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Quantized Primal-Dual Algorithms for Network
Optimization with Linear Convergence

Ziqin Chen, Shu Liang, Li Li and Shuming Cheng

Abstract—This paper studies the network optimization prob-
lem about which a group of agents cooperates to minimize a
global function under practical constraints of finite bandwidth
communication. Particularly, we propose an adaptive encoding-
decoding scheme to handle the constrained communication be-
tween agents. Based on this scheme, the continuous-time quan-
tized distributed primal-dual (QDPD) algorithm is developed for
network optimization problems. We prove that our algorithms
can exactly track an optimal solution to the corresponding convex
global cost function at a linear convergence rate. Furthermore,
we obtain the relation between communication bandwidth and
the convergence rate of QDPD algorithms. Finally, an exponential
regression example is given to illustrate our results.

Index Terms—Distributed convex optimization, quantized com-
munication, linear convergence rate, primal dual algorithm.

I. INTRODUCTION

The network optimization problem has been intensely stud-
ied in various fields, such as the large-scale machine learning
[1], [2] and the economic dispatch in power systems [3],
[4]. Typically, it can be formulated as minimizing a global
function composed of a sum of local functions, each of which
is assessed by a local agent in the network. Correspondingly,
a large number of distributed algorithms [5]–[11] have been
proposed to solve this problem. For example, Nedić et al.
proposed a distributed gradient descent algorithm with sub-
linear convergence rate [5]. It was then improved to a linear
convergence rate for the strongly convex optimization problem
in [6]–[8]. Further, a distributed primal-dual (PD) algorithm
with linear convergence was developed for solving certain
convex optimization problem [11].

Note that almost all the above distributed algorithms for
network optimization require each agent to interchange infor-
mation with its neighbors. However, if physical constraints,
such as sensor battery powers and computing resources, are
considered, then it becomes impractical to assume the infinite-
bandwidth communication in those algorithms. With regard to
the problem of finite-bandwidth communication, one effective
tool is the quantization scheme capable of compressing the
messages exchanged among agents. Hence, the quantized
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distributed algorithms have appealed much interest in recent
years [12]–[22]. For example, distributed algorithms with
static quantizers can converge to the neighborhood of an
optimal solution [12], [13], while exact optimal solution can
be achieved by using a dynamic quantizer [14]. A linear
convergence rate can be guaranteed via a uniform quan-
tizer in distributed alternating direction method of multipli-
ers [15], and the same convergence rate can be achieved by
the quantized gradient tracking algorithm [16]. However, the
strong convexity assumption was imposed [15], [16]. Relaxing
the above strong assumption to be convex, the quantized
distributed subgradient descent algorithm with a sublinear
convergence rate O(ln k/

√
k) has been developed to track the

optimal solution [17], [18]. Further, it has been improved to the
convergence rate O(1/k) by using the amplified-differential
compression method [19]. Hence, there still lack any dis-
tributed linearly convergent algorithm for nonstrongly convex
optimization problems over multi-agent networks, under the
practical constraint of finite-bandwidth communication.

In this paper, we propose a novel quantized distributed
optimization algorithm. It achieves a linear convergence rate
for the convex optimization problems. Also, we present a fully
quantitative analysis, showing that the fast convergence rate
of the proposed algorithm will linearly increase the demand
for communication bandwidth. The main contributions of this
work are summarized as follows.

• A novel adaptive encoding and decoding scheme
is introduced to deal with the problem of finite
bandwidth communication. Following this scheme, we
present continuous-time quantized distributed primal-dual
(QDPD) algorithms to solve the convex network opti-
mization problem via quantization communication.

• Our QDPD algorithm can converge to an exact optimal
solution rather than near optimal solutions in [12], [13].
Moreover, it admits a linear convergence rate, which
improves the sublinear rate for other quantized distributed
algorithms. All our results are derived under the mild
assumption that the cost functions satisfy metric sub-
regularity, which is weaker than the strong convexity
assumption imposed in [6], [8], [15], [16].

• The relation between the communication bandwidth and
the convergence rate is obtained. Particularly, given the
communication bandwidth, we can always find a lower
bound for the convergence rate of our algorithms. It
provides theoretical support for transmission bandwidth
settings required by different convergence rates.

The rest of the paper is organized as follows. Section II
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briefly formulates the distributed convex optimization prob-
lem. In Section III, subjected to the constraint of finite-
bandwidth communication, we introduce the adaptive encoder-
decoder scheme and present the QDPD algorithm, together
with the convergence analysis. Section IV provides an example
to validate our results, and Section V concludes this work.

Notations: A n-dimensional vector is written as x ∈ Rn,
and ‖x‖ represents its Euclidean norm. For vectors x1,· · ·, xN ,
denote the stacked column vector by x= [x1;· · ·;xN ]. For a
given positive number a∈R, dae is the smallest integer greater
than or equal to a. For a set C ⊂ Rn and a point x ∈ Rn,
the distance from x to C is defined as d(x,C) = infy∈C ‖y−
x‖. For a continuously differentiable function f(x), denote by
∇f(x) its gradient vector. For a map F : Rn → Rn, define
the epigraph of F as gphF = {(x, y) ∈ Rn × Rn|y = F (x)}.

II. PROBLEM FORMULATION

Consider the network optimization problem in which N
agents cooperate to optimize the cost function as

min
x∈Rn

f(x), f(x) =

N∑
i=1

fi(x). (1)

Each cost function fi(x) : Rn → R is locally processed by
an agent i in the network. To solve the above problem, some
reasonable assumptions are needed.

Assumption 1. Each local cost function fi(x) is differen-
tiable, convex, and mfi -smooth for some mfi>0.

Remark 1. Assumption 1 implies the global function f(x)
is differentiable, convex, and mf -smooth with mf=

∑N
i=1mfi .

It ensures the existence of an optimal solution of problem (1),
commonly used in most relevant works [17]–[19].

Based on graph theory, the interconnection network can be
described by an undirected and connected graph G = (V, E),
where V is the set of agents with cardinality |V| = N , and
E ⊂ V ×V is the corresponding edge set. Denote by A =
[aij ]N×N the adjacency matrix of graph G with aij = 1 if
(i, j)∈E , otherwise aij = 0. For an arbitrary agent i, Ni :=
{j ∈ V

∣∣(i, j) ∈ E} corresponds to the set of its neighbors with
cardinality |Ni| = di. Then, the Laplacian matrix is defined as
LG=D −A with D = diag(d1, · · · , dN ), and its eigenvalues
are arranged in an ascending order as 0 = σ1 ≤ · · · ≤ σN .

Using primal dual methods [11], [23], [24] enable us to
reformulate the above optimization problem (1) as

max
λ∈RNn

min
x∈RNn

{f(x) + λTLGx+xTLGx}, (2)

where the primal variables are x = [x1;· · ·;xN ], the dual
variables λ=[λ1;· · ·;λN ], and the augmented Laplacian matrix
LG=LG ⊗ In. If (x∗,λ∗) is a pair of optimal solution for the
problem (2), then it satisfies the KKT condition{

0=−∇f(x∗)−LGx∗ −LGλ∗,
0=LGx

∗.
(3)

We further define

F(z)=

[
∇f(x)+LGx+LGλ

−LGx

]
∈R2Nn, (4)

where z= [x;λ]∈R2Nn, and impose a weak assumption on
F(z).

Assumption 2. F(z) in (4) is κ-metrically subregular at
point (z∗, 02Nn) ∈ gphF, that is, for some positive constant
κ, there exists an open set C ⊃ Z∗ such that

‖F(z)‖ ≥ κ−1d(z, Z∗), ∀z ∈ C, (5)

where z∗=[x∗;λ∗]∈Z∗ with Z∗={z|F(z)=0}.

Remark 2. Assumption 2 ensures the linear convergence
rate of our proposed algorithm, which will be discussed in
the subsequent section. Note that it is weaker than the strong
convexity assumption in [15], [16] and could be easily satisfied
when the epigraph of the map F is polyhedral form [11].

Since the useful quantization communication scheme is
used to handle the finite bandwidth constraint imposed in the
network problem (2), that is, each agent broadcasts quantized
information by an encoder to and receives quantized informa-
tion by a decoder from its neighbors, an extra assumption on
quantization scheme is further assumed.

Assumption 3. For every i ∈ V , the optimal solution of
problem (1) satisfies ‖x∗‖∞ ≤ M1 and the corresponding
gradient satisfies ‖∇fi(x∗)‖∞ ≤M2, i ∈ V .

Assumption 3 guarantees that the quantization scheme is
persistently excited such that our QDPD algorithm works well
even under the non-ideal communication. This is similar to
Assumption 2 in [14] and Assumption 3 in [20], respectively.

III. MAIN RESULT

In this section, to solve problem (1), or equivalently (2), we
design the QDPD algorithm, based on a novel encoder-decoder
scheme to model the quantized communication among agents
in Subsection III-A. Then, we prove the linear convergence
of the proposed QDPD algorithm using the Lyapunov method
in Subsection III-B. Finally, in Subsection III-C, we analyze
the relationship between the convergence rate and the required
communication bandwidth of the QDPD algorithm.

A. The QDPD Algorithm
For the adaptive encoder-decoder scheme used in our QDPD

algorithm, both the prime and dual variables are quantized and
then transmitted over the network graph G. Thus, it signifi-
cantly reduces the communication bandwidth, in comparison
to the distributed PD algorithm requiring infinity precise
transmission [11]. Specifically, the QDPD algorithm can be
decomposed into two procedures:

1. Quantized Communication Step
i) Quantizer: Denote the quantizer by QL[l,u] where [l, u], l ≤

u characterizes the quantization range and L + 1 defines the
quantization level. As shown in Fig. 1, for a scalar s ∈ [l, u],
the quantized state is written as

QL[l,u](s) = arg min
0≤i≤L

{∣∣∣∣l + i
u− l
L

∣∣∣∣− s} . (6)

It follows from the above equation that s is encoded into the
set {0, 1,· · · ,L} and thus needs log2(L) bits to transmit if
no-transmission is required at the zero level.
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ii) Encoder: We adopt the periodic sampling with period T
to sample the continuous-time input of the encoder zj(t) =
[xj(t);λj(t)], t ≥ 0 and thus obtain the discrete variables
zj(kT ) = [xj(kT );λj(kT )], k ≥ 0 for any j ∈ V . Then, the
output is quantized via the above quantization scheme into
qzj (kT ) = [qxj (kT ), qλj (kT )] with

qzj (kT ) = QLPzj (k)(zj(kT )), (7)

where the quantization range Pzj (k) will be explicitly given in
the following subsection. Consequently, each agent j encodes
qzj (kT ) into a sequence of 2n log2(L) bits as qz(b)j (k) and then
transmits it to its neighbors.

iii) Decoder: If an agent i receives the quantized data
q
z(b)
j (k), then it can be recovered via the known quantization

range Pzj (k), j ∈ Ni, which is easily obtained by using
qzj ((k − 1)T ).

𝒍 𝒖

𝟎 𝑳𝟏 𝟐 ……

𝑸 𝒍,𝒖
𝑳 (𝒙𝟏) 𝑸 𝒍,𝒖

𝑳 (𝒙𝟐)

Fig. 1. Quantization scheme
2. State Update Step:
Following from the quantized communication step, each

agent updates its states via

ẋi(t) = ∇fi (xi(t))−
∑
j∈Ni

(
qxi (t)−qxj (t)

)
−
∑
j∈Ni

(
qλi (t)−qλj (t)

)
,

λ̇i(t) =
∑
j∈Ni

(
qxi (t)−qxj (t)

)
. (8)

Combining with above two steps gives rise to the QDPD al-
gorithm, which is summarized as Algorithm 1. It is developed
from the distributed PD method [11] suitable for the ideal
communication scenario. Noting that each agent only trans-
mits the quantized binary sequence at each iteration step, it
significantly reduces the source occupancy of communication.

Given the initial states x(0) and λ(0), the key parameters
in our QDPD algorithm can be explicitly given as follows.

i) The sampling period T can be any positive constant
satisfying

(e

√
3+
√

5
2 σNT−1)(e

η
2 T−1)ρ≤c1<1, 0 < c1 < 1, (9)

where ρ=
√

2(6σN+2mf )κ
√

(mf+4σN )(4σN+11)

η
√

3+
√

5
√
σN−σNκ2(η+4)(mf+4σN )

and the parameter

η= β
κ2(mf+6σN ) .

ii) The dynamic length of quantization range is

l(k) = l(0)e−
η
2 kT , (10)

where l(0) =
√

2c2M0

κσN

√
3−κ2(3η+4)(mf+6σN )

Nn(12σN+33) e−
η
2 T−

√
3+
√

5
2 σNT

with M0=
√

2NnM+M ′, M≥‖z(0)‖∞, M ′≥1TNnλ(0)√
Nn

+(
√
Nn
σ2

+√
Nn)M1+

√
NnM2, 0 < c2 < 1− c1 and β ∈ (0, 1).

iii) The quantization level L can be any positive constant
satisfying

L ≥

⌈
max

{
2M0

l(0)
,

√
2Nn

c2
e
η
2 T+

√
3+
√

5
2 σNT

}⌉
, (11)

iv) The quantization range is determined byP
z
j (0)=

[
−Ll(0)

2 12n,
Ll(0)

2 12n

]
,

Pzj (k)=
[
qzj ((k−1)T )− Ll(k)

2 12n, q
z
j ((k−1)T )+ Ll(k)

2 12n

]
.

Algorithm 1 the QDPD algorithm at agent i
Initialization:
• Initialize xi(0), l(0), L, T , fi(x), Pzi (0) and Pzj (0).
• Receive the initial quantized data qz(b)j (0) from neighbor j and

recover qzj (0) = QLPzj (0)
(zj(0)). Set qxi (0) = QLPxi (0)

(xi(0)).

• Compute dual variables λi(0) =
∑
j∈Ni

(
qxi (0)− qxj (0)

)
and

the corresponding quantized states qλi (0) = QL
Pλi (0)

(λi(0)).

1: For times k = 0, 1, 2, · · · do
2: Encode qzi (kT ) into qz(b)i (k) and send it to neighbors.
3: Recover the continuous-time signal from the discrete-time signal by

qzj (t)=q
z
j (kT ), kT ≤ t < (k + 1)T, j ∈ Ni ∪ {i}.

4: Update xi(t), λi(t), kT ≤ t ≤ (k + 1)T by
ẋi(t)=∇fi (xi(t))−

∑
j∈Ni

(
qxi (t)−qxj (t)

)
−
∑
j∈Ni

(
qλi (t)−qλj (t)

)
,

λ̇i(t)=
∑
j∈Ni

(
qxi (t)−qxj (t)

)
.

5. Set the dynamic length of quantization range l(k + 1) from (10).
6: Compute the quantization range

Pzi (k + 1) =

[
qzi (kT )−

Ll(k + 1)

2
12n, q

z
i (kT )+

Ll(k + 1)

2
12n

]
.

7: Quantize local state information

qzi ((k + 1)T ) = QLPzi (k)
(zi((k + 1)T )).

8: Receive qz(b)j (k+1) from neighbors j ∈ Ni and recover qzj ((k+1)T )
by using known Pzj (k + 1).
9: end

B. Convergence Analysis

We first introduce the following lemma to associate the
equilibrium of dynamics (8) with the optimal primal-dual
solution pair.

Lemma 1. Under Assumption 1, the primal variables xi(t)
and dual variables λi(t) can be written in a stacked form of{

ẋ(t) = −∇f(x(t))−LGqx(t)−LGqλ(t),

λ̇(t) = LGq
x(t),

(12)

where qx=[qx1 ; · · · ; qxN ]∈RNn and qλ=[qλ1 ; · · · ; qλN ]∈RNn.
Then, the equilibrium of dynamics (12) is a pair of optimal
solutions of the problem (2).

Since Lemma 1 is similar to Lemma 4 of the work [11],
the proof is referred to that reference.

Then, we prove the main result that our QDPD algorithm
converges to an optimal solution linearly.

Theorem 1. Under Assumptions 1-3, the QDPD algorithm
ensures that the states of all agents converge to an optimal
solution to the problem (1) at rate O(γ−t) with γ = e

η
2 > 1.

Proof. First, we construct a Lyapunov candidate function as

V (z) = 4σNV1(z) + V2(z), (13)
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where{
V1(z) = 1

2‖z − z
∗‖2,

V2(z) = f(x)− f(x∗) + 1
2x

TLGx+ λTLGx.

Note that if V (z) is always positive and decays to zero at a
linear convergence rate, then z(t) will linearly converge to z∗.
We now prove that V (z) does satisfy these properties.

Multiplying (x − x∗)T left by (3) and using the relation
(x∗)TLG = 0TNn yields{

(x− x∗)T∇f(x∗) = −(x− x∗)TLGλ∗,
xTLGλ = (x− x∗)TLGλ.

This immediately leads to

V2(z) = f(x)− f(x∗)− (x− x∗)T∇f(x∗)+
1

2
(x−x∗)T

LG(x−x∗)+(x−x∗)TLG(λ−λ∗).

It follows further from the convexity of f(x) that f(x)−
f(x∗)−(x−x∗)T∇f(x∗)≥0. And there is 1

2 (x−x∗)TLG(x−
x∗)≥0. as LG is positive semidefinite. Hence, we can obtain

V2(z)≥−σN
2

(‖x−x∗‖2+‖λ−λ∗‖2)≥−σN
2
‖z−z∗‖2, (14)

and prove that V (z) ≥ 3σN
2 ‖z − z

∗‖2 ≥ 0.

Then, we prove that V (z) converges to zero linearly. Denote
the quantization error by e = [ex; eλ] with ex = x − qx
and eλ = λ − qλ. Combining with Eqs. (3), (12), and
(x−x∗)T (∇f(x)−∇f(x∗))≥0 yields

V̇1(z)=−(x−x∗)T (∇f(x)−∇f(x∗))+xTLGex−xTLGx
+xTLGeλ−(λ− λ∗)TLGex.
≤−σ−1

N ‖LGx‖+x
TLG(ex+eλ)−(λ−λ∗)TLGex.

Here we have used the relations ex∗ = 0Nn and eλ∗ = 0Nn.
Further, noting xTLG(ex+eλ) ≤ ‖LGx‖‖e‖ ≤ ε1

2σN
‖LGx‖2+

σN
2ε1
‖e‖2 for 0 < ε1 < 1, we obtain

V̇1(z)≤−(1−ε1)

σN
‖LGx‖2+

σN
2ε1
‖e‖2−(λ−λ∗)TLGex. (15)

Moreover, there is

V̇2(z)=−‖∇f(x)+LGx+LGλ‖2+(∇f(x)+LGx+LGλ)T

LG(ex+eλ)+‖LGx‖2 − (LGx)TLGex.

And, using (∇f(x)+LGx+LGλ)TLG(ex+eλ)≤ ‖∇f(x)+
LGx + LGλ‖‖LG‖‖e‖ ≤ ε2

2 ‖∇f(x) + LGx + LGλ‖2 +
1

2ε2
‖LG‖2‖e‖2 for 0 < ε2 < 1 gives rise to

V̇2(z)≤−(1−ε2)‖∇f(x)+LGx+LGλ‖2+(2ε2)−1‖LG‖2‖e‖2

+‖LGx‖2−(LGx)TLGex. (16)

Consequently, with (13), we are able to derive

V̇ (z)≤−2‖LGx‖2+4σ2
N‖e‖2−4σN (λ−λ∗)TLGex−

1

2
‖∇f(x)

+LGx+LGλ‖2+σ2
N‖e‖2+

3

2
‖LGx‖2+

1

2
‖LGex‖2,

≤−1

2
‖F (z)‖2+5σ2

N‖e‖2+2σN‖λ−λ∗‖2+(2σN+
1

2
)

‖LGex‖2, (17)

for ε1 = ε2 = 1/2. The first inequality follows from
−(LGx)TLGex ≤ 1

2‖LGx‖
2 + 1

2‖ex‖
2. Since ‖λ − λ∗‖2 ≤

2V (z)
3σN

and ‖LGex‖2 ≤ σ2
N‖e‖2, Eq. (17) can be further upper

bounded by

V̇ (z)≤−1

2
‖F (z)‖2+(2σ3

N+
11

2
σ2
N )‖e(t)‖2+4V (z)

3
. (18)

This indicates the decaying property of V (z) is related to
‖e(t)‖. Hence, the linear convergence of V (z) is essentially
equivalent to the following inequalities

V (z)≤ a(t), 0 ≤ t ≤ kT, k ∈ N,

‖e(kT )‖≤c2e−
√

3+
√

5
2 σNT b(kT ),

‖e(t)‖< b(t), 0 ≤ t < kT,

(19)

where

a(t)=
mf+6σN

2
M2

0 e
−ηt, (20)

b(t)=
M0

κσN

√
3−κ2(3η + 4)(mf+6σN )

12σN+33
e−

η
2 (b tT c+1)T . (21)

Inequality V (z) ≤ a(t) in (19) means that V (z) converges
to zero linearly. The corresponding proof is deferred to the
Appendix.

Finally, via the convergence rate of V (z) being e−ηt, we
conclude that z(t) converges to z∗ and xi(t) to x∗ for i ∈ V
at a linear convergence rate. This rate can be explicitly given
as O(γ−t) with γ = e

η
2 > 1.

Theorem 1 establishes the linear convergence of the QDPD
algorithm even with the communication constraints of quan-
tization. As a matter of fact, the cumulative quantization
errors from quantized communication bring a difficulty to con-
vergence analysis. For eliminating the effect of quantization
errors, we introduce a special decaying quantization length
strategy l(k) in our QDPD algorithms. This well-designed l(k)
ensures the exponential convergence of quantization errors and
contributes to the linear convergence of the QDPD algorithm.

C. Bandwidth Analysis

In this subsection, we analyze the relationship between
the bandwidth and the convergence rate. To characterize this
relationship, we need to adjust the convergence rate dynam-
ically. Hence, a positive gain parameter α is introduced into
the QDPD algorithm and the dynamics (8) is redesigned as
follows,

ẋi(t)=α∇fi (xi(t))−α
∑
j∈Ni

(
qxi (t)−qxj (t)

)
−

α
∑
j∈Ni

(
qλi (t)−qλj (t)

)
,

λ̇i(t)=α
∑
j∈Ni

(
qxi (t)−qxj (t)

)
, α > 0.

(22)

When α=1, (22) matches Algorithm 1. In fact, the introduced
gain α does not affect the qualitative result of linear conver-
gence for the QDPD algorithm with dynamic (22), but has a
quantitative impact on the convergence rate. We present the
following corollary to illustrate this point.
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Corollary 1. Consider the QDPD algorithm with modified
dynamics (22), in which some parameters are revised as

i) Tα satisfies

(eα
√

3+
√

5
2 σNTα−1)(e

αη
2 Tα−1)ρα−1 < c1 < 1. (23)

ii) lα(k) satisfies

lα(k) = lα(0)e−
αη
2 kTα ,

with lα(0)=
√

2c2M0

κσN

√
3−κ2(3η+4)(mf+6σN )

Nn(12σN+33) e−
αη
2 Tα−α

√
3+
√

5
2 σNTα .

iii) Lα satisfies

Lα ≥

⌈
max

{
2M0

lα(0)
,

√
2Nn

c2
e
αη
2 Tα+α

√
3+
√

5
2 σNTα

}⌉
. (24)

Under Assumptions 1-3, the states of all agents converge to
an optimal solution to the problem (1) at rate O(γ−tα ) with
γα = e

αη
2 > 1.

Since Corollary 1 is similar to Theorem 1, the proof is
omitted here. In Corollary 1, the upper bound of the minimum
bandwidth Bα = log2(Lα)/Tα and the convergence rate γα
are dynamically adjusted by the gain α. Next, we discuss their
corresponding relationship in the following theorem.

Theorem 2. Under Assumptions 1-3, the following proper-
ties hold.

i) The QDPD algorithm with (22) linearly converges to an
optimal solution of problem (1) under any positive bandwidth.

ii) The relationship between the communication bandwidth
B and the convergence rate γα satisfies

B ≤ C0 ln γα + C1, (25)

where the constants C0 and C1 are chosen as

C0 = (log2 e)(1 +

√
6 +
√

5σN
η

) +

√
24 + 8

√
5σN + 2η

η ln ρ0

(log2(2Nn)− 2 log2 c2),

C1 = (
1

2
log2(2Nn)− log2 c2)

2c2
ρρ0η

, ρ0 > 1.

Proof. i) According to Corollary 1, (22) ensures the linear
convergence of the QDPD algorithm. Next, we discuss the
parameters required in Corollary 1.

Assume that η is a fixed constant. In this case, for any
Tα > 0, there exists a sufficiently small α such that (23)
holds. Then, the quantization level Lα is estimated via (24) as
follows,

lim
α→0

(
√

2Nn/c2)e
αη
2 Tα+α

√
3+
√

5
2 σNTα =

√
2Nn/c2,

which means that the transmitted information could be rep-
resented by log2(dmax{ 2M0

l(0) ,
√

2Nn
c2
}e) bits data at each

instant. Since Tα can be chosen as any positive con-
stant, the upper bound of the minimum bandwidth Bα =

log2(dmax{ 2M0

l(0) ,
√

2Nn
c2
}e)/Tα can be any positive constant.

It implies for any positive bandwidth, the QDPD algorithm
with (22) achieves linear convergence.

ii) For a fixed convergence rate γα, we compute the corre-
sponding upper bound of the minimum bandwidth Bα.

By choosing that

Tα =
1√

24+8
√

5σN+2η
2η ln ρ0

ln γα+ 2c1
ρρ0η

, ρ0 > 1, (26)

Following from ex − 1 ≤ ex and ex − 1 ≤ xex, one has that

(eα
√

3+
√

5
2 σNTα−1)(e

αη
2 Tα−1)/α≤ ηTα

2
eα

√
3+
√

5
2 σNTα+

αηTα
2 .

Invoking Tα≤ 2η ln ρ0

(
√

24+8
√

5σN+2η) ln γα
from (26) yields that

eα
√

3+
√

5
2 σNTα+

αη
2 Tα<ρ0, (27)

Following Tα≤ ρρ0η
2c1

from (26), one can obtain that

(eα
√

3+
√

5
2 σNTα−1)(e

αη
2 Tα−1)ρα−1 ≤ c1 < 1.

Thus, Tα in (26) satisfies (23).
Noting the quantization levels at initial time has no effect

on the value of the required communication bandwidth, we
compute Bα via (24) as

Bα =
log2(Lα)

Tα
=

log2(
√

2Nn
c2

e
αη
2 Tα+α

√
3+
√

5
2 σNTα)

Tα
,

=
1
2 log2(2Nn)−log2 c2

Tα
+log2 e(ln γα+α

√
3+
√

5

2
). (28)

Substituting (26) into (28), we conclude that Bα =
C0 ln(γα) + C1. Hence, (25) holds.

Note that property i) provides a necessary and sufficient
condition on the required bandwidth for linear convergence
of the QDPD algorithm. Specifically, property i) provides its
sufficiency. Its necessity can be deduced directly by Shannon’s
rate-distortion theory. That is, if the quantized distributed
algorithm achieves linear convergence with the rate γα, the
bandwidth Bα > γα log2 e > 0.

Property ii) offers the upper bound of the minimum band-
width. Hence, there may exist a B<Bα such that the QDPD
algorithm achieves linear convergence with the fixed rate γα.
Conversely, for a fixed bandwidth Bα, the QDPD algorithm
can always guarantee the linear convergence rate γα.

IV. EXAMPLE

In this section, we use an exponential regression example to
verify our result. Consider a training set S={(ai, bi, ci, di)T ∈
R4} for i∈{1, · · · , 12}, which is given in Table I.

We aim to learn a parameter x to minimize problem (1),
whose local cost functions are designed as follows,

fi(x) =

 ai(x− bi)2, if x ≥ bi,
ci(x+ di)

2, if x ≤ −di,
0, otherwise,

(29)

which satisfies Assumption 1, and the corresponding F satis-
fies Assumption 2 based on Lemma 2 in [11]. Take 12 agents
cooperatively to learn the optimal solution x∗ ∈ [0, 1]. The
network graph is described as a ring and the information
transmission among agents is sampled and quantized. The
parameters of the quantization scheme are chosen as: i) the
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TABLE I

i a b c d i a b c d
1 0.1 0.5 1.0 9.0 7 0.5 0.4 1.0 5.0
2 0.3 0.2 3.0 3.0 8 0.6 1.0 7.0 5.0
3 0.8 0.5 3.0 7.0 9 0.2 0.0 5.0 9.0
4 0.0 0.6 7.0 2.0 10 0.5 0.9 8.0 6.0
5 0.9 0.7 1.0 0.0 11 1.0 0.9 7.0 6.0
6 0.7 0.4 7.0 7.0 12 0.5 0.8 9.0 9.0
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Fig. 2. The trajectories of xi(t) and λi(t) for i ∈ {1, · · · , 12}.

sampling period T = 0.05s; ii) the dynamic length of quanti-
zation range l(k) = 0.8e−0.1k; iii) the number of quantization
levels L + 1 = 68. The initial states of all agents are set as
x(0) = [−9; 4;−9;−9; 0;−8; 6; 6; 4;−7; 3; 0].

i) The trajectories of x(t) and λ(t) are shown in Fig.2,
which demonstrates the convergence of the QDPD algorithm.

ii) The tracking errors ‖x(t)−x∗‖ of the QDPD algorithm
(blue line) and the related PD algorithm in [11] (red line)
are shown in Fig.3. The result illustrates that the quantized
communication has a slight impact on the convergence rate.
Further, a performance function J(t) = e0.01t‖x(t) − x∗‖ is
used to show the linear convergence.

0 5 10 15 20
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15
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25

30

J(
t)
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Fig. 3. The trajectories of the tracking errors of the QDPD algorithm and the
distributed PD algorithm without quantization, and the trajectory of J(t).

V. CONCLUSION

This paper introduced a continuous-time quantized dis-
tributed optimization algorithm, called the QDPD algorithm, to
solve a distributed optimization problem with finite bandwidth
constraints. Without strong convexity, our QDPD algorithm
can converge to an optimal solution at a linear convergence
rate under a mild metric subregularity assumption. Meanwhile,
the required bandwidth was analyzed in detail. Particularly, for
any positive bandwidth, our QDPD algorithm with a minor
modification always maintained linear convergence. Under
a specific bandwidth, we proved that a lower bound that
guarantees this linear convergence rate could be characterized.

VI. APPENDIX

To complete the proof of Theorem 1, we first introduce
two properties concerned on the upper bound of the stacked
optimal dual variables ‖λ∗‖ and the bound of V (z).

Proposition 1. Under Assumption 3, the stacked optimal
dual variables ‖λ∗‖≤ 1TNnλ(0)√

Nn
+
√
Nn(M1

σ2
+M2).

Proof. For simplicity, we discuss the case of n = 1 since the
proof of the case n > 1 is similar. From (12), 1TN λ̇ = 0, which
leads to 1TNλ(t) = 1TNλ(0) for any t ≥ 0. Using the symmetry
of LG , we decompose the Laplacian matrix LG=PTAP and its
generalized inverse matrix L†G=P

TA†P respectively associated
with an orthogonal matrix P and

A=diag(0, σ2, · · · , σN ), A†=diag(0,
1

σ2
, · · · , 1

σN
).

Multiplying both side of (3) by L†G can lead to that{
−PT [A†P∇f(x∗) +AA†P (x∗ + λ∗)]=0N ,
PTA†APx∗=0N .

(30)

Define x̂∗ = Px∗, λ̂
∗

= Pλ∗ and ∇f̂(x∗) = P∇f(x∗).
Then substituting them into (30) obtains that

λ̂∗i = x̂∗i −
1

σi
∇f̂i(x∗), i = 2, · · · , N. (31)

Further define λ̂
∗
+ =[λ̂∗2;· · ·; λ̂∗N ]∈RN−1. Invoking (31) yields

that

‖λ̂
∗
+‖=

√√√√ N∑
i=2

(x̂∗i−
1

σi
∇f̂i(x∗))2 ≤ 1

σ2
‖∇f(x∗)‖+‖x∗‖.

Regrading LGPT=PA and LGPT1 =0N associated with P1=
1TN√
N

, by noting that |λ̂∗1|=
1TNλ

∗
√
N

, following from Assumption
3, one can obtain that

‖λ∗‖ = ‖λ̂
∗
‖≤|λ̂∗1|+‖λ̂

∗
+‖ ≤

1TNλ(0)√
N

+
√
N(

1

σ2
M1+M2).

When n 6= 1, ‖λ∗‖ ≤ 1√
Nn

1TNλ(0)+
√
Nn( 1

σ2
M1+M2).

Proposition 2. Under Assumption 1, the bound of V (z)
satisfies

3σN
2
‖z − z∗‖2≤V (z) ≤ mf+6σN

2
‖z − z∗‖2. (32)
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Proof. By (14), one has that V (z) ≥ 3σN
2 ‖z − z

∗‖2. Next,
we establish the upper bound of V (z). It follows from the
mf -Lipschitz continuity of ∇f(x) that f(x)− f(x∗)− (x−
x∗)T∇f(x∗) ≤ mf

2 ‖x − x
∗‖2. Since LG is positive semi-

defined, 1
2 (x − x∗)TLG(x − x∗) ≤ σN

2 ‖x − x
∗‖2 and (x −

x∗)TLG(λ− λ∗) ≤ σN
2 (ε‖x− x∗‖2 + 1

ε‖λ− λ
∗‖2) for any

ε > 0. Choosing ε= σN
mf+σN

results in that

V2(z)≤(mf+σN )/2‖z−z∗‖2+σ2
N/(2(mf+σN ))‖x−x∗‖2,

≤(mf+2σN )/2‖z−z∗‖2. (33)

which implies V (z) ≤ mf+6σN
2 ‖z−z∗‖2. Hence, (32) holds.

Now, we use the mathematical induction method to prove
(19). When k = 0, Assumption 3 naturally ensures (19). We
now prove that if (19) holds when k = k1 for any k1∈N, then
(19) holds when k = k1 +1 by considering the following four
steps.

Step 1: We prove that for any t′ ∈ (k1T, (k1 + 1)T ],

‖e(t)‖<b(t), t∈(k1T, t
′)⇒V (z)≤a(t), t∈(k1T, t

′] . (34)

For any β ∈ (0, 1), (18) is rewritten as

V̇≤−β
2
‖F (z)‖2−1−β

2
‖F (z)‖2+(2σ3

N+
11

2
σ2
N )‖e(t)‖2+4V

3
.

By inequalities (5) and (32), one has that

V̇≤−ηV−
[ 1− β
κ2(mf+6σN )

− 4

3

]
V+(2σ3

N+
11

2
σ2
N )‖e(t)‖2.

For any t∈ (k1T, t
′), assume V ≥ a(t). Define V1(t)= V eηt,

then V1(t)≥mf+6σN
3σN

V (0). Combining with ‖e(t)‖<b(t), we
obtain V̇ ≤−ηV , which further leads to

V̇1(t)=eηt(V̇ + ηV ) ≤ 0. (35)

Based on the above analysis, {z|V (z)eηt ≤ mf+6σN
3σN

V (0)}is
a positively invariant set. Recalling V ≤ a(k1T ) at time
k1T , it follows V1(k1T ) ≤ mf+6σN

3σN
V (0). Hence, V1(t) ≤

mf+6σN
3σN

V (0), t∈(k1T, t
′]. It implies V ≤a(t), t∈(k1T, t

′].
Step 2: We prove that for any t′ ∈ [k1T, (k1 + 1)T ),

V (z)≤a(t), t∈(k1T, t
′]⇒‖e(t)‖<b(t), t∈(k1T, t

′] . (36)

From (12), it is easy to obtain that

ė=

[
−∇f(x)+[LG 0Nn]e+[0Nn LG ]e−LGx−LGλ

LGx−[LG 0Nn]e

]
. (37)

Define z̃=z−z∗ and Θ=∇f(x)−∇f(x∗). Inserting (3) into
(37) yields that

ė−LGe=

[
−LGx̃−LGλ̃−Θ

LGx̃

]
, LG=

[
LG LG
−LG 0

]
, (38)

Integrating both side of (38) from k1T to t, t∈(k1T, t
′] leads

to that

e(t) = e(k1T )e
∫ t
k1T

LGdτ−e
∫ t
k1T

LGdτ
∫ t

k1T

[
LGx̃+LGλ̃+Θ
−LGx̃

]
e
−

∫ τ
k1T

LGdτdτ. (39)

Then, taking the norm on both sides of (39) gives that

‖e(t)‖≤‖e(k1T )‖‖eLG(t−k1T )‖+
∫ t

k1T

(
2‖LGx̃‖+‖LGλ̃‖+‖Θ‖

)
‖eLG(t−τ)‖dτ. (40)

Next, we analyze the upper bound of each item of (40) as

‖e(k1T )‖‖eLG(t−k1T )‖=‖
∞∑
p=0

[LG(t− k1T )]p‖‖e(k1T )‖

≤
∞∑
p=0

‖[LG(t− k1T )]p‖
p!

‖e(k1T )‖≤eσNT ‖e(k1T )‖.

Following from V ≤ a(t), t ∈ (k1T, t
′] and the conclusion of

Proposition 2, one can obtain that

2

∫ t

k1T

‖eLG(t−τ)‖‖LGx̃‖dτ≤2σN

∫ t

k1T

∞∑
p=0

|σN (t− τ)|p

p!
‖x̃‖dτ

≤2σNe
σN t

∫ t

k1T

e−σNτdτ

∫ (k1+1)T

k1T

√
2V (z)

σN
dτ

≤ 4M0

ησN

√
(mf + 6σN )σN (eσNT − 1)(e

η
2 T − 1)e−

η
2 (k1+1)T .

Similar arguments can lead to∫ t

k1T

‖eLG(t−τ)‖‖LGλ̃‖dτ

≤ 2M0

ησN

√
(mf + 6σN )σN (eσNT−1)(e

η
2 T − 1)e−

η
2 (k1+1)T .

The last term of (40) can be rewritten as∫ t

k1T

‖eLG(t−τ)‖‖Θ‖dτ≤
∫ t

k1T

∑∞
p=0 |σN (t− τ)|p

p!
‖Θ‖dτ,

≤ 1

σN
(eσNT − 1)

∫ (k1+1)T

k1T

mf‖x̃‖dτ

≤ 2M0mf

ησN

√
mf+6σN

σN
(eσNT − 1)(e

η
2 T − 1)e−

η
2 (k1+1)T .

To proceed, denote by ∆k1
e = supk1T<t≤t′ ‖e(t)‖. Substitut-

ing all the above inequalities into (40) yields that

∆k1
e =eσNT ‖e(k1T )‖+

(6M0

ησN

√
(mf+6σN )σN+

2M0mf

ησN√
mf+6σN

σN

)
(eσNT − 1)(e

η
2 T − 1)e−

η
2 (k1+1)T .

Choosing T satisfies (9), which implies that(6M0

ησN

√
(mf+6σN )σN+

2M0mf

ησN

√
mf+6σN

σN

)
(eσNT − 1)(e

η
2 T − 1)e−

η
2 (k1+1)T ≤ c1b(k1T ). (41)

By noting that the eigenvalue of LG is σN =

√
3+
√

5
2 σN and

eσNT ‖e(k1T )‖ ≤ c2b(k1T ) via (19), following from c1+c2 <
1, we have ‖e(t)‖<b(k1T ) = b(t), t∈(k1T, t

′].
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Step 3: We prove that for any

‖e(t)‖≤b(t), t ∈ [k1T, (k1 + 1)T ) ,

⇒‖e((k1 + 1)T )‖ ≤ c2e−
(1+
√

5)σNT

2 b((k1+1)T ).
(42)

Denote the left limit of e(t) as e−(t). For any t ∈ [k1T, k1 +
1), there is qz(t)=qz(k1T ) such that

z((k1 + 1)T )− qz(k1T )

= lim
t→(k1+1)T−

z(t)− qz(k1T ) = e−((k1 + 1)T ).

For any t∈ [k1T, k + 1), one has that ‖e(t)‖<b(t)=b(k1T ).
Then, invoking (11) yields that∥∥∥∥z((k1 + 1)T )− qz(k1T )

l(k1 + 1)

∥∥∥∥ ≤ ∥∥∥∥e−((k1 + 1)T )

l(k1 + 1)

∥∥∥∥
=
∥∥∥ b(k1T )

l(k1 + 1)

∥∥∥ ≤ L

2
, (43)

that is, the quantizer is unsaturated at time t= (k1 +1)T . It
further ensures the quantization error satisfying

‖e((k1+1)T )‖≤
√
Nn

2
l(k1+1)=c2e

−
√

3+
√

5
2 σNT b((k1+1)T ).

Step 4: At last, we prove (19) holds for k = k1 + 1 based
on (34), (36) and (42).

Firstly, we need to prove

sup
t
{k1T < t < (k1 + 1)T

∣∣‖e(t)‖ < b(t)} = (k1 + 1)T.

Recalling the definition of b(t), there is b(t) = b(k1T ) for
any t ∈ [k1T, (k1 + 1)T ). Define the set as follows,

Ω = {k1T < t < (k1 + 1)T
∣∣‖e(t)‖ < b(k1T )}. (44)

At time k1T , the quantization error satisfies ‖e(k1T )‖ <
b(k1T ). Since e(t) is continuous on t ∈ [k1T, (k1+1)T ), there
exists supt∈Ω t > k1T satisfying ‖e(t)‖ < b(k1T ). Next, we
use a contradiction argument to prove supt∈Ω t = (k1 + 1)T .
Assume that t0 = supt∈Ω t, t0 ∈ (k1T, (k1 + 1)T ).

Since e(t) is continuous on t ∈ [k1T, (k1+1)T ), there must
be ‖e(t0)‖ = b(k1T ) by (44). However,

‖e(t)‖ < b(k1T ) = b(t), t ∈ (k1T, t0) ,
(34)⇒ V ≤ a(t), t ∈ (k1T, t0] ,
(36)⇒ ‖e(t)‖ < b(t) = b(k1T ), t ∈ (k1T, t0] ,

which contradicts to ‖e(t0)‖= b(k1T ), then supt∈Ω t=(k1+
1)T .

Up to now, we have proved that ‖e(t)‖ < b(t), t ∈
(k1T, (k1 +1)T ). Following (34) yields that V (t) ≤ a(t), t ∈
[k1T, (k1 +1)T ]. Following (42) yields that ‖e((k1 +1)T )‖ ≤
c2e
−
√

3+
√

5
2 σNT b((k1 +1)T ). Thus, (19) holds for k = k1 +1.
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[5] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp. 48–
61, 2009.

[6] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order
algorithm for decentralized consensus optimization,” SIAM J. Optim.,
vol. 25, no. 2, pp. 944–966, 2015.
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