
Entropy-Regularized Partially Observed

Markov Decision Processes
Timothy L. Molloy, Member, IEEE, and Girish N. Nair, Fellow, IEEE

Abstract

We investigate partially observed Markov decision processes (POMDPs) with cost functions regular-

ized by entropy terms describing state, observation, and control uncertainty. Standard POMDP techniques

are shown to offer bounded-error solutions to these entropy-regularized POMDPs, with exact solutions

possible when the regularization involves the joint entropy of the state, observation, and control trajecto-

ries. Our joint-entropy result is particularly surprising since it constitutes a novel, tractable formulation

of active state estimation.

I. INTRODUCTION

Partially observed Markov decision processes (POMDPs) and Markov decision processes (MDPs)

with information-theoretic costs have attracted widespread attention across systems and control [2]–[5],

computer science [6]–[8], signal processing [9]–[12], and robotics [13]–[15]. Interest in such POMDPs

has been driven, in large part, by active state estimation problems in which information-theoretic costs

describing the uncertainty about latent states are minimized in order to aid or enhance the performance

of state estimation algorithms [5], [6], [9], [10]. Interest in such MDPs has, in contrast, been driven by

a desire within applications such as networked control and economics to develop control policies (or

decision-makers) that are rationally inattentive or “data-frugal” in that they trade-off control performance

to reduce the (data) rate at which state information is used to make control decisions [2], [3], [8]. Despite

interest in rate-cost trade-offs in MDPs, limited attention has been paid to similar problems in POMDPs.
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Motivated by data-frugal POMDPs with potential applications to active state estimation, we investigate

POMDPs with information-theoretic entropy costs that penalize observation incompressibility and/or state

uncertainty.

POMDPs with information-theoretic costs have been extensively investigated for active state estimation,

with popular costs including the (negative) mutual information between states and observations [4], the

(Shannon or Rényi) entropy of Bayesian filter estimates [6], [9], [13], and the entropy of Bayesian

smoother or Viterbi algorithm estimates [5], [14], [15] (see [10, Chapter 8] and references therein for

more). These POMDPs have been shown to be amenable to bounded-error (approximate) solution using

standard POMDP solvers when their cost and cost-to-go (or value functions) are concave and admit

piecewise-linear concave (PWLC) approximations (cf. [10, Section 8.4.4], [6]). For example, we recently

showed that the smoother entropy (i.e., the conditional entropy of the state trajectory given observations

and controls) can be (approximately) optimized in this manner [5], [16].

Outside of applications involving active state estimation, POMDPs with information-theoretic costs

have received only limited specialized attention. Most notably, in Bayesian experimental design (involving

degenerate POMDPs with a time-invariant or constant state), the entropy of the observations has been

explored as a cost to encourage the selection of controls (i.e. experiments) with predictable outcomes

(see [17], [18]). In the context of linear-quadratic regulators and linear-quadratic-Gaussian control (i.e.

POMDPs with specialized linear dynamics but continuous state, control, and observation spaces), the

directed information from the observations to controls has been used as a cost to study the trade-off

between feedback (data) rates and control costs (see [19]–[21]). Similarly, in the context of MDPs (i.e.

degenerate POMDPs with fully observed states), various information-theoretic quantities such as the

directed information, mutual information, and transfer entropy, have been used as costs to penalize

feedback from the states to the controls so as to study rate-cost trade-offs [2], [3], [8]. Despite growing

interest, solving POMDPs (and MDPs) with rate-cost trade-offs has proved difficult due to complications

including randomized policies [2], [17]–[19], the design of observation processes [2], [3], [8], [19], and

the need to solve nonconvex optimization problems [2], [7].

The main contribution of this paper is the proposal of POMDPs with costs regularized by combinations

of the input-output entropy (i.e. the entropy of the observations and controls) and the smoother entropy.

Such entropy-regularized POMDPs (ERPOMDPs) are novel in that they both introduce rate-cost trade-

offs into standard POMDPs (due to the relevance of the input-output entropy to rate-cost trade-offs via

Shannon’s source coding theorem), and generalize recent work on active state estimation involving the

smoother entropy to include compressible (or predictable) observations (cf. [5], [16]). Importantly, we

show that ERPOMDPs admit bounded-error PWLC solutions via standard POMDP techniques, in general,
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and exact solutions without additional PWLC approximations in the special case where the smoother and

input-output entropies are equally weighted and become the joint entropy of the states, observations,

and controls. The solution of ERPOMDPs involving the joint entropy without PWLC approximations

is surprising since the vast majority of other POMDPs with information-theoretic costs are entirely

intractable without them. Compared to our preliminary work in [1], significant extensions in this paper

include: 1) consideration of a generalized problem (7) with arbitrary combinations of the smoother and

input-output entropies; 2) development of entirely new results in Lemmas 3.1 and 3.2, and Theorem 3.1

concerning the input-output entropy; and, 3) new operational interpretations of ERPOMDPs in Section

V.

This paper is structured as follows. In Section II, we pose ERPOMDPs and examine their solution via

standard POMDP techniques in Section III. In Section IV, we examine exact ERPOMDP solutions in

the case of joint-entropy regularization. Finally, we provide interpretations of ERPOMDPs in Section V,

simulations in Section VI, and conclusions in Section VII.

Notation: Random variables will be denoted by capital letters (e.g., X), their realizations by lower

case letters (e.g., x), and associated sequences by letters with superscripts denoting their final times

(e.g., XT , {X0, X1, . . . , XT } and xT , {x0, x1, . . . , xT }). The probability mass function (pmf) of X

will be written p(x), the joint pmf of X and Y written p(x, y), and the conditional pmf of X given

Y = y written p(x|y) or p(x|Y = y). For a function f of X , the expectation of f is EX [f(X)]

and the conditional expectation of f under p(x|y) is E[f(X)|y]. The pointwise conditional entropy

of X given y is H(X|y) , −E[log p(X|Y = y)|y], and the conditional entropy of X given Y is

H(X|Y ) , EY [H(X|y)], with the base of the logarithm being 2.

II. PROBLEM FORMULATION

Let Xk for k ≥ 0 be a discrete-time first-order Markov chain with the finite state space X ,

{1, 2, . . . , Nx}. Let the initial state X0 be distributed according to the pmf ρ ∈ ∆ with components

ρ(x0) , P (X0 = x0) where ∆ , {ρ ∈ [0, 1]Nx :
∑

x∈X ρ(x) = 1} is the (Nx − 1)–dimensional

probability simplex. Let the (controlled) transition dynamics of the state Xk be described by the transition

kernel:

Ax,x̄(u) , p(Xk+1 = x|Xk = x̄, Uk = u) (1)

for k ≥ 0 with the controls Uk = u belonging to the finite set U , {1, 2, . . . , Nu}. The state process Xk

is (partially) observed through a stochastic observation process Yk for k ≥ 0 taking values in the finite
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set Y , {1, 2, . . . , Ny}. The observations Yk are distributed according to the kernel:

Bx,y(u) , p(Yk = y|Xk = x, Uk−1 = u) (2)

for k > 0 with Bx0,y0 , p(Y0 = y0|X0 = x0). The controls Uk for k ≥ 0 arise from a potentially

stochastic output-feedback policy µ , {µikk : k ≥ 0} with (conditional) pmfs

µikk (uk) , p(Uk = uk|Y k = yk, Uk−1 = uk−1)

where ik , (yk, uk−1) is a realization of the information state Ik , (Y k, Uk−1). The joint pmf of

(XT , IT ) under µ is

pµ(xT , yT , uT−1) = ρ(x0)Bx0,y0

×
T−1∏
k=0

Axk+1,xk(uk)µ
ik
k (uk)B

xk+1,yk+1(uk),
(3)

for T > 0 where
∏−1
k=0 is taken as the identity matrix. We denote expectation under pµ as Eµ[·]. A

policy µ = {µikk : k ≥ 0} is deterministic if, at all times k ≥ 0, the support of µikk is concentrated at a

single control uk; otherwise µ is stochastic. Let the set of all policies (stochastic or deterministic) be P .

To introduce our ERPOMDP problem, let us define the smoother entropy for T ≥ 0 under a policy

µ ∈ P as

Hµ(XT |Y T , UT−1) , −Eµ[log pµ(XT |Y T , UT−1)], (4)

and let us define the input-output entropy under µ as

Hµ(Y T , UT−1) , −Eµ[log pµ(Y T , UT−1)]. (5)

Let us also define the additive cost functional

JTµ , Eµ

[
cT (XT ) +

T−1∑
k=0

c (Xk, Uk)

]
(6)

where c : X × U 7→ R and cT : X 7→ R are arbitrary cost functions dependent on the state and control

values.

Our ERPOMDP problem is to find a policy that solves

inf
µ∈P

ET [JTµ + βHµ(XT |Y T , UT−1) + λHµ(Y T , UT−1)]

s.t. Xk+1|Xk, Uk ∼ Axk+1,xk(uk), X0 ∼ ρ

Yk+1|Xk+1, Uk ∼ Bxk+1,yk+1(uk), Y0|X0 ∼ Bx0,y0

Uk|Ik ∼ µikk (uk)

(7)

February 7, 2023 DRAFT



5

for given nonnegative constants β, λ ≥ 0 where the horizon T ≥ 0 is a random variable with a geometric

distribution with (probability of nonoccurence) parameter 0 < γ < 1 such that ζt , P (T = t) = γt(1−γ)

for t ≥ 0. Despite the entropies above not being in additive forms, we shall show later that the total cost

over a geometrically distributed finite horizon is equivalent to a discounted additive cost over an infinite

horizon, with γ being the discount factor (cf. [22]).

The motivation behind our ERPOMDP problem (7) is twofold. Firstly, the input-output entropy has an

interpretation as the minimum expected number of bits required to transmit or store the observations and

controls (Y T , UT−1) (via Shannon’s source coding theorem [23, Section 5.5]). Solving (7) with λ > 0

(and β ≥ 0) thus leads to policies that reduce the number of bits used for feedback control (similar to

the MDPs in [2]). Secondly, the smoother entropy intuitively describes the uncertainty associated with

estimates of the states XT given the observations and controls. Solving (7) with β > 0 and λ > 0

thus leads to policies that reduce the number of bits used to store the observations and controls, whilst

ensuring that the states can still be estimated from them. Operational interpretations of (7) are discussed

further in Section V.

Solving (7) is greatly simplified if we are able to use standard POMDP solution techniques since they

are increasingly able to handle large-scale problems (cf. [6], [7], [24], [25]). As discussed in [6] and [10,

Chapter 8], the use of standard POMDP techniques to find bounded-error solutions to (7) requires that:

1) its cost function can be written as an additive function of a sufficient statistic of the information state

known as the belief state; 2) it can be reformulated as a (fully observed) MDP in terms of the belief

state with cost functions that can be arbitrarily well-approximated by PWLC functions; and 3) it can be

solved by deterministic policies. In [5], [16], we showed that this solution approach is possible without

the input-output entropy (i.e. when β > 0 = λ) by establishing a belief-state expression of the smoother

entropy. The input-output entropy appears more challenging to optimize since its naive factorization as

Hµ(Y T , UT−1) = Hµ(Y T |UT−1) + Hµ(UT−1) shows immediately that it involves the (unconditional)

entropy of the policies Hµ(UT−1), which means that we must consider the possibility of optimal policies

solving (7) being stochastic. We shall therefore focus on: 1) establishing a belief-state expression of the

input-output entropy; 2) showing that it suffices to consider deterministic policies in solving (7); and, 3)

developing belief MDP reformulations of (7).

III. BELIEF-STATE FORMS AND MDP REFORMULATION

In this section, we revisit the concept of the belief state and a belief-state form of the smoother entropy.

We then establish a novel belief-state form of the input-output entropy that enables (7) to be reformulated

as a belief MDP amenable to bounded-error solution using standard POMDP techniques.
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A. Belief State and Smoother Entropy

Let πk ∈ ∆ with πk(x) , p(Xk = x|yk, uk−1) for x ∈ X be the belief state, which evolves via the

Bayesian filter:

πk+1(x) =
Bx,yk+1(uk)

∑
x̄∈X A

x,x̄(uk)πk(x̄)∑
x∈X

∑
x̄∈X B

x,yk+1(uk)Ax,x̄(uk)πk(x̄)

for k ≥ 0 with π0(x) = Bx,y0ρ(x)/(
∑

x̄∈X B
x̄,y0ρ(x̄)) for x ∈ X . We write the filter as πk+1 =

Π(πk, uk, yk+1).

In [5], [16], we showed that the smoother entropy satisfies

Hµ(XT |Y T , UT−1) = Eµ

[
G̃1(πT ) +

T−1∑
k=0

G̃2(πk, Uk)

]
(8)

where G̃1(πk) , −
∑

x∈X πk(x) log πk(x) is the belief-state entropy, i.e. Hµ(Xk|yk, uk−1), and

G̃2(πk, uk) ,
∑
x,x̄∈X

Ax,x̄(uk)πk(x̄) log
∑
x∈X

Ax,x(uk)πk(x)

Ax,x̄(uk)πk(x̄)

= Hµ(Xk, Xk+1|yk, uk)−Hµ(Xk+1|yk, uk)

is the difference between the entropy of pµ(xk, xk+1|yk, uk) = Axk+1,xk(uk)πk(xk), i.e. Hµ(Xk, Xk+1|yk, uk),

and the entropy of pµ(xk+1|yk, uk) =
∑

xk∈X A
xk+1,xk(uk)πk(xk), i.e. Hµ(Xk+1|yk, uk), with these pmfs

computed in the prediction step of the Bayesian filter. Specifically, the belief-state expression (8) arises

because the pmf pµ(xT |yT , uT−1) in (4) factorizes as

pµ(xT |yT , uT−1) =

T∏
k=0

pµ(xk|xTk+1, y
T , uT−1) (9)

via the chain rule with xTk+1 , {xk+1, . . . , xT }, xTT+1 , ∅, and since pµ(xk|xTk+1, y
T , uT−1) = pµ(xk|xk+1, y

k, uk) =

pµ(xk, xk+1|yk, uk)/pµ(xk+1|yk, uk) via the Markov property of the state and the structure of the mea-

surement kernel and control policy. To reformulate (7) as a belief MDP, we need a similar expression

for the input-output entropy.

B. Belief-State Form of Input-Output Entropy

To establish a novel belief-state form of the input-output entropy (5), we employ causally conditioned

entropies as introduced by Kramer [26]. Let the causally conditioned entropy of Y T given UT−1 under

any policy µ ∈ P be

Hµ(Y T ‖UT−1) ,
T∑
k=0

Hµ(Yk|Y k−1, Uk−1) (10)
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where Hµ(Y0|Y −1, U−1) , H(Y0) is independent of µ. Similarly, let the causally conditioned entropy

of UT−1 given Y T−1 under any policy µ ∈ P be

Hµ(UT−1‖Y T−1) ,
T−1∑
k=0

Hµ(Uk|Uk−1, Y k) (11)

with Hµ(U0|U−1, Y 0) , Hµ(U0|Y0), Hµ(U−1‖Y −1) , 0. Intuitively, Hµ(Y T ‖UT−1) describes the

uncertainty associated with the observations given the information causally gained from the controls,

whilst Hµ(UT−1‖Y T−1) describes the uncertainty associated with the controls given the information

causally gained from the (past) observations. The following lemma shows that the input-output entropy

is the sum of these two causally conditioned entropies.

Lemma 3.1: For any µ ∈ P and T ≥ 0, we have that:

Hµ(Y T , UT−1) = Hµ(Y T ‖UT−1) +Hµ(UT−1‖Y T−1).

Proof: The proof is via induction. Note first that Hµ(Y 0‖U−1) +Hµ(U−1‖Y −1) = H(Y0) proving

the lemma assertion for T = 0. Assuming that the lemma assertion holds for trajectories shorter than

some length T > 0, we now consider it for T . From (10) and (11),

Hµ(Y T ‖UT−1) +Hµ(UT−1‖Y T−1)

= Hµ(Y T−1‖UT−2) +Hµ(UT−2‖Y T−2)

+Hµ(YT |Y T−1, UT−1) +Hµ(UT−1|UT−2, Y T−1)

= Hµ(Y T−1, UT−2) +Hµ(YT |Y T−1, UT−1)

+Hµ(UT−1|UT−2, Y T−1) = Hµ(Y T , UT−1)

where the second equality holds via the induction hypothesis, and the last equality holds due to the chain

rule for conditional entropy. The proof of the lemma via induction is complete.

Lemma 3.1 differs from trivial expressions of the input-output entropy such as Hµ(Y T , UT−1) =

Hµ(Y T ) + Hµ(UT−1|Y T ) = Hµ(UT−1) + Hµ(Y T |UT−1) since these involve conditional entropies

conditioned on the entire trajectories Y T and UT−1, whilst Lemma 3.1 establishes a form involving sums

of conditional entropies only conditioned on the information state Ik at each time k. Lemma 3.1 thus leads

to a belief-state expression of the input-output entropy. Specifically, the definition of Hµ(Y T ‖UT−1) in

(10) and the tower property of conditional expectation gives that

Hµ(Y T ‖UT−1) = H(Y0) + Eµ

[
T−1∑
k=0

G̃3(πk, Uk)

]
(12)
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where G̃3(πk, uk) is the entropy of the conditional pmf

p(yk+1|πk, uk) =
∑
x,x̄∈X

Bx,yk+1(uk)A
x,x̄(uk)πk(x̄), (13)

that is, H(Yk+1|yk, uk), defined as

G̃3(πk, uk) , −
∑
y∈Y

p(y|πk, uk) log p(y|πk, uk). (14)

A similar belief-state form of Hµ(UT−1‖Y T−1) also holds but will prove unnecessary since we shall

next show that deterministic policies solve (7) (for which Hµ(UT−1‖Y T−1) = 0).

C. Belief MDP Reformulation

Along the lines of considering deterministic policies and omitting Hµ(UT−1‖Y T−1), the following

lemma introduces a useful surrogate problem and is the final intermediate result we require to reformulate

(7) as a belief MDP.

Lemma 3.2: If a deterministic policy µ∗ ∈ P minimizes

ET [JTµ + βHµ(XT |Y T , UT−1) + λHµ(Y T ‖UT−1)] (15)

over all policies µ ∈ P under the same constraints as (7) given β, λ ≥ 0, then µ∗ also solves (7) with

the same β, λ ≥ 0.

Proof: The definition of the infimum implies that

ET [JTµ∗ + βHµ∗(XT |Y T , UT−1) + λHµ∗(Y T , UT−1)]

≥ inf
µ∈P

ET [JTµ + βHµ(XT |Y T , UT−1) + λHµ(Y T , UT−1)]

≥ inf
µ∈P

ET [JTµ + βHµ(XT |Y T , UT−1) + λHµ(Y T ‖UT−1)]

= ET [JTµ∗ + βHµ∗(XT |Y T , UT−1) + λHµ∗(Y T ‖UT−1)]

where the second inequality holds due to Lemma 3.1 by noting that Hµ(UT−1‖Y T−1) ≥ 0 for all µ ∈ P ,

and the last line holds via the definition of µ∗. These inequalities must hold with equality since Lemma

3.1 combined with Hµ∗(UT−1‖Y T−1) = 0 due to µ∗ being deterministic implies

ET [JTµ∗ + βHµ∗(XT |Y T , UT−1) + λHµ∗(Y T , UT−1)]

= ET [JTµ∗ + βHµ∗(XT |Y T , UT−1) + λHµ∗(Y T ‖UT−1)].

The proof is complete.

A reformulation of (7) as a belief MDP follows.
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Theorem 3.1: Define the belief-state cost function

G(πk, uk)

, (1− γ)βG̃1(πk) + γβG̃2(πk, uk) + γλG̃3(πk, uk)

+ EXk
[(1− γ)cT (Xk) + γc(Xk, Uk)|πk, Uk = uk].

(16)

Then (7) with β, λ ≥ 0 is equivalent (up to λH(Y0)) to:

inf
µ̄

Eµ̄

[ ∞∑
k=0

γkG (πk, Uk)

∣∣∣∣∣π0

]

s.t. πk+1 = Π (πk, Uk, Yk+1)

Yk+1|πk, Uk ∼ p(yk+1|πk, uk)

Uk = µ̄(πk) ∈ U

(17)

where the optimization is over deterministic, stationary policies µ̄ : ∆ 7→ U that are functions of the

belief state πk, and γ is the parameter of the geometric distribution of T .

Proof: Given Lemma 3.2, it suffices to show that minimizing (15) under the same constraints as (7)

is equivalent (up to the constant λH(Y0)) to the belief MDP (17).

Rewriting (15) for any µ ∈ P using (6), (8), and (12) gives

ET [JTµ + βHµ(XT |Y T , UT−1) + λHµ(Y T ‖UT−1)]

= λH(Y0) + ET,µ

[
G̃T (πT ) +

T−1∑
k=0

G̃(πk, Uk)

]
via nested expectations with G̃T (πT ) , EXT

[cT (XT )+βG̃1(πT )|πT ] and G̃(πk, Uk) , EXk
[c(Xk, Uk)+

βG̃2(πk, Uk) + λG̃3(πk, Uk)|πk, Uk]. Ignoring λH(Y0),

ET,µ

[
G̃T (πT ) +

T−1∑
k=0

G̃(πk, Uk)

]

= Eµ

[ ∞∑
t=0

ζt

(
G̃T (πt) +

t−1∑
k=0

G̃ (πk, Uk)

)]

= Eµ

[ ∞∑
k=0

(
ζkG̃T (πk) +

∞∑
t=k+1

ζtG̃ (πk, Uk)

)]

= Eµ

[ ∞∑
k=0

(ζkG̃T (πk) + P (T > k)G̃ (πk, Uk))

]

= Eµ

[ ∞∑
k=0

γk
(

(1− γ)G̃T (πk) + γG̃(πk, Uk)
)]

= Eµ

[ ∞∑
k=0

γkG(πk, Uk)

]
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where the second equality holds by interchanging summations; the third and fourth equalities follow

from the cumulative distribution and pmf of the geometric distribution; and, the last equality holds by

definition. Standard POMDP (or MDP) results imply that this expectation can be minimized over µ ∈ P

under the same constraints as (7) by deterministic stationary policies µ̄ that are functions of πk (cf. [27,

Section 5.4.1] and [10, Theorem 6.2.2]). The proof is complete.

D. Structural Results and Bounded-Error Solutions

Given the reformulation of (7) in Theorem 3.1, standard MDP or POMDP results (e.g., [10, Theorem

6.2.2] or [6]) imply that an optimal policy µ̄∗ : ∆ 7→ U and value function V : ∆ 7→ R solving (7) satisfy

Bellman’s equation

V (π) = min
u∈U
{G(π, u) + γEY [V (Π(π, u, Y ))|π, u]} (18)

for all π ∈ ∆ with µ̄∗(π) being a minimizing argument of (18). Solving (18) is, in general, difficult.

However, if the functions G and V are concave in π, then standard POMDP techniques can yield solutions

to (18). We thus examine G and V .

Theorem 3.2: The cost and value functions G(πk, uk) and V (πk) of (7) reformulated as (17) are

concave and continuous in πk ∈ ∆ for all uk ∈ U , all 0 < γ < 1, and all β, λ ≥ 0.

Proof: To prove the theorem assertion for G, it suffices to show that each function in (16) is

concave and continuous in πk since their coefficients are nonnegative for β, λ ≥ 0 and 0 < γ < 1.

Firstly, G̃1 and G̃2 are concave and continuous in πk via [5, Lemma 2]. Secondly, G̃3 is the entropy

of the conditional pmf p(y|πk, uk), and so is concave and continuous in it via [23, Theorem 2.7.3].

Since p(y|πk, uk) is linear in πk (cf. (13)), G̃3 is concave in a linear function of πk, and so is concave

and continuous in πk. Finally, the expectation in (16) is concave and continuous in πk since it equals∑
x∈X πk(x) [(1− γ)cT (x) + γc(x, uk)] . That V is concave and continuous follows via [6, Theorem

3.1].

Theorem 3.2 enables the use of standard POMDP techniques to find bounded-error solutions to (7).

Specifically, following the PWLC approach proposed in [6], consider an arbitrary finite set Ξ ⊂ ∆ of

base points ξ ∈ Ξ at which the gradient ∇πG(ξ, u) of G(·, u) is well defined for all u ∈ U . For each

u ∈ U , the tangent hyperplane to G(·, u) at each ξ ∈ Ξ is

ωuξ (π) , G(ξ, u) + 〈(π − ξ),∇πG(ξ, u)〉 =
〈
π, αuξ

〉
for π ∈ ∆ where 〈·, ·〉 denotes the inner product, and αuξ , G(ξ, u) + ∇πG(ξ, u) − 〈ξ,∇πG(ξ, u)〉 ∈

RNx are vectors (with the addition of a vector and a scalar here meaning the addition of the scalar
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to all components of the vector). Since G is concave via Theorem 3.2, the hyperplanes form a PWLC

approximation Ĝ to G; that is, for π ∈ ∆ and u ∈ U ,

Ĝ(π, u) , min
ξ∈Ξ

〈
π, αuξ

〉
≥ G(π, u).

By replacing G in (18) with Ĝ, (18) can be solved for an approximate PWLC value function V̂ (and

policy) using standard POMDP algorithms that operate directly on the vectors {αuξ : ξ ∈ Ξ, u ∈ U}

(see [6, Section 3.3] for more details). Furthermore, G satisfies the Hölder continuity condition of [6,

Theorem 4.3] since the (negative) entropy function f(x) =
∑Nx

i=1 x(i) log x(i) is Hölder continuous on

∆ (as are continuous linear functions, and the sums and compositions of Hölder continuous functions, cf.

[28, Example 1.1.4, and Propositions 1.2.1 and 1.2.2]). Hence, [6, Section 4.2] implies that there exists

constants κ1 > 0 and κ2 ∈ (0, 1) such that ‖V − V̂ ‖∞ ≤ κ1(δΞ)κ2 where δΞ , minπ∈∆ maxξ∈Ξ ‖π−ξ‖1
is the sparsity of Ξ with ‖ · ‖1 and ‖ · ‖∞ denoting the l1-norm and L∞-norm, respectively. In principle,

this error can be made arbitrarily small by selecting ξ ∈ Ξ to decrease δΞ.

IV. SPECIAL CASE OF JOINT-ENTROPY REGULARIZATION

The PWLC approach to solving (7) presented in the previous section is consistent with state-of-the-art

approaches to solving POMDPs with nonlinear belief-state cost functions (see [10, Chapter 8], [6], [7]).

However, constructing accurate PWLC approximations can require a large number of linear segments

(i.e. vectors αuξ ), resulting in significant computational effort and the need to modify standard POMDP

solver implementations (cf. [10, Section 8.4.5]). In this section, we explore a simpler approach to solving

(7) that is tractable without PWLC approximations when the smoother and input-output entropies are

equally penalized, that is, when β = λ ≥ 0 so that the sum of the smoother and input-output entropies

in (7) becomes the joint entropy defined as Hµ(XT , Y T , UT−1) , −Eµ[log pµ(XT , Y T , UT−1)] =

Hµ(XT |Y T , UT−1) +Hµ(Y T , UT−1). Key to this simpler approach is the following new expression for

the joint entropy.

Lemma 4.1: For any policy µ ∈ P and T ≥ 0, we have:

Hµ(XT , Y T , UT−1)

= H(X0, Y0) +Hµ(UT−1‖Y T−1) + Eµ

[
T−1∑
k=0

c̃(Xk, Uk)

]
where

c̃(xk, uk)

, −
∑
x∈X

∑
y∈Y

Ax,xk(uk)B
x,y(uk) log(Ax,xk(uk)B

x,y(uk)).
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Proof: From the definition of the joint entropy and (3),

Hµ(XT , Y T , UT−1)

= −Eµ

[
log
(
ρ(X0)BX0,Y0

)
+

T−1∑
k=0

log
(
µIkk (Uk)Zk

)]

= H(X0, Y0)−
T−1∑
k=0

Eµ

[
logµIkk (Uk)

]
−
T−1∑
k=0

Eµ [logZk]

= H(X0, Y0) +Hµ(UT−1‖Y T−1) + Eµ

[
T−1∑
k=0

c̃(Xk, Uk)

]
where Zk , AXk+1,Xk(Uk)B

Xk+1,Yk+1(Uk); the second equality holds due to the properties of the

logarithm and linearity of expectations and summations; and, the third equality follows from (11), with

nested expectations giving

−Eµ [logZk] = Eµ
[
EXk+1,Yk+1

[− logZk|Xk, Uk]
]

where the inner expectation is c̃. The proof is complete.

A second reformulation of (7) with β = λ ≥ 0 follows.

Theorem 4.1: Define the belief-state cost function

L(πk, uk) , EXk
[`(Xk, uk)|πk, uk] =

∑
x∈X

πk(x)`(x, uk)

where `(xk, uk) , (1− γ)cT (xk) + γc(xk, uk) + γβc̃(xk, uk), then (7) with β = λ ≥ 0 is equivalent (up

to βH(X0, Y0)) to:

inf
µ̄

Eµ̄

[ ∞∑
k=0

γkL (πk, Uk)

∣∣∣∣∣π0

]
(19)

subject to the same constraints as (17) and where the optimization is over deterministic, stationary policies

µ̄ : ∆ 7→ U .

Proof: Same as that of Theorem 3.1, but using Lemma 4.1 instead of (8) and (12) to rewrite (15),

noting that Hµ(XT |Y T , UT−1)+Hµ(Y T ‖UT−1) = Hµ(XT , Y T , UT−1)−Hµ(UT−1‖Y T−1) via Lemma

3.1.

The belief MDP reformulation of our ERPOMDP problem in (19) with β = λ is surprising because

its cost function L is linear in πk. In contrast, the cost function G of the first belief MDP reformulation

established in (17) is nonlinear in πk, even when β = λ. The two different belief MDP reformulations

of (7) in (17) and (19) are due to the joint pmf pµ(xT , yT , uT−1) admitting multiple factorizations, with

(3) leading to (19), and a factorization similar to (9) leading to (17).
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(a)

System
𝑝(𝑋!|𝑋!"#, 𝑈!"#)

Sensor
𝑝(𝑌!|𝑋!, 𝑈!"#)

Controller
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(𝑌%, 𝑈%"#)
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Fig. 1. Operational Interpretations of the ERPOMDP problem (7): (a) Networked Control; and (b) Memory-Efficient Active

State Trajectory Estimation.

The linearity of L is of considerable practical value because it enables (7) with β = λ to be solved using

standard POMDP solution techniques without any PWLC approximation of L. Indeed, for any u ∈ U and

π ∈ ∆, L(π, u) = 〈π, αu〉 holds exactly given the (single) vector αu , [`(1, u), `(2, u), . . . , `(N, u)]′.

Dynamic programming equations of the form of (18) with L replacing G can thus be solved using

standard POMDP techniques that operate directly on the vectors {αu : u ∈ U} (cf. [10, Chapter 7.5]).

We next discuss the operational significance of the linearity of L.

V. OPERATIONAL INTERPRETATIONS AND RELATIONSHIPS

In this section, we discuss two operational interpretations of ERPOMDPs, and discuss their relationship

to other optimization problems with information-theoretic terms.
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A. Networked Control Rate-Cost Trade-Offs

Consider a networked control setting in which the feedback path of a POMDP involves transmission

over a noiseless binary channel, as illustrated in Fig. 1a. At every time step k, an encoder receives

observations Yk of the state Xk (e.g., arising from a sensor), and selects and transmits a binary codeword

Wk from a predefined codebook of optimal uniquely decodable binary codes Wk. Upon receiving Wk,

the decoder decodes Yk and passes it to a controller, that uses it to evaluate the next control Uk. We

allow the codebook Wk to be time-varying, and let Rk be the length (number of bits) of the codeword

Wk. We assume that both the encoder and decoder have infinite memories so that Wk conveys Yk given

(Y k−1, Uk−1). Shannon’s source coding theorem (cf. [23, Section 5.5]) then implies that the (minimum)

expected data transmitted in the noiseless binary channel at time k satisfies

Hµ(Yk|Y k−1, Uk−1) ≤ Eµ [Rk] ≤ Hµ(Yk|Y k−1, Uk−1) + 1,

and so the total expected data transmitted over T satisfies

ET [Hµ(Y T ‖UT−1)] ≤ ET,µ

[
T∑
k=0

Rk

]

≤ ET
[
Hµ(Y T ‖UT−1) + T + 1

]
.

In view of Lemma 3.2 and Theorem 3.1, our ERPOMDP problem (7) with λ > 0 (and any β ≥ 0) thus

has the operational interpretation of seeking policies that trade-off the expected total data transmitted for

feedback control via Hµ(Y T ‖UT−1), with the value of the cost functional JTµ .

Theorem 3.1 is particularly important for introducing rate-cost trade-offs into POMDPs because it

enables regularization only by the input-output entropy (i.e., it holds when λ > 0 but β = 0 in (7)). In

contrast, Theorem 4.1 is, in general, of secondary value for introducing rate-cost trade-offs because it

also requires regularization by the smoother entropy (i.e., it holds only when β = λ in (7)), but does

enable the use of standard POMDP techniques without PWLC approximations.

B. Memory-Efficient Active State Trajectory Estimation

The second operational interpretation of our ERPOMDP problem (7) relates to active state estimation

(i.e. controlling a POMDP to aid the estimation of its latent state trajectory XT from stored trajectories

(Y T , UT−1)). Such problems arise in robotics (cf. [13], [14]) and controlled sensing (cf. [9], [10]).

As shown in Fig. 1b, consider a POMDP in which, at each time k, the current observation and control

(Yk, Uk−1) are encoded and stored by a data logger by selecting and storing a binary codeword Wk from

a predefined codebook of optimal uniquely decodable binary codes Wk. Thus, the data logger encodes
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(Yk, Uk−1) given (Y k−1, Uk−2). We allow the codebookWk to be time-varying, and let Rk be the length

of the codeword Wk. Shannon’s source coding theorem (cf. [23, Section 5.5]) implies that the (minimum)

expected total memory required to store (Y T , UT−1) satisfies the bounds

ET [Hµ(Y T , UT−1)] ≤ ET,µ

[
T∑
k=0

Rk

]

≤ ET
[
Hµ(Y T , UT−1) + T + 1

]
.

At the conclusion of the control horizon (k = T ), the data logger decodes the stored trajectories

(Y T , UT−1) and passes them to an (offline) algorithm for estimating the state trajectory XT (e.g. the

Viterbi algorithm). Let the minimum probability of error for any estimator of XT given (Y T , UT−1) be

ε , minX̂T P (XT 6= X̂T ) with X̂T being any function f : YT ×UT−1 7→ X T . Theorem 1 of [29] gives

that

Φ−1(Hµ(XT |Y T , UT−1)) ≤ ε ≤ φ−1(Hµ(XT |Y T , UT−1))

where Φ−1 and φ−1 are the inverse functions of strictly monotonically increasing functions (defined in

[29]), and thus are themselves strictly monotonically increasing.

The involvement of the smoother and input-output entropies in bounds on the estimation error and

required memory implies that (7) has the operational interpretation of seeking policies that aid estimation

of the state trajectory (by reducing the smoother entropy) whilst decreasing the memory required to

store the observation and control trajectories (by reducing the input-output entropy). In the special case

considered in Section IV with β = λ, (7) constitutes a formulation of active state estimation in which

the estimation and memory objectives are weighted equally. In this regard, Theorem 4.1 establishing

the linearity of L in (19) is further surprising since most previous active state estimation formulations

involve cost that are entirely nonlinear in the belief state and can only be optimized by resorting to

approximations (cf. [6], [9], [10]).

C. Relationship to Other Information-Theoretic POMDPs

ERPOMDPs (7) are closely related to problems involving the optimization of information-theoretic

terms that have previously been considered for reinforcement learning [30], studying the capacity of

channels with memory and feedback [31], privacy (e.g. in smart metering systems) [19], [21], [32], [33],

and studying rate-cost trade-offs in MDPs and POMDPs [2], [8]. These problems, however, mostly involve

optimizing only a single information-theoretic term derived from either the mutual information between

states and/or observations (e.g., directed information and transfer entropy [2], [8], [19], [21], [31], [32]),

or the entropy of the states or controls (e.g., Hµ(Uk|ik) = −
∑

u∈U µ
ik
k (u) logµikk (u) [30], [33]). In
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contrast, ERPOMDPs involve both the standard cost functional JTµ and, in general, two information-

theoretic terms, the smoother entropy and the (novel) input-output entropy. The procedure for solving

ERPOMDPs is, however, similar to that of solving these other optimization problems, with most having

been shown to lead to belief MDPs — albeit few (if any) with cost functions that are linear in the belief

state, rendering our Theorem 4.1 joint-entropy result further surprising.

VI. SIMULATION EXAMPLE

We now simulate ERPOMDPs for active state estimation.

A. Example Set-Up

Consider an agent in the grid shown in Fig. 2, that seeks to move to (and stay in) a known goal

location from an unknown starting location (distributed uniformly over the grid such that the initial state

pmf ρ is uniform), whilst actively localizing itself so as to enable its path to the goal to be estimated for

the purpose of later being retraced or communicated. Each cell in the grid is a state in the agent’s state

space X = {1, . . . , 144} (enumerated top-to-bottom, left-to-right). The agent has five possible control

actions U = {1, . . . , 5}, corresponding to moving one cell in each of the four compass directions, or

staying still (all with probability 1). There are internal and external walls (bold black lines in Fig. 2)

that block movement, with the agent staying still if it attempts to move into them. The agent receives

measurements Y = {1, . . . , 16} corresponding to whether or not a wall is immediately adjacent to its

current cell in each of the four compass directions. The agent detects a wall when it is present (resp. not

present) with probability 1 (resp. 0.2). A simplified version of this example was previously considered

in [2] for MDPs.

We examine the ability of the agent to move to the goal and ensure estimation of its path by solving

(7) with either β = λ = 0 (corresponding to a standard POMDP without any regularization), β = λ = 1

(corresponding to joint-entropy regularization), β = 1 and λ = 0 (corresponding to only smoother-entropy

regularization), and β = 0 and λ = 1 (corresponding to only input-output-entropy regularization). In all

cases, γ = 0.99 and the goal objective is encoded via the cost c(x, u) = 1{x 6=144} for all x ∈ X and

u ∈ U .

We use SARSOP [24] to solve (7) via the reformulation in Theorem 4.1 when β = λ ∈ {0, 1}, and

via the reformulation in Theorem 3.1 when β 6= λ. For β 6= λ, we construct a PWLC approximation of

G in (17) using a set Ξ containing the middle of the simplex ∆ and points near the vertices with values

in their largest element of 0.857 and 0.001 in their other 143 elements. For β = λ, we avoid PWLC

approximations since the cost function L in Theorem 4.1 is linear. From Table I, we see that the time
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𝛽 = 𝜆 = 1 PathStart

Goal

𝛽 = 𝜆 = 0 Path

(a)

𝛽 = 0, 𝜆 = 1 Path
Start

Goal

𝛽 = 1, 𝜆 = 0 Path

(b)

Fig. 2. Example realizations of ERPOMDP (7) agent with wall sensor moving from start cell (unknown to agent, top-left in

these realizations) to goal (walls bold black): (a) β = λ ∈ {0, 1} (b) β = 1 & λ = 0, and β = 0 & λ = 1.

taken to compute policies requiring PWLC approximations (i.e., policies with β 6= λ) is much greater

than the time required to compute the standard POMDP policy with β = λ = 0, and the ERPOMDP

policy with β = λ = 1.

B. Simulation Results

The results of 1000 Monte Carlo simulations of each policy over T = 100 time steps (the mean

of T ) are summarized in Table I. For each policy, we report several active state estimation criteria

including: the total (undiscounted) cost associated with not being in the goal state (i.e., the Goal Cost)∑T
k=0E[c(Xk, Uk)]; the input-output entropy; the smoother entropy; the joint entropy; the sum of belief

entropies
∑T

k=0Hµ(Xk|Y k, Uk−1); and, the probability of error in maximum a posteriori estimates of the

trajectory XT (Traj. MAP Error Prob.) computed via the Viterbi algorithm [10, Section 3.5.3]. Example

state realizations with the agent starting in the top-left cell are shown in Fig. 2.

Table I shows that the standard POMDP policy (β = λ = 0) results in the lowest goal cost, which is

unsurprising since it only explicitly minimizes the (discounted) cost of the agent not being in the goal

state. The smoother entropy, input-output entropy, and joint entropy are all significantly less (better) when

they are regularized via selection of β = 1 and λ = 0, λ = 1 and β = 0, or both β = λ = 1, respectively

(at the expense of a small increase in the Goal Cost). Table I thus highlights that the agent resolves its
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TABLE I

MONTE CARLO SIMULATION RESULTS (BEST VALUES IN BOLD). COMPUTATIONAL TIMES FOR AN M1 2020 APPLE

MACBOOK AIR.

Performance

Criteria

ERPOMDP (7) Policy Parameters

β = 0 β = 1 β = 0 β = 1

λ = 0 λ = 0 λ = 1 λ = 1

Goal Cost 23.0 25.2 25.9 26.0

Input-Output Entropy 120.2 122.0 114.9 114.9

Smoother Entropy 1.47 0.41 0.60 0.50

Joint Entropy 121.7 122.4 115.5 115.4

Sum of Belief Entropies 21.9 17.3 16.0 16.0

Traj. MAP Error Prob. 0.01 0.00 0.01 0.00

Time to Compute Policy (s) 0.21 6563 964 0.66

uncertainty and reduces the memory required to store its measurements more effectively with versions

of ERPOMDP policies with nonzero β and λ than with the standard POMDP policy (with β = λ = 0).

As illustrated in Fig. 2, the ERPOMDP policies with β = λ = 1, and β = 0 and λ = 1, reduce

the joint entropy and input-output entropy most effectively by moving the agent through the cells along

the walls since these yield easily compressible observation sequences (a single wall in the same relative

direction). In contrast, the cells in the center through which the standard POMDP policy (with β = λ = 0)

and the ERPOMDP policy with β = 1 and λ = 0 move the agent yield more variable (higher entropy)

observations since they are surrounded by 0, 1, or 2 walls. By initially moving the agent East from

its starting cell and then through the center, the ERPOMDP policy with β = 1 and λ = 0 is able to

achieve the minimum smoother entropy. However, in this example, the differences in smoother entropies

between policies with β = 0 and β = 1 is much smaller compared to the differences in input-output

entropies between policies with λ = 0 and λ = 1. Thus, the ERPOMDP policy involving joint-entropy

regularization via β = λ = 1 achieves close to the best performance across the criteria (at the slight

expense of the Goal Cost) whilst avoiding PWLC approximations, highlighting the value of Theorem 4.1.

Clearly, finer trade-offs between the Goal Cost and smoother or input-output entropies can be obtained

by selecting β and λ independently and using Theorem 3.1, but at considerable computational cost.

VII. CONCLUSION

We propose ERPOMDPs, show that they admit PWLC approximate solutions, and discuss their rele-

vance to active state estimation and rate-cost trade-offs. Surprisingly, ERPOMDPs admit exact solutions
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when regularizing by the joint entropy of the states, observations, and controls, which constitutes a novel,

tractable formulation of active state estimation.
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