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Abstract

We present a new type of feedback linearization that is tailored for me-
chanical control systems. We call it a mechanical feedback linearization.
Its basic feature is preservation of the mechanical structure of the system.
For mechanical systems with a scalar control, we formulate necessary and
sufficient conditions that are verifiable using differentiations and algebraic
operations only. We illustrate our results with several examples.

1 Introduction

An N -dimensional control-affine system with a scalar control

ż = F (z) +G(z)u, (Σ)

where z ∈ Z, an open subset of RN , and u ∈ R, is said to be (locally) feedback
linearizable (F-linearizable) if there exist a (local) diffeomorphism Φ : Z → RN
and an invertible feedback of the form u = α(z) + β(z)ũ such that the control
system (Σ), in the new coordinates z̃ = Φ(z) and with the new control ũ, is a
controllable linear system of the form ˙̃z = Az̃ + bũ. A geometric solution to the
problem of feedback linearization (inspired by [1], and developed independently
in [2] and [3]) provides powerful techniques for designing a closed-loop control
system that have been used in numerous engineering applications. From a
theoretical point of view, that result identifies a class of nonlinear systems that
can be considered as linear ones in a well-chosen coordinates and with respect
to a well-modified control.
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In this paper, we state and study the following fundamental question: if a
nonlinear control system (Σ) is mechanical and feedback linearizable, are those
two structures compatible? That is, can we feedback linearize the system pre-
serving its mechanical structure? For mechanical control systems, it is natural
to consider mechanical feedback equivalence (in particular, to a linear form)
under mechanical transformations (coordinates changes and feedback) that pre-
serve the mechanical structure of the system. In our recent paper [4], we showed
that even in the simplest underactuated case of 2 degrees of freedom, the struc-
tures (linear and mechanical) may not conform trivially. In the present paper,
we treat the single-input case in its full generality.

There are several motivations for preserving the mechanical structure when
feedback linearizing the system. First, our formulation of the problem of me-
chanical linearization preserves configurations and velocities. We reckon that it
is essential that new configurations (of the linearized system) are functions of the
original configurations only, as well as new velocities are true physical velocities
(in contrast to pseudo-velocities). Therefore, we do not lose the physical inter-
pretation of the system. This could be useful, e.g. for mechanical systems with
constraints on configurations, which are transformed into linear constraints on
configurations. Second, the configuration trajectories are preserved too, which
could be useful in e.g. the motion planning problem (the most natural way to
state the problem for mechanical systems is to follow configuration trajectories).
Third, it is worth mentioning that mechanical feedback linearizability guaran-
tees the linearizing outputs to be functions of configurations only. This may
be of constructional importance because one needs only configuration sensors,
not those of velocities. The next argument is the fact that the resultant linear
mechanical system allows us to employ dedicated techniques for mechanical sys-
tems. An example of such technique is the natural frequency method of tuning
a linear feedback. Finally, when applying mechanical feedback linearization, the
physical interpretation of the external action (force, torque, etc.) is preserved
but is lost for general feedback linearization.

This work is a mechanical counterpart of the classical results on feedback
linearization of control systems [1], [2], [3], see also monographs [6], [7]. Our
intention is to formulate conditions for mechanical linearization (shortly, MF-
linearization) in a possibly similar manner (e.g. using involutivity of certain
distributions).

For a geometric approach to mechanical control systems see [5], [8], [9], [10].
For mathematical preliminaries concerning the Lie derivative, the Lie bracket,
distributions, etc., see [6], [7]. For linearization of mechanical control systems
along controlled trajectories see [11]. For mechanical state-space linearization of
mechanical control systems see [12] and [13]. Compare also [14], for a pioneering
work on (partial) feedback linearization of mechanical systems.

Although the state-space of mechanical control system is the tangent bundle
TQ of the configuration space Q, we formulate our conditions using objects on
Q only. The key here is a geometric approach to mechanical systems [5] and
considering the Euler-Lagrange equations as the geodesic equation under an
influence of external forces.
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The outline of the paper is as follows. In Section 2, we state the problem. In
Section 3, we develop further the problem of mechanical feedback linearization
and formulate the main result, separately, for mechanical systems with n ≥ 3
in Theorem 1, and with n = 2 in Theorem 2. In Section 4, we provide an
application of our results to MF-linearization of several mechanical systems.
Section 6 contains technical results used in proofs that could be of independent
interest.

1.1 Notation

Throughout the Einstein summation convention is assumed, i.e. any expression
containing a repeated index (upper and lower) implies the summation over that
index up to n, e.g. ωiX

i =
∑n
i=1 ωiX

i.
AT transpose of a matrix (of a vector) A,
In n× n identity matrix,
Q configuration manifold,
X(Q) the set of smooth vector fields on a manifold Q,
TxQ tangent space at x ∈ Q,
TQ =

⋃
x∈Q TxQ tangent bundle of Q,

x = (x1, . . . , xn) a local coordinate system on Q,
φ a diffeomorphism of Q, and Φ a diffeomorphism of TQ,
Dφ = ∂φ

∂x the Jacobian matrix of a diffeomorphism φ,
∂x̃i

∂xj := ∂φi

∂xj the (i, j)-element of the Jacobian matrix Dφ,
∂xj

∂x̃i the (j, i)-element of the inverse of the Jacobian matrix Dφ,

LXα Lie derivative of a function α defined as LXα = ∂α
∂xiX

i,

[X,Y ] = ∂Y
∂xX −

∂X
∂x Y = adXY Lie bracket of vector fields,

∂
∂xi the i-th unity vector field, and dxi the i-th unity covector field, in a co-
ordinate system x = (x1, . . . , xn),
E i = span

{
adjeg, 0 ≤ j ≤ i

}
distribution on Q spanned by adjeg,

∇ covariant derivative, and ∇2 second covariant derivative,
Γijk Christoffel symbols of the second kind of ∇,

2 Problem statement

Consider an n-dimensional configuration space Q (an open subset of Rn or, in
general, an n-dimensional manifold) equipped with a symmetric affine connec-
tion ∇. The operator of the affine connection ∇ allows to define intrinsically the
acceleration as the covariant derivative ∇ẋ(t)ẋ(t), see e.g. [5, 8, 17]. The covari-

ant derivative ∇ : X(Q)×X(Q)→ X(Q) of an arbitrary vector field Y = Y i ∂
∂xi

with respect to X = Xi ∂
∂xi in coordinates reads

∇XY =

(
∂Y i

∂xj
Xj + ΓijkX

jY k
)

∂

∂xi
. (1)
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A mechanical control system (MS) is a 4-tuple (Q,∇, g, e), where g and e are,
respectively, controlled and uncontrolled vector fields on Q. A curve x(t) : I →
Q, I ⊂ R, is a trajectory of (MS) if it satisfies the following equation

∇ẋ(t)ẋ(t) = e (x(t)) + g (x(t))u, (2)

which can be viewed as an equation that balances accelerations of the system,
where the left-hand side represents geometric accelerations (i.e. accelerations
caused by the geometry of the system) and the right-hand side represents ac-
celerations caused by external actions on the system (controlled or not). Notice
that (2) is a second-order differential equation on Q (indeed, using (1) we con-
clude that ∇ẋẋ depends on ẍ, see [5] for details) and can be rewritten as a
system of first-order differential equations on TQ, which we also call a mechan-
ical control system (MS):

ẋi = yi

ẏi = −Γijk(x)yjyk + ei(x) + gi(x)u,
(MS)

for 1 ≤ i ≤ n, where (x, y) =
(
x1, . . . , xn, y1, . . . , yn

)
are local coordinates

on the tangent bundle TQ of the configuration manifold Q, and Γijk(x) are
Christoffel symbols of the affine connection ∇ that correspond to the Cori-
olis and centrifugal forces. The vector fields e(x) = (e1(x), . . . , en(x))T and
g(x) = (g1(x), . . . , gn(x))T correspond to, respectively, uncontrolled and con-
trolled actions on the system. Throughout all objects are assumed to be smooth
and the word smooth means C∞-smooth.

Our obvious inspirations are Lagrangian mechanical control systems without
dissipative forces. For the correspondence between (MS) and the Lagrangian
equations of dynamics see [5], [8], [9] and our recent papers [13], [16]. However,
we will consider throughout a more general class of mechanical control systems
allowing for any symmetric (not necessarily a metric) connection and any (not
necessarily potential) vector field e(x).

Consider the group of mechanical feedback transformations GMF generated
by the following transformations:

(i) changes of coordinates in TQ given by Φ : TQ→ TQ̃

(x, y) 7→ (x̃, ỹ) = Φ(x, y) =

(
φ(x),

∂φ

∂x
(x)y

)
, (3)

called a mechanical diffeomorphism, where φ : Q→ Q̃ is a diffeomorphism
and ∂φ

∂x its Jacobian matrix,

(ii) mechanical feedback transformations, denoted (α, β, γ), of the form

u = γjk(x)yjyk + α(x) + β(x)ũ, (4)

where γjk, α, β are smooth functions on Q satisfying
γjk = γkj , β(·) 6= 0. The matrix γ = (γjk) represents a (0, 2)−tensor field.
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Even if the diffeomorphism φ is possibly local on Q, the action of ∂φ∂x (x) is always
global on fibers TxQ.

Definition 1. The system (MS) is MF-linearizable if there exist mechanical
feedback transformations (Φ, α, β, γ) ∈ GMF bringing (MS) into a linear con-
trollable mechanical system of the form

˙̃xi = ỹi

˙̃yi = Eij x̃
j + biũ,

(LMS)

where (x̃, ỹ) are coordinates on TRn = Rn × Rn, the matrix E = (Eij) is an

n × n real-valued matrix, the vector field b = bi ∂
∂x̃i is constant, and the pair

(E, b) is controllable (see [15]).

Represent (MS) as ż = F (z) +G(z)u, where z = (x, y) ∈ TQ, F = yi ∂
∂xi +(

−Γijk(x)yjyk + ei(x)
)

∂
∂yi , and G = gi(x) ∂

∂yi . The problem that we formulate

and solve in the paper is whether (MS) is MF-linearizable? That is, do there
exist Φ = (x̃, ỹ) = (φ, ∂φ∂xy) and (α, β, γ) such that

∂Φ

∂z
(z)
(
F +G(yT γy + α)

)
(z) =

(
ỹ
Ex̃

)
,

∂Φ

∂z
(z) (Gβ) (z) =

(
0
b

)
?

Note that MF-linearizability is stronger than the classical feedback lineariz-
ability since, for the latter, Φ : TQ→ R2n can be any diffeomorphism (need not
be of mechanical form (3)) and yT γ(x)y+α(x) can be replaced by any function
α(x, y) on TQ and β(x) by any invertible function β(x, y) on TQ.

If we neglect the mechanical structure of ż = F (z) + G(z)u, and consider
it as a general control system, we can ask if the system is F-linearizable. The
well-known answer [2, 3] asserts that, locally, this is the case if and only if the

distributions Di = span
{
adjFG, 0 ≤ j ≤ i

}
are involutive and of constant rank

for i = 0, ..., 2n− 1 and D2n−1 = TQ. The natural question arises whether, for
F-linearizable (MS), the general feedback transformations (Φ(z), α(z), β(z)) are
mechanical (i.e. of the form (3) and (4)) or whether they can be replaced by
mechanical ones.

Example 1: Consider the mechanical system

ẋ1 = y1

ẋ2 = y2

ẏ1 = −x2(y1)2 + x2

ẏ2 = u,
(5)

on R4. This system is locally F-linearizable. Indeed, the local diffeomorphism
z̃ = Φ(z), where z = (x1, x2, y1, y2), z̃ = (x̃1, x̃2, ỹ1, ỹ2), given by

x̃1 = x1

x̃2 = x2 − x2(y1)2

ỹ1 = y1

ỹ2 =
(
(y1)2 − 1

) (
2(x2)2y1 − y2

)
,
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together with the feedback u = 2(x2)3 +6(x2− (x2)2)(y1)2 + ũ
(y1)2−1 , render the

original system linear and controllable

˙̃x1 = ỹ1 ˙̃x2 = ỹ2 ˙̃y1 = x̃2 ˙̃y2 = ũ.

Therefore, the system is F-linearizable. Note, however, that neither the change
of coordinates nor the feedback is mechanical (x̃2 depends on velocities, and
the function β depends on velocities as well) so the mechanical structure is
not preserved. Our question is whether this system can be linearized by other
transformations that preserve the mechanical structure, i.e. can it be MF-
linearized?

The group of mechanical transformations GMF = {(Φ, α, β, γ)} preserves
trajectories, that is, maps the trajectories of (MS) into those of its MF-equivalent

system (M̃S). Indeed, if z (t, z0, u(t)) is a trajectory of (MS) (passing through
z0 = (x0, y0) and corresponding to a control u(t)), then z̃ (t, z̃0, ũ(t)) = Φ (z (t, z0, u(t)))

is a trajectory of (M̃S) passing through z̃0 = Φ(z0) = (φ(x0), ∂φ∂x (x0)y0) and
corresponding to ũ(t), where u(t) = y(t)T γ (x(t)) y(t) + α (x(t)) + β (x(t)) ũ(t).
Moreover, via φ : Q→ Q̃, it establishes a correspondence between configuration
trajectories in Q and Q̃, i.e. x̃ (t, z̃0, ũ(t)) = φ (x(t, z0, u(t))), making the fol-
lowing diagram commutative (notice, however, that π (z(t, z0, u)) = x(t, z0, u)
depends on z0 = (x0, y0), i.e. an initial configuration x0 and initial velocity y0):

z(t, z0, u) z̃(t, z̃0, ũ)

x(t, z0, u) x̃(t, z̃0, ũ)

(Φ,α,β,γ)

π π

(φ,α,β,γ)

where π : TQ → Q, π(z) = π(x, y) = x, is the canonical projection which
assigns to the pair (x, y) the point x at which the velocity y is attached.

3 Mechanical feedback linearization

Our main result uses two basic ingredients: the covariant derivative of the con-
nection ∇, see (1), and the involutivity of suitable distributions. We will also
need the second covariant derivative of a vector field Z in the directions (X,Y ),
which is a mapping

∇2 : X(Q)× X(Q)× X(Q)→ X(Q)

∇2
X,Y Z = ∇X∇Y Z −∇∇XY Z.

(6)

For properties of the second covariant derivative see Lemma 1 in Appendix.
In order to formulate the result, we associate with (MS) the following se-

quence of nested distributions E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ E i ⊂ . . . ⊂ TQ, where

E0 = span {g} , E i = span
{
adjeg, 0 ≤ j ≤ i

}
.
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Remark 1. To analyze the behavior of the distributions E i under mechanical
feedback transformations (α, β, γ) notice, first, that E i are invariant under γ
since γ does not act on them. If the distributions E i are involutive, then they
are invariant under feedback transformations of the form (α, β, 0), i.e. for γ = 0
they remain unchanged if we replaced e and g by, respectively, e + gα and βg,
cf. [6], [7].

Now, we formulate our main result for MF-linearization. First, we state
a theorem for (MS) with n ≥ 3 degrees of freedom. The remaining case of
n = 2 degrees of freedom is treated in Theorem 2. For an explanation of that
distinction, see the comment before Theorem 2 and Remark 3 for a comparison
of both results.

By a local MF-linearization around x0 ∈ Q we mean that it holds on⋃
x∈O TxQ, where O is a neighborhood of x0; recall that all transformations

are global on tangent spaces TxQ.

Theorem 1. Assume n ≥ 3. A mechanical control system (MS) is, locally
around x0, MF-linearizable to a controllable (LMS) if and only if

(MF1) rank En−1 = n,

(MF2) E i is involutive and of constant rank, for 0 ≤ i ≤ n− 2,

(MF3) ∇adieg g ∈ E
0 for 0 ≤ i ≤ n− 1,

(MF4) ∇2
adkeg,ad

j
eg
e ∈ E1 for 0 ≤ k, j ≤ n− 1,

Remark 2. Notice that (MF1)-(MF2) are the classical conditions (see [2, 3, 6,
7]) that assure F-linearization of the system ẋ = e(x)+g(x)u on Q via x̃ = φ(x)
and u = α(x)+β(x)ũ. The remaining two, (MF3)-(MF4), can be interpreted as
compatibility conditions that guarantee vanishing the Christoffel symbols Γijk in
the linearizing coordinates x̃ = φ(x), except for those that can be compensated
by feedback u = γjk(x)yjyk + ũ.

Proof. In the proof we will use two Lemmata 1 and 2, given in Appendix, that
are of independent interest.

Necessity. For (LMS), we have Γijk = 0, e = Ex and g = b. It follows that

adieg = (−1)iEib and therefore, using the definitions of ∇, given by (1), and of
∇2, given by (6), we calculate

∇adiegad
j
eg = 0, ∇2

adkeg,ad
j
eg
e = 0, (7)

which implies that (MF1)-(MF4) hold for (LMS) (in particular, (MF1) holds
because (LMS) is assumed controllable). To prove necessity of (MF1)-(MF4),
we will show that they are MF-invariant. All conditions (MF1)-(MF4) are
expressed in a geometrical way, therefore they are invariant under diffeomor-
phisms. The conditions (MF1) and (MF2) are mechanical feedback invariant,
see Remark 1. It remains to show that (MF3) and (MF4) are invariant under the
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mechanical feedback u = γjk(x)yjyk+α(x)+β(x)ũ. For the closed-loop system,

denoted by ”∼”, the Christoffel symbols Γ̃ijk of ∇̃, ẽ, and g̃ are, respectively,
given by

Γ̃ijk = Γijk − giγjk, ẽ = e+ gα, g̃ = gβ. (8)

For any X,Y ∈ X(Q), we have ∇̃XY = ∇XY − γ(X,Y )g = ∇XY mod E0,
where γ(X,Y ) = γjkX

jY k ∈ C∞(Q), therefore

∇̃adiẽg̃ g̃ = ∇adiẽg̃ g̃ − γ(adiẽg̃, g̃)g = ∇adiẽg̃ g̃ mod E0.

By ∇X g̃ = ∇X (gβ) = ∇Xg+ (LXβ) g, it follows that instead of calculating
∇adiẽg̃ g̃ it is enough to calculate ∇adiẽg̃g, since the second term (LXβ) g ∈ E0.

For i=0, we have ∇g̃g = ∇(gβ)g = β∇gg ∈ E0. It is easy to show that for any
1 ≤ j ≤ n− 1, we have

adjẽg̃ = βadjeg + dj−1, (9)

where dj−1 ∈ Ej−1. Assume ∇adlẽg̃g ∈ E
0, for 0 ≤ l ≤ i − 1. Then, by formula

(9), ∇adiẽg̃g = β∇adiegg+∇di−1g ∈ E0, because the first term is in E0 by (MF3)
and the second by the induction assumption. We have thus proved necessity of
(MF3).

To show necessity of (MF4), using Lemma 1, calculate

∇̃2
X,Y Z = ∇̃X∇̃Y Z − ∇̃∇̃XY

Z

= ∇̃X (∇Y Z − γ(Y, Z)g)− ∇̃(∇XY−γ(X,Y )g)Z

= ∇2
X,Y Z − γ(Y, Z)∇Xg + γ(X,Y )∇gZ mod E0.

(10)

By the above formula, we get

∇̃2
adkẽ g̃,ad

j
ẽg̃
ẽ =∇2

adkẽ g̃,ad
j
ẽg̃
ẽ− γ(adjẽg̃, ẽ)∇adkẽ g̃g

+ γ(adkẽ g̃, ad
j
ẽg̃)∇g ẽ mod E0.

The second term, on the right hand side, is in E0 (by (MF3) and its invariance),
while the third term is a function multiplying

∇g ẽ = ∇g (e+ gα) = ∇ge+ α∇gg + Lgα g ∈ E1,

since for (LMS) we have ∇ge = −adeg = −Eb ∈ E1.
The first term ∇2

adkẽ g̃,ad
j
ẽg̃
ẽ is, by (9) and Lemma 1(i), a linear combination

with smooth coefficients of ∇2
adieg,ad

l
eg
ẽ, with 0 ≤ i ≤ k and 0 ≤ l ≤ j. Thus

we calculate ∇2
adieg,ad

l
eg
ẽ = ∇2

adieg,ad
l
eg
e+∇2

adieg,ad
l
eg

(gα). The first term vanishes

since (7) holds for (LMS). We calculate the second term using Lemma 1(iii),
and we have ∇2

adieg,ad
l
eg

(gα) = α∇2
adieg,ad

l
eg
g + Ladiegα∇adlegg + Ladlegα∇adiegg +

(∇2
adieg,ad

l
eg
α)g ∈ E0 because the first three terms vanish, due to (7), and
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the last one is in E0. Summarizing the above calculations, we conclude that
∇̃2
adkẽ g̃,ad

j
ẽg̃
ẽ ∈ E1 = Ẽ1, which proves necessity of (MF4).

Sufficiency. We will transform the system (MS), satisfying (MF1)-(MF4),
into (LMS) in two steps. In the first step, we will normalize the vector fields
e and g and show that condition (MF4) implies zeroing some of the Christoffel
symbols Γijk, which exhibit a triangular form in the normalizing coordinates. In
the second step, we compensate the remaining Christoffel symbols.

By conditions (MF1)-(MF2), there exists a function h satisfying Ladjegh = 0,

for 0 ≤ j ≤ n − 2, and Ladn−1
e gh 6= 0, and thus (x̃, ỹ) = (φ(x), ∂φ∂x (x)y) is a

local mechanical diffeomorphism, where φ(x) = (Ln−1
e h, . . . , Leh, h)T that can

be completed by a feedback transformation (α, β, 0) that map, respectively, βg
into g̃ = (1, 0, . . . , 0)T , e+ gα into ẽ = (0, x̃1, . . . , x̃n−1)T , and Γijk into Γ̃ijk, see
the classical results of feedback linearization [2], [6], [7]. Then, (Φ, α, β, γ) ∈
GMF , where (x̃, ỹ) = Φ(x, y) =

(
φ(x), ∂φ∂x (x)y

)
with φ, α, β just defined and

γjk = Γ̃1
jk(x̃), brings (MS) into (we drop ”tildas” for readability)

ẋ1 = y1

ẋi = yi
ẏ1 = u

ẏi = −Γijky
jyk + xi−1, 2 ≤ i ≤ n,

(11)

to which Lemma 2 applies.
We will show that the Christoffel symbols Γijk of (11) satisfy

Γikj = 0 for 1 ≤ k ≤ n− 1, 1 ≤ j ≤ i ≤ n,

Γinj =

{
0 for 1 ≤ j < i ≤ n
λ(xn) for 2 ≤ j = i ≤ n.

(12)

For system (11), we have adk−1
e g = (−1)k−1 ∂

∂xk and, in particular, g = ∂
∂x1 .

Calculate∇adk−1
e gg = (−1)k−1∇ ∂

∂xk
gi ∂
∂xi = (−1)k−1∇ ∂

∂xk

∂
∂x1 = (−1)k−1Γik1

∂
∂xi .

It follows that Γik1 = Γi1k = 0, for 2 ≤ i ≤ n by (MF3), and for i = 1 by the
above form.

Rewrite (MF4) as ∇2
adk−1

e g,adj−1
e g

e = 0 mod E1, for 1 ≤ j, k ≤ n, and apply

it successively for j = 1, . . . , n and for all 1 ≤ k ≤ n. For j = 1, first calculate

∇ge = ∇ ∂
∂x1

e =
∂

∂x2
+ Γi1se

s ∂

∂xi
=

∂

∂x2
and then

∇adk−1
e g (∇ge) = (−1)k−1∇ ∂

∂xk

∂

∂x2
= (−1)k−1Γik2

∂

∂xi
.

On the other hand, ∇adk−1
e gg = (−1)k−1∇ ∂

∂xk

∂
∂x1 = (−1)k−1Γ1

k1
∂
∂x1 = 0 and

hence ∇∇
ad

k−1
e g

ge = 0. Thus, by (6),

∇2
adk−1

e g,g
e = ∇adk−1

e g (∇ge)−∇∇
ad

k−1
e g

ge =

= (−1)k−1Γik2

∂

∂xi
= 0 mod E1,

9



implying that Γik2 = Γi2k = 0 for any 3 ≤ i ≤ n.
For j = 2, calculate

∇adege = −∇ ∂
∂x2

e = − ∂

∂x3
+ Γi2se

s ∂

∂xi
= − ∂

∂x3
− d

where d = d1(x) ∂
∂x1 + d2(x) ∂

∂x2 ∈ E1, and then

∇adk−1
e g (∇adege) = (−1)k∇ ∂

∂xk

(
∂

∂x3
+ d

)
=

= (−1)k
(
Γik3 + Γik1d

1 + Γik2d
2
) ∂

∂xi
=

= (−1)kΓik3

∂

∂xi
mod E1.

On the other hand,

∇adk−1
e gadeg = (−1)k∇ ∂

∂xk

∂

∂x2
= (−1)kΓik2

∂

∂xi
=

= (−1)k
(

Γ1
k2

∂

∂x1
+ Γ2

k2

∂

∂x2

)
and ∇∇

ad
k−1
e g

adege = (−1)kΓ2
k2

∂
∂x3 mod E1. It follows that, modulo E1,

∇2
adk−1

e g,adeg
e = (−1)k

(
n∑
i=4

Γik3

∂

∂xi
+ (Γ3

k3 − Γ2
k2)

∂

∂x3

)
,

and, using (MF4), we conclude Γik3 = Γi3k = 0 for any 4 ≤ i ≤ n and Γ3
k3 = Γ2

k2.
Following the same line (with a more tedious calculation), one can prove the

general induction step. Namely, assuming, for a fixed j,

Γjkj = Γj−1
kj−1

Γiks = Γisk = 0 s+ 1 ≤ i ≤ n, 1 ≤ s ≤ j,
(13)

one shows by calculating ∇2
adk−1

e g,adj−1
e g

e, with the help of (24) of Lemma 2,

that

Γj+1
kj+1 = Γjkj

Γikj+1 = 0 for j + 2 ≤ i ≤ n

and thus, by the induction assumption and symmetry of the Christoffel symbols,

Γiks = Γisk = 0 s+ 1 ≤ i ≤ n, 1 ≤ s ≤ j + 1. (14)

It follows that for each 1 ≤ k ≤ n the matrices consisting of Christoffel symbols
(Γikj), for 2 ≤ i, j ≤ n are upper triangular. By the induction argument, (13)
holds for all 2 ≤ j ≤ n and implies, for any 1 ≤ k ≤ n− 1,

Γ2
k2 = . . . = Γn−1

kn−1 = Γnkn = 0.

10



since Γnkn = Γnnk = 0 (as n > k). On the other hand, for k = n, (13) implies

Γ2
n2 = . . . = Γn−1

nn−1 = Γnnn = λ(x)

for a function λ(x). Therefore for each 1 ≤ k ≤ n the matrices (Γikj), for
2 ≤ i, j ≤ n, are strictly upper triangular, and the last one, for k = n, is upper
triangular with all diagonal elements equal to each other, which we denote by
λ(x). The matrices read

(
Γikj
)

=



0 Γ2
k3 Γ2

k4 . . . Γ2
kn−2 Γ2

kn−1 Γ2
kn

0 0 Γ3
k4 . . . Γ3

kn−2 Γ3
kn−1 Γ3

kn

. . .

0 0 0 . . . 0 Γn−2
kn−1 Γn−2

kn

0 0 0 . . . 0 0 Γn−1
kn

0 0 0 . . . 0 0 0


,

for 1 ≤ k ≤ n− 1, and

(
Γinj
)

=



λ Γ2
n3 Γ2

n4 . . . Γ2
nn−2 Γ2

nn−1 Γ2
nn

0 λ Γ3
n4 . . . Γ3

nn−2 Γ3
nn−1 Γ3

nn

. . .

0 0 0 . . . λ Γn−2
nn−1 Γn−2

nn

0 0 0 . . . 0 λ Γn−1
nn

0 0 0 . . . 0 0 λ


,

and are thus of the desired triangular structure (12) and it remains to prove
that λ = λ(xn). Note that in the above matrices we skip the first row Γ1

kj and

the first column Γik1. This is due to the fact that Γ1
kj = 0 (which can always be

achieved by a suitable feedback transformation) and Γik1 = 0 by (MF3). Notice
that we have En−2 = span

{
∂
∂x1 , . . . ,

∂
∂xn−1

}
and thus applying (24) of Lemma 2,

for j = n and any 1 ≤ k ≤ n, we conclude (set Γnkn+1 = 0)

(−1)n+k−2∇2
adk−1

e g,adn−1
e g

e = ∇2
∂

∂xk ,
∂

∂xn
e

=

(
∂Γnns
∂xk

es + Γnnk+1 + Γnkn+1 − Γn−1
kn

+ (ΓdnsΓ
n
kd − ΓdknΓnds)e

s

)
∂

∂xn
mod En−2

=

(
∂λ

∂xk
en + Γnnk+1 − Γn−1

kn

)
∂

∂xn
mod En−2,

(15)

since, due to the triangular structure (14), Γnns = 0 except for s = n giving
Γnnn = λ and, moreover, the equality ΓdnsΓ

n
kd−ΓdknΓnds = 0 holds. Indeed, in the

latter, Γnkd = 0 except d = k = n giving ΓnnsΓ
n
nn − ΓnnnΓnns = 0 and Γnds = 0

except for d = s = n giving ΓnnnΓnkn − ΓnknΓnnn = 0.
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For (15) we will apply (MF4) in three cases. First, if 1 ≤ k ≤ n − 2, then,
modulo En−2, we have(

∂λ

∂xk
en + Γnnk+1 − Γn−1

kn

)
∂

∂xn
=

(
∂λ

∂xk
xn−1

)
∂

∂xn
= 0,

since all Γnnk+1 = 0 and all Γn−1
kn = 0 by (14) and k ≤ n − 2. Second, for

k = n− 1, we have modulo En−2,(
∂λ

∂xn−1
en + Γnnn − Γn−1

n−1n

)
∂

∂xn
=

(
∂λ

∂xn−1
en + λ− λ

)
∂

∂xn

=

(
∂λ

∂xn−1
xn−1

)
∂

∂xn
= 0.

Therefore ∂λ
∂xk = 0, for 1 ≤ k ≤ n− 1, implying that λ is a function of the last

variable xn only, i.e. λ = λ(xn), which gives the system in the desired form (12)
Third, for k = n, we have modulo En−2,(

∂λ

∂xn
en+Γnnn+1−Γn−1

nn

)
∂

∂xn
=

(
∂λ

∂xn
xn−1− Γn−1

nn

)
∂

∂xn
= 0,

implying that Γn−1
nn = Leλ, since ∂λ(xn)

∂xn xn−1 = Leλ.
Now, transform system (11), satisfying (12), via the local mechanical diffeo-

morphism Φ : TQ→ TQ̄

x̄ = φ(x)

ȳ = Dφ(x)y,
where φ(x) =

(
Ln−1
e h, . . . , Leh, h

)T
, (16)

with h(xn) =
∫ xn

0
Λ(s2)ds2, where Λ(s2) = exp

(∫ s2
0
λ(s1)ds1

)
.

Denote by Γ̄ijk, ē, ḡ the objects of the system expressed in coordinates x̄ =

φ(x). Applying feedback ū = −Γ̄1
jkȳ

j ȳk + Lneh + uLgL
n−1
e h, the transformed

system becomes

˙̄x1 = ȳ1

˙̄xi = ȳi

˙̄y1 = ū

˙̄yi = −Γ̄ijkȳ
j ȳk + x̄i−1, 2 ≤ i ≤ n,

(17)

whose vector fields are ē = x̄i−1 ∂
∂x̄i , where x0 = 0, and ḡ = ∂

∂x̄1 . Transformed
system (17) is still of the form (11) and at the moment we ignore how Γijk have

been changed into Γ̄ijk. Below we will prove that all Γ̄ijk vanish. To this end,
we first calculate explicitly the time-evolution of the pair (x̄n, ȳn)

˙̄xn =
d

dt
h(xn) = Λ(xn)ẋn = Λ(xn)yn = ȳn

˙̄yn =
d

dt
(Λ(xn)yn) = Λ(xn)λ(xn)ẋnyn + Λ(xn)ẏn

= Λ(xn)λ(xn)ynyn + Λ(xn)ẏn

= Λ(xn)λ(xn)ynyn + Λ(xn)
(
−Γnnn(xn)ynyn + xn−1

)
= Λ(xn)xn−1 = x̄n−1,
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since x̄n−1 = Leh = Λ(xn)xn−1. It follows that Γ̄njk = 0, for all 1 ≤ k, j ≤ n.
For transformed system (17), we rewrite (24) by adding ”bars” as

∇2
adk−1

ē ḡ,adj−1
ē ḡ

ē = (−1)j+k
(
∂Γ̄ijs
∂x̄k

ēs + Γ̄ijk+1

+ Γ̄ikj+1 + (Γ̄djsΓ̄
i
kd − Γ̄dkjΓ̄

i
ds)ē

s − Γ̄i−1
kj

)
∂

∂x̄i

(18)

and by (MF4), we have

∇2
adk−1

ē ḡ,adj−1
ē ḡ

ē = (−1)j+kānkj(x̄)
∂

∂x̄n
= 0 mod En−2,

where ānkj(x̄) =
∂Γ̄n

js

∂x̄k ē
s + Γ̄njk+1 + Γ̄nkj+1 + (Γ̄djsΓ̄

n
kd − Γ̄dkjΓ̄

n
ds)ē

s − Γ̄n−1
kj , which

implies (since Γ̄nkj = 0, for 1 ≤ j, k ≤ n) that ānkj(x̄) = Γ̄n−1
kj = 0. Now assume

Γ̄ikj = 0 for a certain 1 ≤ i ≤ n− 1 and any 1 ≤ j, k ≤ n. Then (18) and (MF4)

imply Γ̄i−1
kj = 0. Therefore we have proved that all Christoffel symbols of (17)

vanish and thus the system is a linear controllable (LMS), since the vector field
ē = x̄i−1 ∂

∂x̄i is linear and ḡ = ∂
∂x̄1 is constant.

The above theorem does not work for systems with 2 degrees of freedom,
i.e. for n=2, as that case is too restrictive for involutivity, see Remark 3 below.
Therefore we state the following theorem for MF-linearization of (MS) with 2
degrees of freedom.

Theorem 2. A mechanical system (MS) with 2 degrees of freedom is, locally
around x0, MF-linearizable to a controllable linear (LMS) if and only if it
satisfies in a neighborhood of x0

(MF1)’ g and adeg are independent at x0,

(MF3)’ ∇g g ∈ E0 and ∇adeg g ∈ E0,

(MF5)’ ∇2
g,adeg

adeg −∇2
adeg,g

adeg ∈ E0.

Remark 3. If n = 2, then E0 is of rank 1, thus involutive and (MF2) is trivially
satisfied, and so is (MF4) because E1 = TQ (cf. Theorem 1). Therefore (MF2)’
and (MF4)’ are absent and replaced by (MF5)’ that guarantees that we can
compensate the Christoffel symbols (as do (MF3)-(MF4) for n ≥ 3).

Proof. Necessity. Note that (MF1)’ is equivalent to (MF1) and (MF3)’ is (MF3)
of Theorem 1. Although Theorem 1 applies to n ≥ 3, the necessity part of its
proof remains valid for any n ≥ 2 so it shows necessity of (MF1)’-(MF3)’.
Therefore we need to show necessity of (MF5)’. For a controllable (LMS) we
have Γijk = 0, g = b and adeg = −Eb are independent, and

∇adiegad
j
eg = 0, ∇2

adjeg,adkeg
adieg = 0,

[
adjeg, ad

k
eg
]

= 0, (19)
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for 0 ≤ i, j, k ≤ 1. We will use formula (10) to show that (MF5)’ is invariant
under mechanical feedback. Denote ∇̃, ẽ, g̃, γ as in (8). Then we calculate

∇̃2
g̃,adẽg̃adẽg̃ =∇2

g̃,adẽg̃adẽg̃ − γ(adẽg̃, adẽg̃)∇g̃ g̃
+ γ(g̃, adẽg̃)∇g̃adẽg̃ mod E0,

∇̃2
adẽg̃,g̃adẽg̃ =∇2

adẽg̃,g̃adẽg̃ − γ(g, adẽg̃)∇adẽg̃ g̃
+ γ(adẽg̃, g̃)∇g̃adẽg̃ mod E0.

The second terms of the right hand side of both equations are in E0 due to the
feedback invariance of (MF3)’, while the third terms are equal since γ(X,Y ) =
γ(Y,X) is symmetric. Therefore we conclude

∇̃2
g̃,adẽg̃adẽg̃ − ∇̃

2
adẽg̃,g̃adẽg̃

= ∇2
g̃,adẽg̃adẽg̃ −∇

2
adẽg̃,g̃adẽg̃ mod E0.

Denoting adẽg̃ = βadeg + d0g (see (9)) and by Lemma 1 (i), we have

∇2
g̃,adẽg̃adẽg̃ = ∇2

βg,βadeg+d0gadẽg̃

= β2∇2
g,adegadẽg̃ + βd0∇2

g,gadẽg̃

∇2
adẽg̃,g̃adẽg̃ = ∇2

βadeg+d0g,βgadẽg̃

= β2∇2
adeg,gadẽg̃ + βd0∇2

g,gadẽg̃,

where the last terms on the right are equal, implying

∇2
g̃,adẽg̃adẽg̃ −∇

2
adẽg̃,g̃adẽg̃

= β2
(
∇2
g,adegadẽg̃ − β

2∇2
adeg,gadẽg̃

)
and it remains to prove that ∇2

g,adeg
adẽg̃ − ∇2

adeg,g
adẽg̃ ∈ E0, which we show

using Lemma 1(iii), where X,Y stand for either g or adeg. Denote ∇Xβ = LXβ
and ∇2

X,Y β = LXLY β − L∇XY β (see Lemma 1) and calculate

∇2
X,Y adẽg̃ = ∇2

X,Y

(
βadeg + d0g

)
= β∇2

X,Y adeg

+ LXβ∇Y adeg + LY β∇Xadeg +
(
∇2
X,Y β

)
adeg

+ d0∇2
X,Y g + LXd

0∇Y g + LY d
0∇Xg +

(
∇2
X,Y d

0
)
g

=
(
∇2
X,Y β

)
adeg mod E0,

since all ∇2
X,YX = 0 and ∇XY = 0 , see (19). Therefore we have

∇2
g,adegadẽg̃ −∇

2
adeg,gadẽg̃

=
(
∇2
g,adegβ −∇

2
adeg,gβ

)
adeg mod E0.

Finally, we calculate

∇2
g,adegβ −∇

2
adeg,gβ = LgLadegβ − L∇gadegβ

−
(
LadegLgβ − L∇adeggβ

)
= L[g,adeg]β = 0,
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which shows necessity of (MF5)’.
Sufficiency. By (MF1)’, rank E1 = 2, and E0 = span {g} is of constant

rank 1 and thus always involutive, hence the system is, locally around x0 (since
g(x0) 6= 0), MF-equivalent to (cf. (11))

ẋ1 = y1

ẋ2 = y2

ẏ1 = u

ẏ2 = −Γ2
jky

jyk + x2.

We have g = ∂
∂x1 , adeg = − ∂

∂x2 and now we calculate

∇gg = Γ2
11

∂

∂x2
∇adegg = −Γ2

12

∂

∂x2
,

which by (MF3)’ are in E0 = span
{

∂
∂x1

}
, implying Γ2

11 = Γ2
12 = Γ2

21 = 0. It

follows ∇gg = ∇adegg = ∇gadeg = 0, and ∇adegadeg = Γ2
22

∂
∂x2 and thus

∇2
g,adeg adeg −∇

2
adeg,g adeg = ∇g∇adegadeg

−∇∇gadegadeg −∇adeg∇gadeg −∇∇adeggadeg

= ∇g∇adegadeg = ∇ ∂
∂x1

Γ2
22

∂

∂x2
=
∂Γ2

22

∂x1

∂

∂x2

implying, by (MF5)’,
∂Γ2

22

∂x1 = 0, i.e. Γ2
22(x2) = λ(x2).

Now, we transform the system via the local mechanical diffeomorphism Φ :
TQ→ TQ̄ (compare to (16))

x̄ = φ(x)

ȳ = Dφ(x)y,
where φ(x) = (Leh, h)

T
,

with h(x2) =
∫ x2

0
Λ(s2)ds2 and Λ(s2) = exp

(∫ s2
0
λ(s1)ds1

)
.

We calculate the evolution of the pair (x̄(t), ȳ(t)) of transformed coordinates,
using d

dth
(
x2(t)

)
= Λ

(
x2(t)

)
ẋ2(t) and d

dtΛ
(
x2(t)

)
= λ

(
x2(t)

)
Λ
(
x2(t)

)
ẋ2(t);

first we get

˙̄x2 =
d

dt
h(x2) = Λ(x2)y2 = ȳ2

˙̄y2 = Λ(x2)λ(x2)y2y2 + Λ(x2)ẏ2 = Λ(x2)λ(x2)y2y2

+ Λ(x2)
(
−λ(x2)y2y2 + x2

)
= Λ(x2)x1 = x̄1

and then ˙̄x1 = Λ(x2)y1 +
d

dt
Λ
(
x2(t)

)
x1y2 = ȳ1

˙̄y1 = −Γ̄1
jkȳ

j ȳk + L2
eh+ uLgLeh,

where we denote by Γ̄1
jk the Christoffel symbols in the ˙̄y1-equation of the trans-

formed system. Applying the feedback ū = −Γ̄1
jkȳ

j ȳk + L2
eh+ uLgLeh, we get

a controllable linear mechanical system in the canonical form ˙̄x1 = ȳ1, ˙̄y1 =
ū, ˙̄x2 = ȳ2, ˙̄y2 = x̄1.
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4 Examples

Example 1 (cont.): For system (5), we have g = ∂
∂x2 and adeg = − ∂

∂x1 are in-
dependent. We check MF-linearizability using Theorem 2. A simple calculation
shows that∇gg = ∇adegg = 0 ∈ E0, but∇2

g,adeg
adeg−∇2

adeg,g
adeg = ∂

∂x1 /∈ E0,
therefore the system is not MF-linearizable.

Thus (5) is an example of a system that is F-linearizable but not MF-
linearizable. For such systems the choice is: either to F-linearize for the price
of loosing the mechanical structure or to keep the mechanical structure but to
get rid of the linearization.

Example 2: Consider the equation of dynamics of the Inertia Wheel Pen-
dulum [18] with constant parameters m0,md, J2:

ẋ1 = y1, ẋ2 = y2, ẏ1 = e1 + g1u, ẏ2 = e2 + g2u,

e1 = m0

md
sinx1, e2 = −m0

md
sinx1, g1 = − 1

md
, g2 = md+J2

J2md
.

We will verify whether the conditions of Theorem 2 are satisfied. First, we
calculate adeg = (m0

m2
d

cosx1) ∂
∂x1 − (m0

m2
d

cosx1) ∂
∂x2 . It can be checked that g and

adeg are independent for x1 6= ±π2 , which corresponds to the horizontal position
of the pendulum, therefore (MF1)’ is satisfied everywhere except for x1 = ±π2 .
Next, we verify condition (MF2)’ by calculating ∇gg = ∇adegg = 0 ∈ E0.
Finally, a direct calculation shows

∇2
g,adeg adeg = ∇2

adeg,g adeg =

= (
m2

0

m5
d

cos2 x1)
∂

∂x1
− (

m2
0

m5
d

cos2 x1)
∂

∂x2
,

thus ∇2
g,adeg

adeg −∇2
adeg,g

adeg = 0 ∈ E0 satisfies (MF5)’. The system is MF-

linearizable. A linearizing function is h(x) = md+J2

J2
x1 + x2 (all others giving

MF-linearization are of the form σ h(x), where σ ∈ R\ {0}). Due to the proof of
Theorem 2, the linearizing diffeomorphism is (x̃, ỹ) = Φ(x, y) = (φ(x), Dφ(x)y)
with φ(x) = (h, Leh)T . The system in new coordinates reads

˙̃x1 =
md + J2

J2
y1 + y2 = ỹ1

˙̃y1 =
md + J2

J2

(
m0

md
sinx1 − 1

md
u

)
− m0

md
sinx1 +

md + J2

m2J2
u

=
m0

J2
sinx1 = Leh = x̃2 (20)

˙̃x1 =
m0

J2
cosx1y1 = ỹ2

˙̃y2 = −m0

J2
sinx1y1y1 +

m2
0

2mdJ2
sin(2x1)− m0

mdJ2
cosx1u = ũ.

Example 3: We will study MF-linearizability of the TORA3 system (see
Figure 1), which is based on the TORA system (Translational Oscillator with
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Figure 1: The TORA3 system

Rotational Actuator) studied in the literature, e.g. [19] (however we add gravita-
tional effects). It consists of a two dimensional spring-mass system, with masses
m1,m2 and spring constants k1, k2, respectively. A pendulum of length l3, mass
m3, and moment of inertia J3 is added to the second body. The displacements
of the bodies are denoted by x1 and x2, respectively, and the angle of the pen-
dulum by x3. The gravitational constant is a and u is a torque applied to the
pendulum. The kinetic energy is

T =
1

2
m1(ẋ1)2 +

1

2
(m2 +m3)(ẋ2)2

+
1

2
(J3 +m3l

2
3)(ẋ3)2 +m3l3 cosx3ẋ2ẋ3,

and the mass matrix depends on the configurations. The potential energy is
V = 1

2k1(x1)2 + 1
2k2(x2 − x1)2 −m3l3a cosx3. The equations of the dynamics

read

m1ẍ
1 + k1x

1 − k2

(
x2 − x1

)
= 0

(m2 +m3)ẍ2 +m3l3 cosx3ẍ3 −m3l3 sinx3(ẋ3)2

+k2

(
x2 − x1

)
= 0

m3l3 cosx3ẍ2 + (m3l
2
3 + J3)ẍ3 +m3l3a sinx3 = u,

which can be rewritten on TQ as

ẋ1 = y1 ẏ1 = η1

ẋ2 = y2 ẏ2 = −Γ̄2
33y

3y3 + η2 + τ2u

ẋ3 = y3 ẏ3 = −Γ̄3
33y

3y3 + η3 + τ3u

(21)

where Γ̄2
33 = −ν0 sin x3

ν1+ν2 sin2 x3 , Γ̄3
33 = ν2 sin x3 cos x3

ν1+ν2 sin2 x3 , η1 = − k1

m1
x1 + k2

m3

(
x2 − x1

)
, η2 =

1
2ν2a sin 2x3−ν3(x2−x1)

ν1+ν2 sin2 x3 ,

η3 =
ν4(x2−x1) cos x3−ν5 sin x3

ν1+ν2 sin2 x3 , τ2 = −m3l3 cos x3

ν1+ν2 sin2 x3 , τ3 = m2+m3

ν1+ν2 sin2 x3 , with constant
parameters:
ν0 = m3l3(m3l

2
3 + J3), ν1 = m2m3l

2
3 + J3(m2 + m3), ν2 = m2

3l
2
3, ν3 =

k2

(
m3l

2
3 + J3

)
, ν4 = m3l3k2 ν5 = m3l3a(m2 +m3).
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To simplify calculations we apply to the system a preliminary mechanical
feedback1 u = 1

τ3

(
Γ̄3

33y
3y3 − η3 + ū

)
which yields

ẋ1 = y1

ẋ2 = y2

ẋ3 = y3

ẏ1 = −µ1x
1 + µ2x

2

ẏ2 = µ3 sinx3y3y3 + µ4(x1 − x2)− µ3 cosx3u

ẏ3 = ū,

(22)

with µ1 = k1+k2

m1
, µ2 = k2

m1
, µ3 = m3l3

m2+m3
, µ4 = k2

m2+m3
.

Since conditions (MF1)-(MF4) of Theorem 1 are MF-invariant, we will check
them for system (22). To summarize:

Γ2
33 = −µ3 sinx3, and Γijk = 0 otherwise,

e =
(
−µ1x

1 + µ2x
2
) ∂

∂x1
+ µ4

(
x1 − x2

) ∂

∂x2

g = −µ3 cosx3 ∂

∂x2
+

∂

∂x3
= g2 ∂

∂x2
+

∂

∂x3
.

We have (notice that calculations are performed on Q only)

adeg =
(
µ2µ3 cosx3

) ∂

∂x1
−
(
µ3µ4 cosx3

) ∂

∂x2
,

ad2
eg = µ3 cosx3

(
(µ1µ2 + µ2µ4)

∂

∂x1
−
(
µ2µ4 + µ2

4

) ∂

∂x2

)
,

therefore rank E2 = 3 for x3 6= ±π2 , and (MF1) is satisfied. Now

[g, adeg] = −
(
µ2µ3 sinx3

) ∂

∂x1
+
(
µ3µ4 sinx3

) ∂

∂x2
∈ E1

and (MF2) is satisfied. Then, for any vector field v = vi(x) ∂
∂xi ,

∇vg =

(
∂g2

∂x3
+ Γ2

33

)
v3 ∂

∂x2
= 0,

thus (MC3) is satisfied if we replace v by, in particular, g, adeg, ad
2
eg. Finally,

for (MF4), we calculate

∇2
g,ge =

(
µ2µ3 sinx3

) ∂

∂x1
−
(
µ3µ4 sinx3

) ∂

∂x2
∈ E1,

∇2
adkeg,ad

j
eg
e = 0 otherwise,

thus, the system is MF-linearizable. Now, choose h = µ4

µ2
x1 + x2 + µ3 sinx3

(whose differential dh annihilates g and adeg), thus we take a linearizing diffeo-

morphism (x̃, ỹ) =
(
φ(x), ∂φ∂x (x)y

)
, with φ(x) =

(
h, Leh, L

2
eh
)T

. The linearized

1This preliminary feedback is not necessary and it is possible to check the conditions and
to linearize the system without it, since our method and conditions are feedback invariant.
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system is in the form of (LMS) and reads

˙̃x1 =
µ4

µ2
y1 + y2 + µ3 cosx3y3 = ỹ1

˙̃y1 =
µ4

µ2
ẏ1+ẏ2+µ3(cosx3ẏ3−sinx3y3y3)=

µ4(µ2 − µ1)

µ2
x1 = x̃2

˙̃x2 =
µ4(µ2 − µ1)

µ2
y1 = ỹ2

˙̃y2 =
µ4(µ2 − µ1)

µ2
ẏ1 =

µ4(µ2 − µ1)

µ2

(
µ2x

2 − µ1x
1
)

= x̃3

˙̃x3 =
µ1µ4(µ1 − µ2)

µ2
y1 + µ4(µ2 − µ1)y2 = ỹ3

˙̃y3 = (µ2 − µ1)µ3µ4 sinx3y3y3 − (µ1 − µ2)(µ2
1 + µ2µ4)µ4

µ2
x1

+ (µ1 − µ2)(µ1 + µ4)µ4x
2 + (µ1 − µ2)µ3µ4 cosx3u = ũ.

5 Conclusions

In this paper, we consider MF-linearization of mechanical control systems (MS)
with scalar control. We formulate the problem as a particular case of feedback
linearization preserving the mechanical structure of (MS) so that the trans-
formed system is both linear and mechanical. As we showed in [4] and confirmed
in this paper, even in the simplest case, the class of MF-linearizable systems is
substantially smaller than that of general F-linearizable ones. Therefore, a nat-
ural question arises, namely to compare the conditions presented in this paper
with those for F-linearization. The answer lies in the interplay between the
distributions E i = span

{
adjeg, 0 ≤ j ≤ i

}
and the ”usual” for F-linearization

Di = span
{
adjFG, 0 ≤ j ≤ i

}
. We will address this problem in the future.

6 Appendix

The following lemma can be proved by a direct calculation.

Lemma 1. The second covariant derivative ∇2
X,Y Z satisfies the following prop-

erties:

(i) linearity over C∞(Q) in X and Y :

∇2
(α1X1+α2X2),Y Z = α1∇2

X1,Y Z + α2∇2
X2,Y Z

∇2
X,(α1Y1+α2Y2)Z = α1∇2

X,Y1
Z + α2∇2

X,Y1
Z

(ii) linearity over R in Z:

∇2
X,Y (a1Z1 + a2Z2) = a1∇2

X,Y Z1 + a2∇2
X,Y Z2
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(iii) the product rule:

∇2
X,Y (βZ) =β∇2

X,Y Z + LXβ∇Y Z
+ LY β∇XZ +

(
∇2
X,Y β

)
Z,

where ∇2
X,Y β = LXLY β−L∇XY β ∈ C∞(Q), Xi, Yi, Zi ∈ X(Q), αi, β ∈ C∞(Q),

and ai ∈ R.

The following lemma is crucial for the proof of Theorem 1.

Lemma 2. For the system

ẋ1 = y1

ẋi = yi
ẏ1 = u

ẏi = −Γijky
jyk + xi−1, 2 ≤ i ≤ n,

(23)

we have for any 1 ≤ k, j ≤ n,

∇2
adk−1

e g,adj−1
e g

e = (−1)j+k
(
∂Γijs
∂xk

es + Γijk+1 + Γikj+1 − Γi−1
kj

+ (ΓdjsΓ
i
kd − ΓdkjΓ

i
ds)e

s

)
∂

∂xi
. (24)

Proof. For system (23) we calculate ∇2
adk−1

e g,adj−1
e g

e = (−1)j+k∇2
∂

∂xk ,
∂

∂xj
e =

∇ ∂

∂xk
∇ ∂

∂xj
e−∇∇ ∂

∂xk

∂

∂xj
e,

where ∇ ∂

∂xj
e =

(
∂ed

∂xj + Γdjse
s
)

∂
∂xd , and

∇ ∂

∂xk

(
∇ ∂

∂xj
e
)

= ∇ ∂

∂xk

(
∂ed

∂xj

)
∂

∂xd
+∇ ∂

∂xk

(
Γdjse

s
) ∂

∂xd

=
∂ed

∂xj
∇ ∂

∂xk

∂

∂xd
+ L ∂

∂xk

(
∂ed

∂xj

)
∂

∂xd
+
(
Γdjse

s
)
∇ ∂

∂xk

∂

∂xd

+
(
L ∂

∂xk

(
Γdjs
)
es + L ∂

∂xk
(es) Γdjs

) ∂

∂xd

=
∂ed

∂xj
Γikd

∂

∂xi
+ Γdjse

sΓikd
∂

∂xi
+

(
∂Γijs
∂xk

es +
∂es

∂xk
Γijs

)
∂

∂xi

=

(
∂Γijs
∂xk

es + Γijk+1 + Γikj+1 + ΓdjsΓ
i
kde

s

)
∂

∂xi
,

since ∂ed

∂xj = 1, if d = j + 1, and zero otherwise, and thus ∂ed

∂xj Γikd = Γikj+1

(analogously for the other derivatives). Now, using ∇ ∂

∂xk

∂
∂xj = Γdkj

∂
∂xd , we

calculate

∇∇ ∂
∂xk

∂

∂xj
e = ∇Γd

kj
∂

∂xd
e = Γdkj

(
∂ei

∂xd
+ Γidse

s

)
∂

∂xi

=
(

Γi−1
kj + ΓdkjΓ

i
dse

s
) ∂

∂xi
, so we have
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∇2
∂

∂xk ,
∂

∂xj
e = ∇ ∂

∂xk

(
∇ ∂

∂xj
e
)
−∇∇ ∂

∂xk

∂

∂xj
e

=

(
∂Γijs
∂xk

es + Γijk+1 + Γikj+1 − Γi−1
kj

+ (ΓdjsΓ
i
kd − ΓdkjΓ

i
ds)e

s

)
∂

∂xi
.

which yields (24).
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