipschitz and

regular function, S ⊂ R
n be compact and strongly invariant

for (2), and ψ(t) be a solution to (2). Take

R = {x ∈ R
n : 0 ∈ LFV (x)},

and M as the largest weakly invariant subset of R̄∩S, where

R̄ is the closure of R. If maxLFV (x) ≤ 0 for all x ∈ S,

then limt→∞ dist(ψ(t),M) = 0.

III. FORMULATION AND ALGORITHM

In this paper, we consider a nonsmooth optimization

problem with both local and coupled constraints. There are

N agents indexed by V = {1, . . . , N} in a network G(V , E).
For agent i, the decision variable is xi, the local feasible set is

Ωi ⊆ R
n, and the local cost function is fi : R

n → R. Define

Ω =
∏N

i=1 Ωi and x = col{xi}Ni=1. All agents cooperate to

solve the following distributed optimization:

min
x∈Ω

N
∑

i=1

fi(xi)

s.t.

N
∑

i=1

gi(xi) ≤ 0p,

N
∑

i=1

Aixi − bi = 0q, (3)

where gi : R
n → R

p, Ai ∈ R
q×n and bi ∈ R

q , for

i ∈ V . Except for the local constraint Ω, other constraints

in (3) are said to be coupled ones since the solutions rely

on global information. In the multi-agent network, agent i



only has the local decision variable xi ∈ Ωi, and moreover,

the local information fi, gi, Ai and bi. Thus, agents need

communication with neighbors through the network G.

Actually, MD replaces the Euclidean regularization in

(sub)gradient descent algorithms with Bregman divergence.

In return, different generating functions of Bregman diver-

gence may efficiently bring explicit solutions on different

special feasible sets. For example, if φ(x) = 1
2‖x‖2 and Ω

is convex and closed, then

Πφ
Ω(z) = argmin

x∈Ω

1

2
‖x− z‖2 = PΩ(z), (4)

which actually turns into the classical Euclidean regulariza-

tion with projection operations. Furthermore, if Ω = {x ∈
R

n
+ :

∑n

k=1 x
k = 1} and φ(x) =

∑n

k=1 x
k log(xk) with the

convention 0 log 0 = 0, then

Πφ
Ω(z) = col

{ exp(zk)
∑n

j=1 exp(z
j)

}n

k=1
, (5)

which is the well-known KL-divergence on the unit simplex.

Assign a generating function φi : R
n → R of the Bregman

divergence to each agent i ∈ V . Then we consider the

following assumptions for (3).

Assumption 1:

(i) For i ∈ V , Ωi is closed and convex, fi and gi are

convex on Ωi, and moreover, φi is differentiable and

strongly convex on Ωi.

(ii) There exists at least one x ∈ rint(Ω) such that
∑N

i=1 gi(xi) < 0p and
∑N

i=1Aixi − bi = 0q.

(iii) The undirected graph G is connected.

Remark 1: Clearly, (3) can be regarded as a generalization

for both distributed optimal consensus problems [12], [19],

[26] and distributed resource allocation problems [23], [27].

Moreover, gi in the coupled constraints may not required

to be affine, which is more general than the constraints in

previous works [10], [28]. Also, the problem setting does not

require strongly or strictly convexity for either cost functions

fi or constraint functions gi [10], [27], and the selection

qualification for generating function φi has also been widely

used [14], [19], [22].

For designing a distributed algorithm, we introduce aux-

iliary variables ωi ∈ R
p, νi ∈ R

q, λi ∈ R
p, µi ∈ R

q,

yi ∈ R
n and γi ∈ R

p for each agent i ∈ V . Moreover,

we employ the gradient ∇φi of generating functions as the

Bregman damping in the algorithm, which ensures the tra-

jectories’ boundedness [14], [19] and avoids the convergence

inaccuracy [22]. Recall that aij is the (i, j)-th entry of the

adjacency matrix A and Πφi

Ωi
(·) is defined in (1). Then we

propose a distributed mirror descent algorithm with Bregman

damping (MDBD) for (3).

In Algorithm 1, for each agent i ∈ V , information like

∂fi, ∂gi, Ai and bi serves as private knowledge, and values

like ωi, νi, λi and µi should be exchanged with neighbors

through the network G. Moreover, generating function φi
and Bregman damping ∇φi can be determined privately

and individually, not necessarily identical. It follows from

Lemma 2 that the existence of a Caratheodory solution to

Algorithm 1 can be guaranteed.

Algorithm 1 MDBD for i ∈ V

Initialization:

xi(0) ∈ Ωi, yi(0) = 0n, λi(0) = 0p, γi(0) = 0p,

ωi(0) = 0p, µi(0) = 0q, νi(0) = 0q;

take a proper generating function φi(·) according to Ωi.

Flows renewal:

ẏi ∈ − ∂fi(xi)− ∂gi(xi)
Tλi −AT

i µi +∇φi(xi)− yi,

γ̇i = gi(xi)−
N
∑

j=1

aij(ωi − ωj) + λi − γi,

µ̇i = Aixi − bi −
N
∑

j=1

aij(νi − νj),

ω̇i =

N
∑

j=1

aij(λi − λj),

ν̇i =
N
∑

j=1

aij(µi − µj),

xi = Πφi

Ωi
(yi),

λi = [γi]
+.

For simplicity, define

λ = col
{

λi
}N

i=1
∈ R

Np, µ = col
{

µi

}N

i=1
∈ R

Nq,

ω = col
{

ωi

}N

i=1
∈ R

Np, ν = col
{

νi
}N

i=1
∈ R

Nq,

y = col
{

yi
}N

i=1
∈ R

Nn, γ = col
{

γi
}N

i=1
∈ R

Np.

Let Θ = Ω× R
Np
+ × R

N(p+2q), and moreover,

z = col{x,λ,µ,ω,ν}, s = col{y,γ,µ,ω,ν}.
Take the Lagrangian function L : Θ → R as

L(z) =
N
∑

i=1

fi(xi) +

N
∑

i=1

λTi
(

gi(xi)−
N
∑

j=1

aij(ωi − ωj)
)

+

N
∑

i=1

µT
i

(

Aixi − bi −
N
∑

j=1

aij(νi − νj)
)

. (6)

For such a distributed convex optimization (3) with a zero

dual gap, x⋆ ∈ Ω is an optimal solution to problem (3) if

and only if there exist auxiliary variables (λ⋆,µ⋆,ω⋆,ν⋆) ∈
R

Np
+ ×R

N(p+2q), such that z⋆ = col{x⋆,λ⋆,µ⋆,ω⋆,ν⋆} is

a saddle point of L [23], that is, for arbitrary z ∈ Θ,

L(x⋆,λ,µ,ω⋆,ν⋆) ≤ L(x⋆,λ⋆,µ⋆,ω⋆,ν⋆)

≤L(x,λ⋆,µ⋆,ω,ν).

Define

F (z) =















col
{

∂fi(xi) + ∂gi(xi)
Tλi +AT

i µi

}N

i=1

col
{

− gi(xi)
}N

i=1
+Lpw

col
{

−Aixi + bi
}N

i=1
+Lqν

−Lpλ

−Lqµ















, (7)



where Lp = LN ⊗ Ip and Lq = LN ⊗ Iq . In fact, z⋆ is a

saddle point of L if and only if −F (z⋆) ∈ NΘ(z⋆), which

was obtained in [10], [23], [27].

Hence, Algorithm 1 can be presented in the following

compact form:
{

ṡ ∈− F (z) +∇Φ(z) − s,

z = ΠΦ
Θ
(s),

(8)

where

∇Φ(z) ,col
{

col{∇φi(xi)}Ni=1, col{λi}Ni=1,

col{µi}Ni=1, col{ωi}Ni=1, col{νi}Ni=1

}

, (9a)

ΠΦ
Θ(s) ,col

{

col{Πφi

Ωi
(yi)}Ni=1, col{[γi]+}Ni=1,

col{µi}Ni=1, col{ωi}Ni=1, col{νi}Ni=1}
}

. (9b)

Remark 2: In fact, if φ(·) = 1
2‖ · ‖2, then Πφ

Rp(z) =

PRp(z) = z and Πφ

R
p

+

(z) = PR
p

+
(z) = [z]+, and therefore,

(8) can be rewritten as
{

ṡ ∈− F (z) + z − s,

z = PΘ(s),
(10)

which is actually a widely-investigated dynamics such as

the proportional-integral protocol in [8] and projected output

feedback in [23]. Thus, MDBD generalizes the conventional

distributed projection-based design for constrained optimiza-

tion. Obviously, z in (10) is replaced with the Bregman

damping ∇Φ(z) in (8).

IV. MAIN RESULTS

In this section, we investigate the convergence of MDBD.

Though Bregman damping improves the convergence of

MDBD, the process also brings challenges for the conver-

gence analysis. The following lemma shows the relationship

between MDBD and the saddle points of the Lagrangian

function L.

Lemma 4: Under Assumption 1, z⋆ is a saddle point of

Lagrangian function L in (6) if and only if there exists s⋆ ∈
−F (z⋆) +∇Φ(z⋆) such that z⋆ = ΠΦ

Θ
(s⋆).

Proof. For z̃ = ΠΦ
Θ
(s⋆), the first-order condition is

−F (z⋆) +∇Φ(z⋆)−∇Φ(z̃) ∈ NΘ(z̃). (11)

We firstly show the sufficiency. Given z⋆, suppose that there

exists s⋆ ∈ −F (z⋆) + ∇Φ(z⋆) such that z⋆ = ΠΦ
Θ
(s⋆).

Thus, (11) holds with z̃ = z⋆, and −F (z⋆) ∈ NΘ(z⋆),
which means that z⋆ is a saddle point of L.

Secondly, we show the necessity. Suppose −F (z⋆) ∈
NΘ(z⋆) and take s⋆ ∈ −F (z⋆) +∇Φ(z⋆). Recall that (11)

holds with z̃ = z⋆, which implies that z⋆ is a solution to

ΠΦ
Θ
(s⋆). Furthermore, since φi(·) and 1

2‖ · ‖2 are strongly

convex, the solution to ΠΦ
Θ
(s⋆) is unique. Therefore, z⋆ =

ΠΦ
Θ
(s⋆). �

The following theorem shows the correctness and the

convergence of Algorithm 1.

Theorem 1: Under Assumption 1, the following state-

ments hold.

(i) The trajectory (s(t), z(t)) of (8) is bounded;

(ii) x(t) converges to an optimal solution to problem (3).

Proof. (i) Firstly, we show that the output z(t) is bounded.

By Lemma 4, take z⋆ as a saddle point of L and thus, there

exists s⋆ ∈ −F (z⋆)+∇Φ(z⋆) such that z⋆ = ΠΦ
Θ
(s⋆). Take

φ∗i as the convex conjugate of φi, and construct a Lyapunov

candidate function as

V1 =

N
∑

i=1

Dφ∗

i
(yi − y⋆i ) +

1

2
‖γ − γ⋆‖2 + 1

2
‖µ− µ⋆‖2

+
1

2
‖ω − ω⋆‖2 + 1

2
‖ν − ν⋆‖2. (12)

Since xi = Πφi

Ωi
(yi), it follows from Lemma 1 that

φ∗i (yi) =x
T
i yi − φi(xi), (13a)

φ∗i (y
⋆
i ) =x

⋆T
i y⋆i − φi(x

⋆
i ). (13b)

Thus, by substituting (13), the Bregman divergence becomes

Dφ∗

i
(yi − y⋆i ) =φ

∗
i (yi)− φ∗i (y

⋆
i )−∇φ∗i (y⋆i )T (yi − y⋆i )

=φi(x
⋆
i )− φi(xi)− (x⋆i − xi)

T yi.

Since φi(·) is strongly convex for i ∈ V , there exists a

positive constant σ such that

N
∑

i=1

Dφ∗

i
(yi−y⋆i )≥

σ

2
‖x−x⋆‖2+

N
∑

i=1

(x⋆i −xi)T(∇φi(xi)−yi).

In fact, ∇φ∗i (yi) = argminx∈Ωi
{−xT yi + φi(x)}, which

leads to

0 ≤
(

∇φi(∇φ∗i (yi))− yi
)T (∇φ∗i (y⋆i )−∇φ∗i (yi)

)

=(∇φi(xi)− yi)
T (x⋆i − xi).

Thus,
∑N

i=1Dφ∗

i
(yi − y⋆i ) ≥ σ

2 ‖x− x⋆‖2. In addition,

‖λ− λ⋆‖2 = ‖[γ]+ − [γ⋆]+‖2 ≤ ‖γ − γ⋆‖2.

Therefore,

V1(s(t)) ≥
κ

2

(

‖x− x⋆‖2 + ‖λ− λ⋆‖2 + ‖µ− µ⋆‖2

+ ‖ω − ω⋆‖2 + ‖ν − ν⋆‖2
)

, (14)

where κ = min{σ, 1}. This means V1(s(t)) ≥ κ
2 ‖z − z⋆‖2,

that is, V1 is radially unbounded in z. Clearly, the function

V1 along (20) satisfies

LFV1 =
{

β ∈ R, β =

N
∑

i=1

(

∇φ∗i (yi)−∇φ∗i (y⋆i )
)T
ẏi

+(γ−γ⋆)T γ̇ + (µ−µ⋆)T µ̇+ (ω−ω⋆)T ω̇ + (ν−ν⋆)T ν̇

=
{

β ∈ R, β =
(

z−z⋆
)T(− η+∇Φ(z)−s

)

, η ∈ F (z)
}

.

Combining the convexity of fi and gi with the property for

saddle point z⋆,

−(z−z⋆
)T

η (15)

≤L(x⋆,λ,µ,ω⋆,ν⋆)− L(x,λ⋆,µ⋆,ω,ν) ≤ 0.



Thus,

β ≤ (z − z⋆)T (∇Φ(z) − s) (16)

=

N
∑

i=1

(xi − x⋆i )
T (∇φi(xi)− yi) + (λ− λ⋆)T (λ− γ).

On the one hand, for i ∈ P , we consider a differentiable

function

J(α) = φi
(

αx⋆i + (1− α)xi
)

−
(

αx⋆i + (1 − α)xi
)T
yi,

with a constant α ∈ [0, 1]. Correspondingly, we have

J ′(α) = (x⋆i − xi)
T
(

∇φi(αx⋆i + (1− α)xi
)

− yi

)

.

Recalling xi = Πφi

Ωi
(yi) = argminx∈Ωi

{

− xT yi + φi(x)
}

,

J(0) ≤ J(α), ∀α ∈ [0, 1], because of the convexity of Ωi.

This yields J ′(α)
∣

∣

0+
≥ 0, that is,

J ′(α)|0+ = (x⋆i − xi)
T (∇φi(xi)− yi) ≥ 0.

On the other hand,

(λ − λ⋆)T (λ − γ) = ([γ]+ − λ⋆)T ([γ]+ − γ) ≤ 0.

Therefore, β ≤ 0, which implies that the output z(t) is

bounded.

Secondly, we show that s(t) is bounded. Actually, it

follows from (14) and the statement above that γ(t) is

bounded. Thereby, we merely need to consider y. Take

another Lyapunov candidate function as

V2 =
1

2
‖y‖2, (17)

which is radially unbounded in y. Along the trajectories of

Algorithm 1, the derivative of V2 satisfies

LFV2 =
{

ζ ∈R : ζ ∈
N
∑

i=1

yTi
(

− ∂fi(xi)− ∂gi(xi)
Tλi

−AT
i µi +∇φi(xi)

)

− ‖yi‖2
}

.

It is clear that ζ ≤ −‖y‖2+m‖y‖ = −2V2+m
√
2V2 for a

positive constant m, since x, λ and µ have been proved to

be bounded. On this basis, it can be easily verified that V2
is bounded, so is y. Together, s(t) is bounded.

(ii) Set R =
{

(z, s) : 0 ∈ LFV1
}

. Clearly, by (15),

R ⊆
{

(z, s) : L(x⋆,λ,µ,ω⋆,ν⋆) = L(x,λ⋆,µ⋆,ω,ν)
}

.

Let M be the largest invariant subset of R. By Lemma 3,

(z(t), s(t)) → M as t → ∞. Take any (z̃, s̃) ∈ M. Let

ŝ ∈ −F (z̃) + ∇Φ(z̃), and clearly (z̃, ŝ) ∈ M as well.

Similar to (12), we take another Lyapunov function Ṽ1 by

replacing (z⋆, s⋆) with (z̃, ŝ). Based on similar arguments, z̃

is Lyapunov stable, so is ŝ. By Proposition 4.7 in [29], there

exists (z#, s#) ∈ M such that (z(t), s(t)) → (z#, s#) as

t→ ∞, which yields that x(t) in Algorithm 1 converges to

an optimal solution to problem (3). �

Remark 3: It is worth mentioning that the Bregman damp-

ing ∇Φ(z) in (8) is fundamental to make the trajectory of

variable s avoid going to infinity [14], [19], or converging

to an inexact optimal point [22]. Clearly, z in the first ODE

in (10) derives actually not from the variable z itself, but

from the gradient of the quadratic function ‖z‖2/2 instead.

This is exactly the crucial point in designing the distributed

MD-based dynamics (8). Correspondingly, the properties in

conjugate spaces, referring to (13), play an important role in

the analysis.

For convenience, we define

x̂ ,
1

t

∫ t

0

x(τ)dτ, λ̂ ,
1

t

∫ t

0

λ(τ)dτ, µ̂ ,
1

t

∫ t

0

µ(τ)dτ,

ω̂ ,
1

t

∫ t

0

ω(τ)dτ, ν̂ ,
1

t

∫ t

0

ν(τ)dτ.

Then we describe the convergence rate of Algorithm 1.

Theorem 2: Under Assumption 1, (8) converges with a

rate of O(1/t), i.e.,

0 ≤ L(x̂,λ⋆,µ⋆, ω̂, ν̂)− L(x⋆, λ̂, µ̂,ω⋆,ν⋆) ≤ 1

t
V1(s(0)).

Proof. It follows from (15)-(16) that

d

dt
V1 ≤ L(x⋆,λ,µ,ω⋆,ν⋆)− L(x,λ⋆,µ⋆,ω,ν) ≤ 0.

By integrating both sides over the time interval [0, t],

−V1(s(0)) ≤ V1(s(t))− V1(s(0))

≤
∫ t

0

(

L(x⋆,λ(τ),µ(τ),ω⋆,ν⋆) (18)

−L(x(τ),λ⋆,µ⋆,ω(τ),ν(τ))
)

dτ ≤ 0.

With applying Jensen’s inequality to the convex-concave

Lagrangian function L,

L(x⋆,λ(t),µ(t),ω⋆,ν⋆)≥ 1

t

∫ t

0

L(x⋆,λ(τ),µ(τ),ω⋆,ν⋆)dτ,

L(x(t),λ⋆,µ⋆,ω(t),ν(t))≤ 1

t

∫ t

0

L(x(τ),λ⋆,µ⋆,ω(τ),ν(τ))dτ.

By substituting the above inequalities into (18), the conclu-

sion follows. �

V. NUMERICAL EXAMPLES

In this section, we examine the correctness and effective-

ness of Algorithm 1 on the classical simplex-constrained

problems (see, e.g., [18], [22]), where the local constraint

set is an n-simplex, e.g.,

Ωi = {xi ∈ R
n
+ :

n
∑

k=1

xi,k = 1}, ∀i ∈ V .

First, we consider the following nonsmooth optimization

problem with N = 10 and n = 4,

min
x∈Ω

N
∑

i=1

‖Wixi − di‖2 + ci ‖xi‖1

s.t.

N
∑

i=1

gi(xi) ≤ 0,

N
∑

i=1

Aixi −
N
∑

i=1

bi = 02,

(19)

where Wi is a positive semi-definite matrix, di ∈ R
4, and

ci > 0. The coupled inequality constraint is

gi(xi) = ‖xi‖2 + ci ‖xi‖1 −
25

2n+ i2
,



TABLE I

REAL RUNNING TIME (SEC) IN DIFFERENT DIMENSIONS

n = 4 n = 64 n = 256 n = 1024 n = 4096 n = 10
5

n = 10
6

MDBD 0.47 2.42 6.76 12.98 27.99 146.62 466.60

PIP-YANG 2.51 19.63 48.51 195.67 892.74 > 3000 > 5000

POF-ZENG 3.92 21.78 39.73 207.03 1136.85 > 3000 > 5000
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Fig. 1. Trajectories of all agents’ variables.

while Ai ∈ R
2×4 and bi ∈ R

2 are random matrices ensuring

the Slater’s constraint condition. Here, Wi, di, gi, Ai and bi
are private to agent i, and all agents communicate through

an undirected cycle network G:

1 ⇄ 2 ⇄ · · · ⇄ 10 ⇄ 1.

To implement the MD method, we employ the negative en-

tropy function φi(xi)=
∑n

k=1 xi,klog(xi,k) as the generating

function on Ωi in Algorithm 1. In Fig. 1, we show the

trajectories of one dimension of each xi and yi, respectively.

Clearly, the trajectories of both xi and yi in MDBD are

bounded, while the boundedness of yi may not be guaranteed

in [14], [19].

Next, we show the effectiveness of MDBD by compar-

isons. As is investigated in [14], [16], when the generating

function satisfies φi(xi) =
∑n

k=1 xi,klog(xi,k) on the unit

simplex, Πφi

Ωi
(yi) can be explicitly expressed as (5). In

this circumstance, the MD-based method works better than

projection-based algorithms, since it can be regarded as

projection-free and effectively saves the time for projection

operation, especially with high-dimensional variables.

To this end, we investigate different dimensions of de-

cision variable xi and compare MDBD with two dis-

tributed continuous-time projection-based algorithms — the

proportional-integral protocol (PIP-Yang) in [8] and the

projected output feedback (POF-Zeng) in [23], still for the

cost functions and the coupled constraints given in (19).

In Fig. 2, the x-axis is for the real running time of the

GPU, while the y-axis is for the optimal error ‖x − x⋆‖.

As the dimension increases, the real running time of the two

projection-based dynamics is obviously longer than that of

MDBD, because obtaining (5) is much faster than calculating

a projection on high-dimensional constraint sets via solving

a general quadratic optimization problem.

Furthermore, Table I lists the real running time for three

algorithms with different dimensions of decision variables.

As the dimension increases, finding the projection points in

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

time (sec)

0

0.1

0.2

0.3

0.4

0.5

0.6 MDBD
PIP-Yang
POF-Zeng

(a) n = 4

0.5 1 1.5 2 2.5 3 3.5

time (sec)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 MDBD
PIP-Yang
POF-Zeng

(b) n = 16

0 1 2 3 4 5 6 7 8 9 10

time (sec)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

MDBD
PIP-Yang
POF-Zeng

(c) n = 64

0 5 10 15 20 25

time (sec)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

MDBD
PIP-Yang
POF-Zeng

(d) n = 256

Fig. 2. Optimal errors in different dimensions: n = 4, 16, 64, 256.

large-scale circumstances becomes more and more difficult.

But remarkably, MDBD still maintains good performance,

due to the advantage of MD.

VI. CONCLUSIONS

We investigated distributed nonsmooth optimization with

both local set constraints and coupled constraints. Based on

the mirror descent method, we proposed a continuous-time

algorithm with introducing the Bregman damping to guaran-

tee the algorithm’s boundedness and accuracy. Furthermore,

we utilized nonsmooth techniques, conjugate functions, and

the Lyapunov stability to prove the convergence. Finally,

we implemented comparative experiments to illustrate the

effectiveness of our algorithm.
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