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Push—Pull with Device Sampling

Yu-Guan Hsieh, Yassine Laguel, Franck Iutzeler, Jérdme Malick

Abstract—We consider decentralized optimization problems in
which a number of agents collaborate to minimize the average of
their local functions by exchanging over an underlying communi-
cation graph. Specifically, we place ourselves in an asynchronous
model where only a random portion of nodes perform compu-
tation at each iteration, while the information exchange can be
conducted between all the nodes and in an asymmetric fashion.
For this setting, we propose an algorithm that combines gradient
tracking with a network-level variance reduction (in contrast to
variance reduction within each node). This enables the nodes to
track the average of the gradients of the objective functions. Our
theoretical analysis shows that the algorithm converges linearly,
when the local objective functions are strongly convex, under
mild connectivity conditions on the expected mixing matrices. In
particular, our result does not require the mixing matrices to be
doubly stochastic. In the experiments, we investigate a broadcast
mechanism that transmits information from computing nodes
to their neighbors, and confirm the linear convergence of our
method on both synthetic and real-world datasets.

Index Terms—decentralized optimization, convex optimization,
random gossip, device sampling

I. INTRODUCTION
I N this paper, we focus on solving the optimization problem

1 M
min f(x) = > filx) (P)
i=1
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where each function f;: R? — R is available only locally at
the ¢-th node of a graph. Hence, in order to reach a consensus
on the minimum of (P), the M nodes have to communicate
using the graph’s edges.

Such decentralized optimization problems have been widely
studied in the literature at least since the pioneering works of
Bertsekas and Tsitsiklis [1], [2]. In terms of applications, de-
centralized optimization methods are popular for regression or
classification problems when the communication possibilities
between the nodes are scarce and cannot be handled by a
central entity (e.g., for wireless sensor networks, IoT-enabled
edge devices, etc.); see the recent surveys [3], [4], [5], [6]. In
these applications, the workload and communications between
the nodes are of primary importance.

The computation at the node level mainly depends on which
optimization method serves as a basis. If the nodes are able
to solve optimization sub-problems, the Alternating Direction
Method of Multipliers (ADMM) and other dual methods can
be extended to distributed setting [7], [8]. At the other end of
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the spectrum, stochastic gradients methods are very popular
since they require minimal computation at each node [9].
Gradient-based methods offer a good comprise between these
two extremes and currently know a rebirth, especially for
machine learning applications; see e.g., the recent [10].

In terms of exchanges, all communications between nodes
have to go through the edges of the graph. If the graph is undi-
rected (i.e., the edges are all bidirectional), the nodes can gos-
sip to average their values. Mathematically, this corresponds to
multiplying the agents’ states by a doubly-stochastic matrix;
see [0, Sec. II] for details. However, if the graph is directed,
such direct gossiping is no longer possible since maintaining
both a consensus among the nodes and the average of their
values is not possible at the same time [11]. To overcome
this problem, two main type of methods have been developed.
First, Push—-Sum methods (or ratio consensus) consist in ex-
changing an additional “weighting”’; these methods can reach
an average consensus for the ratio of the two values [12], [13],
[14]. However, the analysis of Push—Sum gradient methods is
often quite involved and the algorithm can become numerically
unstable due to division by very small values, see e.g., the
simulations of [15] as well as references therein. Second,
Push—Pull methods rely on two communications steps with
different mixings to maintain convergence, offering strong
theoretical guarantees as well as good practical performance
[16], [15].

Finally, a desirable feature in decentralized methods is the
possibility to allow the nodes to randomly awaken, compute,
and send/receive information; which is generally called ran-
domized gossiping [17] or asynchronous decentralized meth-
ods [5], [18]. In terms of analysis, this consists in replacing the
fixed communication matrices with random ones having the
support corresponding to the active links; this was actively
studied for decentralized gradient methods, including Push—
Pull gradient [15].

A. Contributions and outline

In this paper, we focus on gradient-based methods for
decentralized asynchronous optimization on directed graphs.
We propose and analyze an asynchronous Push—Pull gradient
algorithm where only a fraction of the nodes are actively
computing a local gradient at each iteration. This feature is
inspired from the device sampling (or client selection) proce-
dure in federated learning [19], [20]. This popular mechanism
enables to take into account the fact that all the nodes may
not be available at all time and furthermore that querying all
gradients at each iteration may be a waste of computational
power if the nodes’ values only change by a little amount.

In terms of algorithm, device sampling calls for a variance
reduction mechanism in order to mitigate the noise induced



by the sampling of the nodes. To achieve this, we introduce a
SAGA-like [21] update at the network level; see Example 4.
This additional step thus requires an original analysis.

The remainder of the paper is structured as follows. The
introduction is completed by an overview on related lit-
erature. In Section II, we present our general algorithmic
template (Push—Pull with Device Sampling), together with
some specific cases of interest, connecting our method with
existing methods. In Section III, we provide linear convergence
results under classical convexity/smoothness assumptions on
the objective functions and weak assumptions on communica-
tions. Section IV and Section V are dedicated to the detailed
convergence analysis and illustrative numerical simulations.
Finally, proofs of a couple of technical intermediate results
are given in Appendix.

B. Related works

Direct extensions of the gradient method to the decen-
tralized setting rely on decreasing stepsizes to converge and
are thus limited to sublinear convergence rates, even if the
minimized functions are smooth and strongly convex. To
overcome this situation, the gradient tracking technique was
introduced; it consists in dynamically tracking the average
value of the gradient and using this value instead of the local
gradient. This technique enables the use of a fixed stepsize
and exhibits much better rates in theory and in practice [22],
[23], [24], [25]; see also the recent [26]. Gradient tracking
can be intuitively seen as a variance reduction at the network
level. The method presented in this paper extends this idea
of variance reduction to device sampling. Note also that in
the case where the nodes’ functions are themselves a finite
sum, this sum can be sampled, and variance reduction can be
additionally applied at the node level [27], [28], however this
specific form is out of the scope of the present paper.

AB/Push-Pull gradient methods naturally involve gradient
tracking; see e.g., [15, Rem. 1] and more generally [16], [29],
[30], [15]. These algorithms share common ingredients and
mainly differ in their communications models. The works that
are the most closely related to the asynchronous directed setup
considered in this paper are [15] and [29]. These two papers
study an asynchronous version of AB/Push—Pull which share
similarities, in the update and the communication scheme,
with our proposed method (more precisely, with the special
setup of Example 3). However, in contrast to our method,
these methods require every node that is involved in the
communication step to perform a local update. Moreover,
the analysis of [15] only works for the more restrictive case
where the non-diagonal coefficients of the mixing matrices
are sufficiently small. Note finally that [29] does not consider
a random network model, but instead performs an analysis
in terms of the worst-case dependence on the delays. This
analysis is thus complementary to our work.

C. Basic notation and definitions

Throughout the paper, we use bold lowercase letters to
denote vectors and capital letters to denote matrices. I, and
1 respectively represent the identity matrix of size k x k and

the k—dimensional vector containing all ones. The subscript
is omitted when the dimension is clear from the context. We
also define J = 1,,1],/M as the projection matrix onto the
consensus space, and denote by p(P) the spectral radius of a
matrix P.

The interaction topology between the nodes is modeled by
a directed graph G = (V, ), where V is the set of vertices
(nodes) and £ € V x V is the set of edges, such that node
can send information to j only if (¢, j) € £. The out-neighbors
and in-neighbors of a node i are respectively defined by

NP ={jeV:(i,j) €€l N{"={j€V:(ji)eE}

When the graph is undirected, the two sets coincide and we
simply write NV;. We say that the matrix W = (w;;) € RM*M
is compatible with the underlying communication topology if
w;; = 0 whenever (j,7) ¢ £.

Finally we introduce the aggregate objective function,
F(X) = Zf\il fi(x;), as a function of the variable X =
[x1,...,xn] " € RM*4 When F is differentiable, we have

VEX)=[Vfi(x1),...,V far(xa)]

II. ALGORITHMS: EXISTING, NEW, AND EXAMPLES

In this section, we present our asynchronous Push-Pull
gradient algorithm with device sampling. Prior to that, we
recall the existing AB/Push—Pull method [16], [15] which
inspires our algorithm. After detailing our general template,
we instantiate it in several situations of interest, revealing its
versatility.

A. The AB/Push—Pull method

If all the nodes are active at each iteration, the commu-
nication setup reduces to that of synchronous decentralized
optimization. In this situation and assuming that the functions
fi are differentiable, the AB/Push—Pull algorithm [16], [15]
is described as follows. In addition to the decision variables
x! that should minimize f, a variable y! is introduced to
track the gradient of f. Then, provided » > 0 a constant
stepsize and two mixing matrices A = (a;;) € RM*M and
B = (b;) € RM*M | the update of the algorithm at iteration ¢
writes

Xf“ = Zaisz‘ - 7]}’5,
JEV
yit =D by + VAT - VD).
JEV
It is required that A and B have non-negative weights and be
respectively row-stochastic (A1 = 1) and column-stochastic

(1"B = 1T). With the notation Y; = [y},...,y4,]", the
update can also be written, in a matrix form, as
X = A Xy — Yy,
t+1 t AL — T X (PP)

i/t-i-l == BtY:f + VF(Xt+1) - VF(Xt)

Intuitively, the use of row-stochastic matrices drive x!

to consensus, while the use of column-stochastic matrices
preserves the total mass, i.e., 17 Bw = 17w for any w € RM,
Moreover, if the difference V f;(x!™!) — V f;(x!) tends to
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zero, y! converges to a multiple of 327, V fi(x!). In fact,
from the Perron-Frobenius theorem, we know that if B is
primitive' then lim;_, | o, B* = 71T where 7p is the right
eigenvector of B associated with the eigenvalue 1 such that
1T7p = 1. Therefore, asymptotically every x! descends in
the direction opposite to the gradient of f. Mathematically,
it can be proven that under standard convexity assumptions
AB/Push-Pull converges linearly with sufficiently small con-
stant step-size n [32, Th. 1].

B. Proposed Push—Pull with Device Sampling

Our algorithm can be viewed as a generalization of
AB/Push—Pull to handle the device sampling mechanism. First,
in order to allow for asynchronicity, let (A;):en and (Bi)ien
be two sequences of mixing matrices that are compatible
with the underlying communication topology. Now, to handle
device sampling, we denote by V; the set of nodes that are
active at time ¢{. This means that node ¢ computes a local
gradient at round ¢ if and only if ¢ € V;.

With the notations A; = (af;), B = (b};), and D; =
diag(1;ey, ), ie., Dy is the diagonal matrix in RM>*M whose
i-th diagonal element is 1 if ¢ € V; and 0 otherwise, each
iteration of our proposed Push—Pull with Device Sampling
(PPDS) can be stated in the compact form

Yiir =Y+ D(VF(Xy) - VF(Z)),
X,y = Xe— DY,

Zi1 = Dy Xy + (I — Dy) Zy,
Yipn=BY 1, Xepr = AX 0

(PPDS)

Several remarks are in order. First, we introduce auxiliary
local variable z! for each node and write Z; = [z},...,z},]".
The presence of these variables indicate the nodes store
their last computed gradient. This is necessary because x!
can be modified by network communication between two
successive activations of node 7. In fact, while only the active
nodes perform local updates at each iteration, the inactive
nodes can be involved in the communication process. This
flexibility allows us to take into account a wider class of
algorithms, as illustrated in the forthcoming examples. Finally,
as in AB/Push-Pull, we only require the matrices (A;):en
and (B;)ien to be respectively row- and column-stochastic.
This means that we allow for one-way communication and
in particular inactive nodes may passively receive information
without sending back their local states.

In terms of implementation, our method (PPDS) gives
Algorithm 1 for asynchronous optimization on directed graphs.
In the next section, we discuss special cases and show that we
recover existing algorithms.

C. Special cases
1) AB/Push—Pull: We first demonstrate that the original

AB/Push-Pull algorithm [16], [15] indeed falls within the
PPDS framework. For this, we fix A; = A, B; = B, and

!'A square non-negative matrix W is called primitive if there exists a power
k > 1 such that W* > 0; see [31, Th. 8.5.2]

Algorithm 1 PPDS (at each node 1)

1

1: Initialize: y] =V fi(x}); z} = x!
2: fort =1,2,... do
3 Local update
4 if © € V; then
t+3 t t t
5: y, 2« vy +Vfix)) =V fi(z)
Bh ot
6 X, X, —ny;
7 Set z! ™! < x! and store V f;(z!")
8 else el el
9: Yi 2 yh X 7 X ZE—H — 2
10 end if
11: Communication
t+2 . .
2 X =3, a%xjf > A, is row-stochastic
t+1 . .
13: yf“ = Zjev bﬁjyj+2 > B; is column-stochastic
14: end for

V; = V. Then, after rearranging, the (PPDS) update can be
written as

Xip1 = A(Xy = nYip1),
Y;H*% = BY;H,% + VF(Xt+1) - VF(Xt)

This is exactly the adapt-then-combine variant of AB/Push—
Pull as presented in [15].

2) Communication between active nodes: We can imag-
ine a situation where only active agents participate in the
communication. Then, these active agents may communicate
with each other using mixing matrices A(V;), B(V;) that are
compatible with the induced subgraph G[V;], defined by the
vertex set V; and the edges of £ that connect two vertices of
V;. For example, if the graph is symmetric and A(V;) = B(V})
is the Metropolis matrix of G[V;], we have A, = B; and

. max(dez, (dez, (7)) 07 J and {i,j} € £EN27,
Gj = 1= ko1 afe Lnry i i =1,
0 otherwise,

where deg, (i) = card(NV; NV%) is the degree of i € V; in the
induced graph G[V;].

3) Broadcast-type update: As mentioned previously, our al-
gorithm allows inactive nodes to passively receive information
from active nodes. Therefore, the active nodes can simply
broadcast their local variables to their neighbors, no matter
whether these neighbors are active or not. To ensure the row-
stochasticity of Ay, the received x!’s are averaged out. On the
other hand, to guarantee the column-stochasticity of B, an
active node divides its y! by the number of nodes it sends the
information to, as usually done in a push-sum scheme.

For concreteness, let us denote by j\/j"’t” the set of neighbors
that active worker j € V; transmit information to (including
itself) in round ¢ and by N} = {j € V, : i € NP{'} the
set of active workers that send information to ¢ in this same
round. The mixing matrices A; and B; are then defined by

T Ui,
otherwise;

L e
at{ml(MW ifje
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. card(}\/ﬁ"{t) if j € Z;Ttl’
bi; = 1 if j=dand j ¢V,
0 otherwise.

In this example, we see that our method offers an additional
degree of freedom compared to G-Push—Pull [15] since in that
algorithm aﬁj > 0 only if 7,7 € Vy; this is not necessarily the
case in our approach.

4) SAGA: SAGA [21] is a well-known (centralized) vari-
ance reduction methods that replaces the stochastic gradient
V fi(x;) with an unbiased gradient estimator with diminishing
variance. For this, we store a table of gradients (V f;(z!))M,,
where, similar to PPDS, z’z? is the iterate at which V f; was last
evaluated. Let ¢; be sampled from the index set {1,..., M}.
The update of SAGA is then given by:

M
g: =V fi,(x¢) =V fi,(2z¢) + % D OV filzm), (M)
=1

Xt+1 = Xt — Gy

To recover SAGA from PPDS, we set A; = Bﬁ = J. This
ensures y! = (1/M) Zf\il V fi(z;) and thus y§+§ is exactly
updated as in (1) when ¢ is active. Specifically, if exactly one
node is sampled at each iteration, (PPDS) with step-size n
and A; = B; = J is equivalent to SAGA with stepsize /M.
If multiple workers are active at a same time slot, we get a
mini-batch version of SAGA.

III. LINEAR CONVERGENCE OF PPDS

In this section, we present convergence guarantees of
PPDS for strongly convex functions over a random network
model. Concretely, we make the following standard convex-
ity/smoothness assumption on the objective functions:

Assumption 1. All the individual f;’s are L-smooth and
convex; the global function f is pu-strongly convex.

Thanks to the strong convexity of f, we know there exists a
unique solution of (P) which we will denote by x,. Moreover,
we model (Vi)ten, (A¢)ten, and (Bi)ten as random variables
satisfying that:

Assumption 2. The random variables ((V;, Ay, By))ten are
temporally independent and identically distributed (i.i.d.).

Assumption 2 is actually only needed to provide the con-
tractions of Lemmas 3 and 6. Hence, it could be weakened
accordingly. We chose to keep it as such for ease of reading
and for consistency with the literature.

A. The general case

First, we present our linear convergence result under rather
weak assumptions on communications (essentially that the
information can flow all over the network) and device sampling
(each node is sampled with positive probability).

Assumption 3. The mixing matrices (A;)ien and (Bi)ien
have the following properties:
a) For all ¢ € N, A; is row-stochastic and B; is column-
stochastic.

b) Both A := E[A,] and B := E[B;] are primitive.
¢) There exists v > 0 such that a}; > v and b}; > v for all
ieV,teN.

Assumption 4. Every node is sampled with positive proba-
bility, i.e., p; :=P(i € V1) > 0 for all i € V.

It is straightforward to verify that Assumptions 2—4 are
fulfilled in all the aforementioned examples. In particular, in
Example 3, the primitivity of matrices A and B are ensured
by the strong connectivity of the underlying graph G since
A;; > 0 if and only if (j,4) € £ if and only if B;; > 0.
On the other hand, Assumption 3c posits that at each iteration
each nodes maintains a fraction of its previous states. This
rules out the counterexamples in which the states of the active
nodes are always overwritten by those of the inactive states.
Under these fairly weak assumptions, we manage to prove the
convergence of PPDS as stated in the following theorem.

Theorem 1. Let Assumptions 1-4 hold. If (PPDS) is run with
a sufficiently small step-size n > 0, then
a) x! converges almost surely to the solution X.
b) The expected squared distance between the iterate and
the solution E[||x! — x,||?] vanishes geometrically.

Theorem 1 shows that the nice properties of gradient
tracking and variance reduced methods are also preserved by
our algorithm: it converges with constant step-size and enjoys
a linear convergence rate as centralized gradient descent.
Therefore, our method effectively reduces the variances of the
noises induced by both sampling and communication.

We note that the assumptions for this result are quite similar
to the ones for G-Push—Pull in [15], except that i) we do
not put additional restrictions on the coefficients of the gossip
matrix (unlike Eq. (24a) in [15]); and ii) we allow for a device
sampling strategy that can be independent or correlated with
the gossiping step.

B. The case of doubly stochastic matrices.

Due to the generality of the result, Theorem 1 only de-
scribes the qualitative behavior of the algorithm. To derive
a convergence rate with explicit dependence to the problem
parameters, we focus on the specific situation where the
mixing matrices are doubly stochastic and the active devices
are sampled uniformly at random. Formally, we make the
following assumptions.

Assumption 3. For all ¢ € N, both A; and B; are doubly
stochastic. Moreover, we have the inequality

X = max(p(E[A] (I — J) A1), p(E[B] (I - J)Bi])) < 1.

Assumption 4. V; is of fixed size S and is sampled uniformly
from all the subsets of this size.

The bistochasticity assumption is for example verified when
the communication matrices are the Metropolis matrices of
the subgraphs of the active nodes (covered by Example 2 of
Section II-C). However, it is still possible to have communica-
tions between active and inactive nodes under this assumption,
as demonstrated by the SAGA example (example 4). On the
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technical side, the bistochasticity of the matrices and the
condition A < 1 allows us to derive a per-step contraction
of the variance of the nodes’ variables (see Lemma 3). Using
uniform sampling further facilitates the analysis and makes the
final expression much more concise. Building upon these, the
next theorem states the step-size condition and the convergence
rate of PPDS when these assumptions are fulfilled.

Theorem 2. Let Assumptions 1, 2, 3" and 4" hold. If (PPDS)
is run with step-size

. ((A=N2 M =N MyS 1 M
ngmm( 4L \/ 5 2304L (%) sz s) @

then the expected squared distance E[||x! — x,||?] vanishes

nus | _ S
20 aMm )

geometrically in O(~') with v = max (1 —
In particular, it takes

([t 2)u(t) o

iterations to achieve € accuracy when n is suitably tuned.

Theorem 2 indicates that a larger step-size can (and should)
be taken for smaller sample size, if all the other parameters
are fixed. Intuitively, this is because at each iteration fewer
gradients enter the network, and thus these gradients can be
used with a larger weight.

In term of dependence on problem parameters, the linear
dependence on the condition number L/p matches that of
standard gradient descent, whereas the 1/(1—\)? dependence
on mixing parameter is common in the literature of gradient
tracking [24] but has been further improved recently by [33] in
the case of single fixed mixing matrix. Regarding the effect of
device sampling, although the complexity in terms of iterations
is degraded by /M /S compared to asynchronous Push—Pull
without device sampling (i.e., S = M), the complexity in
number of computed gradients is actually improved. To see
this, we multiply (3) by S and and verify that the resulting
quantity indeed decreases when .S gets smaller.

Nonetheless, device sampling may also affect the connec-
tivity of the network and thus )\ if the communication matrices
are chosen according to the sampled devices V; (for instance,
in Example 3). Therefore, unlike in the centralized case,
sampling with variance reduction is not always guaranteed
to converge faster here. Rather, there is a communication-
computation trade-off that involves both the choice of the sam-
pling size S and the mixing matrices A;, B; (see Algorithm 1
for details).

IV. CONVERGENCE ANALYSIS

In this section we outline the proofs of Theorems 1 and 2.
To begin, let us define

gi =i+ V fi(x}) = V fi(2).

. . . . t+1
as the gradient estimator of node 7 at iteration ¢ so that yﬁ 2=
. o t+1 . .
gl if and only if i € V;, and y; 2 = y! otherwise. With the
mass preservation property of column-stochastic matrices and
the definition of z!, we have immediately the following lemma.

Lemma 1. Suppose that the matrices (Bi)icn are column-
stochastic. It holds that

M M M M
Dovi=DY V=), Y gi=> Vi)
=1 =1 =1 =1

Therefore, if the iterates move in the direction — Zf\il gf,
we can expect convergence of the algorithm. This idea is
crucial for our proof.

Another important step in the analysis is to establish that the
nodes’ decisions variables converge to a consensus. For this,
let us write X, = 17 X, /M for the average of these variables.
Similarly, we also use the notation y; = 1Y, /M.

Finally, we would like to highlight that the expectation E is
taken over the randomness induced by both sampling and com-
munication. We define (F3):en as the natural filtration asso-
ciated to the sequence (X;)ien so that (Vs, As, Bs))1<s<t—1
is F; measurable while (V;, A¢, By) is not. For simplicity, we
write E; for the expectation conditioned on the history up to
time ¢, i.e., E¢[-] = E[- | F] = B[ | (Vs, As, Bs))1<s<t—1)-

A. Analysis with doubly stochastic matrices

As a warm-up, we first establish the convergence of the
algorithm in the simpler case where both Assumption 3’ and
Assumption 4’ hold. This allows us to highlight our proof
strategy without having to deal with the additional difficulties
caused by the fact of having asymmetric communications.
Following previous works that analyze gradient tracking and
variance reduced methods, the essential idea of our proof is
to derive a system of inequalities for the following quantities

dy = E[|% — %%, er = E[f (%) = £(x.)],

pe=E[|IX; — 1%/ |’ ¢ =E[|Y; — 13/ |,

M €]

Yo=Y B[V fi(z) = V fi(x)I]
=1

Here, d; and e; measure the performance of the averaged
iterate; p; and (; measure the variances of the two variables of
the agents; and 1), measures the quality of the control variates
and is standard in the analysis of variance reduced algorithms
[34], [35]. The following proposition bounds these quantities
by a linear combination of their previous values.

Proposition 1. Let v, = [di,ps,Ci, 0] . Under Assump-
tions 1, 2, 3" and 4', we have

ri1 < Qry+eh ®)
where the entries of Q and h are given by
[ nuS  nLS 10n%L25? 20?52 4n? 5?2 i
L=35 = T e NS Ve
0 LED\ 20n%L2%S an?s 8n%S
Q= 2 M(I—» M{I—xN M(I-x
0 8L2S 142 48 ’
M(1—X) 2 M(1-X)
2L2%S S
i 0 M 0 =37 ]
S 20n2LS? 40n2LS 16LS T
h= |12 =0 U JALS

M M2 7 1-XT1-)



To prove Proposition 1, we start by presenting a series of
technical lemmas that are useful for this purpose. First, in
order to deal with device sampling, we observe that Gy =
[gt,...,g%]" plays an important role since DiYy 1 = DGy
With the uniform sampling of Assumption 4’, we obtain the
following lemma.

Lemma 2. Let Assumptions 2 and 4’ hold. Then

Mzgl

b) Ec[|[17 DY, |’] < M legﬁllz-
i=1

a) 17 DY, i1

Proof. a) Note that 1TD,Y, 1 = Y0y, vl = Y.y, gl
Therefore,
M
E [ Dt t+ Z gz Z]liEVt gf]
i€V i

= ZgZ Et zGVt Zgz

We can put ¢! outside the expectation since it is JF-
measurable.

b) Similarly, we have

Eel17DeYi g ) > 9 S legillgl
1€V S
M
=83 Billiewlgl*] = < anfuz
=1
O]

To control the distance to consensus, we use the lemma be-
low that shows a contraction property of the mixing matrices.

Lemma 3. Let Assumptions 2 and 3’ hold. Then
a) B[l 4. X, — 1%/ %] < N|X, — 1%/ %
b) Eifl|B:Y: — 1y, | < AlY: — 13/ |I*.

Proof. Since A is doubly stochastic, we can write

Eyf[| A X — 1%/ ||’]
= Ec[ll(I - J)Au(Xe — 1%/ )]
= Be[tr[(Xy — 1% ) TA] (I — J)?Ay(X — 1%/ )]
= tr{(X; —1%/) T B[4 (T = DA (X - 1x/)]
< p(EA] (I = DADIIX, — 1%/ >
Under Assumption 2 we have E¢[A, (I — J)A;] = E[A] (I —

J)A;] and a) follows immediately given that p(E[A] (I —
J)A1]) < A. Property b) is proved in the same way. O

Finally, we can use the smoothness of the objective func-
tions and the optimality conditions to bound the expected
squared norm of G; and gradients differences by the quantities
introduced in (4).

Lemma 4. Let Assumption 1 hold and (Bi)ien be column-
stochastic. We have
a) B[|V F(X;) = VF(1"x,)|]?] < 2L%p; +4M Le;.
b) E[IV F(X;) = V F(Z,)|%] < 4L%p; + 8M Le; + 2.
¢) E[|G¢||”] < 10L?p; + 20M Le, + 41y + 2(;.

Proof. See Appendix A. O

We are now ready to prove Proposition 1 by leveraging the
above lemmas.

Proof of Proposition 1. Below we bound the four quantities
in question respectively.

Bounding d; ;. We develop

_ . n
%641 = %1 = (% = 5 1T DYy g — x|
- 2n ,_
= ||% — x| - M<Xt — Xy, 1TDth+%>
T 2
+ ot DYyl (6)
Using Lemmas 1 and 2 and Assumption 1, we get
]EtKit — X, 1TDt}/t+%>]
S M
_ t
= (Xt — Xx, M ;sz(xz»
S M
=37 Z<<* =%,V fi(xi)) + (xi = x., V fi(x5)))
M L
t = 2 t
> 37 k) = ) = Gt =l 4 A = i)
LS
= S(f(%) ~ f(x2) — Har|Xe — 1% |
S S _ LS -
> (7 = fOe)) + B2 IR — P - X — 1%
@)
In the last line we have used the fact that f(x) — f(xs) >

(11/2)]|x — %, ||? for every x € R? since f is strongly convex.
As for the last term of (6), we resort to Lemma 2b and
Lemma 4c. This gives

52
E[|[17 DY, 1]%] < M(IOszt + 20M Ley + 49, + 2¢;).

Combining the above inequalities we get

nuS nLS  10n%L%S?
dt+1§<1 2M)dt+(M2 + e Pt
277252 477252 nS  20n?LS?
Gt + Py — M e €t.

Bounding p; ;. In the inequality ||a+b|* < (1+6)]a|*+
(14 1/9)|b]2, choosmg 0= (1 —\)/2) gives?

14+ A

la + b||? <1A || P+ 1= Hb||2 (8)

2Without loss of generality we assume A > 0. Otherwise the first term in
the inequalities are always 0 and we can simply take 6 = 1. The same remark
applies to the analysis in Section IV-B.
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Since A; is doubly stochastic and hence column-stochastic,
it holds JA; = J. We then have,

Eifl| Xer1 — 1%/4]1%)
= B[] A Xe — 1A DYy — (1% —nJ DY, 1))
< 1+ A

B[] A X — 1%, ||?]

14+ A
+ mﬂQ Eifl[AeDiYyy s — JDiYyp 1 I°]- ©)
Using Lemma 3a the first term can be bounded by (1 +
A)|| X — 1%/ ||?/2. The same does not apply to the second
term as A; and D, are not independent. Nonetheless, with the
bistochasticity of A;, we can still write

El|AD Y,y — IDYy 3 |?) < Bl DY, )

g M
= 23 gl
i=1
With Lemma 4c, taking total expectation in (9) then gives

1+ L+ A0S
2 Pt + ﬁ%(10L2pt + QOMLet + 41/% + 2Ct)
4n*S

14+ A N 20n?L2S N
2 TMa-—N)TMa—N
8n2S 40n*LS
+ M(1—,\)¢t+ DY

pi+1 <

G

€.

Bounding (4. Similar to the above, using (8) and the
bistochasticity of B;, we obtain
Vi1 = 19¢|* = [|BeYs — BeDio(V F(Xy) = V F(Zy))
— (1y) — JD(V F(X:) = V F(Z.))|I?

14+ A
< S IBY:

+%§§w4vnxofVmew.

—1y/|?
(10)
The uniform sampling assumption implies that

Ec[| De(V F(X:) = V F(Z))|]

=Eo | Y IV filxh) = V fiz)]?

1€V
S M
= DIV filxh) = V i)
i=1

Taking expectation in (10) and applying Lemma 3b and
Lemma 4b then yields

1+XA, 14X S
Gorr < =Gt Ty 77 (4L% P + 8MLeq + 2¢)

1+ 8L2 4 o, + J6LS

STy T Ma N T M T T

Bounding ;1. Note that by the update rule of z!, we have
E IV fi(zi™) = V fi(x.)||’]
S
= (1= 37 ) IV Ala) = ¥ AP

S ¢
+ 47 IV i) = V i)l

Summing from ¢ = 1 to M, applying Lemma 4a and taking
total expectation, we get

S S
Y1 < <1 — M> Uy + M@szt +4M Ley)

S 2L2%S
= <1 - M> e + % pr +4LSey.

Conclude. Putting all together we get exactly (5). O

From the linear system of inequalities (5) there are multiple
ways to derive the linear convergence of the algorithm. To
obtain the explicit convergence rate and step-size condition
presented in Theorem 2, we construct a suitable Lyapunov
function which is a linear combination of d;, p;,(;, and
1, with positive coefficients, and prove that this function
decreases geometrically at each iteration.

Proof of Theorem 2. Let us consider the vector

n(1—X)
96 M L

w =

ALY 0 1"

IVE] 12ML| >
and v as defined in Theorem 2, it can be verified that
Proposition 1 implies

(1)

wTrt_H < Y wTrt
whenever step-size condition (2) is satisfied. This means w ' ry
converges geometrically in O(v'). To conclude, we use the
inequality

Elllx! — x./’] < Ef20lx! — %> + 2% — x.]2] < 2, + 2d..

Detailed computations for proving (11) are provided in Ap-
pendix B. O

B. Analysis for the general case

Under our weakest set of assumptions (Assumptions 3
and 4), the mixing matrices do not provide a contraction
towards a consensus at each iteration. Nevertheless, the prim-
itivity of the mixing matrices in expectation enables us to
show that after a certain number of gossip steps [ (implicitly
defined), some sort of contraction happens for both matrices
sequences but with respect to a time-varying weighted average
instead of a uniform one.

This has direct consequences on our proof technique since
the linear system of equations developed previously has to
be modified and in particular extended to track [ successive
iterations. With this augmentation, the proof techniques devel-
oped before do not hold anymore and we resort to analyzing
the spectral radius of the recurrence matrix by perturbation
theory arguments when the stepsize is small.

These two points significantly complicate the convergence
proof of the method and constitute the main technical contri-
butions of the paper.



1) Multi-step contraction: To establish the multi-step con-
traction brought by the mixing matrices, we first leverage the
primitivity assumption on A = E[A4;] and B = E[B;] to
show that inequalities similar to the one in Assumption 3’
hold when we consider the product of successive matrices,
which we abbreviate as’

Aps = AgAy_1 ... AS7 Bi.s = BiBy1...Bs.

The following lemma generalizes Assumption 3’ and is
useful for deriving inequalities in the form of Lemma 3.

Lemma 5. Let Assumptions 2 and 3 hold. Then, there exists
an integer | such that

P(EIA] 1y (I — J)Ara]) < 1,
p(E[(I = 1) " Bl 1 Biyia (I = J)]) < 1.

Proof. We will write ||W|| and ||W||g respectively for the
spectral norm and the Frobenius norm of a matrix W.
Lemma 5 is an immediate result of [13, Prop. 2], which states
that E[||(1—J)A14.1]|2] converges to 0 at a geometric rate. We
can thus set [ sufficiently large so that E[||(1 — J) A4 ]3] <
1, and the first inequality then follows from that

PE[AT 1y (T = ) A1) < Elp(AT 1 (T = ) Ari1)]
=E[|(I - J)Ar41a]?)
<E[|[(I = J) A1 42412,

where we have used the convexity of the spectral radius
function p and the fact that the spectral norm of a matrix
is bounded from above by its Frobenius norm.

For the second inequality, we observe that the matrices
(B )ien have exactly the same assumptions as (A;)ien.
Moreover,

p(E[(I = J) " B}y Biya (I = J)))
< E[p((I — )" Bl Bipia(I — )]
= E[||Bryra (I = )|
=E[|(I = 7)B) ... Bl [).
Hence the same argument applies. O

Another important challenge towards proving a result in
the spirit of Lemma 3 is that the matrices (Ay)ien (resp.
(Bt)ten) do not have a fixed left (resp. right) Perron vector,
and as a consequence there are not predetermined values that
the variables should converge to after the mixing matrices are
applied. To overcome this difficulty, we instead introduce two
sequence of random vectors (v¢)ien and (u)1<¢<7. Here T
is a positive integer fixed in advance. Let 7 4 be the left Perron
vector of A such that 1774 = 1. These sequences are defined
recursively by

1
. _ T _
vy = Ml’ Vip1 = Byvy; ur =ma, up A =g

The sequence (u¢)1<¢<7 is defined in a time-reversed manner
and mimics the absolute probability sequence [36], [37] that
can be defined for (A;);en. However, the above construction
gives an explicit expression of u; which turns out to be useful

3If t < s we use the notation As.s = By.s = I.

for our proof. Also notice that the value of u; is dependent
on the choice of 7' though this is implicit from the notation.

Since the (Bi)ien are column-stochastic and the (A;)ien
are row-stochastic, one deduces immediately that both (v):en
and (uy)1<¢<7 are sequences of probability vectors. Moreover,

under Assumption 2 we have E[u)] = E[u/,,]E[4,] =
E[u/,,]A. By induction we then get
Efw) =74, Vte{l,...,T}. (12)

In the remainder of the section, we will take [ > 0 such
that the inequalities of Lemma 5 are satisfied and define

A= maX(P(E[ALl:l(I - J)A114]),
p(E[(I = 1) Bl 11 Biia(I = J))))

so that A < 1. The multi-step contraction property is stated as
follows.

13)

Lemma 6. Let Assumptions 2 and 3 hold. Take | as in
Lemma 5 and X\ from (13). Then,

a) By[[l(1 = J) A Xel|?] < A Xy — 1%/ |12
b) Eill| Berre(I — vl T)Y3|IP] < A[(1 — vl 1Y)

Proof. The lemma is proved exactly in the same way as
Lemma 3. Just notice that

(I = DA X = (I = D) AT — J)X,
= (I = J)Appi( Xy — 1%])
since A;y;.¢ is row-stochastic. On the other hand,
Bii:(I = vil )Yy = Byppy(I = J)(I — v17)Y,.
since v, is a probability vector. O

2) Linear system of inequalities: As in Section IV-A,
the proof for Theorem 1 also relies on the derivation of a
linear system of inequalities. Nevertheless, since there is a
contraction only every [+ 1 steps, we need to take into account
the values of relevant quantities for [+ 1 consecutive iterations
and the system becomes [ + 1 times larger. Given that the
mixing matrices are no longer doubly stochastic, the variables
that come into play also need to be modified accordingly. We
consider the following quantities

d; = Elllu/ X; —x.[%), e =E[f(x:) — f(x.)],

pe =E[| X — 1% %), ¢ =E[|Y: —ve1TYe]],

v =E[IV F(Xy) — V F(Z)|?).
Compared to (4), we define d; because we no longer have
1" A, X, = 17 X, while it holds u, 1 4,X; = u,X,. The
definition of ¢ is consistent with Lemma 6b. Finally, we also
replace ¢ by v, for technical reasons. Note that the value of
d; depends on T since its definition involves u;.

The following two lemmas collects several inequalities that
will be useful for our proof.

Lemma 7. It holds that
a) [|ID| < L.
b) |lu) Xy —xf* < [| X — 1%/ ||
c) The spectral norm of a row- or column-stochastic matrix
of size M x M is not larger than /M.
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Proof. a) is trivial and c) can be proven by using the fact
that the spectral norm of a matrix is bounded by its Frobenius
norm. As for b), since u; is a probability vector,

M 2 M
Z@Xf—it SZUH\Xf—itHQ
i=1 i—1

M
<D Ik =%l = X - 1%
i=1

Ju) Xy — % ||” =

In the above we have used the notation u; = (u!);cy. O

Lemma 8. Let Assumption 1 hold and (By)ien be column-
stochastic. We have

a) E[|Gy — vi1TGy|]’] < 2¢; + (4M + 4)y).
b) E[[|G4||?] < AML?p; + (8M + 8)¢, + 4¢; + 8M?Ley.

Proof. See Appendix C. O

Since the sampling is not uniform, Lemma 2 does not hold
anymore and we need to approximate G; by v;1' G; when
deriving the descent inequality. Given the definition of dj and
the fact that the nodes are sampled, we say that the effective
step-size at time t is nay with

T
Oy = U, DtVt.

The following lemma controls E[a; x| for any real-valued
non-negative random variable y; that is J;-measurable.

Lemma 9. Let Assumptions 2—4 hold. We define p =
min;ey p;, ma = min;ey[mal;, and o = wavp. Then, a>0
and for any Fi-measurable real-valued non-negative random
variable x:, we have

aElx:] < Elagxe] < Elx:]- (14)

Proof. See Appendix D. O

We are now ready to state and prove the linear system of
inequalities in question. We denote by P ® () the Kronecker
product of two matrices P and (), and write Ez’“7 for the matrix
of size k x k that has a single non-zero entry with value 1 at
position (i, 7).

Proposition 2. For T >l and t € {1,...,T — 1}, let o be
defined as in Lemma 9 and r; € R*HY) be defined by

r;:[ ;+z di P+l -+ Pt ¢£+z 1/)2 C£+l CtI]T-

We also define W1, Wy € RUADX(+1) 4o

0O -+ -+ -0 j I |

o : 0 o e 0
le 0 ) WQ—

0 0 1 0 0 0

Then, under Assumptions 1-4, if PPDS is run with n <
a/(16M L), we have

ri 1 < (Qo+ nQe)ry (15)

where
1+ A
2
p
+ (Efl + (1 _ 5) B+ cmEg‘g) ® B

Qo =1, W + 013E2,3 @ W + (Eil + E‘sls) ® Eﬁ}u

and
—c1 C2 3 [ o 0 0 0
0 0 0 0 I+1 Cs C6 Cr C8
Qe Co 0 C11 C12 ® El’l + 0 O 0 O ® W2
0 0 0 0 0o 0 0 O
are defined with positive constants (cx)i1<kg<13 that are
entirely determined by u, L, M, \,l,p, and .
Proof. We will make use of the inequality
er < L*(dj + py).- (16)

This comes from the simple fact that

2
F0 — fx) < e - %P

< L2(Jluf X — %e® + [luy X — %)
< L2(1Xe = 1% 17 + [luf Xp —x.1?).
Also notice that [[D;Y;, 1| can be bounded as

IDY oyl = [[1D:Gell < IDe[|Gell < [|Gell- - (A7)

Now, letus fix t € {I+1,...,7—1}. We bound p;41, (i1,
A 41, and d, 11 in terms of the previous values of these same
variables.

Bounding d; ;. We decompose
||utT+1Xt+1 —x?
= ||utT+1AtXt - 77utT+1AtDth+% - X*H2
= llu) Xi = x.|* +7°[[w/) DY,y |2
—2n(u/) X; — x,, utTDt}/t+%>.
With (17), the second term can be easily bounded using
) DyYyy s |l < el DiYe |l < Gl
As for the third term, it can be further decomposed as
<u:Xt — Xy, u:Dth-i-%>
= <u:Xt — )T:t,utTDth>
+ (% — X, u] Dy(Gy — vi1T Gy))

+ (%t — X, 1) Dyvil ' Gy), (13)

where we used again DY, 1= D,;G,. Let us bound the three
terms separately. Using Lemma 8b, for any ¢; > 0, we have

E[—?n(u:Xt — it,u:Dthﬂ
< E[néi |[u] X, — %)% + %Huf DGy
< 0oy B[ X, — 1] || + ;’—IEmth?n

< ndips + 53(4ML2pt + (8M + 8)¥, + 4C, + 8M2Ley).
1



With Lemma 7b and Lemma 8a, we can bound the second In the last line we have used the fact that A;., is row-stochastic

term of (18) for any d; > 0 as so that [| Ay || < VM and the inequality [[DY,, 1| < |G-
E[_2n<it - Xy, U;Dt(Gt _ Vt].TGt)” Since Xt-‘rl 1Xt+1 (I J)At t-‘rl([ J)Xt+1, applymg
~ 2, - (20) repeatedly then gives
< E[ndo||x: — x| *Hut Di(Gy = vi1' Go)||*] 2 141 2
11 = 1% [ < (L +8)F YT = T)Apa (I = ) XS]
< 282 E[||%, — u/ X, ] + 2082 Efluy X, — x[|’] L
2 - s 2
+ LB[IG, - va Gl e (14 5) S0+ 0GP
< 2nd2p¢ + 2ndad; + 53(2@{ + (4M + 4)1y). (19) Letd = 5 log L2 >0 so that for all 0 < s < 1+ 1, we
2 - have (1 +4§)° < 1+’\ < +. Taking expectation in the above
To bound the last term of (18), we use 1'Gy = jpequality and invokmg Lemma 6a and Lemma 8b leads to
ZZ 1V fi(x!). Following (7), we then get
L+ A 2M
(Xt — x4, 1 Gt> prr1 < 5 Pi-l + ZAt s
M, . _ uM s L T2 s=0
> —(f(xe) = f(x4)) + —||xt — x||" — = || Xt — 1%
> S ) = S0+ P I P X I iz - M4 Sy

M B uM ’ . < .
> (%) — f(x2)) + —||utTX —x,|? 4¢;_,. With (16) and n < /(16 M L) we thus see there exist

2 positive constants (ci)s<k<s such that

uM
- THXt - Xt”2 - *HXt - 1Xt ||2 A ! , , ,
< d s _ _s)
Applying Lemma 9 and Lemma 7b gives Prer =" Pt+77§(05 t—sFCopi—sterdistestis)
M
E[—2na: (% — %4, 1T Gy)] < —naMe; — na,u ——d, Bounding v} , ;. By Young’s inequality,
2 i
0 (L + ";”) o IV 5l = VA < SRV Al )~ VA
2 i
We recall that oy = vy D;u,. Putting all together and choosing + TPHV fi(Xz) V fi(x Hl)” .
91 =16M L/« and 62 = auM /16, we obtain o
M The update rule of z! implies that
nap
¢“<<”‘ i )ﬁ‘m”“t E|V filz™) = V filx)?]
<L+,uM)p L oML = (1 =p)IV fi(z}) = V fi(x)]?
2 )" a M +pillV fi(x)) = V fi(x)])?
+ (e ) = (L=p)IV filzh) = V filxD*.
C(AML%p, + (8M + 8)y! + 4C, + 8M2Le;) With p = min;ecy p; as defined in Lemma 9, we then have
oM auM 16 E (A (1|12
+ 1 g pr+ & u &+ —2 a7 (26 + (4M + 4)0y). IV fil: ) =V fiG ]
, | | < (1-B) IV itz = ¥ i xDI?
The coefficient of e, is —nM (5 —8)ML). Since n < 2
a/(16M L), this is non-positive and we have indeed SRV fi(xh) =V £i(xEY]2]

diyy < (1= ean)d; + canpe + csnipy + candy - (1 _ :) IV fi(z) — ¥ fixh)|?
for some positive constants (c)1<k<a. N 2 2 ’ ’
Bounding p;,;. Let s € {1,...,t}. As the matrices + SB[V fi(xE) — V fi(xED)2).
(A¢)ten are row-stochastic, it holds P
(I = NApsi1(I = NAs = (T — J)Ap.s11 45
= U= DA Al =D v < (1= 5) v+ BV FX) =V Pl
Hence, for any § > 0, we can write -
(I = J)Avssr(I — J) Xopa|?
=|[(I = NAest1(I — J)As(Xs — 77D3Y5+%)H2
< (1 + 0T — J)Aws(I — J) X,

1
+ (14 3) 2 = TP NI, P

Taking total expectation and summing from ¢ = 1 to M gives

By Lipschitz-continuity of the gradients, it holds ||V F(X;) —
V F(Xt11)|| < L| Xt — Xty1||- We then develop

Xip1 = Xo = A(Xy —nDyYy 1) — X,
= (A~ DI = )X, — nADyY,y 1
With || A; — I]|? < 2||A¢||> +2||1||*> < 2M + 2, we obtain that
<40 = Dt = DX+ (14 ) G IV F(X,) — ¥ F(Xp)|?
(20) < L3((4M + 4)||X; — 1%/ |2 + 202 M ||G|?).
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Combining the above and applying Lemma 8b leads to

7/’:/f+1 = (1 - *) T/Jt
+2#AMMWL%,+@A1+8W4+4g+3mﬂLq»

Using (16) and n < a/(16M L) we deduce the existence of
positive constants (cg)o<r<12 such that

((4M +4)p;

p
Vi < condy + crope + (1 -3 + 61177) + c12n(].

Bounding (7, ,. Let s € {1,...,t}. Using the column-
stochasticity of B, and the definition v, = B,v,, we get

(I =ve411T)By = By —ve 17
Hence, for any ¢ > 0, it holds that
| Bost1(I = var1l")Yosa |
= || Brist1(I — Vo117 ) Bo(Ys + Do(V F(Xs) —
< (146)||Bus(I — vo1 )Y |?
+ (1 +
< (14 6)]|Buss(I = vs1"

+MW<1+%)HVFL&)7VF%&NH

= B, — Byvil'.

VF(Z)I?

1

g) IBtis = Besvs LT |*| D[PV F(Xs) = V F(Zs)|?
)Y*

ey

In the last inequality we have used
||Bt:s - Bt:svs]-TH S HBt:sH + ||Bt:svs]-—r|| S 2\/ M

which is true because both B;., and B;.,vs1' are column-
stochastic.
Since Y11 — vip1l Yipr = B (I —

applying (21) repeatedly then gives

-
vit11')Yiqa,

[Vie1 — vig1 1T Yig |2
< (146" Bt (I — ve 1 )Y,y

l
Lan (1 + ;) ;0(1 L8V F(Xoos) — V F(Zs)|1

Let us take 6 = +1 log = 1+A > 0 as before. Taking total

expectation in the above 1nequality and invoking Lemma 6b
leads to

<t+1 >

+)\2Ct l ( )Zwt EN

s=0
We Set013—ﬂ(1+ )
Conclude. Putting all together we get exactly (15). O

3) Geometric convergence of PPDS: From Proposition 2,
we are now in position to prove the geometric convergence
of PPDS by showing that the spectral radius of Qg + Q. is
smaller than 1 for n > 0 sufficiently small.

Proof of Theorem 1. In the following we analyze the eigen-
values of QQp + nQ. with help of matrix perturbation theory.
We first notice that Qg is a block-triangular matrix. Its char-
acteristic polynomial can be easily computed and is given by

o)== (v (1-5)) (- 152)

This shows that the spectral radius of ) is 1 and 1 is also
the unique eigenvalue of largest modulus of the matrix.

Let us denote by 6y = 1,05,...,0441) the eigenvalues of
Qo so that |0, < 1 forall k € {2 ,4(1+1)}. By continuity
of the eigenvalues, for any € > 0 there exists ¢ > 0 such that
if n < 9, for any 6 of multiplicity m the matrix Q¢ + nQ.
has exactly m eigenvalues (counting multiplicity) in B(6, ¢),
the open disk centered at 6;, with radius e; see [38, Chap.
5.1]. Let us take ¢ small enough such that all the eigenvalues
of Qo + nQ. are smaller than 1 — ¢ in modulus except the
greatest one. For 1) < §, we can then define 61 (7)) as the unique
eigenvalue of Qo + nQ. that is in B(1,e). We will now show
that |01 (n)| < 1 for n sufficiently small. For this, let

u=[10...0", v=[1...10...0"
——
I+1 times
be respectively the left and the right eigenvector of Qg
associated with the eigenvalue 1. By [39, Th. 6.3.12] (see also
[40, Th. 1]), we have
u'Q.v
o0 = 2
As a consequence, |01(n)| < 1 for n sufficiently small and
subsequently p(Qo + nQ.) < 1
In order to conclude, we need to get rid of the dependence
on T which plays a role in the definition of the vectors
(ug)1<¢<7 and the quantities (d})1<¢<7. We recall that d; =
E[||%; — x.|%]. As in (19), we have both d; < 2d, + 2p; and
d; < 2d; + 2p;. Let us define r} by replacing (d)i<s<t+1
by (ds)i<s<t+ in r;. The above inequalities can then be
translated into r{ < Wrj} and r; < Wr} for a non-negative
matrix W properly defined. Note that neither W nor Qo +nQ.
depend on ¢ or T'. Therefore, the inequality

r{ < W(Qo+nQe)" ' Wrj

which holds for all ¢ € N guarantees the geometric conver-
gence of r} and subsequently of all the relevant quantities
when 7 is small enough.

Finally, from the geometric convergence of E[||x! — x,|?],
we deduce that x! converges to x, almost surely by using
Markov’s inequality and the Borel-Cantelli lemma. O

=—c; <0.

V. SIMULATIONS

In this section, we illustrate the interest of PPDS for
asynchronous decentralized optimization on a) a synthetic
ridge regression problem; and b) a logistic regression problem
on a real dataset. Ablation study of the how different network
parameters influence the performance of PPDS is provided in
Appendix E.*

A. Dataset, tasks and models

For both problems, we minimize an objective of the form

Mlocal

MZ wa

)+ A3

fi(x)

4The code to reproduce the experiments can be found at https:/github.com/
yassine-laguel/ppds.
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Fig. 1. Numerical illustrations for Ridge regression on synthetic dataset.

TABLE I
DATASETS AND GRAPH DESCRIPTION

Synthetic ~ EMNIST
Number of features d 10 784
Number of examples 10000 2500
Devices M 100 50
Local size njgcal 100 50
RGG radius r 0.2 0.3
Sampled nodes / round 20 10

1 1

Sampled neighbors / communication

that is, each worker ¢ has a local dataset of njy, examples and
a Tikhonov regularization term with parameter A\; = 1/njocal-
Since the local objectives are convex, this regularization make
the problem strongly convex.

We form the communication networks by generating Ran-
dom Geometric Graphs (RGG) using the library networkx
[41] with different number of nodes M and radius r for each
experiment. We consider the broadcast setting illustrated in the
third example of Section II-C. Precisely, all activated nodes
broadcast their models to one (randomly chosen) neighbor
during a communication step. We illustrate the effect of
device sampling by comparing algorithms with full-device
participation and with random device sampling (20 nodes for
the synthetic dataset and 10 nodes for EMNIST). The relevant
parameters are reported in Table I.

a) Ridge regression on synthetic dataset: For this prob-
lem, the local losses are defined as

fii(x) = (bij —x"a;;)°

where (a; ;,b;;) € R? x R are data points generated using
the procedure make_regression from scikit-learn

[42]. Different seeds are used for different nodes, yielding
statistically heterogeneous distributions between the nodes.

b) Logistic regression on EMNIST: The EMNIST dataset
[43] is comprised of images of handwritten digits and letters
from several authors. We consider the problem of finding
which character is written from its image. For this, we consider
local losses of the form

fij(x) = —b; ;log (softmax(x—raiyj))

where the (a; ;,b; ;) are respectively d = 28 x 28 gray-scale
images of handwritten digits character and their associated
one-hot label b; ; € (0 —9,a — 2z, A — Z) totaling 62 classes.
Each worker’s local dataset comes from images from the same
author.

B. Algorithms, hyperparameters and evaluation metrics

We compare the proposed algorithm PPDS with several
baselines: Decentralized Gradient Descent (DGD) with and
without sampling, Push—Pull and G-Push-Pull. The same
broadcast communication scheme is applied to all the methods,
and the same uniform sampling strategy is adopted whenever
device sampling is involved.

For each method, the stepsize is taken fixed, tuned with
a coarse-to-fine strategy: we first select the stepsize n within
{107%,2 < k < 5} yielding the best global training loss; then,
a second search is performed over {n12k, -2 <k <2}

We report two evaluation metrics: (i) the distance to con-
sensus (1/M) Zf\i}ﬂxf —%4||%; and (ii) the functional subop-
timality (1/M) S f(x!)— f,. For the synthetic dataset, the
optimal solution is computed by inversion of a linear system.
For the real dataset, it is set as the best solution in terms of
final training losses found by the implemented algorithms.
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For each experiment, we report these metrics in terms of
three different measures: (/) number of iterations; (if) commu-
nication cost, i.e., the cumulative number of activated commu-
nication links; and (iif) number of local updates. These cover
different aspects that influence the efficiency of distributed
optimization.

C. Numerical results

First, we observe on Figs. 1 and 2 that the proposed
method PPDS converges linearly, as expected from Theorem 1.
Furthermore, looking at the right-hand plots, we see that PPDS
outperforms all the other methods when it comes to measuring
the functional optimality with respect to the number of local
updates. This illustrates that PPDS indeed saves computational
resources, by an efficient interplay between computation and
communications. Concerning the communication complexity
(middle plots), PPDS is at least as competitive as G-Push—
Pull, which was shown in [15] to beat other baselines. Finally,
we observe that Push—Pull, as a synchronous gradient-tracking
method, naturally achieves the best performance when mea-
suring in terms of the number of iterations (left-hand plots),
but tends to be less efficient when we consider the actual
communication and computational costs.

VI. CONCLUSIONS

In this paper, we showed how device sampling can be
incorporated in asynchronous decentralized gradient descent,
by extending the Push—Pull method. We proved linear con-
vergence of the method on strongly convex functions and
validate our approach on problems with synthetic and real
data. This work also opens towards several research directions.
This goes from the theoretical analysis of our method in non-
strongly-convex, non-convex, or/and the stochastic setup (see

e.g., [33] for analysis of gradient tracking in these setups) to
the investigation of how our approach can be combined with
other existing techniques such as local gradients computation
and gradient compression.

APPENDIX

A. Proof of Lemma 4

Proof. a) Since f; is L-smooth, it holds for all x,x’ € R

that

IV fi(x) =V fi(x)|* < 2L(filx) = fi(x') = (x =X/, V fi(x)))-
Subsequently,

M
DIV i) = V fulxa) )
i=1

M M
<23 IV Fil) = VLI + 231V filxe) = V filx)Il

i=1

M
<207 |Ixi — %e)?
i=1

HALY (fi(%e) = filx) = (% — x4,V fi(x)))

=207 X, — 1%/ ||?
FAML(f (%) = f(%4) = (X = %4, V f(%4)))
=207 X, — 1%/ ||> + 4AML(f(%:) — f(x4)).
In the last line we used that V f(x,) = 0. Taking expectation
gives the desired inequality.
b) The inequality is straightforward from a) and the follow-
ing decomposition
IV F(X:) =V F(Z)|
<2VF(Xy) - VFQ x)|* +2|VFQ %) - VF(Z)|>



c) We first decompose

IG* = (1 = NGe+ JGe|* = [T = HGe||* + [ JGe|*.

For the first term we simply use the definition of G to obtain

(I — J)Gelf?
<2 = DY |?+2(I - IV F(X:) = VF(Z))|
<2V: — 1y, |I” + 2|V F(X:) — VF(Z)|°.

M

From Lemma 1b, we know that Z 19 =2V i(xh)
or equivalently JG; = JV F(X}). Thus for the second term
we use again V f(x,) =0 to get

1 M 2
9GP = M| 37 > VD)
i=1

M
M vai(x*)
i=1

V i)

1 M
-]y 3o
M =
< DIV ) -

Combining the above, taking expectation, and using a) and
b) gives the desired result. O

B. Proof of Eq. (11)

Proof. Let Qi denotes the k-th column of () and ey denote
the k-th canonical vector of R*. First, w'Q = 1 — W =

(1— WS)w er.

2M
Since i < (114L) ,/%, it holds
_ 272 3
w70 \/§(13)\) nl_ [S 0L (S
M 1-xVm " 1—x \u
1+ 200°L%S L S
pIE AL S 0
2 M(1—-X) "40- VM
<\/§(1—)\) 5nL | S 30172L25+1+)\
Y 41-=0VM " Ma=-X) 2
< VSA-N3+A_ 3+ 7
S M% 1 = 1 w e2.
. 1=\ 3
With 7 < (2304)L (%)%, we have
Ty = M=) (19201 (5 2
P76 ML \ 1-x \ M
3
384nL (S \2 1+
TN (M) Ty )
n(1—\) (576L (S %+1+,\
= 96ML \ 1-x \M 2
(L-N3+A_ 3+ 7
= 96ML 4 4 N

Similarly, using n < =1/ %, we get

2 3
T _ . n i i 2
w Q4= oML <487]L<M> —|—9677L(M)

S s
++1—>

2M M

3
" S 5?2
< _ =
= 12ML <1 aar T AL (M) )

1 S5V (1o A
12ML (1 4M>*(1

2 3 3
As for ez, we note that n < (23043: (%) ? < ﬁ (%) * and
thus
3
T nS = 20n*LS? 2 S\2 nS nS
h=—1 42022 4 400’L (2 12y 2
Y VR VER A O V) RS VIREE YV
3
nsS S\ 2
< -2 2L <0.
5 oo (5) <o
Asn < ! 14L) \/ & implies that 1 — % > 342 we have
W Q<yw'l
where the inequalit is elementwise and -y =
max (1 — M 11— == Since all the involved terms

are non-negative, comblnlng with the above inequalities gives
wrpg=w'Qri+ew h<~yw'r

which concludes the proof. O

C. Proof of Lemma 8
Proof. a) From the definition of g, we can write
||Gt — Vt]_TGt||2
=Y —vi1" Y+ (I —vi1"
<2V — vl Yi|* 4211 -

)V F(X:) =V F(Z,)|*
vel TPV F(Xe) = V F(Z,))*.
We conclude by using
11— vl 7|2 < 20I)1° +2[|velT|? < 2M + 2.
and taking expectation over the above inequalities.
b) By Young’s inequality,
Ge|? < 2/Ge = vl TGl +2l[vel " Ge .

Using 17G; = 1T V F(X), V f(x,) = 0, and the fact that
v; is a probability vector, we deduce that

M 2
vi Zij(xﬁ)
j=1

2

M

-3

=1

vl " Gy|?

M 2

M
SOV A =DV fix)
i=1 i=1
M

<MYV filx

—V x|

Combining the above two inequalities with a) and Lemma 4a
we get the desired result. O
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D. Proof of Lemma 9

Proof. Using the independence assumption, we can write
Elasx:] = E[utTﬂAtDtVtXt] = E[“:H] E[A;Dy] E[vix:]-
From Assumption 3¢ we deduce that

E[A;D;] > E[diag(v1)D;] = v diag(p),

where p = (p;)icy. We have shown in (12) that E[uzyq] =
4. Notice that all the elements of 74 are positive according
to the Perron-Frobenius theorem. Thus, 74 > 0 and we have

E[u;:—ﬂ E[A;D,] > 7 v diag(p) > a1’

where Assumption 4 ensures that p > 0 and thus a > 0.

On the other hand, u; being a probability vector we can
always upper bound u/ D; by 1T. Using the non-negativity
of v; and x;, we then obtain

aE[1Tvixe] < Elagxe] < E[1Tvixq].

This is exactly (14) since v; is a probability vector. O

E. Additional simulations: Influence of A\ and S

In this appendix we illustrate via two examples how PPDS
could be influenced by different values of A and S. It is
however worth noticing that what we present here is specific
to the communication strategies that we consider and we may
observe different results for other communication strategies.

1) Setups: We base ourselves on the ridge regression ex-
periment introduced in Section V-A. As for the underlying
random geometric graph we increase the radius to 0.3 for
better network connectivity. We then consider the following
two communication strategies (mixing matrices taken to be
bi-stochastic so that Theorem 2 applies).

a) Communication between active nodes and their neigh-
bors: Let j > 0. At each round ¢t we randomly select
j neighbors for each active node, and take the union
of the active nodes and these selected neighbors as the
communication nodes. The mixing matrix A; = By is set
as the Metropolis matrix of the subgraph induced by the
communication nodes.

b) Communication between randomly selected nodes: In this
second setup we decouple communication from compu-
tation. In each round, independently of the sampling of
the active nodes, we sample 5 nodes and for each of
these nodes we sample 1 neighbor to form a group of
at most 10 communication nodes. The mixing matrix
A; = B; is again the Metropolis matrix of the subgraph
induced by the communication nodes. Through Monte-
Carlo estimation we get A ~ 0.99.

In the experiments, we fix S = 10 and take j € {2,4,...,18}
in setup a), which gives A ranging from 0.97 to 0.87. As for
setup b), we choose S € {10,15,...,50}. As before, we do
a grid search for the stepsize 7 and choose the optimal one
within the range {107%,2 <k < 5}.
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Fig. 3. Tllustration of the influence of X and S on the performance of PPDS for
the ridge regression experiment. The left and the right figures are respectively
for the communication strategies a) and b) described in Appendix E. We plot
the number of local communications and computations that are needed for
the algorithm to attain suboptimality values 10~2, 10~3, and 10~* (from
bottom left to top right). Each line corresponds a specific configuration.

FE Results

In Fig. 3 we plot the number of local communications and
computations that are required for PPDS to attain suboptimal-
ity values 1072, 1073, and 10~* in different configurations.
For setup a) we observe a computation-communication trade-
off: the more we communicate in each round, the less gradient
computations but the more communications are needed to
achieve a certain suboptimality value. As for setup b) we
observe two different behaviors depending on the stepsize. At
stepsize 7 = 1073 (the optimal stepsize for S € {10,15})
smaller the sample size S better the performance of the
algorithm. At stepsize 7 = 10~* (the optimal stepsize for
S €{20,25,...,50}) the best is to choose S ~ 30 for which
communication and computation are well balanced and further
increasing or decreasing S augments either computation or
communication cost without really decreasing the other.
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