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Abstract

We present a new type of feedback linearization that is tailored for me-
chanical control systems. We call it a mechanical feedback linearization.
Its basic feature is preservation of the mechanical structure of the system.
For mechanical systems with a scalar control, we formulate necessary and
sufficient conditions that are verifiable using differentiations and algebraic
operations only. We illustrate our results with several examples.

1 Introduction
An N-dimensional control-affine system with a scalar control
5= P(2) + G(2)u, (=)

where z € Z, an open subset of RV, and u € R, is said to be (locally) feedback
linearizable (F-linearizable) if there exist a (local) diffeomorphism ® : Z — RV
and an invertible feedback of the form u = «a(z) + B(z)@ such that the control
system , in the new coordinates Z = ®(z) and with the new control @, is a
controllable linear system of the form zZ = A% + bii. A geometric solution to the
problem of feedback linearization (inspired by , and developed independently
in and ) provides powerful techniques for designing a closed-loop control
system that have been used in numerous engineering applications. From a
theoretical point of view, that result identifies a class of nonlinear systems that
can be considered as linear ones in a well-chosen coordinates and with respect
to a well-modified control.



In this paper, we state and study the following fundamental question: if a
nonlinear control system is mechanical and feedback linearizable, are those
two structures compatible? That is, can we feedback linearize the system pre-
serving its mechanical structure? For mechanical control systems, it is natural
to consider mechanical feedback equivalence (in particular, to a linear form)
under mechanical transformations (coordinates changes and feedback) that pre-
serve the mechanical structure of the system. In our recent paper [4], we showed
that even in the simplest underactuated case of 2 degrees of freedom, the struc-
tures (linear and mechanical) may not conform trivially. In the present paper,
we treat the single-input case in its full generality.

There are several motivations for preserving the mechanical structure when
feedback linearizing the system. First, our formulation of the problem of me-
chanical linearization preserves configurations and velocities. We reckon that it
is essential that new configurations (of the linearized system) are functions of the
original configurations only, as well as new velocities are true physical velocities
(in contrast to pseudo-velocities). Therefore, we do not lose the physical inter-
pretation of the system. This could be useful, e.g. for mechanical systems with
constraints on configurations, which are transformed into linear constraints on
configurations. Second, the configuration trajectories are preserved too, which
could be useful in e.g. the motion planning problem (the most natural way to
state the problem for mechanical systems is to follow configuration trajectories).
Third, it is worth mentioning that mechanical feedback linearizability guaran-
tees the linearizing outputs to be functions of configurations only. This may
be of constructional importance because one needs only configuration sensors,
not those of velocities. The next argument is the fact that the resultant linear
mechanical system allows us to employ dedicated techniques for mechanical sys-
tems. An example of such technique is the natural frequency method of tuning
a linear feedback. Finally, when applying mechanical feedback linearization, the
physical interpretation of the external action (force, torque, etc.) is preserved
but is lost for general feedback linearization.

This work is a mechanical counterpart of the classical results on feedback
linearization of control systems [1], |2], [3], see also monographs [6], |7]. Our
intention is to formulate conditions for mechanical linearization (shortly, MF-
linearization) in a possibly similar manner (e.g. using involutivity of certain
distributions).

For a geometric approach to mechanical control systems see [5], [8], [9], [10].
For mathematical preliminaries concerning the Lie derivative, the Lie bracket,
distributions, etc., see [6], [7]. For linearization of mechanical control systems
along controlled trajectories see [11]. For mechanical state-space linearization of
mechanical control systems see [12] and [13]. Compare also [14], for a pioneering
work on (partial) feedback linearization of mechanical systems.

Although the state-space of mechanical control system is the tangent bundle
TQ of the configuration space ), we formulate our conditions using objects on
Q only. The key here is a geometric approach to mechanical systems [5] and
considering the Euler-Lagrange equations as the geodesic equation under an
influence of external forces.



The outline of the paper is as follows. In Section[2] we state the problem. In
Section [3] we develop further the problem of mechanical feedback linearization
and formulate the main result, separately, for mechanical systems with n > 3
in Theorem [I} and with n = 2 in Theorem 2] In Section [ we provide an
application of our results to MF-linearization of several mechanical systems.
Section [6] contains technical results used in proofs that could be of independent
interest.

1.1 Notation

Throughout the Einstein summation convention is assumed, i.e. any expression
containing a repeated index (upper and lower) implies the summation over that
index up to n, e.g. w; X' =31 w; X"

AT transpose of a matrix (of a vector) A4,

I, n xn identity matrix,

@ configuration manifold,

X(Q) the set of smooth vector fields on a manifold @,

T,Q tangent space at = € Q,

TQ = Uer T,Q tangent bundle of Q,

x=(z%,...,2") alocal coordinate system on Q,

¢  a diffeomorphism of @, and ® a diffeomorphism of TQ,
D¢ = % the Jacobian matrix of a diffeomorphism ¢,

gfg = gf] the (7, j)-element of the Jacobian matrix D¢,
oz’

5 the (j,7)-element of the inverse of the Jacobian matrix D¢,

Lxa Lie derivative of a function « defined as Lxa = gﬁ X,

[X,Y] = %X — %—fY =adxY Lie bracket of vector fields,

% the i-th unity vector field, and dx’ the i-th unity covector field, in a co-
ordinate system z = (x!,...,2"),

£ = span {adgg, 0<5< z} distribution on @ spanned by adg,

V  covariant derivative, and V? second covariant derivative,

Fé . Christoffel symbols of the second kind of V,

2 Problem statement

Consider an n-dimensional configuration space ) (an open subset of R™ or, in
general, an n-dimensional manifold) equipped with a symmetric affine connec-
tion V. The operator of the affine connection V allows to define intrinsically the
acceleration as the covariant derivative Vi(t);t(t), see e.g. [5L8L[17]. The covari-

. . . . o > 6
ant derivative V : X(Q) x X(Q) — X(Q) of an arbitrary vector field Y = Y 5%

with respect to X = X* 821‘ in coordinates reads

oyt . C 0
J i yviyk
aij +FJ,€X Y ) prh (1)

var = (



A mechanical control system (MS) is a 4-tuple (@, V, g,€), where g and e are,
respectively, controlled and uncontrolled vector fields on Q. A curve z(¢) : I —
Q, I C R, is a trajectory of (MS) if it satisfies the following equation

Vima(t) = e(z(t) + g (z(t)) u, (2)

which can be viewed as an equation that balances accelerations of the system,
where the left-hand side represents geometric accelerations (i.e. accelerations
caused by the geometry of the system) and the right-hand side represents ac-
celerations caused by external actions on the system (controlled or not). Notice
that is a second-order differential equation on @ (indeed, using we con-
clude that V;4 depends on &, see [5] for details) and can be rewritten as a
system of first-order differential equations on TQ, which we also call a mechan-
ical control system (MS):

i i Jok | i i (MS)
¥t =-Th(@)yy" +e'(2) + g' (),
for 1 < i < n, where (z,y) = (x17...,ac",y1,...,y”) are local coordinates

on the tangent bundle TQ of the configuration manifold @, and Fé-k(x) are
Christoffel symbols of the affine connection V that correspond to the Cori-
olis and centrifugal forces. The vector fields e(x) = (e!(z),...,e"(z))? and
g(z) = (¢'(x),...,g"(x))T correspond to, respectively, uncontrolled and con-
trolled actions on the system. Throughout all objects are assumed to be smooth
and the word smooth means C*°-smooth.

Our obvious inspirations are Lagrangian mechanical control systems without
dissipative forces. For the correspondence between and the Lagrangian
equations of dynamics see [5], [8], [9] and our recent papers [13], [16]. However,
we will consider throughout a more general class of mechanical control systems
allowing for any symmetric (not necessarily a metric) connection and any (not
necessarily potential) vector field e(z).

Consider the group of mechanical feedback transformations Gjsr generated
by the following transformations:

(i) changes of coordinates in TQ given by ® : TQ — TQ
0
(520) 7 (2.5) = Bla) = (960, 501 )

called a mechanical diffeomorphism, where ¢ : Q — Q is a diffeomorphism
and % its Jacobian matrix,
(ii) mechanical feedback transformations, denoted («, 3,7), of the form
u= (@)Y’ y" + a(z) + B(2)a, (4)

where 7,1, o, B are smooth functions on @ satisfying
Yik = Ykj» B(-) # 0. The matrix v = (v,) represents a (0, 2)—tensor field.



Even if the diffeomorphism ¢ is possibly local on @, the action of % (x) is always
global on fibers T,.Q.

Definition 1. The system (MS)) is MF-linearizable if there exist mechanical
feedback transformations (®, o, 8,v) € Gump bringing (MS) into a linear con-

trollable mechanical system of the form
G =g

. o - (LMS)

y' = B3 +b'a,

where (&,9) are coordinates on TR™ = R" x R", the matriz E = (E}) is an

n X n real-valued matriz, the vector field b = b a?zi is constant, and the pair

(E,b) is controllable (see [15]).

Represent (M) as ¢ = F(2) + G(2)u, where 2 = (z,y) € TQ, F = y' ;2 +
(—I‘ék(ac)yjyl~c + ei(m)) 8%“ and G = g'(x)-2;. The problem that we formulate

oy
and solve in the paper is whether (MS) is MF-linearizable? That is, do there
exist ® = (Z,7) = (o, %y) and (a, B,7) such that

52 (F+ 6l + ) () = ().

OO BE

Note that MF-linearizability is stronger than the classical feedback lineariz-
ability since, for the latter, ® : TQ — R?" can be any diffeomorphism (need not
be of mechanical form (3)) and y”v(z)y + a(z) can be replaced by any function
a(z,y) on TQ and B(z) by any invertible function S(x,y) on TQ.

If we neglect the mechanical structure of 2 = F(z) + G(2)u, and consider
it as a general control system, we can ask if the system is F-linearizable. The
well-known answer |2}3] asserts that, locally, this is the case if and only if the

distributions D’ = span {ad%G ,0<5 < Z} are involutive and of constant rank
for i = 0,...,2n — 1 and D?>*~! = TQ. The natural question arises whether, for
F-linearizable (MS), the general feedback transformations (®(z), a(z), 8(z)) are
mechanical (i.e. of the form and ) or whether they can be replaced by
mechanical ones.
Example 1: Consider the mechanical system

=y yl :—$2(y1)2+1’2
2 2 -2 (5)

=Y Yy =4,
on R*. This system is locally F-linearizable. Indeed, the local diffeomorphism
7 = ®(z), where 2z = (2!, 22, y',9?), 2 = (3%, 72,9, J°), given by

I = Yy =



together with the feedback u = 2(2?)3 4+ 6(22 — (22)?)(y')? + —r%—, render the
(yh)>-1
original system linear and controllable

=g P2=9® =2 =0

Therefore, the system is F-linearizable. Note, however, that neither the change
of coordinates nor the feedback is mechanical (#? depends on velocities, and
the function S depends on velocities as well) so the mechanical structure is
not preserved. Our question is whether this system can be linearized by other
transformations that preserve the mechanical structure, i.e. can it be MF-
linearized?

The group of mechanical transformations Gy p = {(®,a, 3,7)} preserves
trajectories, that is, maps the trajectories of (MS) into those of its MF-equivalent

system (/W:S') Indeed, if z (¢, zp, u(t)) is a trajectory of (MJS)) (passing through

20 = (z0, yo) and corresponding to a control u(t)), then Z (¢, Z9, u(t)) = @ (z (¢, 20, u(t)))

is a trajectory of (MS) passing through Zp = ®(z9) = (¢(z0), %(xo)yo) and

corresponding to @(t), where u(t) = y(t)Ty (z(t)) y(t) + a (z(t)) + B (z(t)) a(t).
Moreover, via ¢ : Q — Q, it establishes a correspondence between configuration
trajectories in Q and Q, i.e. Z (t,Zo,u(t)) = ¢ (z(t, 20, u(t))), making the fol-
lowing diagram commutative (notice, however, that 7 (2(¢, z0,u)) = (¢, 20, u)
depends on zy = (z, yo), i.e. an initial configuration xy and initial velocity yo):

(®,0,8,7)

Z(t,ZQ,U) g(ta 207&’)
2(t, 20, ) (9.008:7) #(t, 20, )

where 7 : TQ — Q, w(z) = w(x,y) = x, is the canonical projection which
assigns to the pair (x,y) the point z at which the velocity y is attached.

3 Mechanical feedback linearization

Our main result uses two basic ingredients: the covariant derivative of the con-
nection V, see (1)), and the involutivity of suitable distributions. We will also
need the second covariant derivative of a vector field Z in the directions (X,Y),
which is a mapping

V2 2(Q) x X(Q) x X(Q) — X(Q)

O : (6)

For properties of the second covariant derivative see Lemma [I] in Appendix.
In order to formulate the result, we associate with (MS) the following se-
quence of nested distributions £° c &' c &2 c ... c & C ... C TQ, where

E¥ =span{g}, &' =span{adlig,0<j<i}.



Remark 1. To analyze the behavior of the distributions £ under mechanical
feedback transformations (o, B,7) notice, first, that £ are invariant under -y
since v does not act on them. If the distributions £ are involutive, then they
are invariant under feedback transformations of the form («, 3,0), i.e. fory =0
they remain unchanged if we replaced e and g by, respectively, e + ga and Bg,

of- 10, [7].

Now, we formulate our main result for MF-linearization. First, we state
a theorem for (MS) with n > 3 degrees of freedom. The remaining case of
n = 2 degrees of freedom is treated in Theorem [2| For an explanation of that
distinction, see the comment before Theorem [2] and Remark [3] for a comparison
of both results.

By a local MF-linearization around xy €  we mean that it holds on
U,eco Te@Q, where O is a neighborhood of x¢; recall that all transformations
are global on tangent spaces T,.Q).

Theorem 1. Assume n > 3. A mechanical control system (MS) is, locally
around xo, MF-linearizable to a controllable (LMS) if and only if

(MF1) rank £"~ ! =n,
(MF2) E* is involutive and of constant rank, for 0 <i<mn — 2,
(MF3) Vaqig9 € EY for0<i<n-—1,

(MF/) Vid ec& for0<k,j<n-1,

kg,adeg
Remark 2. Notice that (MF1)-(MF2) are the classical conditions (see [2,|5,|6,
7]) that assure F-linearization of the system & = e(x)+g(x)u on Q via & = ¢(x)
and u = a(z)+ B(x)a. The remaining two, (MF3)-(MF/), can be interpreted as
compatibility conditions that guarantee vanishing the Christoffel symbols Fz-k mn
the linearizing coordinates & = ¢(x), except for those that can be compensated
by feedback u = vk (x)y y* + .

Proof. In the proof we will use two Lemmata [I] and [2] given in Appendix, that
are of independent interest.

Necessity. For , we have F;k =0, e= Ex and g = b. It follows that
adlg = (—1)"E% and therefore, using the definitions of V, given by , and of
V2, given by (), we calculate

Vagigadlg =0, V2, u.e=0, (7)
which implies that (MF1)-(MF4) hold for (LMS) (in particular, (MF1) holds
because (LMS) is assumed controllable). To prove necessity of (MF1)-(MF4),
we will show that they are MF-invariant. All conditions (MF1)-(MF4) are
expressed in a geometrical way, therefore they are invariant under diffeomor-
phisms. The conditions (MF1) and (MF2) are mechanical feedback invariant,
see Remark([I] It remains to show that (MF3) and (MF4) are invariant under the



mechanical feedback u = ;1 (2)y/y* +a(x) + B(z)i. For the closed-loop system,
denoted by ”~", the Christoffel symbols I‘;k of V, &, and § are, respectively,
given by

Ti =Th — gy, é=e+ga, §=gp (8)

For any X,Y € %(Q), we have VxY = VxY —~(X,Y)g = VxY mod &°,
where 7(X,Y) = v,, XY € C~(Q), therefore

Vadigd = Vaaizd —1ads§,§)g = Vagizg mod E°.
By Vxg=Vx (98) = Vxg+ (Lxf)g, it follows that instead of calculating

V,dig it is enough to calculate Vi 59, since the second term (Lxf3)g € v,

For i=0, we have Vg = V(459 = BV4g € £°. Tt is easy to show that for any
1<j5<n-—1, we have

adly = Badlg + &’ ~1, (9)

where &/ ~! € £771. Assume Va9 € &Y, for 0 <1 <i— 1. Then, by formula
@D, Vadigy = BVadgigg+ Vai-19 € E% because the first term is in £° by (MF3)
and the second by the induction assumption. We have thus proved necessity of
(MF3).

To show necessity of (MF4), using Lemma [1} calculate

ViyZ=VxVyZ-Ve¢ 2

=Vx (VvZ =Y, 2)9) = V(viy—x.v)9)Z (10)
= V%{,YZ — (Y, Z2)Vxg+~v(X,Y)V,Z mod &°.
By the above formula, we get
@zdgg,adggé :vidgg,adggé —(adlg, €)Vadr g9
+(adkg, adlg)V,é mod E£°.

The second term, on the right hand side, is in £ (by (MF3) and its invariance),
while the third term is a function multiplying

Vyé=V,(e+ga)=Ve+aV,g+Lagell,

since for (LMS) we have Ve = —ad.g = —Eb € L.

2 ~ . . . . .
The first term Vad’gg,adgge is, by @ and Lemma 1)7 a linear combination

with smooth coefficients of vidig adlgé’ with 0 < ¢ < kand 0 <[ < j. Thus
we calculate Vﬁdig@dlsgé = Vidég,adége+Vzdigﬂdég(ga). The first term vanishes
since holds for (LMS). We calculate the second term using Lemma [If iii),
and we have Vngg,adleg(gO‘) = aVidégyadégg + Ladzgavadégg + Ladégavadigg +
(v

Zdigad,qa)g € &0 because the first three terms vanish, due to , and



the last one is in £°. Summarizing the above calculations, we conclude that
@zd’gg,adggé € &' = &', which proves necessity of (MF4).

Sufficiency. We will transform the system (MS), satisfying (MF1)-(MF4),
into (LMS) in two steps. In the first step, we will normalize the vector fields
e and g and show that condition (MF4) implies zeroing some of the Christoffel
symbols F; > which exhibit a triangular form in the normalizing coordinates. In
the second step, we compensate the remaining Christoffel symbols.

By conditions (MF1)-(MF2), there exists a function h satisfying L4 ,h =0,

for 0 <j <n-—2 and L -1 h # 0, and thus (2,7) = (qS(:z:),%(z)y) is a

local mechanical diffeomorphism, where ¢(x) = (L2 h, ..., L.h, h)T that can
be completed by a feedback transformation (a, 3,0) that map, respectively, Bg
into g = (1,0,...,0)7, e + g into € = (0,2',...,2"~ 1T, and T}, into F;k, see

the classical results of feedback linearization [2], [6], [7]. Then, (®,a,3,7v) €
Gy, where (Z,9) = ®(z,y) = <¢(m),§—i(m)y) with ¢, «, 8 just defined and
Vik = f‘}k(i), brings (MJS)) into (we drop "tildas” for readability)

il =y Ty "
jji:yi yi:—l";.kyjyk—ﬁ—xi_l, 2 <1 <n,
to which Lemma [2] applies.
We will show that the Christoffel symbols I‘;k of satisfy
;=0 forl1<k<n-1,1<j<i<n,
i 0 forl1<j<i<n (12)
" Az™) for2<j=i<n.

For system (1)), we have adf~1g = (—1)*~1 -2 and, in particular, g = 52.
Calculate V je-1 9 = (—1)’§_1VﬁgZ e (—1)k_1Vﬁ 2 = (—1)kiry, 2
It follows that Ffﬁ = Fik =0, for 2 < i < n by (MF3), and for i = 1 by the

above form.
Rewrite (MF4) as Vidk_lg wdi—1€ = 0 mod &', for 1 < j,k < n, and apply

it successively for j = 1,...,n and for all 1 < k < n. For j = 1, first calculate
0 i s 0 0
VQGZV%GZ@*FIHSG @:w and then
0 .0
_ k—1 _ k—11i
Vadlg—lg (Vge) = (71) Vﬁ 81‘2 = (71) Fk2 8.%‘i.

8%1 = (—1)’“_1F,1€1% =0 and

On the other hand, Vadk,lgg = (=1)1v >
N e
hence Vvad,s_lgge = 0. Thus, by (@),

vzd§71g7g€ = vadlg—lg (Vge) — vvad§71996 =
;0
= (=1)*'ri, B 0 mod &',



implying that I, =T%, =0 for any 3 <i < n.
For j = 2, calculate

0 0 0
Vadege:—Va%ez 83+F 81:_$_

where d = d! (aj)a%1 + d%x)% € &', and then

0
Vadlg_lg (Vadege) = (_1)kvaik <8$3 * d) N

= (=1)F (Dhg + iy d" + T}pd?) i

19)
= (—1)kr8 9 mod &*
k3 Dt '
On the other hand,
0 .0
. k _ ki _
Vaai190deg = (F1V oo, 55 = (CD Mg =

0 0
= (-1)* (Fllc2axl + F%Qw)

and Vy . adg¢ = (—=1)* T3, 5% mod €' It follows that, modulo €',

0
2 2
\ adfflg,adege = (Z Fk38 7 o FkQ)w) ’

and, using (MF4), we conclude I'l; =T%, =0 for any 4 <i <n and I'}; =I'%,.
Following the same line (with a more tedious calculation), one can prove the
general induction step. Namely, assuming, for a fixed j,
FJ i1
k] 1 (13)
ks:FSkZO s+1<i<n, 1<s<y,

one shows by calculating de’gflg%adgflge’ with the help of of Lemma
that

i+1
Fl]ij«kl_r]
I’ij:O forj+2<i<n

and thus, by the induction assumption and symmetry of the Christoffel symbols,
1=l =0 s+1<i<n, 1<s<j+1. (14)

It follows that for each 1 < k < n the matrices consisting of Christoffel symbols
(]."};j)7 for 2 < 4,5 < n are upper triangular. By the induction argument,
holds for all 2 < 5 < n and implies, for any 1 < k <n — 1,

2 _1t™n—1 _ 1n __
2, =...=Tp 1 =T% =0.

10



since I'y,, =T7, =0 (as n > k). On the other hand, for k = n, implies

[e=... =00 =T, = Az)
for a function A(z). Therefore for each 1 < k < n the matrices (T';), for
2 < 1,7 < n, are strictly upper triangular, and the last one, for k = n, is upper
triangular with all diagonal elements equal to each other, which we denote by
A(z). The matrices read

0 TIi, I‘§4 e an_2 an—1 an
0 0 Fk4 ce Fkn—? Fk:n—l Fkn
( z]) = - n—2 n—2 ’
0 0 0 .. 0 TP oTE
0 0 0 ... 0 0o Tyt
0 O 0o ... 0 0 0
for1<k<n-1, and
A FnS FzA Ffm—Q Fz)m—l Fzm
0 A 1_\n4 an—2 an—l an
1—‘:7, i) — - )
(Cng) 0 0 0 ... A T2 [n2
0O 0 0 ... 0 A Tt
0 0 0o ... 0 0 A

and are thus of the desired triangular structure and it remains to prove
that A = A(2™). Note that in the above matrices we skip the first row ij and
the first column T'¢,. This is due to the fact that I‘,lcj = 0 (which can always be
achieved by a suitable feedback transformation) and I'y; = 0 by (MF3). Notice
that we have £7~2 = span {8%17 e %} and thus applying (24]) of Lemma ,
for j =n and any 1 <k <n, we conclude (set T'},,, =0

n+k—2vr2 _ 2
(1) Vadttgadn1g€ = Vo2 o€

BaF 1 TaT
or»

_ ns _s n n _ 1n—1

= (63:’“ e” + Ihkp1 + Uknsr — Ty

+ (ngs Zd - an gs)es>82n mod 5”72
1) N 1) 0 o
= (We + I —FkTLl)W mod "2,

since, due to the triangular structure (I4), I'?, = 0 except for s = n giving
I'" = X\ and, moreover, the equality I'¢ T, —T'¢ T" =0 holds. Indeed, in the
latter, I';; = 0 except d = k = n giving I';, I, —I' I'n. =0 and I'j), =0

ns- nn nn—- ns
except for d = s = n giving I',, T2 — T3 I = 0.

11



For we will apply (MF4) in three cases. First, if 1 < k < n — 2, then,
modulo £"2, we have

o\ S\ D () o
(&xe L = L ) oxn (axkx ) oxn 0

since all I‘Z,H_l = 0 and all I‘Z;l = 0 by and k < n — 2. Second, for
k =n — 1, we have modulo £" 2,

N O I ) 0
(axnle Lo = o 1")3:17”_(8:0" T¢" TA- A)a n

_ oA n—1 0 _
B (83@"—196 ) dxm 0

Therefore 3— =0, for 1 <k <n—1, implying that A is a function of the last
variable 2" only, i.e. A = A(z"), Wthh gives the system in the desired form
Third, for k = n, we have modulo £"2

1)) 1) O ox ,_ 1) 0
((‘3"6 Flnar =T >8x"_(8x” —Tn >8x”_0’

implying that I'?,-! = L., since Bg(z Jgn=1 = [\,
Now, transform system (1 , satisfying (1 , via the local mechanical diffeo-
morphism @ : TQ — TQ

T = ¢(x)
y = Do(x)y,

with h(x fo (s2)dsa, where A(s2) = exp ( > X(s1)ds1).

Denote by k> € g the objects of the system expressed in coordinates ¥ =
¢(x). Applying feedback u = ff}kgjjﬂk + L"h + uLyL" 'h, the transformed
system becomes

where ¢(x) = (L2 h, ..., Leh, h)T , (16)

=g =q

<

y
v X . ) (17)
=y 7' —szyy + 27 2<i<n,
whose Vector fields are & = Z'~ 1, where ¥ = 0, and § = . Transformed
system (17)) is still of the form (11 D and at the moment we 1gnore how FZ have

been Changed into I‘J - Below we will prove that all I‘; , vanish. To thls end,
we first calculate explicitly the time-evolution of the pair (Z", ")

&
D‘
/—\
\_/
>
—
8
3
~—
8-
3

I
=
—

8
3
~—

<
3

I
|
3
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since "~ = L.h = A(a™)a" L. It follows that f‘?k =0, forall 1 <k,j<n.
For transformed system , we rewrite by adding ”bars” as

VQ ) = (_1)]+k aP.Z?S =S + f’L
adlg_l_,adéflge - ok € Jk+1

0
ozt

+ Ty + (CT — T e - 15
and by (MF4), we have

(—1)]*’%_1};-(@)i =0 mod E"?,

2
v oz"

ad’gflg,adg‘lgé =
where ay;(z) = %1;7; e’ + f?kﬂ + fzjﬂ + (T4, — f‘gjfgs)és - fzj_l, which
implies (since f‘Zj =0, for 1 < j,k <n) that ag;(z) = f",zj_l = 0. Now assume
f};j =0foracertainl <i<n-—1andany 1 < j,k<n. Then and (MF4)
imply fi}l = 0. Therefore we have proved that all Christoffel symbols of
vanish aln((i9 thus the system is a linear controllable (LMS), since the vector field
e=1x"

. . - o0 .
557 18 linear and g = 577 is constant. O

The above theorem does not work for systems with 2 degrees of freedom,
i.e. for n=2, as that case is too restrictive for involutivity, see Remark [3| below.
Therefore we state the following theorem for MF-linearization of (MS) with 2
degrees of freedom.

Theorem 2. A mechanical system (MS|) with 2 degrees of freedom is, locally
around xo, MF-linearizable to a controllable linear (LMS) if and only if it
satisfies in a neighborhood of xq

(MF1)’ g and ad.g are independent at xo,
(MF3)’ Vg9 € E® and Vg, g9 € E°,

(MF5)" V2 4.50deg = V2, , adeg € E°.

Remark 3. Ifn = 2, then £° is of rank 1, thus involutive and (MF2) is trivially
satisfied, and so is (MF}) because ' = TQ (cf. Theorem. Therefore (MF2)’
and (MF})’ are absent and replaced by (MF5)’ that guarantees that we can
compensate the Christoffel symbols (as do (MF3)-(MF4) for n > 3).

Proof. Necessity. Note that (MF1)’ is equivalent to (MF1) and (MF3)’ is (MF3)
of Theorem [1} Although Theorem [1| applies to n > 3, the necessity part of its
proof remains valid for any n > 2 so it shows necessity of (MF1)-(MF3)’.
Therefore we need to show necessity of (MF5)’. For a controllable (LMS) we
have Ty =0, g = b and ad.g = —Eb are independent, and

Vadégadgg =0, Vidgg’adkgadig =0, [adig, ad’;g} =0, (19)

13



for 0 < 4,5,k < 1. We will use formula (10) to show that (MF5)’ is invariant
under mechanical feedback. Denote V, é g 'y as in (8). Then we calculate

\& adzg andeqadeg v(adsg, ad:g) V3§

+7(§,adz§)Vzadsg mod E°,

g,adeg

@gdég,gadég :ngég,gadég —(9,adsG)Vad.59
+ v(adzg, §)Vzadzg mod E°.
The second terms of the right hand side of both equations are in £° due to the
feedback invariance of (MF3)’, while the third terms are equal since y(X,Y) =
~(Y, X) is symmetric. Therefore we conclude
5adsg
adzj mod EY.

6g ads gadeg vad

= V2

e9,9

adzj — V2

g,adsg adzg,g

Denoting adzj = Bad.g + d°g (see @) and by Lemma(i), we have

V~ adzg@deg = V%g Bad.g+dogAded
= B°V2 i.g0deg + BV} jadzg
Veds.59060 = Vad,gaog,590d20
= B°V24, 4.40deG + BV} jadzg,
where the last terms on the right are equal, implying

v adeg vad adeg

g,adzg e9,9

= 52 (Vg ade gad?g ﬁ Vad g gadéé)

and it remains to prove that Vg ad,g@deg — Vad 9.90deg € &Y, which we show
using Lemma l(111 where X, Y stand for either g or ad.g. Denote Vx 3 = Lxf
and V2 ’Yﬁ LxLyf — Lyy,yf (see Lemma and calculate

Viyadeg = Viy (Badeg +d°g) = BV yadeg
+ LxBVyad.g+ Ly BV xad.g + (V%Yﬂ) adeg
+d"Vi yg+ Lxd’Vyg+ Lyd’Vxg + (Vi yd’) g
= (VX yB)adeg mod E°,
since all VX yX =0and VxY =0, see (19). Therefore we have

Vg ad, gadeg Vad 9.90deg

= (V2 aa.oB — Via.g40) adeg mod E°.

Finally, we calculate

gadegﬁ vadeg o = Lolad.gB = Lvad.qf
- (Ladeg gﬁ - Lvadeggﬁ) - L[g,adeg]ﬁ = O’

14



which shows necessity of (MF5)’.

Sufficiency. By (MF1)’, rank £! = 2, and £° = span{g} is of constant
rank 1 and thus always involutive, hence the system is, locally around xq (since
g(z0) # 0), MF-equivalent to (cf. (II]))

it =yt Uh
i =y’ 7 = —Tiyly" +a?
We have g = 1, adeg = % and now we calculate
0 5 0

Vg9 = F%l@ Vad.gg = _F12@7

which by (MF3) are in £° = span {%}, implying I'3; = T2, =13, = 0. It
follows Vg = Vag,q9 = Vgadeg = 0, and Vg, gadeg = I'3, 525 and thus

Vg adeg adeg — Vad 9.9 adeg = V¢Vaa, gadeg

— VV,ad.gtdeg = Vad, gV gadeg — Vv, ,g0decg

o orz,
2 22
= VoVadegodeg = Voo T g s = 5.0 5,2

implying, by (MF5)’, %sz =0, i.e. ['3,(2?) = \(z?).

Now, we transform the system via the local mechanical diffeomorphism & :

TQ — TQ (compare to (16))

T = ¢(z) . T
J = Do(x)y, where ¢(z) = (Leh, h)
with h(z fo (s2)dsy and A(sy) = exp (f” A(s1)ds).

We calculate the evolution of the pair JE( ), 4(t)) of transformed coordinates,
2

)
using 41 (22(t)) = A (22(t)) &%(t) and LA (22(2)) = A (22(2)) A (2%(¢)) a':Q(t);

first we get
= (Iz) Aa?)y? = 32
(962))\(962) 2+ A@?)g? = M)A (2?)y?y?
+A(2?) (=A(z )y y* +a?) = A(@®)at =7
and then A2yt + A( () 2'y? =7

gt = —ijy 7 + Lgh +uLgLch,

where we denote by I_‘;k the Christoffel symbols in the §j'-equation of the trans-
formed system. Applying the feedback u = —f}kgj y* + L2h + u.LgLeh, we get
a controllable linear mechanical system in the canonical form z' = !, 4! =
a, 22 =32, 2 =z". U

15



4 Examples

Example 1 (cont.): For system , we have g = 8%2 and ad.g = —8%1 are in-
dependent. We check MF-linearizability using Theorem [2| A simple calculation
shows that Vg = Va9 =0 € €% but V2, ad.g—V2,  adeg= 52 ¢ &°,
therefore the system is not MF—lineamzable

Thus is an example of a system that is F-linearizable but not MF-
linearizable. For such systems the choice is: either to F-linearize for the price
of loosing the mechanical structure or to keep the mechanical structure but to
get rid of the linearization.

Example 2: Consider the equation of dynamics of the Inertia Wheel Pen-
dulum [18] with constant parameters mq, mq, Ja:

=yl =y’ g=c +glu, §P=e+ g%
el = Mogingl, e? = —Moging!, g' = — 7g = mﬁh
m m
We will Verlfy whether the condltlons of Theorem i 2| are satisfied. First, we
calculate ade.g = (7 2 cos xl)a% — (= 2 cos T )6%2 It can be checked that g and

ad.g are 1ndependent for z! # +3 Wthh corresponds to the horizontal pOblthIl
of the pendulum, therefore (MFI) is satisfied everywhere except for 2! = +%.

Next, we verify condition (MF2)’ by calculating Vo9 = V44,49 = 0 € 50.
Finally, a direct calculation shows

vz,adeg adeg = videgy adeg =
2 2
mg o 1y 0 mg o 1y 0
= (m—gcos x )% ( gcos x )@,
thus V2 ; jadeg — V2, adeg =0 € EY satisfies (MF5)". The system is MF-

linearizable. A linearizing function is h(z) = de+sz + 22 (all others giving
MF-linearization are of the form o h(z), where o € R\ {0}). Due to the proof of
Theorem [2} the linearizing diffeomorphism is (z,§) = ®(z,y) = (¢(x), Do (x)y)
with ¢(x) = (h, L.h)T. The system in new coordinates reads

<1 md+J2 1

=yl P =
A Yy y y
1 mag+Ja fmo . 1 mgo . 1 mg+Jo
Yy =——|—smzr ——u| ——smr +———u
Jo mq mq mq maJa
Y sinz! = L.h = 32 (20)
J2
= —Ocosx yt = 7>
Jo
2
) mo 1,11 1 mo 1 -
- =——sinzyy + sin(2z") — cos T U = 1.
Jo J2 (227) mgqJa

Example 3: We will study MF-linearizability of the TORA3 system (see
Figure , which is based on the TORA system (Translational Oscillator with

16



Figure 1: The TORAS3 system

Rotational Actuator) studied in the literature, e.g. [19] (however we add gravita-
tional effects). It consists of a two dimensional spring-mass system, with masses
m1,ms and spring constants ki, ko, respectively. A pendulum of length I3, mass
mg, and moment of inertia J3 is added to the second body. The displacements
of the bodies are denoted by ' and 2, respectively, and the angle of the pen-
dulum by z3. The gravitational constant is a and u is a torque applied to the
pendulum. The kinetic energy is

1 . 1 .
T ziml(xl)Q + §(m2 + m3)(2?)?

1
+ §(J3 + m3l2) (&%) 4+ msls cos 2® 323,

and the mass matrix depends on the configurations. The potential energy is

V = Zki(a)? + Lko(2® — 2')% — mglzacos 3. The equations of the dynamics

read

mit + kit — ks (172 — a:l) =0
(my + m3)i? + mals cos £33 — mals sin 2 (&3)?
+ko (:c2 — :cl) =0
mals cos 2352 + (m3l3 + J3)#° 4+ malzasinz® = u,
which can be rewritten on T(Q as
11 11
T =y Yy =n
.2 2 .2 P2 3.3 2 2
it=y g =-Ty’y’+n +77u (21)
.3 .3 3 _ 3.3 3 3 3
it =y v =-T3y°y” + 07 + 77u
=2 _  —uygsina® =3 __ vpsina® cosa® 1 k1 ko 2 _ .1 2 _
where F33 ~ vyt sin? 30 F33 ~ vi+wvosin? 23 1 = mlx + ms3 (.13 €T )’ =
2 1 3 . 3
3 _ V‘l(ch -z )cosx —Vssinx 2 _ —mglgcosz® 3 _ mao+ms :
= v14vs sin? 3 ’ T vi4wvssinZ g3 T vi4wvssinZ g3 with constant
parameters:
_ 2 _ 2 272 _
vy = m3l3(m313 + J3), vy = m2m313 + Jg(mg + mg), vy = m3l3, vy =

ko (m3l§ + Jg) , V4 = mglzks v5 = m3l3a(m2 + m3).

17

Lvsasin22® —v3(a?—at)

v1+vo sin? a3
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To simplify calculations we apply to the system a preliminary mechanical
feedbac U= T% (F§3y3y3 -3+ 11) which yields

t=y gt = —mat + ppa
=y §? = pgsina®y®y® + pa(xt —a®) — pzcosz’u - (22)
:Z‘:,S — y3 yS — ’[_1,7
with M1 = k1+1k:27 M2 = mla M3 = mmil% y M4 = ]fﬁm'g

Since conditions (MF1)-(MF4) of Theorem [1|are MF-invariant, we will check
them for system . To summarize:

[33 = —pssinz®, and T% =0 otherwise,

0 0
e = (—ulxl +,u21'2) o a1 + U4 (.’ﬂ — LU2) 8$2

= pecosat 2 9 _ 00 O
g="Hs 022 " orr J o2 T o

We have (notice that calculations are performed on @ only)
0 0
adeg = (pops cosz®) 3T (13p14 cos z°) 57
ad2g = s cosa® ( (iapin + o) s — (n2pa + i) 2
3 oz? Y ox2 )’
therefore rank £2 = 3 for 2® # +£%, and (MF1) is satisfied. Now
l9,adeg] = — (p2p sin:zrs)i + (pspasinz )iéfl
) e 2H3 Ol 34 o2
and (MF2) is satisfied. Then, for any vector field v = v*(z) -2

_ 39 0 _

thus (MC3) is satisfied if we replace v by, in particular, g, ad.g,ad?g. Finally,
for (MF4), we calculate

Oxt?

. 0 0
V;ge = (mug 81113:3) Frei (u3u4 blnl‘3) E) €&l
2

adtg,adle® = 0 otherwise,

thus, the system is MF-linearizable. Now, choose h = Z—i:z:l + 22 + pgsina®

(whose differential dh annihilates g and ad.g), thus we take a linearizing diffeo-
morphism (Z,7) = ((b(ﬂc), %(m)y), with ¢(z) = (h, Leh, Lih)T. The linearized

LThis preliminary feedback is not necessary and it is possible to check the conditions and
to linearize the system without it, since our method and conditions are feedback invariant.
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system is in the form of (£LMS) and reads

Fl— %yl +y? 4+ pzcos by = gt
2
it = &yl+y2+u3(cos 233 sin 23yPy3) = prapi2 — Ml)xl — 2
M2 H2
22 palpe — m)yl _
2
- 42 — p1) . a(p2 — -
yQZN(M N)ylzﬂ(ﬂ 1) (M2$2—M1$1):$3
H2 H2
o H1pal b1 — H2 o
7= (ug)yl + papo — m)y* = §°

(1 = p2) (i + popa)pia.
H2
+ (11— p2) (1 + pa) pax® + (1 — po) papia cos x°u = .

J> = (2 — p1)papa sinayy® —

5 Conclusions

In this paper, we consider MF-linearization of mechanical control systems
with scalar control. We formulate the problem as a particular case of feedback
linearization preserving the mechanical structure of so that the trans-
formed system is both linear and mechanical. As we showed in [4] and confirmed
in this paper, even in the simplest case, the class of MF-linearizable systems is
substantially smaller than that of general F-linearizable ones. Therefore, a nat-
ural question arises, namely to compare the conditions presented in this paper
with those for F-linearization. The answer lies in the interplay between the
distributions £° = span {ad@g,O <j< z} and the ”usual” for F-linearization

D' = span {adﬁ,G7 0<5< z} We will address this problem in the future.

6 Appendix

The following lemma can be proved by a direct calculation.

Lemma 1. The second covariant derivative V§(7YZ satisfies the following prop-
erties:

(i) linearity over C*°(Q) in X and Y :

v%a1X1+a2X2),YZ = alv%{l,yz + OQV-QXLYZ

v?X,(OéllerOézlﬁ)Z = alv%(’ylz + QQVAQX,YlZ

(ii) linearity over R in Z:

Vg(,y(alZl + CLQZQ) = a1V§(7YZ1 + a2V§,YZ2

19



(#ii) the product rule:
Viy(BZ)=BVixyZ+ LxBVyZ
+ LyBVxZ + (Vi yB) Z
where V%(’yﬁ = LXLY6_LV)(Y6 S COO(Q); XiaY;a Z’L S x(Q); aiaﬁ S COO(Q)7
and a; € R.

The following lemma is crucial for the proof of Theorem

Lemma 2. For the system

.1 1
T = !

Y , (23)
=y 7 —F’kyy +z7l 2<i<n,

we have for any 1 < k,j <mn,
) ort )
k -1
Vit g adi=1g¢ = (1T ( Er e+ Tpen + Thyia — T

i i s a
+ (F?s kd sz 4s)€ )8:1:2 (24)

Proof. For system we calculate V2 kg .adi 1 g¢ = (—-1)ytFV2, o€ =

ozk 9z
V \Y% 8 e — VV 5 Lﬁe,
dw oxd oF 0aJ

where V_s e = (aw —i—Fd )a%d’ and

oxJ
d
Vo (Voe)=Va (ae.>8+v o (F;?seS)%
oz

axk 8xJ ax'] axd

d
_ oty 8+La(ae>0+(pd Y, 2

dad * 3eF Dl Ox3 ) Oxd 22k O
+ (Lo, (Td) e+ Lo (e) re,) %
= gsecd%aa% e’ ’fdaaz * (%1;% et gjﬁé) %
— <aal;§5 S+ Tlpyr + Ty +T% ;de5> %,
since 3% = 1,if d = j + 1, and zero otherwise, and thus g; i, = F?Cjﬂ
(analogously for the other derivatives). Now, using V ai = sz Hoa, We

calculate

de’ )
Vo o 2=y o e=T} (ad+r )W

9 kj 9zd

_ i—1 d 1t s a
= ij +ij dse ) @7 SO we haVe

20



vza ae:Va

ozk 9z axk

(Vae)—vvri_e

i ) ;
dad So 0w

_ 8 ;5 s FZ Fi Fi—l
=\ 2k ¢ Thikr Tl =y

7 7 S (9
+ (I, Dhg — T Tho)e >8ch

which yields . O
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