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Abstract—Achieving consensus via nearest neighbor rules is an
important prerequisite for multi-agent networks to accomplish
collective tasks. A common assumption in consensus setup is
that each agent interacts with all its neighbors. This paper
examines whether network functionality and performance can be
maintained-and even enhanced-when agents interact only with a
subset of their respective (available) neighbors. As shown in the
paper, the answer to this inquiry is affirmative. In this direction,
we show that by exploring the monotonicity property of the
Laplacian eigenvectors, a neighbor selection rule with guaranteed
performance enhancements, can be realized for consensus-type
networks. For distributed implementation, a quantitative connec-
tion between entries of Laplacian eigenvectors and the “relative
rate of change” in the state between neighboring agents is further
established; this connection facilitates a distributed algorithm for
each agent to identify “favorable” neighbors to interact with.
Multi-agent networks with and without external influence are
examined, as well as extensions to signed networks. This paper
underscores the utility of Laplacian eigenvectors in the context
of distributed neighbor selection, providing novel insights into
distributed data-driven control of multi-agent systems.

Index Terms—Distributed neighbor selection; Laplacian eigen-
vectors; convergence rate; Fiedler vector; block-cut tree; relative
tempo; data-driven control.

I. INTRODUCTION

A multi-agent network is composed of a group of agents,

interacting with their respective nearest neighbors by follow-

ing local rules; when such local rules lead to an emerging

collective behavior at the network level is of great interest [1],

[2], [3]. Achieving consensus via pairwise diffusive interac-

tions between neighboring agents is a prototypical collective

behavior of multi-agent systems [4], [5], [6], [7], which also

turns out to be a critical prerequisite in disciplines such as

distributed control of networked systems [8], [9], distributed

estimation over sensor networks [10], synchronization in com-

plex networks [11], large-scale multi-agent machine learning

[12], and opinion dynamics [13].

A. Motivation

The functionality and performance of a multi-agent network

are dependent on the underlying network topology, realized via
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each agent’s interactions with its nearest neighbors [4], [5],

[7]. In practice, information exchange using communication

channels amongst agents are often expensive [14]. Here, an

important question is whether the network performance can

be maintained and even enhanced if agents interact only with

a subset of their available neighbors, namely, via a neigh-

bor selection. For instance, in leader-follower multi-robotic

networks, it is often assumed that each robot interacts with

all robots within a sensing radius; an important observation

is that the resultant network is not necessary efficient in

diffusion of information from leader robots to the followers

[8]. A similar situation arises in distributed optimization and

estimation, where the coordination network is realized via the

spatial distribution of processors or sensors which may not be

optimal for the given tasks, leading to a performance loss [15].

In fact, the neighbor selection is ubiquitous in both natural

and artificial networks. For instance, it has been reported that

in flocks of starlings, birds interact only with a subset of

their nearest neighbors, rather than with all birds within a

sensing radius [16]. An analogous scenario is observed in

social networks, where an individual often determines the

subset of their friends to interact with on online social media;

this phenomenon also occurs in real-world social interactions

amongst people [17]. Neighbor selection schemes are also

employed in peer-to-peer networks, such as BitTorrent, to save

traffic overhead [18]. Along the same lines, adaptive neighbor

selection has been proposed to enhance the quality of predicted

ratings in recommender systems [19]. The kNN imputation

methods are designed to select k nearest neighbors to deal

with missing data in datasets [20]. Notably, neighbor selection

can also be viewed as an attention mechanism (each agent

pays more attention to specific agents), which is ubiquitously

employed in recently developed learning algorithms [21].

For multi-agent consensus problems, network topology

plays a crucial role in both reaching consensus and the

corresponding convergence rate [22], [23], [24]. A common

assumption in this line of work is that each agent interacts

with all its neighbors [1], [2], [3]; however, there may exist

excessive interactions that degrade the performance of the

multi-agent network. A natural question thereby is whether the

importance of agents’ neighbors (with respect to the desired

performance) can be inferred from local measurements. This

(data-driven) distributed neighbor selection problem is the

focus of the present work. Our work is also inspired by the

observation that information flow between a pair of neigh-

boring agents does not need to be bidirectional, especially

when two neighboring agents are not hierarchical equivalent

http://arxiv.org/abs/2107.12022v2
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[25]. For instance, a rooted tree exhibits a typical hierarchical

structure for the efficient spreading of information from the

root to other nodes- a bidirectional information exchange on

the other hand may lessen the efficiency of the convergence

process. In particular, we provide a theoretical framework to

reason about the distributed neighbor selection problem as well

as a guarantee of its performance. As we will show, specific

Laplacian eigenvectors facilitate a systematic treatment for

designing and analyzing a novel distributed neighbor selection

algorithm for consensus-type networks.

B. Contribution

The contribution of this paper is threefold. First, we will

show that neighbor selection (effectively removing a spe-

cific subset of edges from the network) can be effective for

improving the network performance. In this direction, one

of our contributions involves using entries of the Laplacian

eigenvector as a criterion for neighbor selection; subsequently,

we show how the obtained reduced network maintains, and

even enhances the functionality of the original network in

terms of network reachability. Secondly, inspired by the ob-

servation that bidirectional interactions amongst neighboring

agents can hinder the efficiency of information propagation

throughout a consensus-type network, we provide theoretical

guarantees on the performance enhancement of the reduced

network in terms of convergence rate. Finally, as the Laplacian

eigenvectors are global network variables, we establish a

quantitative connection between the entries of the Laplacian

eigenvector and the relative rate of change in state between a

pair of neighboring agents, a quantity that we have referred to

as the network relative tempo. An important observation is that

relative tempo is computable from local measurements. In this

direction, we show how the relative tempo can be employed

for the distributed online neighbor selection process.

The contributions of this work have several immediate con-

sequences. First, linking local interactions and global collec-

tive behaviors is a central topic in complex systems, this work

essentially initiates a novel local neighbor selection rule that

leads to a reduced network with guaranteed network reacha-

bility and enhanced convergence rate at the network level [26],

[27]. Second, as consensus-type networks play a central role in

distributed algorithms, our work has immediate consequences

for distributed control, estimation, optimization, and learning

algorithm design [28], [12]. Third, the quantitative connection

between entries of Laplacian eigenvectors and relative tempo

provides novel insights into distributed online control of multi-

agent networks [29]. Lastly, but certainly not least, as opposed

to Laplacian eigenvalues (e.g., algebraic connectivity [30]) that

have been extensively examined in graph theory literature and

for consensus problems [4], [31], [23], this paper underscores

the utility of the Laplacian eigenvectors (namely, Fiedler

vector and its variant) by unveiling the network reachability

that they encode (e.g., further extending the celebrated results

of Fiedler in [32]), a novel application of Fiedler vector in

addition to spectral clustering [32], [33], [34].

C. Organization

The remainder of this paper is organized as follows. We

introduce preliminaries covering notation, graph theory, and

network dynamics in §II. A motivational example is then

provided and discussed in §III. The main results for semi-

autonomous networks in terms of analysis of reachability of

reduced networks after neighbor selection process, as well

as the corresponding convergence rates, are provided in §IV;

this is then followed by parallel results for fully autonomous

networks in §V. Extensions of main results to signed networks

are discussed in §VI, followed by concluding remarks in §VIII.

II. PRELIMINARIES

First a quick note on the notation. Let R and Z+ denote the

set of real numbers and positive integers, respectively. Denote

the set {1, 2, . . . , n} as n, where n ∈ Z+; 1n and 0n×m

denote n×1 vector and n×m matrix of all ones and all zeros,

respectively. Let Id denote the d × d identity matrix and ej
denote the jth column of Id where j ∈ d. The ith smallest

eigenvalue and the corresponding normalized eigenvector of

a symmetric matrix M ∈ R
n×n is signified by λi(M) and

vi(M), respectively. The entry located at the ith row and jth

column in a matrix M ∈ R
n×n is denoted by [M ]ij and the

ith entry of a vector x by [x]i. Let xij denote
[x]i
[x]j

for a vector

x ∈ R
n. The Euclidean norm of a vector x ∈ R

n is designated

by ‖x‖ = (x⊤x)
1

2 . A vector x ∈ R
n is positive if [x]i > 0

for all i ∈ n. The spectral radius of a matrix M is denoted by

ρ(M).
Next, we provide a few graph-theoretic constructs that will

be subsequently used in the paper. Let G = (V , E ,W ) denote

a graph with the node set V = {1, 2, . . . , n} and edge set

E ⊂ V × V . The adjacency matrix W = (wij) ∈ R
n×n is

such that the edge weight between agents i and j satisfies

wij 6= 0 if and only if (i, j) ∈ E and wij = 0 otherwise. A

graph G is undirected if (i, j) ∈ E if and only if (j, i) ∈ E ,

otherwise G is directed. A graph G is a signed graph if there

exists an edge (i, j) ∈ E such that wij < 0, otherwise G is

unsigned. Let Ni = {j ∈ V|(i, j) ∈ E} denote the neighbor

set of an agent i ∈ V . A path from ip∈ V to i1∈ V in G is a

concatenation of edges (i1, i2), (i2, i3), · · · , (ip−1, ip), where

all nodes i1, i2, . . . , ip are distinct; a node i ∈ V is reachable

from a node j ∈ V if there exists a path from j to i in G.

An undirected graph is connected if each pair of nodes are

reachable from each other. Let Sn denote a star graph with

n ∈ Z+ nodes. A subgraph G̃ = (Ṽ , Ẽ) of a graph G = (V , E)
is a graph such that Ṽ ⊂ V and Ẽ ⊂ E . The subgraph obtained

by removing a node set V ′ ⊂ V and all incident edges from

a graph G = (V , E) is denoted by G − V ′. Let S ⊂ V be any

subset of nodes in G = (V , E). Then the induced subgraph

G(S) is the graph whose node set is S and whose edge set

consists of all of the edges incident to nodes in S.

Lastly, we provide a brief synopsis of multi-agent net-

works1. In a multi-agent network G = (V , E ,W ), each agent

i ∈ V has the state xi(t) ∈ R
d (or xi ∈ R

d) at time

1We will use “graphs” and “networks” interchangeably in this paper.
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Fig. 1. The orientation of each edge indicates the direction of information flow or influence. For instance, the edge from u to agent 1 implies that the
information of u can be transmitted from u to agent 1 and subsequently agent 1 can be influenced by u. The bidirectional edges between neighboring agents
are identified by the line with double arrows for simplicity. Entries of v1(LB(G6)) associated to each agent in G6 are indicated by numbers close to each
agent.

t. In the sequel we will consider two distinct categories of

diffusively coupled networks, namely, fully-autonomous and

semi-autonomous.

In a fully autonomous network (FAN), n ∈ Z+ agents

evolve their respective states through interactions characterized

by an unsigned graph G = (V , E ,W ). In particular, each

agent updates its state by adopting the diffusive interaction

protocol (extensively examined in distributed algorithms and

synchronization problems [8], [9], [10], [11], [12]),

ẋi(t) = −
n∑

i=1

wij (xi(t)− xj(t)) , i ∈ V . (1)

In relation with the protocol (1), we say the state of agent i

is influenced by its neighbors j ∈ Ni or, equivalently, agent i

follows its neighbors j ∈ Ni. Denote the graph Laplacian of

G as L(G) = (lij) ∈ R
n×n where lii =

∑
n
j=1wij for i ∈ V

and lij = −wij for i 6= j. The collective behavior of a FAN

can be characterized as,

ẋ = −(L(G)⊗ Id)x, (2)

where x = (x⊤
1 (t), . . . ,x

⊤
n (t))

⊤ ∈ R
nd.

In semi-autonomous networks (SANs), a subset of agents

(referred to as leaders or informed agents) are selected to

receive external control signals so as to steer the entire network

towards a desired state. In this direction, consider a SAN

consisting of n ∈ Z+ agents whose interaction structure is

characterized by an unsigned graph G = (V , E ,W ). In a SAN,

the leaders, denoted by Vleader ⊂ V , can be directly influenced

by the external input signals and the remaining agents are

referred to as followers, denoted by Vfollower = V \ Vleader.

In this paper, the set of external inputs is denoted by U =
{u1, . . . ,um}, where ul ∈ R

d, l ∈ m and m ∈ Z+. Then

U is homogeneous if ui = uj for all i 6= j ∈ m and

heterogeneous if otherwise. In this setup, it is assumed that

each leader is at most influenced by one external input. In a

SAN, the interaction protocol for each agent i ∈ V admits the

form,

ẋi(t) = −
n∑

i=1

wij(xi(t)− xj(t))−
m∑

l=1

bil(xi(t)− ul),

(3)

where bil = 1 if and only if i ∈ Vleader and bil = 0
otherwise2. Subsequently, the collective behavior of SAN (3)

can be characterized as,

ẋ = −(LB(G)⊗ Id)x+ (B ⊗ Id)u, (4)

where x = (x⊤
1 (t), . . . ,x

⊤
n (t))

⊤ ∈ R
nd, B = (bil) ∈ R

n×m,

u = (u⊤
1 , . . . ,u

⊤
m)⊤ ∈ R

md and

LB(G) = L(G) + diag(B1m), (5)

which is referred to as perturbed Laplacian since LB(G)
(or LB for brevity) is obtained from a perturbation on the

Laplacian matrix by a diagonal matrix diag(B1m) [31], [35],

[23], [36], [37], [38]. The FAN (2) or SAN (4) are said to

achieve consensus if lim
t→∞

‖xi(t)−xj(t)‖ = 0 for all i, j ∈ V

and some norm on R
d [4], [36]. We assume throughout this

paper that the underlying networks of FAN (2) and SAN

(4) are all undirected and connected before implementing

neighbor selection.

III. A MOTIVATIONAL SCENARIO

We provide an example to motivate this work. Consider

a SAN on a connected unsigned network G6 in Figure 1a

(referred to as original network), where agent 1 is a leader

with an external input u = 0.9. We know that reachability

(existence of a directed path) from the external input to each

agent is a prerequisite for the agents to track this external

input u. This observation motivates us to inquire whether

the remaining edges, apart from those that can guarantee the

leader-follower reachability of the network, are necessary for

reaching a consensus. For instance, the network G′
6 (Figure

1c) is the minimal subgraph of G6 (in terms of the number of

edges) that can guarantee the reachability from external input u

to all the agents, the corresponding convergence performance

is significantly enhanced compared with that of the original

network G6 (see Figure 2). Apparently, the reduced network

G′
6 can be constructed from G6 by eliminating one of the

bidirectional edges between neighboring agents in G6 (see

Figure 1b), how the local accessible information of each agent

can be employed to guide this neighbor selection process is

challenging.

2The SAN (3) is also known as Taylor’s model in social network analysis
[13].
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Fig. 2. State trajectories of agents in a SAN (4) evolving on networks G6

(left) and G′

6
(right) in Figure 1, respectively.

Recall that the eigenvector associated with the smallest non-

zero eigenvalue of perturbed Laplacian can be chosen to be

positive. An important observation is that the entries of this

eigenvector, along the directed paths from leader agents to all

follower agents, are monotonically increasing (subsequently,

we will show that this is not accidental). We will subsequently

see that this monotonicity property plays an important role in

the distributed neighbor selection process (see Figure 1b). In

the sequel we first examine this observation analytically for

SANs, followed by its implications for FANs.

IV. SEMI-AUTONOMOUS NETWORKS

In this section, a neighbor selection algorithm, based on the

monotonicity of the eigenvector entries associated with the

perturbed Laplacian, is proposed. Subsequently, the conver-

gence rate of the multi-agent system on the reduced network,

post neighbor selection process, will be examined. Further-

more, the distributed implementation of the neighbor selection

process is discussed.

A. Reachability Analysis

We shall first examine the reachability property of SANs,

as encoded in a Laplacian eigenvector of the underlying

network. The eigen-pair (λ1(LB),v1(LB)) associated with

the perturbed Laplacian LB of a SAN, with input matrix

B, turns out to be an important algebraic construct revealing

graph-theoretic properties of SANs. As such, we shall unveil

the network reachability, encoded in the eigenvector v1(LB),
providing useful insights for designing neighbor selection

algorithm for SANs.

First, we provide some preliminary properties of

(λ1(LB),v1(LB)).

Lemma 1. Let λ1(LB) and v1(LB) denote the smallest eigen-

value and the corresponding normalized eigenvector of LB in

(5), respectively. Then, λ1(LB) > 0 is a simple eigenvalue

of LB and v1(LB) can be chosen to be (component-wise)

positive.

Proof. Refer to the Appendix.

For a SAN G with the input matrix B, we proceed to

construct a reduced subgraph of G by eliminating a subset

of edges between an agent and its neighboring agents, using

information encoded in v1(LB), namely, realizing neighbor

selection. We shall refer to this class of reduced subgraphs as

following the slower neighbor (FSN) networks of G, since

it is implied that each agent follows (or chooses to be

influenced by) those neighbors whose rate of change in states

are relatively slower; this statement will be made rigorous in

§IV-C.

Definition 1 (FSN network of SANs). Let G = (V , E ,W ) be

an unsigned SAN with the input matrix B. The FSN network

of G, denoted by Ḡ = (V̄ , Ē , W̄ ), is a subgraph of G such that

V̄ = V , Ē ⊆ E and W̄ = (w̄ij) ∈ R
n×n, where w̄ij = wij if

v1(LB)ij > 1 and w̄ij = 0 when v1(LB)ij ≤ 1.

According to Definition 1, the FSN network of a SAN is

determined by the perturbed Laplacian, specifically by the

corresponding eigenvector v1(LB). Note that the construction

of the FSN network is essentially achieved by comparing

v1(LB)ij and 1; hence this process can be regarded as a

“rule” of neighbor selection. We shall now proceed to reveal

the leader-to-follower reachability (LF-reachability) of FSN

networks.

Theorem 1. Let Ḡ = (V̄ , Ē , W̄ ) be the FSN network of the

SAN (4) on the unsigned connected network G = (V , E ,W ).
Then for each agent i ∈ V̄ , there exists l ∈ m such that i is

reachable from ul in Ḡ.

Proof. Let Vleader and Vfollower be the leader and the follower

sets of the SAN (4), respectively. According to Lemma 5 in

Appendix, it is sufficient to show that for an arbitrary i ∈
Vfollower, there exists a leader agent l ∈ Vleader such that i is

reachable from l.

By contradiction, assume that there exists a subset of agents

{i1, i2, · · · , is} ⊂ Vfollower in the FSN network Ḡ such that

ik is not reachable from any l ∈ Vleader, where k ∈ s

and s ∈ Z+. Let λ1 be the smallest eigenvalue of the

perturbed Laplacian matrix LB(G) with the corresponding

eigenvector v1. According to Lemma 1, one has λ1 > 0 and

the corresponding eigenvector v1 is positive. Now consider

the following two cases:

Case 1: There exists an isolated agent i′ ∈ {i1, i2, · · · , is}
such that agent i′ is not reachable from any leader agent in

the FSN network Ḡ. Then, according to Definition 1, one has,

[v1]i′ ≤ [v1]j , (6)

for all j ∈ Ni′ . Examining the i′th row in eigen-equation

LB(G)v1 = λ1v1 yields,

 ∑

j∈Ni′

wi′j


 [v1]i′ −

∑

j∈Ni′

wi′j [v1]j = λ1[v1]i′ . (7)

Combining (6) and (7), now yields the following inequality,

 ∑

j∈Ni′

wi′j


 [v1]i′ −

∑

j∈Ni′

wi′j [v1]i′ ≥ λ1[v1]i′ . (8)

By eliminating [v1]i′ > 0 from both sides of the above

inequality, it follows that λ1 ≤ 0, establishing a contradiction.

Case 2: There exists a weak connected component

Ḡ({i1, i2, · · · , is0}) in {i1, i2, · · · , is}, such that any agent in



5

this weak connected component is not reachable from any

leader agent, where s0 ∈ Z+ and s0 ≤ s. Let

[v1]i′ = min
k∈{i1,i2,··· ,is0}

{[v1]k} . (9)

Then, one has [v1]j ≥ [v1]i′ for all j ∈ Ni′ . Again, one

can conclude the contradiction λ1 ≤ 0 by applying a similar

procedure as in Case 1.

1 2 3 4

5 6 7 8

0.46 0.38 0.30 0.16

0.46 0.40 0.32 0.22

u1

u2

0

0

Fig. 3. An eight-node SAN G8. The entries of v1(LB) corresponding to each
agent are shown close to each node (with a two decimal point accuracy).

It turns out that the entries of the eigenvector v1(LB) are

influenced by the selection of leader agents. We provide an

example to demonstrate the utility of Theorem 1.

1 2 3 4

5 6 7 8

0.46 0.38 0.30 0.16

0.46 0.40 0.32 0.22

u1

u2

0

0

Fig. 4. The FSN network corresponding to the network G8 in Figure 3.

Example 1. Consider a SAN on the network G8 shown in

Figure 3; each agent holds a three-dimensional state and

agents 4 and 8 are leaders that are directly influenced by

the homogeneous input u = (u⊤
1 , u

⊤
2 )

⊤, where u1 = u2 =
(0.7, 0.8, 0.9)⊤ ∈ R

3. The initial states of agents are ran-

domly selected from [0, 1]× [0, 1]× [0, 1]. Computing v1(LB)
corresponding to the perturbed Laplacian in this example

yields,

v1(LB) = (0.46, 0.38, 0.30, 0.16, 0.46, 0.40, 0.32, 0.22)⊤.

One can observe from Figure 3 that for each agent i ∈ V ,

there exists a directed path from u1 or u2 to i such that

the entries in v1(LB) along this path are monotonically

increasing. Therefore, the associated FSN network according

to Definition 1, is as shown in Figure 4. One can observe

from Figure 6 that each agent tends to track the external

input directly in the FSN network (see Figure 6b) instead of

aggregating and moving together towards the external input,

this is shown in Figure 6a.

Theorem 1 ensures that all agents in the FSN network

of a SAN are influenced by the external inputs, namely,

LF-reachability can be guaranteed. Therefore, a SAN (4)

can exhibit either consensus or clustering over the corre-

sponding FSN network, depending on heterogeneity of the

external input; see Lemma 5 in Appendix. One can verify

that constructing the FSN network using eigenvectors other

than v1(LB) do not ensure the LF-reachability according to

Definition 1.

Inspired by Theorem 1, we postulate that if one reverses

the construction of FSN network for SANs (each agent now

follows neighbors whose respective rates of change in state are

relatively faster), the influence of external input exerted on the

network can be weaken or even eliminated. One can refer to

the resulting reduced network as following the faster neighbor

(FFN) network. In this case, agents in the FFN network are

not reachable from the external input. This can be useful when

the external input, say, represents epidemics or rumors, and

the network structure is rearranged in a distributed manner by

each agent to attenuate the spreading process. For example,

the FFN network of G8 in Figure 3 is shown in Figure 5; in

this case, the influence from external inputs to leaders can be

eliminated since the rate of change in state of external inputs

can be viewed as zero. The trajectory of SAN on FFN network

is shown on the right-hand plot in Figure 6. In FFN networks,

the influence structure is reversed in contrast to FSN network.

Therefore, only leader agents (agents 4 and 8) are influenced

by external inputs and as a result, the influence of external

inputs on the follower agents have been eliminated. In this

paper, we shall concentrate on FSN networks; such networks

closely abstract means of enhancing the spreading process on

a network.

1 2 3 4

5 6 7 8

0.46 0.38 0.30 0.16

0.46 0.40 0.32 0.22

u1

u2

0

0

Fig. 5. The FFN network corresponding to the network G8 in Figure 3.

B. Convergence Rate Enhancement

In order to evaluate the performance of neighbor selection

based on v1(LB), we now proceed to examine the convergence

rate of SANs on the resultant FSN networks. Note that the

smallest non-zero eigenvalue of the perturbed Laplacian of

a SAN characterizes the convergence rate of the multi-agent

system towards its steady-state, either consensus or clustering

[23], [35], [31]. We provide the following result on the

convergence rate of SAN on connected unsigned networks and

the corresponding FSN networks.

Theorem 2. Let Ḡ = (V , Ē , W̄ ) denote the FSN network of a

SAN G = (V , E ,W ) with the input matrix B. Then

λ1(LB(Ḡ)) ≥ λ1(LB(G)),

where equality holds only when all agents are leaders.
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Fig. 6. State trajectories of agents in SAN on the network G8 shown in Figure 3 as well as its associated FSN network (Figure 4) and FFN network (Figure
5), respectively.

Proof. Denote the perturbed Laplacian matrix LB(Ḡ) and

LB(G) as L̄B and LB , respectively. According to Definition 1,

the FSN network Ḡ is a directed acyclic network. Therefore,

one can relabel the agents in Ḡ such that W̄ is a lower

triangular matrix, implying that L̄B is also lower triangular.

Thus, the eigenvalues of L̄B are exactly the entries on its

diagonal.

Note that each agent in the FSN network has at least one in-

degree neighbor, namely, the diagonal entries, satisfying that

[L̄B]ii ≥ 1 for all i ∈ V , which in turn, implies that λ1(L̄B) ≥
1. In particular, if all agents are leaders (diag(B1m) = I),

the eigenvector corresponding to λ1(LB) is a01n (a0 ∈ R).

Then according to Definition 1, all the edges in the graph G
will be eliminated. Therefore, λ1(L̄B) = 1. Recall that LB =
L+diag(B1m). Applying Weyl theorem ([39, Theorem 4.3.1,

p.239]), one has,

λ1(LB) ≤ λ1(L) + λn(diag(B1m)); (10)

due to the fact λ1(L) = 0 and λn(diag(B1m)) = 1, it follows

that λ1(LB) ≤ 1.
On the one hand, if diag(B1m) = I , again using Weyl

theorem, it follows that,

λ1(LB) ≥ λ1(L) + λ1(I) = 1; (11)

hence, λ1(LB) = 1. Now suppose that diag(B1m) 6= I . Let

LB = L+ I +△, (12)

where △ ∈ R
n×n is a non-zero diagonal matrix whose

diagonal entries are either −1 or 0. In fact, (12) produces

all possible perturbed Laplacians apart from the case that

all agents are leaders. Without loss of generality, we choose

△ = diag(−1, 0, . . . , 0)⊤. Then, by applying Weyl theorem

one more time, we have,

λ1(L+ I +△) ≤ λ1(L + I) + λn(△) = 1. (13)

According to (L + I)(a1n) = a1n, where a ∈ R, it

follows that span {1n} is an eigenspace of the matrix L + I

corresponding to the eigenvalue λ1(L+ I).
For the matrix △ in (13), assume that there exists a0 ∈ R

such that,

△(a01n) = λn(△)a01n; (14)

as △(a01n) = (−a0, 0, . . . , 0)⊤ and λn(△)a01n =
(0, 0, . . . , 0)⊤, one has a0 = 0.

Thus, there does not exist a common non-zero eigenvector

corresponding to λ1(L + I + △), λ1(L + I) and λn(△),
respectively. According to Weyl theorem, one has,

λ1(L+ I +△) < 1. (15)

Thus, one can conclude that λ1(L̄B) > λ1(LB) if

diag(B1m) 6= I and λ1(L̄B) = λ1(LB) = 1 when

diag(B1m) = I .

Theorem 2 provides theoretical guarantees on the conver-

gence rate of FSN network Ḡ as compared with the original

network G. Let us continue to employ Example 1 to demon-

strate the convergence rate of SAN on the original network

G and its related FSN network Ḡ. The convergence rate

comparison of SAN in Example 1 on both original network

and the associated FSN network is demonstrated in Figure

7. In this case, the convergence rate of SAN on the original

network G and FSN network GFSN are λ1(LB(G)) = 0.1414
and λ1(LB(GFSN )) = 1, respectively.
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Fig. 7. State trajectories of agents in the SAN (4) on the network in Figure
3 ((a)-(c)). State trajectories of agents in the SAN (4) on the FSN network
in Figure 4 ((d)-(f)). The orange and blue lines in each plot are trajectories
of leader and follower agents, respectively. The dotted line in each panel
represents external input.
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C. Neighbor Selection in SANs

So far, we have presented a neighbor selection framework

with guaranteed performance using the eigenvector of per-

turbed Laplacian. However, this eigenvector is a network-level

quantity, hindering the direct applicability of this setup for

large-scale networks. For such networks, it is desirable that

decision-making relies only on local observations [40].

In this section, we establish a quantitative link between the

Laplacian eigenvector and the relative rate of change in the

state of neighboring agents, referred to as the relative tempo.

Using this approach, we connect the global property of the

network to a locally measurable quantity– as such, we are able

to propose a fully distributed neighbor selection algorithm. In

order to simplify our derivation, we first introduce the so-

called selection matrix.

The selection matrix of a subset of agents V ′ =
{i1, . . . , is} ⊂ V is defined as φ(V ′) = (ei1 , · · · , eis)

⊤ ∈
R

s×n. We now proceed to introduce the notion of relative

tempo, characterizing the steady-state of the relative rate of

change in state between two subsets of agents.

Definition 2. Let V1 ⊂ V and V2 ⊂ V be two subsets of

agents in multi-agent network (4) (or (2)). Then the relative

tempo between agents in V1 and V2 is defined as the limiting

ratio,

L(V1,V2) = lim
t→∞

‖φ(V1)⊗ Idẋ(t)‖

‖φ(V2)⊗ Idẋ(t)‖
, (16)

where φ(V1) and φ(V2) are selection matrices associated with

V1 and V2, respectively.

The relative tempo in Definition 2 was initially examined in

[41], characterizing relative influence of agents in consensus-

type networks, and subsequently being employed to construct

a centrality measure that can be inferred from network data

[42]. This paper provides a more systematic treatment for

the application of relative tempo in the distributed neighbor

selection problem. As we shall see subsequently, the limit in

(16) exists, implying that the relative tempo is well-defined.

We now proceed to formally provide a quantitative connection

between relative tempo and the Laplacian eigenvector.

Theorem 3. Let V1 ⊂ V and V2 ⊂ V be two subsets of agents

in the SAN (4). Then

L(V1,V2) =
‖φ(V1)v1(LB)‖

‖φ(V2)v1(LB)‖
.

Proof. Refer to the Appendix

Remark 1. Theorem 3 provides a quantitative connection be-

tween the relative tempo (constructed from local observations

of each agent) and the Laplacian eigenvector of the underlying

network. According to Theorem 1 and Theorem 2, such a

connection enables a distributed implementation of neighbor

selection for enhancing the convergence rate of the network.

We provide an example to illustrate Theorem 3.

Example 2. Consider the following quantity

gij(t) =
‖ẋi(t)‖

‖ẋj(t)‖
, i ∈ V , j ∈ Ni, (17)

which satisfies lim
t→∞

gij(t) = L(i, j) (by Definition 2). Let us

continue to examine Example 1. The trajectories of gij(t) for

i = 7 and j ∈ {3, 6, 8} are shown in Figure 8. The steady-

states of gij(t) are archived at around t = 10, particularly,

g73(10) = 1.057, g76(10) = 0.8123 and g78(10) = 1.47,

respectively. In the meanwhile, one has v1(LB)73 = 1.0577,

v1(LB)76 = 0.8113 and v1(LB)78 = 1.4694. Note that

such correspondences are sufficient for the construction of the

associated FSN network (shown in Figure 4) using Definition

1.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

1.47

1.057

0.8123

Fig. 8. Trajectories of gij(t) for agent i = 7 and its neighbors j ∈ {3, 6, 8}
in the SAN shown in Figure 3.

Remark 2. Examining the convergence rate of agents’ states

in the original network shown in Figure 7 and that of gij(t) in

Figure 8, one observes that the SAN (4) achieves an "ordered"

state characterized by the relative tempo, prior to the final

consensus.

By Definition 1 and Theorem 3, the reduced neighbor set for

each agent for constructing the FSN network can be defined

as follows.

Definition 3. The reduced neighbor set for agent i∈ V to

construct the associated FSN network for SAN (4) is defined

as

N FSN
i = {j ∈ Ni | v1(LB)ij > 1} = {j ∈ Ni | L(i, j) > 1} .

(18)

According to Definition 2, if L(i, j) > 1 for a pair of

neighboring agents i, j ∈ V , then the state of agent i evolves

towards the external input in a relatively faster rate than that

of agent j. Therefore, agents in a SAN are involved in a

sort of hierarchy encoded in v1(LB) according to Theorem 3.

As such, each agent can select a specific group of neighbors

to interact with for a given task. The main insight from our

discussion is that v1(LB)ij can be estimated for agent i ∈ V
and j ∈ Ni via only local measurements, and the obtained

reduced network exhibits LF-reachability property, as stated

by Theorem 1.

To end the discussion on SANs, we provide the following

algorithm to summarize the flowchart of distributed neighbor

selection process for constructing FSN networks. For the

algorithm implementation, we choose the sampling step size

δ > 0 to discretize agent state evolution as x̃i(k) = xi(t0+kδ)
for all i ∈ V , where t0 = 0 and k = 0, 1, . . ..



8

Algorithm 1 Distributed neighbor selection for SANs.

Initialization:

1: set k = 1
2: for each agent i ∈ V do

3: choose the termination threshold εi > 0
4: receives x̃i(0) and x̃i(1) from j ∈ Ni

5: computes gij(k) =
‖x̃i(k)−x̃i(k−1)‖
‖x̃j(k)−x̃j(k−1)‖

6: end for

Loop:

7: repeat

8: set k = k + 1
9: for each agent i ∈ V do

10: receives x̃i(k) from j ∈ Ni

11: computes gij(k) =
‖x̃i(k)−x̃i(k−1)‖
‖x̃j(k)−x̃j(k−1)‖

12: end for

13: until ‖gij(k)− gij(k − 1)‖ < εi, ∀j ∈ Ni

14: w̄ij =

{
wij , gij(k) > 1,

0, gij(k) ≤ 1.

Note from Algorithm 1 that each agent only uses local

accessible state information to construct FSN networks.

V. FULLY-AUTONOMOUS NETWORKS

In this section, we proceed to investigate parallel results

for FANs- the corresponding analysis turns out to be more

intricate than those for SANs.

A. Reachability Analysis

Recall that for the eigenvector associated with perturbed

Laplacian matrix LB in SANs (4), all elements of v1(LB)
have the same sign. However, in the case of FANs, the entries

in eigenvectors of graph Laplacian can be positive, negative or

equal to zero; this is also valid for the Fiedler vector v2(L), the

eigenvector corresponding to the second smallest eigenvalue

of graph Laplacian [30], [32], [43]. This situation renders the

extension of the aforementioned neighbor selection framework

-from SANs to FANs- non-trivial.

In this section, we shall first examine the property of Lapla-

cian eigenvectors related to SANs, specifically the Fiedler

vector v2(L), and then proceed to provide the neighbor

selection algorithm to construct the FSN network of FANs for

fast convergence. In the following discussions, we shall refer

to a node corresponding to positive, negative or zero entry

in v2(L) as a positive node, negative node and zero node,

respectively.

In FANs, the structural properties of the network turn out to

be critical in the analysis and design of the neighbor selection

algorithm. We introduce the following results related to the

block decomposition of a graph [44], [32].

A cut node i ∈ V of a graph G = (V , E ,W ) is a node such

that G−{i} is disconnected. A block of a graph G is a maximal

connected subgraph of G with no cut nodes. Two blocks of G
are the neighboring blocks if they are connected via a cut node.

Consider a connected graph G with blocks {Bi} and cut nodes

{cj}, where i, j ∈ Z+. The block-cut graph of G, denoted by

B(G), is defined as the graph with node set composed of blocks

and cut nodes, namely, V(B(G)) = {Bi} ∪ {cj}, where two

nodes are adjacent if one corresponds to a block Bi and the

other to a cut node such that cj ∈ Bi.

Lemma 2. [44] Let G = (V , E ,W ) be a connected graph.

Then the block-cut graph of G is a tree.

Here, we provide an example to illustrate the block-cut tree

associated with a connected graph.

1

2 3

4

5

6

7

8

9

10

11

12
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-0.087
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0.23

0.33

0.33

0.33

0.33

-0.41

-0.41

c1

B2

c2

B1

c3

B5

B6

B3 B4

Fig. 9. An unsigned network G12 with 12 nodes (left) and the associated
block-cut tree (right). The entry in v2(L) corresponding to each agent is
shown close to each node. The block decomposition of network G12 is shown
in the right where the black nodes represent cut nodes in G12 and the grey
nodes represent blocks in G12.

Example 3. Consider a FAN G12 shown on the left-hand plot

of Figure 9. There are six blocks in G12, that is,

B1 = G ({4, 5, 6}) , B2 = G ({1, 2, 3, 4}) ,
B3 = G ({1, 11}) , B4 = G ({1, 12}) ,
B5 = G ({6, 7, 8}) , B6 = G ({6, 9, 10}) .

There are three cut nodes c1 = {1} , c2 = {4} , c3 = {6} .
The block-cut tree of G12 is shown on the right panel in Figure

9. Blocks B1 and B2 are neighboring blocks since they are

connected via cut node c2 = {4}.

The following result reveals the monotonicity property of

the entries in v2(L) along certain paths in block-cut tree of

a graph, which will subsequently be used for constructing the

FSN network associated with FANs.

Lemma 3. [32, Theorem 3.12] Let G be a connected graph

with Laplacian matrix L; let λ2(L) and v2(L) be the second

smallest eigenvalue of L and the corresponding eigenvector,

respectively. Then exactly one of the following two cases

occurs:

Case 1. There is a single block B0 in G which contains

both positive and negative nodes. Each other block has either

positive nodes only, or negative nodes only, or zero nodes only.

Every path P starting in B0 and containing just one node k in

B0 has the property that the entries in v2(L) corresponding

to cut nodes contained in P form either an increasing, or

decreasing, or a zero sequence along this path according to
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whether [v2(L)]k > 0, [v2(L)]k < 0 or [v2(L)]k = 0; in the

last case all nodes in P are zero nodes.

Case 2. No block of G contains both positive and negative

nodes. There exists a single zero cut node with a non-zero node

neighbor. Each block (with the exception of that zero cut node)

has either positive nodes only, or negative nodes only, or zero

nodes only. Every path P starting in that zero cut node has the

property that the entries in v2(L) corresponding to cut nodes

contained in P form either an increasing, or decreasing, or a

zero sequence along this path and in the last case all nodes

in P are zero nodes. Every path containing both positive and

negative nodes passes through that zero cut node.

As an example, the FAN G12 in Figure 9 satisfies Case 1

in the Lemma 3. In the following discussions, we will refer

to the block B0 in Case 1 and the zero cut node in Case 2

in the Lemma 3 as core block and core node, respectively;

we will refer to a block having only positive, negative, or

zero nodes (with the exception of that core node) as a positive

block, negative block, and zero block, respectively. We are

now ready to present the construction of FSN networks for

FANs.

Definition 4 (FSN Network of FANs). Let {B1, . . . , Br}
be the block decomposition of an unsigned network G =
(V , E ,W ) where r ∈ Z+. The FSN network of G is its

subgraph Ḡ = (V̄ , Ē , W̄ ) with node set V̄ = V , edge set Ē ⊆ E
and adjacency matrix W̄ = (w̄ij) ∈ R

n×n that satisfies,

1) if Bp (p ∈ r) is a positive or negative block, then for

each i ∈ Bp and j ∈ Bp

⋂
Ni,

w̄ij =

{
wij , v2(L)ij > 1 orv2(L)ij < 0,

0, 1 ≥ v2(L)ij ≥ 0;

2) for all remaining (i, j) ∈ E , w̄ij = wij .

According to Definition 4, the construction of the FSN network

is built upon the block decomposition of a graph; the edges

in the core block and zero block will remain unchanged while

the other edges can be eliminated depending on the quantity

v2(L)ij . We now proceed to examine the reachability of the

FSN network associated with FANs.

Theorem 4. Let Ḡ = (V̄ , Ē , W̄ ) be the FSN network of the

FAN (2) on G = (V , E ,W ). Then, the FAN (2) achieves

consensus on the associated FSN network Ḡ. Moreover, the

consensus value is the average of the initial values of either

the agents in the core block and zero blocks or the core node

and the agents in zero blocks.

Proof. Refer to the Appendix.

According to the Theorem 4, the FAN (2) can achieve

consensus on the associated FSN network Ḡ, however, the

consensus value is generally not equal to the consensus value

achieved by the original network (average of initial states of

all agents). In fact, the consensus value achieved on the FSN

network Ḡ is eventually the average of the initial states of

agents belonging to the core block and the zero blocks or

the average of the initial states of the core node and agents

belonging to zero blocks. We provide the following example

to demonstrate the reachability property of the FSN network

Ḡ12 corresponding to the network G12 in the left plot of Figure

9.

Example 4. The FSN network Ḡ12 corresponding to the

network G12 in Figure 9 is shown in Figure 10. The core block

in G12 is B0 = G ({4, 5, 6}). As one can see from Figure 10,

all agents except that in the core block B0 are reachable from

agents in the core block.
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Fig. 10. The FSN network Ḡ12 corresponding to the network G12 in the
left plot of Figure 9. The core block in G12 is B0 = G ({4, 5, 6}) which is
highlighted in dark.

Remark 3 (Generalized Monotonicity of Fiedler Vector). Re-

markably, Theorem 4 further extends the Lemma 3 (a cele-

brated result by Fiedler [32]) by revealing the monotonicity

property of Fiedler’s entries within each block, rather than

only on cut nodes.

B. Convergence Rate Enhancement

We proceed to examine the convergence rate enhancement

of FANs on the corresponding FSN networks. First, we provide

the following result, for general FANs, that characterize the

convergence rate of FAN (2) on the associated FSN network.

Proposition 1. Let Ḡ = (V , Ē , W̄ ) be the FSN network of

a FAN G = (V , E ,W ) characterized by (2). Let λ2(L(Ḡ))
and v̄2 be the second smallest eigenvalue of L(Ḡ) and

the corresponding normalized eigenvector, respectively. Then

λ2(L(Ḡ)) is lower bounded by

λ2(L(G)) +
∑

(i,j)∈E\Ē

[v̄2]i ([v̄2]j − [v̄2]i) . (19)

Proof. Refer to the Appendix.

One can observe from Proposition 1 that the quantitative

relationship between λ̄2(L(Ḡ)) and λ2(L(G)) is a bit vague

since the second term in (19) can be negative. This motivates

us to examine the special case of tree graphs- in which case,

the convergence rate between a FAN and the corresponding

FSN network can be well-characterized.

Theorem 5. Let T be an n-node tree network without zero

blocks where n ≥ 4. Let T̄ be its FSN network characterized

by (2). Let λ2(L(T̄ )) and λ2(L(T )) be the second smallest

eigenvalue of L(T̄ ) and L(T ), respectively. Then λ2(L(T̄ )) >
λ2(L(T )).
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Proof. Refer to the Appendix.

Example 5. Consider a 12-node FAN with the tree structure

in Figure 11 (left) whose associated FSN network is shown

in Figure 11 (right). The agents’ initial states are [x(0)]1 =
0.973, [x(0)]2 = 0.649, [x(0)]3 = 0.8, [x(0)]4 = 0.454,

[x(0)]5 = 0.432, [x(0)]6 = 0.825, [x(0)]7 = 0.084, [x(0)]8 =
0.133, [x(0)]9 = 0.173, [x(0)]10 = 0.391, [x(0)]11 = 0.831,

[x(0)]12 = 0.803.

In this example, the core block in tree T is the induced

subgraph T ({4, 6}). According to Figure 12, the FAN (2)

on its associated FSN network Ḡ12 with the aforementioned

initial states achieves consensus on the value 0.6396, which

is equal to the average of the initial states of the agents

in the core block, namely, 1
2 ([x(0)]4 + [x(0)]6) = 0.6396.

Computing v2(L) corresponding to the Laplacian matrix L of

T in this example yields, [v2(L)]1 = 0.333, [v2(L)]2 = 0.101,

[v2(L)]3 = 0.101, [v2(L)]4 = 0.079, [v2(L)]5 = 0.101,

[v2(L)]6 = −0.257, [v2(L)]7 = −0.327, [v2(L)]8 = −0.327,

[v2(L)]9 = −0.327, [v2(L)]10 = −0.327, [v2(L)]11 = 0.424,

[v2(L)]12 = 0.424. Trajectories of gij(t) in (17) for i = 1 and

j ∈ {3, 5, 11, 12} in the FAN T shown in Figure 13. One can

see that g13(t) →
[v2(L)]1
[v2(L)]3

≈ 3.299 and g1,11(t) →
[v2(L)]1
[v2(L)]1

≈
0.785. Moreover, g15(t) and g1,12(t) exhibit the same tendency

due to network symmetry.

The convergence rate associated with networks T and TFSN

are λ2(L(T )) = 0.2148 and λ2(L(TFSN )) = 1, respectively.
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Fig. 11. A tree T (left) and its corresponding FSN network TFSN where
the core block B = {4, 6} is highlighted in dark (right).
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Fig. 12. State trajectories of agents in FAN on the network T shown in the
left plot of Figure 11 as well as its associated FSN network TFSN in the
right plot of Figure 11.
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Fig. 13. Trajectories of gij(t) in (17) for i = 1 and j ∈ {3, 5, 11, 12} in
the FAN T shown in Figure 11.

Remark 4. Notably, the convergence rate of FSN network

corresponding to trees are always equal to one, however

the convergence rate of a tree can decrease dramatically

when the diameter of the tree grows. For example, that

convergence rate on trees with diameter diam(T ) is up-

per bounded by 2
(
1− cos

(
π

diam(T )+1

))
, signifying that

lim
diam(T )→∞

λ2(L(T )) = 0.

C. Neighbor Selection in FANs

We now examine networks whose second smallest eigen-

value of the Laplacian matrix is simple. The following result

establishes the relationship between the relative tempo and the

Fiedler vector of a network.

Theorem 6. Let V1 and V2 be two subsets of agents in V .

Each agent in V adopts dynamics (1). If the second smallest

eigenvalue of the Laplacian matrix L is simple, then the

relative tempo of agents in V1 compared to that of V2 is

L(V1,V2) =
‖φ(V1)v2(L)‖

‖φ(V2)v2(L)‖
.

Proof. According to Lemma 6 in Appendix, the proof follows

by choosing M = −L⊗ Id.

On the one hand, if the knowledge of both the core block

and zero block of a FAN is available, according to the

Definition 4 and Theorem 6, one can employ relative tempo

to construct the FSN network instead of using the information

in v2(L). Under the FSN network, a consensus at the value

of the average of initial states associated with agents in the

core block and zero block, or the average of initial states

associated with agents in zero block and initial state of core

node, can be reached. In the meanwhile, the FSN network

can be constructed in a distributed manner, which is similar

to SANs.

On the other hand, if the knowledge of both the core block

and zero block of the network G is unavailable, a natural

question is whether one can determine the core block and

zero block from the network data. For general networks, this

might be challenging. However, such a data-driven approach

can be adopted for tree networks, as every node in a tree is

a cut node; the core block in a tree network contains at most

two nodes.
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Here, we further discuss a class of the tree networks without

zero blocks and examine how to construct their FSN networks

only using local observations similar to the relative tempo. In

fact, according to the proof of Lemma 6 in the Appendix,

one can see that lim
t→∞

e
⊤

1
ẋu(t)

e
⊤

1
ẋv(t)

= [v2]u
[v2]v

, where u, v ∈ V .

Note that for a tree network without zero blocks, either there

exists a core block containing two nodes {u, v} such that

[v2]u[v2]v < 0, or there exists a core node {w} such that

[v2]w = 0. For the former case, one can use the quantity

L
′(u, v) = lim

t→∞

e
⊤

1
ẋu(t)

e
⊤

1
ẋv(t)

instead of L(u, v) to identify nodes

u and v in the core block, then the edges between u and

v are reserved while the remaining edges shall be treated

according to Definition 4. For the latter case, one can also use

the quantity L
′(u, v) to construct the FSN network according

to Definition 4.

According to Definition 4 and Theorem 6, the reduced

neighbor set for constructing FSN network of FAN on tree

networks can be defined as follows.

Definition 5. Let T = (V , E ,W ) be a tree network without

zero blocks. The reduced neighbor set for i∈ V to construct

the associated FSN network of FAN (2) is

N FSN
i = {j ∈ Ni | v2(L(T ))ij > 1 orv2(L(T ))ij < 0}

= {j ∈ Ni | L′(i, j) > 1 orL′(i, j) < 0} .

To sum up, we have established the parallel framework of

distributed neighbor selection for FANs with a specific focus

on tree networks.

VI. EXTENSION TO SIGNED NETWORKS

In this section, we discuss extensions of the aforementioned

results to structurally balanced signed networks. A signed

network G = (V , E ,W ) is structurally balanced if there exists

a bipartition of the node set V (hence, V1 ⊂ V and V2 ⊂ V
such that V = V1 ∪ V2 and V1 ∩ V2 = ∅) such that the

edge weights within each subset are positive, but negative for

edges between the two subsets [45]. For structurally balanced

signed SANs, the eigenvectors of the perturbed Laplacian

can be transformed from the unsigned SANs via Gauge

transformations [46]. We now discuss the extension of our

results for structurally balanced signed networks.

A. Signed Semi-Autonomous Networks

Consider the interaction protocol,

ẋi(t) = −
n∑

i=1

|wij |(xi(t)− sgn(wij)xj(t))

−
m∑

l=1

|bil|(xi(t)− sgn(bil)ul), i ∈ V , (20)

where bil ∈ {1,−1} if and only if i ∈ Vleader and bil = 0
otherwise. The sign function sgn(·) is such that sgn(z) = 1
for z > 0, sgn(z) = −1 for z < 0 and sgn(z) = 0 for z = 0.

Denote the signed Laplacian matrix of G as Ls = (lsij) ∈
R

n×n, where lsii =
∑

n
j=1|wij | for i ∈ V and lsij = −wij for

i 6= j. The collective dynamics of (20) is then,

ẋ = −(Ls
B(G)⊗ Id)x+ (B ⊗ Id)u, (21)

where Ls
B(G) = Ls + diag(|B|1m), x = (x⊤

1 , . . . ,x
⊤
n )

⊤ ∈
R

dn, B = [bil] ∈ R
n×m and u = (u⊤

1 , . . . ,u
⊤
m)⊤ ∈ R

dm.

Denote by the edge set between external inputs and the leaders

and the input set as E
′

and U = (u1, . . . ,um), respectively.

The augmented graph Ĝ = (V̂ , Ê , Ŵ ) is directed with V̂ =

V∪U , Ê = E ∪E
′

and Ŵ =

(
W B

0m×n 0m×m

)
. The signed

Laplacian matrix of the network Ĝ is positive semi-definite if

Ĝ is structurally balanced [46].

Lemma 4. Consider the signed SAN (21) on a signed network

G = (V , E ,W ). Suppose that G = (V , E ,W ) is connected and

Ĝ = (V̂ , Ê , Ŵ ) is structurally balanced, and let λ1(L
s
B) and

v1(L
s
B) be the smallest eigenvalue of Ls

B and the correspond-

ing normalized eigenvector, respectively. Then, λ1(L
s
B) > 0 is

a simple eigenvalue of Ls
B and v1(L

s
B) is positive under a

proper Gauge transformation.

Proof. The proof is an immediate extension of Lemma 1 and

omitted for brevity.

The FSN network for signed SANs can be defined as

follows.

Definition 6 (FSN network of signed SANs). Let G =
(V , E ,W ) be a signed SAN characterized by (21). The FSN

network of G, denoted by Ḡ = (V̄ , Ē , W̄ ), is a subgraph of

G such that V̄ = V , Ē ⊆ E and W̄ = (w̄ij) ∈ R
n×n, where

w̄ij = wij if |v1(L
s
B)ij | > 1 and w̄ij = 0 if |v1(L

s
B)ij | ≤ 1.

Theorem 7. Let Ḡ = (V , Ē , W̄ ) be the FSN network of the

signed SAN G = (V , E ,W ) characterized by (21). Suppose

that G = (V , E ,W ) is connected and Ĝ = (V̂ , Ê , Ŵ ) is

structurally balanced; then all agents in Ḡ are reachable from

the external input.

Proof. Note that for a structurally balanced signed net-

work, there exists a quantitative connection between tra-

ditional Laplacian matrix and signed Laplacian matrix via

a Gauge transformation, assuming matrix form G =
diag {σ1, · · · , σn}, where σi ∈ {1,−1} and i ∈ n [46].

The proof (omitted for brevity) follows from Lemma 5,

proof of Theorem 1, and applying the Gauge transformation

corresponding to the signed network G.

Theorem 8. Let V1 ⊂ V and V2 ⊂ V be two subsets of agents

in a connected signed SAN G = (V , E ,W ) characterized

by (21). If Ĝ = (V̂ , Ê , Ŵ ) is structurally balanced, then

the relative tempo between agents in V1 and V2 satisfies

L(V1,V2) =
‖φ(V1)v1(L

s
B)‖

‖φ(V2)v1(Ls
B
)‖ .

Proof. According to Lemma 6, the proof follows by choosing

M =

(
−Ls

B ⊗ Id B ⊗ Id
0md×nd 0md×md

)
in Lemma 6 in Appendix.
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1 2 3 4

5 6 7 8

0.46 0.38 −0.30 −0.16

0.46 0.40 −0.32 −0.22

u1

u2

0

0

Fig. 14. An eight-node structurally balanced signed network G8 with two
agents directly influenced by external inputs. The solid lines and dashed lines
represent the edges weighted by positive and negative numbers, respectively.
The entry in the v1(Ls

B) corresponding to each agent is shown close to each
node.

Theorem 9. Let Ḡ = (V , Ē , W̄ ) be the FSN network of a

connected signed SAN G = (V , E ,W ) characterized by (21).

If Ĝ = (V̂ , Ê , Ŵ ) is structurally balanced, then λ1(L
s
B(Ḡ)) ≥

λ1(L
s
B(G)).

Proof. The proof is a straightforward extension of Theorem

2, and omitted for brevity.

We now provide an example to illustrate the aforementioned

results on signed SANs.

1 2 3 4

5 6 7 8

0.46 0.38 −0.30 −0.16

0.46 0.40 −0.32 −0.22

u1

u2

0

0

Fig. 15. FSN network of the structurally balanced signed network in Figure
14.

Example 6. Consider a signed SAN on the network G8 shown

in Figure 14, each agent holds a three-dimensional state and

agents 4 and 8 are leaders that are directly influenced by the

homogeneous input u = (u⊤
1 , u

⊤
2 )

⊤, where u1 = u2 =
(0.7, 0.8, 0.9)⊤ ∈ R

3. The associated FSN network is shown

in Figure 15. As one can see from Figure 16, the convergence

rate of the bipartite consensus is significantly improved on the

associated FSN network.

B. Signed Fully-Autonomous Networks

For the case of signed FANs, consider the interaction

protocol,

ẋi(t) = −
n∑

i=1

|wij |(xi(t)− sgn(wij)xj(t)), i ∈ V , (22)

whose collective dynamics is

ẋ = −(Ls(G) ⊗ Id)x. (23)

Denote the unsigned network corresponding to the signed

network G as Ĝ = (V , E , |W |), with Laplacian matrix L. It is

0 10 20 30
-1

0

1

0 10 20 30
-1

0

1

0 10 20 30
-1

0

1

0 10 20 30
-1

0

1

0 10 20 30
-1

0

1

0 10 20 30
-1

0

1

Fig. 16. State trajectories of agents in the signed SAN (21) on the structurally
balanced signed network in Figure 14 ((a)-(c)). State trajectories of agents in
the signed SAN (21) on FSN network in Figure 15 ((d)-(f)). The orange
and blue lines in each plot are trajectories of leader and follower agents,
respectively. The dotted lines in each plot represent external inputs.

shown that L = GLsG, where G is the Gauge transformation

corresponding to the structurally balanced signed network G
[46]. This correspondence implies that the Laplacian eigen-

vectors can be respectively transformed via a Gauge transfor-

mation. Therefore, the results on the unsigned FANs can be

extended to the structurally balanced signed FANs through a

proper Gauge transformation on the Fielder vector.
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VIII. CONCLUSIONS REMARKS

This paper addresses distributed neighbor selection prob-

lem of multi-agent networks. In this direction, a theoretical

framework of distributed neighbor selection for diffusively

coupled multi-agent networks has been established. Along the

way, we have highlighted the utility of Laplacian eigenvectors

to further improve network performance; these eigenvectors

encode hierarchical information about the network that in turn,

relate to the notion of relative tempo. The latter connection is

then used in a data-driven setting for the neighbor selection

problem.

Future works in this direction include extensions to directed

and/or time-varying networks, multi-agent systems with gen-

eral individual dynamics, and neighbor selection with noisy

and delayed time-series data. Furthermore, a notable feature of

multi-agent networks is their robustness to node/link failures.

As such, it is often the case that more links are favorable for

the functionality of multi-agent systems, e.g., convergence rate

of the underlying coordination algorithm. Hence, an interesting

problem is to examine the optimal trade-off between network

robustness and size of the simplified network.

APPENDIX

The appendix contains the proofs of various results dis-

cussed in the paper.
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PROOF OF LEMMA 1

Proof. Note that the perturbed Laplacian matrix LB is sym-

metric and diagonal dominant; as such, λi(LB) ≥ 0 for all

i ∈ n. Assume that LB has an eigenvalue λ1(LB) = 0 with

associated eigenvector v1(LB) ∈ R
n. Then,

LBv1(LB) = Lv1(LB) + diag(B1m)v1(LB) = 0. (24)

Multiply the above equality by v⊤
1 (LB) from left yields,

v⊤
1 (LB)Lv1(LB) + v⊤

1 (LB)diag(B1m)v1(LB) = 0. (25)

Since, v⊤
1 (LB)Lv1(LB) ≥ 0, and

v⊤
1 (LB)diag(B1m)v1(LB) ≥ 0, one has,

v⊤
1 (LB)Lv1(LB) = 0, and v⊤

1 (LB)diag(B1m)v1(LB) = 0.
This however means that v1(LB) = 1n, leading to having

v⊤
1 (LB)diag(B1m)v1(LB) > 0. This is a contradiction and

therefore λi > 0 for all i ∈ n.

We shall proceed to show that λ1(LB) is simple and v1(LB)
is positive. Denote by LB = ηI −M , where M ∈ R

n×n is

a non-negative matrix and η is the maximum value of the

diagonal entries of LB . Then e−LB = eM−ηI = e−ηIeM .

Note that the matrix M is non-negative, therefore, e−LB

is a non-negative matrix. In addition, since the network G
is connected, M is irreducible, implying that e−LB is a

non-negative irreducible matrix. Thus, according to Perron–

Frobenius theorem for irreducible non-negative matrices, the

eigenvalue e−λ1(LB) is simple and the corresponding eigen-

vector v1(LB) is positive.

STEADY-STATE OF SAN ON UNSIGNED NETWORKS

In the case of unsigned networks, the steady-state of SAN

(4) is consensus (when the external input is homogeneous) or

cluster consensus (when the external input is heterogeneous)

[36]. Formally, the steady-state of the SAN (4) is deter-

mined by the convex hull spanned by external inputs, namely,

Co(U) = {
∑m

i=1 kiui |ui ∈ U , ki ≥ 0,
∑m

i=1 ki = 1}. Then

following lemma characterizes the steady-state of the SAN (4)

on unsigned networks.

Lemma 5. [6], [7], [36] Consider the SAN (4) on an

unsigned network G = (V , E ,W ). Then, the state of all

agents converge to the convex hull spanned by the external

inputs for arbitrary initial conditions if and only if for each

agent i ∈ V , there exists at least one external input ul ∈ U
such that i is reachable from ul. Moreover, the steady-state

of the SAN (4) admits, limt→∞ x(t) = (L−1
B ⊗ Id)(B ⊗

Id)u = (L−1
B B) ⊗ Idu. Specifically, if u is homogeneous,

then the SAN (4) achieves consensus, namely, limt→∞ x(t) =
1
m

(
1n1

⊤
m ⊗ Id

)
u.

PROOF OF THEOREM 3

In order to show Theorem 3, we need the following lemma.

Lemma 6. Consider a matrix ordinary differential equa-

tion ẋ(t) = Mx(t), where M ∈ R
n×n is symmetric

and has n linearly independent eigenvectors and x(t) =
(x1(t), x2(t), . . . , xn(t))

⊤. Denote the ordered eigenvalue of

M as λ1 ≤ λ2 ≤ · · · ≤ λn with associated mutu-

ally perpendicular normalized eigenvectors ϕ1,ϕ2, . . . ,ϕn.

Let λk1
= λk2

= . . . = λks
be the largest nonzero

eigenvalue of M with the algebraic multiplicity s ∈ n.

Let ψ(η1) = (ei1 , · · · , eis1 )
⊤ ∈ R

s1×n and ψ(η2) =

(ej1 , · · · , ejs2 )
⊤ ∈ R

s2×n where η1 = {i1, . . . , is1} ⊂ n

and η2 = {j1, . . . , js2} ⊂ n, respectively. Denote αqi =
ψ(ηq)ϕi = ψqϕi ∈ R

sq , S = [ϕ1,ϕ2, . . . ,ϕn] ∈ R
n×n and

β = [β1, β2, . . . , βn]
⊤ = S−1x(0) ∈ R

n for q ∈ 2 and i ∈ n.

Then

lim
t→∞

‖ψ1ẋ(t)‖

‖ψ2ẋ(t)‖
=




s∑

i,j=1

λki
λkj

α⊤
1ki

α1kj
βki

βkj

s∑

i,j=1

λki
λkj

α⊤
2ki

α2kj
βki

βkj




1

2

. (26)

Proof. Note that M = SJS−1 where S = [ϕ1,ϕ2, . . . ,ϕn] ∈
R

n×n and J = diag {λ1, λ2, . . . , λn} ∈ R
n×n. According

to the solution to the matrix ordinary differential equation

ẋ(t) =Mx(t), the derivative of x(t) is ẋ(t) =MeMtx(0) =
SJeJtS−1x(0). Therefore one has,

‖ψqẋ(t)‖
2 =(ẋ(t))

⊤
ψ⊤
q ψqẋ(t)

=x(0)⊤(S−1)⊤eJtJS⊤ψ⊤
q ψqSJe

JtS−1x(0)

=

n∑

i=1

n∑

j=1

λiλje
(λi+λj)tα⊤

qiαqjβiβj . (27)

The statement of the lemma now follows from straightforward

computation, that has been omitted for brevity.

We are now in the position to prove Theorem 3.

Proof. Choose M =

(
−LB ⊗ Id B ⊗ Id
0md×nd 0md×md

)
in Lemma

6. Since the algebraic multiplicity of the largest nonzero

eigenvalue of the matrix LB is 1, the proof then follows from

a straightforward computation.

PROOF OF THEOREM 4

In order to prove Theorem 4, we need the following results.

Lemma 7. Let G(S) be a connected induced sub-

graph of G(V) whose node set is S ∈ V . De-

note Ebound = {(i, j) ∈ E | i ∈ S and j ∈ V \ S} and

Vout−bound
S =

{
j ∈ V \ S | ∃ i ∈ S such that (i, j) ∈ Ebound

}

If for all i ∈ S and j ∈ Vout−bound
S , [v2]i and [v2]j have the

same signs, then there exists an edge (i, j) ∈ Ebound such that

|[v2]i| > |[v2]j | .

Proof. Assume that [v2]i and [v2]j are positive for all i ∈ S
and j ∈ Vout−bound

S and there does not exist an edge

(i, j) ∈ Ebound such that [v2]i > [v2]j . Let λ2 be the

second smallest eigenvalue of L(G) with the corresponding

eigenvector v2 = ([v2]1, [v2]2, · · · , [v2]n)
⊤ ∈ R

n. Denote

the agents in S as {i1, i2, . . . , ip}; then examining all the ikth

row in eigen-equation L(G)v2 = λ2v2, yields,


 ∑

j∈Nik

wikj


 [v2]ik −

∑

j∈Nik

wikj [v2]j = λ2[v2]ik , (28)
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for all k ∈ p. Thereby,

∑

(i,j)∈Ebound

wij([v2]i − [v2]j) = λ2

(∑

i∈S

[v2]i

)
. (29)

Since [v2]i − [v2]j ≤ 0, ∀(i, j) ∈ Ebound, one can conclude

that λ2 ≤ 0, which is a contradiction given the fact that λ2 > 0
and there exists an edge (i, j) ∈ Ebound such that [v2]i >
[v2]j .

For the case that [v2]i and [v2]j are negative for all i ∈ S
and j ∈ Vout−bound

S , the proof is analogous.

Lemma 8. [32, Theorem 3.3] Let G = (V , E ,W ) be

an unsigned network with associated Laplacian matrix L.

Let v2 denote the eigenvector corresponding to the second

smallest eigenvalue of L. For any r1 ≥ 0 and r2 ≤
0, let M(r1) = {i ∈ V | [v2]i + r1 ≥ 0} and M(r2) =
{i ∈ V | [v2]i + r2 ≤ 0} . Then, the subgraph G(r1) (G(r2))
induced by G on M(r1) (M(r2)) is connected.

We are now ready to prove Theorem 4.

Proof. According to Lemma 5, consensus can be examined

as a reachability problem; we shall therefore consider the

reachability aspect first. According to Lemma 3, we need to

discuss two cases.

Case 1: The network G contains a core block B0, we shall

discuss the reachability of the positive/negative blocks from

B0. Without the loss of generality, let Bi be a positive block,

then two possible situations may occur in terms of the location

of Bi.

First, consider the case where Bi is a positive block con-

necting with the core block B0 directly through the cut node

i∗. We shall prove that for any node j ∈ Bi, [v2]j ≥ [v2]i∗ .

By contradiction, assume that there exists a node j0 ∈ Bi

satisfying [v2]j0 < [v2]i∗ . As i∗ is a cut node, according to

Lemma 8, for any node p ∈ B0, one has [v2]p ≥ [v2]i∗ ; this

is a contradiction (with the property of B0). Therefore, one

has [v2]j ≥ [v2]i∗ for any node j ∈ Bi.

Second, consider the case where Bi is a positive block

such that all its neighboring blocks are positive. Denote by

NB
i =

{
Bi1 , Bi2 , . . . , Biqi

}
as the neighboring blocks of Bi

with the corresponding cut nodes {i1, i2, . . . , iqi}. We denote

i∗ = argmin
k∈qi

[v2]ik , which connects blocks Bi and Bi∗ . Then

we show that for any node j ∈ Bi, [v2]j ≥ [v2]i∗ . By

contradiction, assume that there exists j0 ∈ Bi satisfying

[v2]j0 < [v2]i∗ ; then according to Lemma 8, for any node

p ∈ Bi∗ , one has [v2]p ≥ [v2]i∗ . Otherwise, assume that there

exists a node p0 ∈ Bi∗ such that [v2]p0
< [v2]i∗ , and choose

r = min{−[v2]j0 ,−[v2]p0
}. Note that i∗ is a cut node; then

the subgraph G(r) induced by G on M(r) is disconnected.

Therefore, one has [v2]p ≥ [v2]i∗ for any node p ∈ Bi∗ . In

addition, for any k ∈ qi and k 6= i∗, one has [v2]q ≥ [v2]ik
for any node q ∈ Bik . This is due to having ik as a cut

node and [v2]ik > [v2]i∗ . Therefore, for any k ∈ qi, one

has [v2]q ≥ [v2]ik for any node q ∈ Bik . However, in view

of Lemma 7, this is a contradiction. Therefore, for any node

j ∈ Bi, one has [v2]j ≥ [v2]i∗ .

Based on the above two scenarios, in the following,

let Bi be an arbitrary positive block and denote by

NB
i =

{
Bi1 , Bi2 , . . . , Biqi

}
as the neighboring blocks of

Bi with the corresponding cut nodes {i1, i2, . . . , iqi}.

Let i∗ = argmin
k∈qi

[v2]ik , connecting blocks Bi and

Bi∗ . We shall prove that any node j ∈ Bi can be

reached by the cut node i∗ in the FSN network Ḡ. Let

Ḡ({i1, · · · , is0}) be weakly connected, not reachable from

the cut node i∗ in Ḡ, where s0 ∈ Z+. Denote Ebound =
{(i, j) ∈ E | i ∈ {i1, · · · , is0} , j ∈ V \ {i1, · · · , is0}}, then

according to Definition 4, for any edge (i, j) ∈ Ebound, one

has [v2]i ≤ [v2]j , which is a contradiction in view of Lemma

7. Hence, any node j ∈ Bi, can be reached from the cut node

i∗ in Ḡ.

Case 2: For the case that the network G only contains a

core node i0; let nodes j and k be arbitrary positive and

negative nodes connecting the core node directly, respectively.

By Definition 4, nodes j and k are reachable from the core

node i0. For the remaining nodes that do not connect the core

node directly, the proof is then similar to the Case 1.

Consequently, consensus can be guaranteed for aforemen-

tioned two cases according to Lemma 5.

Secondly, we shall prove that the steady-state of agents in

Ḡ is equal to either the average of initial states of the agents in

the core block and zero blocks (Case 1) or that of the agents in

zero blocks and the core node (Case 2). To simplify our presen-

tation, we employ a general description for both cases, namely,

that there are m agents in the union of either core block and

zero blocks (Case 1) or core node and zero blocks (Case 2).

Then, denote by L = {1, 2, . . . ,m} and F = {m + 1,m +
2, . . . , n}, where m ∈ Z+ and m ≤ n. We can represent the

Laplacian matrix of G as, L =

[
L11 0m×(n−m)

L21 L22

]
, where

L11 ∈ R
m×m, L22 ∈ R

(n−m)×(n−m) and L21 ∈ R
(n−m)×m,

and L22 is nonsingular. Due to L1n = 0, then one has

L211m + L221n−m = 0. Therefore, L−1
22 L211m = −1n−m.

Denote by xL = (x⊤
1 (t), . . . ,x

⊤
m(t))⊤ ∈ R

md and xF =
(x⊤

m+1(t), . . . ,x
⊤
n (t))

⊤ ∈ R
(n−m)d. Thereby,

ẋL = −(L11 ⊗ Id)xL, (30)

and

ẋF = −(L22 ⊗ Id)xF − (L21 ⊗ Id)xL. (31)

Let X = xF + (L−1
22 L21 ⊗ Id)xL. Then,

Ẋ = −(L22 ⊗ Id)X − (L−1
22 L21L11 ⊗ Id)xL. (32)

According to the input-to-state stability theory, one has

lim
t→∞

X = 0. Therefore,

lim
t→∞

xF = −(L−1
22 L21 ⊗ Id) lim

t→∞
xL (33)

= −
1

m
(L−1

22 L211m1
⊤
m ⊗ Id)xL(0) (34)

=
1

m
(1n−m1

⊤
m ⊗ Id)xL(0), (35)

which concludes the proof.
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PROOF OF PROPOSITION 1

Proof. Let E = L(Ḡ) − L(G). Note that L(Ḡ)v̄2 =
λ2(L(Ḡ))v̄2 and v̄⊤

2 L
⊤(Ḡ) = λ2(L(Ḡ))v̄⊤

2 . Hence,

v̄⊤
2 L(Ḡ)v̄2 = λ2(L(Ḡ))v̄⊤

2 v̄2, and v̄T
2 L

T (Ḡ)v̄2 =
λ2(L(Ḡ))v̄

T
2 v̄2. Therefore,

v̄⊤
2 (L(Ḡ) + L⊤(Ḡ))v̄2 = 2λ2(L(Ḡ))v̄

⊤
2 v̄2, (36)

and

λ2(L(Ḡ)) =
v̄⊤
2 (L(Ḡ) + L⊤(Ḡ))v̄2

2v̄⊤
2 v̄2

(37)

=
v̄⊤
2 (L(G) + L⊤(G))v̄2

2v̄⊤
2 v̄2

+
v̄⊤
2 (E + E⊤)v̄2

2v̄⊤
2 v̄2

(38)

=
v̄⊤
2 L(G)v̄2

v̄⊤
2 v̄2

+
v̄⊤
2 (E + E⊤)v̄2

2v̄⊤
2 v̄2

. (39)

By applying Rayleigh theorem [39, Theorem 4.2.2, p.235],

one has,

λ2(L(Ḡ)) ≥ λ2(L(G)) +
v̄⊤
2 (E + E⊤)v̄2

2v̄⊤
2 v̄2

. (40)

Moreover, according to the expansion,

v̄⊤
2 (E + E⊤)v̄2

2v̄⊤
2 v̄2

=
1

v̄⊤
2 v̄2

∑

(i,j)∈E\Ē

[v̄2]i ([v̄2]j − [v̄2]i) ,

(41)

and v̄⊤
2 v̄2 = 1, one can conclude that,

λ2(L(Ḡ)) ≥ λ2(L(G)) +
∑

(i,j)∈E\Ē

[v̄2]i ([v̄2]j − [v̄2]i) . (42)

PROOF OF THEOREM 5

Lemma 9. [47] Let T be a non-star tree network with n ≥ 4
nodes. Then λ2(L(T )) < 0.59.

We now prove Theorem 5.

Proof. Note that every node is a cut node in a tree network.

Then in light of Lemma 3, there are two cases to consider.

For the case that there exists one core node in T , denoted

by w ∈ V , the Laplacian matrix L(T̄ ) of the FSN network

T̄ can be decomposed as L(T̄ ) =

[
0 0
∗ LV\{w}

]
, where

LV\{w} is a lower triangular matrix, with all diagonal elements

equal to one. Therefore, the second smallest eigenvalue of

L(T̄ ) is equal to one. Hence, using Lemma 9, it follows that

λ2(L(T̄ )) > λ2(L(T )).
Now we proceed to consider the case that there exists one

core block with two nodes; denote these nodes by u ∈ V and

v ∈ V . Then, the Laplacian matrix L(T̄ ) of the FSN network

T̄ can be decomposed as, L(T̄ ) =

[
L{u,v} 0

∗ LV\{u,v}

]
,

where L{u,v} =

[
1 −1
−1 1

]
denotes the Laplacian matrix

associated with the core block, and LV\{u,v} is a lower

triangular matrix with all diagonal elements equal to one.

Therefore, the second smallest eigenvalue of L(T̄ ) is equal

to one. Again, in view of the Lemma 9, we conclude that

λ2(L(T̄ )) > λ2(L(T )).
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