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Abstract— The design of adequate countermeasures
against drone’s threats needs accurate trajectory estima-
tion to avoid economic damage to the aerospace indus-
try and national infrastructure. As trajectory estimation
algorithms need highly accurate physics informed models
or off-line learning algorithms, radical innovation in on-
line trajectory inference is required. In this paper, a novel
drone’s physics informed trajectory inference algorithm
is proposed. The algorithm constructs a physic informed
model and infers the drone’s trajectories simultaneously
using a closed-loop output error architecture. Two different
approaches are proposed based on a physics structure
and an admittance filtering model which considers: i) full
states measurements and ii) partial states measurements.
Stability and convergence of the proposed schemes are as-
sessed using Lyapunov stability theory. Simulations stud-
ies are carried out to demonstrate the scope and high
inference capabilities of the proposed approach.

Index Terms— physics informed model, trajectory infer-
ence, admittance model, drones, full/partial states mea-
surements

I. INTRODUCTION

PROLIFERATION of cheaper drone technology has mag-

nified the threat space for autonomous vehicle attacks

on critical national and international infrastructures, defence,

and security facilities. Therefore, reliable detection of drones

and identifying its intention is paramount. The challenge with

current detection systems relies on stable and highly accurate

trajectory inference algorithms for early threat detection [1].

Drone-detection mechanisms [2] are based on either audio,

video, motion, thermal, radar, and radio-frequency detection

methods which are able to detect drones in different scenarios

and applications [3]–[6]. However, these methods depend on

snapshots of data which do not capture the information of the

continuous flight physics associated to the mission profile and

intent, that is, they are based on data collected from different

experiments which are not associated to the current trajectory.

Therefore, state estimation [7] and inference algorithms [8]

have been developed to provide a complete landscape of the

drone’s performance.

Most of the state estimation algorithms, e.g., Kalman filter

and their variants [9], [10], are based on a trustworthy physics
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informed model (PIM) [11], [12], also known as model-based,

that allows to estimate unknown states with noise attenuation

capabilities [13], [14]. A wrong model may cause large

estimation error and instability in the estimation process [15].

Other techniques are based on Gaussian processes that capture

all the prior information [16], [17] that we have from the real

system in the form of non-parametric function approximators,

which allow to infer the drone’s trajectories in future time

steps [18]. Nevertheless, these methods are usually off-line or

use reinforcement learning (RL) architectures for exploration

purposes [19], [20] to achieve enough excitation. However, the

control policy is fixed in threat detection algorithms and hence

on-line Gaussian processes cannot be applied.

Other approaches that deal with trajectory inference prob-

lems are known as physics informed neural networks (PINNs)

[21] and recurrent neural networks (RNNs) [22]. On the

one hand, a PINN uses the PIM as regularization term to

improve learning convergence and to penalize large weights.

On the other hand, RNNs use series-parallel/parallel structures

to model the system as the sum of a stable linear system

with a multi-layer perceptron network. Whilst PINNs require

a normalized PIM to obtain good results, the RNNs cannot

guarantee weights convergence and thus, the neural approx-

imation cannot serve as a PIM. One main issue of PIMs is

founded on the parameter’s knowledge assumption to obtain

highly accurate inference results; otherwise, low accuracy or

instability could be obtained in the final inference results due

to the universal instability issue of neural networks [23].

Since trajectory inference algorithms need a high fidelity

PIM to ensure good estimation results, then a parameter iden-

tification algorithm is required. However, parameter identifi-

cation algorithms [24], [25] depends on states measurements

that can be affected in presence of noise [26], [27]. Closed-

loop input/output (CLIE/CLOE) architectures [28]–[30] have

been developed for parameter identification that deals with

the noise issue using well-tuned filters to estimate velocity

and acceleration terms and construct a PIM; nevertheless, the

filters can cause biased estimates and delays in the inferred

trajectory. In addition, the CLIE algorithm is limited to a class

of linear systems with linear control inputs [31], [32].

In view of the above, this paper reports a drone’s physics

informed algorithm for trajectory inference using a closed-

loop output error technique. Two different inference algorithms

are developed based on the available measurable states. The

first approach constructs a PIM based on the drone’s dynamic

model and full states measurements assumption. The second

approach constructs a PIM based on the solution of the
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drone’s dynamic model using an admittance model filtering

and partial states measurements. The main contributions of

the work are the following: i) two novel physics informed

models for trajectory inference based on a physics and admit-

tance parameterizations, ii) noise attenuation and parameter

estimates convergence are simultaneously guaranteed under

the fulfilment of a persistent of excitation condition, iii) the

approach does not require additional filtering methods or

prior parameters knowledge, and iv) rigorous stability and

convergence analysis are provided to justify the proposed

approach.

The paper outline is as follows: Section II defines the

PIM based on a physics parameterization. Section III reports

the PIM based on an admittance parameterization. Section

IV expands the scope of Section III with an admittance

parameterization using nested filters. Section V reports the

simulation studies using a quadcopter. The conclusions are

presented in Section VI.

Throughout this paper, N, R, R
+, R

n, R
n×m denote

the spaces of natural numbers, real numbers, positive real

numbers, real n-vectors, and real n×m-matrices, respectively;

In ∈ R
n×n denotes an identity matrix; λmin(A) and λmax(A)

denotes the minimum and maximum eigenvalues of matrix

A, respectively; the norms ‖A‖ =
√
λmax(A⊤A) and ‖x‖

stand for the induced matrix and vector Euclidean norms,

respectively; where x ∈ R
n, A,B ∈ R

n×n and n,m ∈ N.

II. CLOSED-LOOP OUTPUT ERROR APPROACH: A

PHYSICS PARAMETERIZATION

Consider the following drone’s dynamic model

q̈ = M−1[u− C(q, q̇)q̇ − F (q̇)−G(q)] = Φ⊤(q, q̇, u)Θ (1)

where M ∈ R
n×n is a constant inertia matrix, C(q, q̇) ∈ R

n×n

denotes the Coriolis and centripetal forces matrix, G(q) ∈ R
n

is the gravitational forces and torques vector, F (q̇) ∈ R
n

defines the drag forces vector, and q ∈ R
n defines the

Cartesian position and orientation of the drone, and u ∈ R
n

defines the thrust force and torques in the direction of the

corresponding body frame angles. It is well known that the

drone’s dynamics can be linearly parametrized by the product

of a vector of basis functions Φ = Φ(q, q̇, u) ∈ R
p×n and

a vector of parameters Θ ∈ R
p, where p is the number of

parameters.

Remark 1: In contrast to other mechanical systems, the

inertia matrix M of a drone is constant and hence the UAV

model can be linearly parametrized as in (1).

Remark 2: The control input u stabilizes the drone’s dy-

namics and guarantee trajectory tracking [33]. Here it is

assumed that the control gain and control structure is known

in advance. The drone’s controller has the following structure

u = Kf(q̃), where K ∈ R
n×n denotes a matrix gain and

q̃ = qd− q ∈ R
n is the error between the drone’s states q and

a desired reference qd ∈ R
n and f(·) ∈ R

n is a function of

the error and its derivatives.

Consider an estimated model of the drone’s dynamics of the

form

ẅ = M̂−1[v − Ĉ(w, ẇ)ẇ − F̂ (ẇ)− Ĝ(w)] = Φ⊤
wΘ̂ (2)

where w ∈ R
n denotes the states of the estimated model,

v ∈ R
m is the control input which has the same structure as

u; the terms M̂ ∈ R
n×n, Ĉ ∈ R

n×n, F̂ ∈ R
n, and Ĝ ∈ R

n are

estimates of the inertia, Coriolis, drag forces, and gravitational

matrices, respectively. The drone’s estimated model is linearly

parametrized by a set of basis functions Φw = Φ(w, ẇ, v) ∈
R

p×n and a vector of parameter estimates Θ̂ ∈ R
p of Θ.

The control input v is defined as v = Kf(w̃), where w̃ =
qd−w defines the error between the desired reference qd and

the estimated model states w. Here the control gain K is the

same as control u. Define the output error between the drone’s

dynamics and the estimated model as e := q − w.

The difference between the basis functions can be equiva-

lently written as (Φ−Φw)
⊤Θ = ε, where ε defines a bounded

approximation error, i.e., ‖ε‖ ≤ ε̄ with ε̄ > 0. Without

loss of generality, we can express the approximation error

as ε = −K1e − K2ė + εw, where K1,K2 > 0 are positive

definite matrices and εw = ε + K1e + K2ė ∈ R
n denotes a

bounded approximation error, i.e., ‖εw‖ ≤ ε̄w > 0, which is a

valid assumption since the basis functions are assumed to be

Lipschitz [34].

The error dynamics between (1) and (2) is

ë =q̈ − ẅ = Φ⊤Θ− Φ⊤
wΘ̂

=−K1e−K2ė− Φ⊤
wΘ̃ + εw. (3)

Parameter estimates convergence can guaranteed if the vec-

tor of basis functions Φw fulfils the following lemma

Lemma 1: [35] The vector Φw ∈ R
p×n is said to be

persistent exciting (PE) in the interval [t : t + T ] if there

exists constants β0, β1, T > 0 that verifies

β0I ≤ S =

∫ t+T

t

ΦwΦ
⊤
wdτ ≤ β1I (4)

To fulfil lemma 1, it is assumed that a known excitation

signal η ∈ R is added in the control inputs u and v. The fol-

lowing theorem establishes the uniform ultimate boundedness

(UUB) [36] of the parametric error Θ̃ if the basis functions

vector Φw fulfil the PE condition (4).

Theorem 1: Consider the error dynamics (3). Assume that

the vector of basis functions Φw fulfils the PE condition (4).

If the parameters Θ̂ are updated as

˙̃
Θ =

˙̂
Θ = ΓΦw(e+ ė), (5)

where Γ ∈ R
p×p is a positive definite matrix; and K2− I > 0

then, there exists a bound

α = min{λmin(K2 − I), λmin(K1)} (6)

that satisfies

α >
√
2ε̄w + ρ, (7)

for any ρ > 0. Then the error dynamics (3) are UUB with

a practical bound µ1 =
√
2ε̄w
α

and the parameter estimates Θ̂
remain bounded.

An additional result of linear-time variant (LTV) systems is

required for Theorem 1 proof. The result is stated in the next

lemma
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Lemma 2: [37] Consider the update rule (5) with output

defined as the following linear-time varying (LTV) system

˙̃
Θ = ΓΦw(e+ ė)

y = Φ⊤
wΘ̃

(8)

then, the PE condition (4) is equivalent to the uniform com-

plete observability (UCO) of system (8) and hence, bounded-

ness of Θ̃ can be concluded.

Proof: The LTV system (8) and the system defined by
˙̃
Θ = ΓΦwν, y = Φ⊤

wΘ̃ are equivalent under the control

feedback ν = e + ė and therefore, by the UCO lemma, the

state Θ̃ remain bounded. This completes the proof.

With the above result we can proceed to prove Theorem 1.

Proof: Consider the following Lyapunov function

V =
1

2
ė⊤ė+

1

2
Θ̃⊤Γ−1Θ̃ +

1

2
e⊤(K1 +K2)e+ e⊤ė. (9)

It is easy to verify that the Lyapunov function (9) is positive

definite by rewriting V as

V =
1

2

[
e

ė

]⊤ [
K1 +K2 I

I I

] [
e

ė

]
+

1

2
Θ̃⊤Γ−1Θ̃, (10)

which is positive definite if K1+K2−I > 0 or, more strictly,

if K2 − I > 0. This condition is easy to verify by increasing

the approximation error εw which does not violate the final

result.

The time-derivative of V along the error dynamics trajec-

tories (3) and the update rule (5) gives

V̇ =− ė⊤(K2 − I)ė+ (e+ ė)⊤εw − e⊤K1e

≤− λmin(K2 − I)‖ė‖2 − λmin(K1)‖e‖2

+ ‖εw‖(‖e‖+ ‖ė‖).

Define E = [‖e‖, ‖ė‖]⊤ and δ = [1, 1]⊤, then

V̇ ≤− α‖E‖2 + E⊤δ‖εw‖

≤ − α‖E‖2 +
√
2‖E‖ε̄w = −α‖E‖

(
‖E‖ −

√
2ε̄w
α

)
.

(11)

V̇ is negative definite if ‖E‖ >
√
2ε̄w
α

≡ µ1. Then, if the vector

of basis functions Φw is PE, then the error vector E converges

into a bounded set Sµ of radius µ1 and the trajectories of (3)

are UUB. Moreover, since E is bounded then it implies that

w, ẇ, and Φw are also bounded and hence,

y ≡ εw − ë−K1e−K2ė, (12)

is also bounded. Applying Lemma 2 allows to conclude

that boundedness of E and y ensures boundedness of the

parametric error Θ̃ and consequently of Θ̂. This completes

the proof.

Fig. 1 depicts the general scheme of the proposed CLOE

physics parameterization diagram. Here, we can observe

clearly how both the states and parameters are estimated

simultaneously using the identification law and the estimated

model. This approach deals directly with a linear parame-

terization of the drone’s dynamics which guarantees UUB

solutions. However, notice that α cannot be adjusted since

Drone's Dynamics 

Drone's Dynamics
Estimated System
Identification Algorithm

Estimated model 

Update rule 

Control 

Control 

Stabilizing controllers

Fig. 1. CLOE Physics Parameterization Diagram

K1 and K2 are unknown. Furthermore, if K1 and K2 are

increased then the approximation error εw is also increased.

In the next section, a different parameterization based on the

solution of the drone’s differential equation is proposed that

incorporates an admittance-type filter as hyperparameter that

admits a certain amount of information of the basis function

vector for the inference/identification task

III. CLOSED-LOOP OUTPUT ERROR APPROACH: AN

ADMITTANCE PARAMETERIZATION

The drone’s dynamics (1) can be equivalently written as

q̈ = −Kaq −Baq̇ +Kaq +Baq̇ +Φ⊤Θ. (13)

where Ka, Ba ∈ R
n×n denote a stiffness and damping ma-

trices related to a virtual admittance model [38]. Assume the

admittance gains are designed to fulfil the following equalities

Ka = Λ1Λ2

Ba = Λ1 + Λ2,
(14)

for some Λ1,Λ2 > 0 ∈ R
n×n and Λ1 6= Λ2. The Laplace

transform of the differential equation (13) is

Q(s) = Z−1(s)q̇(t0) + Z−1(s)[sI +Ba]q(t0)
+Z−1(s)L

{
Baq̇ +Kaq +Φ⊤Θ

} (15)

where Z(s) = s2I+ sBa+Ka is equivalent to an admittance

filter. The following theorem establishes the state parameter-

ization of the solution of (13) which will be used for the

inference/identification problem [39].

Theorem 2: Assume the admittance parameters Ba and Ka

satisfies (14). The solution of the drone’s differential equation

(1) under the admittance filter Z(s) = s2I +Bas+Ka is

q(t) = A
(
Λ2e

−Λ1(t−t0) − Λ1e
−Λ2(t−t0)

)
q(t0)

+A
(
e−Λ1(t−t0) − e−Λ2(t−t0)

)
q̇(t0)

+AL(q, q̇) +AH(q, q̇)Θ,

(16)

for some filter functions L(·) ∈ R
n and H(·) ∈ R

n×p.

The terms A,Λ1,Λ2 ∈ R
n×n are functions dependent on the

admittance gains Ka and Ba.

Proof: First, consider the first element of the right-hand

side of (15)

Q1(s) = (s2I +Bas+Ka)
−1q̇(t0).
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Using partial fractions gives

Q1(s) = [(sI + Λ1)(sI + Λ2)]
−1q̇(t0)

= A
(
(sI + Λ1)

−1 − (sI + Λ2)
−1

)
q̇(t0)

q1(t) = A
(
e−Λ1(t−t0) − e−Λ2(t−t0)

)
q̇(t0)

where A = (Λ2 − Λ1)
−1

. Following a similar procedure for

the second element of (15) gives

Q2(s) = ((sI + Λ1)(sI + Λ2))
−1

(sI +Ba) q(t0)

=
(
C1(sI + Λ1)

−1 + C2(sI + Λ2)
−1

)
q(t0)

q2(t) =
(
C1e

−Λ1(t−t0) + C2e
−Λ2(t−t0)

)
q(t0).

where C1 = AΛ2 and C2 = −AΛ1.

For the third part of (15), we have that

Q3(s) = (s2I +Bas+Ka)
−1L

{
Baq̇ +Kaq +Φ⊤Θ

}

whose solution verifies the following convolution integral

q3(t) =A

∫ t

t0

(e−Λ1(t−τ) − e−Λ2(t−τ))(Baq̇ +Kpq)dτ

+A

∫ t

t0

(e−Λ1(t−τ) − e−Λ2(t−τ))Φ⊤(q, q̇, u)dτ ·Θ

Define

li(q, q̇) =

∫ t

t0

e−Λi(t−τ)(Baq̇ +Kaq)dτ ∈ R
n

hi(q, q̇) =

∫ t

t0

e−Λi(t−τ)Φ⊤(q, q̇, u)dτ ∈ R
n×p, i = 1, 2.

The above definitions can be easily computed using the

following low-pass filters

l̇i(q, q̇) = −Λili(q, q̇) +Baq̇ +Kaq, (17a)

ḣi(q, q̇) = −Λihi(q, q̇) + Φ⊤(q, q̇, u), i = 1, 2. (17b)

Therefore, the state parameterization of the solution of (1)

is given by

q(t) =q1(t) + q2(t) + q3(t)

=A
(
e−Λ1(t−t0) − e−Λ2(t−t0)

)
q̇(t0)

+A
(
Λ2e

−Λ1(t−t0) − Λ1e
−Λ2(t−t0)

)
q(t0)

+AL(q, q̇) +AH(q, q̇)Θ (18)

where L(q, q̇) = [l1(q, q̇) − l2(q, q̇)] ∈ R
n and H(q, q̇) =

[h1(q, q̇)− h2(q, q̇)] ∈ R
n×p. This completes the proof.

The filters associated to the basis functions h1(·) and h2(·)
verifies the following bounds

‖h1(q, q̇)‖ ≤
∫ t

t0

‖e−Λ1(t−τ)‖ · ‖Φ⊤‖dτ

≤
(∫ t

t0

e−2λ1(t−τ)dτ

) 1

2
(∫ t

t0

ΦΦ⊤dτ

) 1

2

,

‖h2(q, q̇)‖ ≤
∫ t

t0

‖e−Λ2(t−τ)‖ · ‖Φ⊤‖dτ

≤
(∫ t

t0

e−2λ2(t−τ)dτ

) 1

2
(∫ t

t0

ΦΦ⊤dτ

) 1

2

.

Notice that we obtain almost the same PE condition (4),

where the integral can be written as a sum of N = t−T−t0
T

time windows as
∫ t

t0

ΦΦ⊤dτ =
N∑

κ=0

∫ a+T

a

ΦΦ⊤dτ,

where a = t0 + κT . So, the filters are bounded by
√

β0N

2λ1
≤ ‖hi(q, q̇)‖ ≤

√
β1N

2λ1
, i = 1, 2. (19)

The solution of the estimated model (2) has the same

structure as in (18)

w(t) =A
(
e−Λ1(t−t0) − e−Λ2(t−t0)

)
q̇(t0)

+A
(
Λ2e

−Λ1(t−t0) − Λ1e
−Λ2(t−t0)

)
q(t0)

+AL(w, ẇ) +AH(w, ẇ)Θ̂. (20)

The identification error between (18) and (20) is

e = q − w = −AH(w, ẇ)Θ̃ +Aεh (21)

where εh = [L(q, q̇)−L(w, ẇ)]+[H(q, q̇)−H(w, ẇ)]Θ ∈ R
n

is an approximation error associated to each filter. The next

theorem establishes the UUB of the parametric error Θ̃ and

identification error e trajectories as long as the PE condition

(4) is satisfied.

Theorem 3: Consider the trajectories of the identification

error solution (21). If the parameter estimates are updated by

˙̃
Θ =

˙̂
Θ = ΓH⊤(w, ẇ)Ae (22)

and the vector of basis functions Φw fulfils the PE condition

(4), then the trajectories of (21) are UUB with a practical

bound µ3 =
(

λ2

max
(H)

λ2

min
(H)

+ 1
)
ε̄h and the parameter estimates Θ̂

remain bounded in a set SΘ of radius µ2 = λmax(H)
λ2

min
(H)

ε̄h.

Proof: Consider the following Lyapunov function

W =
1

2
Θ̃⊤Γ−1Θ̃. (23)

The time-derivative of W under the update rule (22) and

identification error (21) gives

Ẇ =Θ̃⊤H⊤(w, ẇ)A⊤e

=− Θ̃⊤H⊤(w, ẇ)A2H(w, ẇ)Θ̃ + Θ̃⊤H⊤(w, ẇ)A2εh

≤− k2aλ
2
min(H)‖Θ̃‖2 + k2aλmax(H)‖εh‖‖Θ̃‖,

where ‖A‖ = ka > 0. V̇ is negative definite if

‖Θ̃‖ >
λmax(H)

λ2
min(H)

ε̄h ≡ µ2.

If the basis functions within H(w, ẇ) fulfil the PE condition

(4) then, the parametric error Θ̃ converges to a bounded set

SΘ of radius µ2, that is, ‖Θ̃‖ ≤ µ2 and hence, the parametric

error Θ̃ remain bounded. With this result is easy to verify that

the identification error is bounded by

‖e‖ ≤ ka‖H(w, ẇ)‖‖Θ̃‖+ ka‖εh‖

≤
(
λ2
max(H)

λ2
min(H)

+ 1

)
kaε̄h.
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Fig. 2. CLOE Admittance Parameterization diagrams

The above result relates directly the identification error e

and the approximation error εh. In addition, the update rule

(22) fulfils Lemma 2 by considering the LTV system

˙̃
Θ = ΓH⊤(w, ẇ)Aν

ζ = AH(w, ẇ)Θ̃ ≡ Aεh − e

under the control input ν = e. Using the UCO lemma allows

concluding that boundedness of e and ζ implies boundedness

of the parametric error Θ̃ and hence Θ̂ is also bounded. This

completes the proof.

IV. CLOSED-LOOP OUTPUT ERROR: A NESTED

ADMITTANCE PARAMETERIZATION

In the previous section we design a CLOE algorithm based

on an admittance parameterization when only partial measure-

ments of the states are available. The approach assumes that

the parameters of the filter are based on two design parameters

Λ1 and Λ2. In this section we simplify the approach by

using a nested admittance model that only requires one design

parameter Λ. In this scenario, the admittance parameters verify

Ka = Λ2, Ba = 2Λ, (24)

for any Λ > 0 ∈ R
n×n. The following theorem establishes

the state parameterization of the solution of (13) under the

admittance parameters assumption (24).

Theorem 4: Assume the admittance parameters verify (24).

The solution of the drone’s differential equation (1) under the

admittance filter Z(s) = s2I +Bas+Ka is

q(t) = (I + Λ(t− t0))e
−Λ(t−t0)q(t0)

+(t− t0)e
−Λ(t−t0)q̇(t0) + l3(q, q̇) + h3(q, q̇)Θ,

(25)

for some filter functions l3(·) ∈ R
n and h3(·) ∈ R

n×p.

Proof: First, consider the first element of the right-hand

side of (15). Using partial fractions gives

Q1(s) = (s2I +Bas+Ka)
−1q̇(t0),

Q1(s) = (sI + Λ)−2q̇(t0)

q1(t) = (t− t0)e
−Λ(t−t0)q̇(t0).

Following a similar procedure for the second element of (15)

gives

Q2(s) = (sI + Λ)
−2

(sI +Ba) q(t0)

=
(
(sI + Λ)−1 + Λ(sI + Λ)−2

)
q(t0)

q2(t) = (I + Λ(t− t0)) e
−Λ(t−t0)q(t0).

For the third part of (15), we have that

Q3(s) = (s2I +Bas+Ka)
−1L

{
Baq̇ +Kaq +Φ⊤Θ

}

whose solution verifies the following convolution integral

q3(t) =

∫ t

t0

(t− τ)e−Λ(t−τ)(Baq̇ +Kaq)dτ

+

∫ t

t0

(t− τ)e−Λ(t−τ)Φ⊤(q, q̇, u)dτ ·Θ.

The following low-pass filters are defined

l̇3(q, q̇) = −Λl3(q, q̇) + l4(q, q̇), (26a)

l̇4(q, q̇) = −Λl4(q, q̇) +Baq̇ +Kaq (26b)

ḣ3(q, q̇) = −Λh3(q, q̇) + h4(q, q̇), (26c)

ḣ4(q, q̇) = −Λh4(q, q̇) + Φ⊤(q, q̇, u) (26d)

Therefore, the state parameterization of the solution of (1)

is given by

q(t) =q1(t) + q2(t) + q3(t)

= (I + Λ(t− t0)) e
−Λ(t−t0)q(t0)

+ (t− t0)e
−Λ(t−t0)q̇(t0) + l3(q, q̇) + h3(q, q̇)Θ (27)

This completes the proof.

The diagrams of the admittance parameterizations are de-

picted in Fig. 2. The results of Theorem 4 hold for this

parameterization and the update rule is slightly modified to

˙̃
Θ =

˙̂
Θ = Γh⊤

3 (w, ẇ)e. (28)
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V. SIMULATION STUDIES

In this section, we test the proposed inference algorithms

using a quadcopter model. The quadcopter satisfies the fol-

lowing dynamic model


ẍ

ÿ

z̈


 =

F

m



cψsθcφ + sψsφ
sψsθcφ − cψsφ

cθcφ


− 1

m



Axẋ

Ay ẏ

Az ż


−



0
0
g






φ̈

θ̈

ψ̈


 =




1
Ixx

τφ
1

Iyy
τθ

1
Izz

τψ


−




Iyy−Izz
Ixx

θ̇ψ̇
Izz−Ixx

Iyy
φ̇ψ̇

Ixx−Iyy

Izz
φ̇θ̇




where x, y, z denote the pose and φ, θ, ψ denote the orientation

of the drone, m is the mass of the quadcopter, Ixx, Iyy, Izz are

the moments of inertia, Ax, Ay, Az are the drag forces, g is

the gravitational acceleration, F is thrust force, τφ, τθ, and τψ
are the roll, pitch, and yaw torques. The complete state vector

is q = [x, y, z, φ, θ, ψ]⊤ ∈ R
6 and u = [F, τx, τy, τz]

⊤ ∈ R
4.

(a) Noisy-measured trajectory

(b) Estimated trajectory

Fig. 3. Trajectory Inference results

In these experiments we adopt a control tracking formu-

lation which divides the control input u into a position and

orientation controller. The position control calculates the total

thrust F and the desired roll φd and yaw θd angles as

φd =arcsin


 rxsψ − rycψ√

r2x + r2y + (rz + g)2


 ,

θd =arctan

(
rxcψ + rysψ

rz + g

)
,

F =rx(sθcψcφ + sψsφ) + ry(sθsψcφ − cψsφ)

+ (rz + g)cθcφ,

where the command references rx, ry , and rz are computed

with the following PD control structures rx = ẍd + kdxėx +
kpxex, ry = ÿd + kdy ėy + kpyey, rz = z̈d + kdz ėz + kpzez,

where kpi > 0 and kdi > 0 are the proportional and derivative

gains in the i = x, y, z directions. The position errors are

defined as ex = xd − x, ey = yd − y, ez = zd − z, for some

desired references xd, yd, zd ∈ R. The orientation control has

the same PD structure and is given by τφ = φ̈d + kdφėφ +
kpφeφ, τθ = θ̈d + kdθ ėθ + kpθeθ, τψ = ψ̈d + kdψ ėψ + kpψeψ ,

where kpj , kdj > 0 denotes the proportional and derivative

gains of the roll, pitch and yaw directions j = φ, θ, ψ. The

orientation errors are defined as eφ = φd − φ, eθ = θd −
θ, eψ = ψd − ψ, where φd and θd are computed by the

position controller, and ψd can be defined by the user.

Assume that the drag forces coefficients are the same, that

is, Ax = Ay = Az . The parameters to estimate are: θ1 = 1
m

,

θ2 = Ax

m
, θ3 = 1

Ixx
, θ4 = 1

Iyy
, θ5 = 1

Izz
, θ6 =

Iyy−Izz
Ixx

,

θ7 = Izz−Ixx

Iyy
, θ8 =

Ixx−Iyy

Izz
, and θ9 = g.

The PD control gains obtained in [40] are used as stabiliza-

tion gains. The reported gains are: kpx = kpy = kpz = 0.7071,

kdx = kdy = kdz = 1.3836, kpφ = kpθ = kpψ = 1.8597, and

kdφ = kdθ = kdψ = 6.9177. The desired position references

are given by rx = −2+2 cos
(
2π
20 t

)
, ry = 2 sin

(
2π
20 t

)
, rz =

3
302 t

2 − 2
303 t

3 if t < 30, otherwise rz = 1.

Three different cases are considered: i) Case 1: CLOE with

physics parameterization, ii) Case 2: CLOE with admittance

parameterization, and iii) Case 3: CLOE with nested admit-

tance parameterization. The update rule and filter gains are

manually tuned until the best inference results are obtained.

The final gains are given in Table I.

TABLE I

UPDATE RULE AND FILTERS GAINS

Case Γ Λ1 Λ2

Case 1 diag{ 20, 20, 2000, 2000,
2000, 20, 20, 20, 20}

- -

Case 2 diag{ 20, 20, 4000, 4000,
4000, 20, 20, 20, 2000}

20I6 2I6

Case 3 diag{ 20, 20, 4000, 4000,
4000, 20, 20, 20, 2000}

diag{ 5, 5, 5,
100, 100, 100}

Fig. 3 depicts the trajectory inference results. The first plot

shows the noisy-trajectory from sensors measurements. The

second plot shows the estimated trajectory that exhibits noise

attenuation and a smooth performance.

TABLE II

PARAMETER ESTIMATES OF THE QUADCOPTER THROUGH THE PHYSICS

UPDATE RULE (5) AND THE ADMITTANCE UPDATE RULE (22)

Estimate Real CLOE Algorithm

Θ̂k value Θk Case 1 |Θ̃k| (%) Case 2 |Θ̃k| (%) Case 3 |Θ̃k| (%)

θ̂1 1.7857 1.7884 0.1495 2.2918 28.341 2.2253 24.6164

θ̂2 0.1786 0.1779 0.3912 -0.2201 223.2421 -0.1783 199.8497

θ̂3 70.4225 70.3938 0.0407 42.0474 40.2926 41.1249 41.6025

θ̂4 70.4225 70.421 0.0021 44.2255 37.1998 115.7439 64.3564

θ̂5 35.2113 16.9372 51.8995 23.8476 32.273 8.0798 77.0534

θ̂6 -1 -2.2023 120.2264 0.1437 114.3702 0.1011 110.1078

θ̂7 1 3.7435 274.3494 0.1191 88.0926 0.0998 90.0159

θ̂8 0 -0.003 0.3 -0.002 0.2 0.087 8.7

θ̂9 9.81 9.8254 0.157 12.6004 28.4444 12.2338 24.7073

Fig. 4 shows the position and orientation inference results.

Case 1 exhibits accurate results with noise attenuation for
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Fig. 4. Position and Orientation inference results
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Fig. 5. Parameter estimates Θ̂

both the position and orientation trajectories. On the other

hand, Case 2 and Case 3 exhibits similar results in the

position trajectories but in the orientation trajectories have a

small bias due to the selection of the admittance parameters.

Moreover, the velocity error at the update rule (5) improves

the identification and inference results.

The mean absolute identification error ē = 1
N
|ei|, i =

1, · · · , 6, is used as performance metric between the physics

informed model states and the real states measurements. The

numerical results are given in Table III. It is clear that Case

1 has better results since it incorporates a complete physics

informed model for both identification and estimation. Case

2 and CASE 3 do not require measurements of the velocity

to estimate the real trajectory with an acceptable estimation

error, however the incorporation of the admittance parameters

cause some delay and bias. This fact can be seen at the

orientation results because the admittance parameters used for

the position trajectory estimation are not necessarily useful for

the orientation estimation. Therefore, both Case 2 and Case 3

need an accurate tuning of the admittance parameters to reduce

the delay and bias in the inference results.

Table II shows the identification error results of the CLOE

algorithm. The parameter estimates of Case 1 converges to

almost their real values except to the parameters associated to

the yaw angle since the trajectories cannot excite that axis due

to the drone’s configuration. Nevertheless, the parameter esti-

mates are close to their real values with small parametric error

percentage |Θ̃k|. On the other hand, the parameter estimates

of Case 2 and Case 3 do not converge to their real values

since the algorithm estimates different parameters due to the

incorporation of the admittance filter. However, the estimates

obtained from the algorithm construct a physics informed

model that is used for the trajectory inference algorithm. Fig.

5 shows the parameter estimates convergence for each case.

TABLE III

NUMERICAL RESULTS OF ē

ē Case 1 Case 2 Case 3

e1 0.0995 0.1376 0.1340
e2 0.0996 0.1137 0.1091
e3 0.0050 0.0050 0.0050
e4 0.0051 0.0303 0.0280
e5 0.0050 0.0175 0.0195
e6 0.0050 0.0050 0.0053

VI. CONCLUSIONS

This work reports a drone’s physics informed trajectory

inference algorithm. The algorithm is based on a closed-

loop output error technique that constructs a physics informed
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model for trajectory inference. Two different schemes based

on a physics and admittance parameterizations are given in

accordance to the available states measurements. Stability and

convergence of the inference algorithms are assessed using

Lyapunov stability theory. Simulation studies are carried out

to verify the effectiveness of the approach. The results show

further work opportunities for filtering tuning to enhance the

accuracy results of the admittance parameterization.

Further work focuses on complementary algorithms for

intent prediction using the proposed inference algorithm.

The scope includes self-learning models for non-parametric

basis functions inference and the analysis for time-varying

parameters. In addition, the use of reinforcement learning

architectures gives an interesting open challenge for intent

extraction of drone’s mission profile.

REFERENCES

[1] A. Perrusquı́a and W. Guo, “A closed-loop output error approach for
physics-informed trajectory inference using online data,” IEEE Trans-

actions on Cybernetics, 2022.

[2] J.-P. Yaacoub, H. Noura, O. Salman, and A. Chehab, “Security analysis
of drones systems: Attacks, limitations, and recommendations,” Internet

of Things, vol. 11, p. 100218, 2020.

[3] S. R. Ganti and Y. Kim, “Implementation of detection and tracking
mechanism for small uas,” in 2016 International Conference on Un-

manned Aircraft Systems (ICUAS). IEEE, 2016, pp. 1254–1260.
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