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Understanding the Capability of PD Control for
Uncertain Stochastic Systems

Cheng Zhao and Yanbin Zhang

Abstract—In this article, we focus on the global sta-
bilizability problem for a class of second order uncertain
stochastic control systems, where both the drift term and
the diffusion term are nonlinear functions of the state
variables and the control variables. We will show that the
widely applied proportional-derivative(PD) control in engi-
neering practice has the ability to globally stabilize such
systems in the mean square sense, provided that the upper
bounds of the partial derivatives of the nonlinear functions
satisfy a certain algebraic inequality. It will also be proved
that the stabilizing PD parameters can only be selected
from a two dimensional bounded convex set, which is a
significant difference from the existing literature on PD con-
trolled uncertain stochastic systems. Moreover, a particular
polynomial on these bounds is introduced, which can be
used to determine under what conditions the system is not
stabilizable by the PD control, and thus demonstrating the
fundamental limitations of PD control.

Index Terms— PD control, stochastic systems, nonlinear
dynamics, uncertain structure, global stabilizability.

I. INTRODUCTION

Feedback is a basic concept in automatic control, which

has had a revolutionary influence in practically all areas.

Its primary objective is to reduce the effects of the plant

uncertainty on the desired control performance(e.g., stability,

optimality of tracking, etc). Plenty of control methods have

been developed for dealing with uncertainties over the past

sixty years, such as adaptive control [11], robust control

[25], active disturbance rejection control [5], [8] and sliding

mode control, etc. However, the classical proportional-integral-

derivative(PID) control, perhaps the most basic form of feed-

back, has been at the heart of control engineering practice

for several decades [3]. In fact, the PID control is used in

more than 90% of industrial processes [2]. One may naturally

believe that such basic controller has been deeply understood

in both theory and practice. However, as mentioned in [15],

many practical PID loops are poorly tuned, and there is strong

evidence that its rationale remains to be unclear.

Recently, the PID control has attracted more and more

attention from the research community. For example, the

stabilization problems of PD(or PID) controlled linear systems
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with time-delay are investigated, see e.g., [12]–[14], [16].

There are also abundant works on PD controlled mechanical

systems(see e.g., [4], [7], [17]), among which [17] is probably

the most notable, where a PD controller was constructed to

globally stabilize fully actuated robot manipulators. For more

general class of nonlinear uncertain systems without special

structures, some rigorous mathematical investigations have

been made on the theory and design of PID in recent years(see,

e.g., [20], [22]–[24]). For instance, it has been shown that for

a class of second order single-input-single-output(SISO) affine

nonlinear system, one can select the three PID parameters

to globally stabilize the closed-loop system and at the same

time to make the output of the controlled system converge

to any given setpoint, provided that the partial derivatives of

the system nonlinear functions are bounded [22]. Extensions

to MIMO non-affine systems without stochastic disturbances

are discussed in [23]. More recently, the authors investigate

the performance and design of PID control for non-affine

stochastic systems in [21], where the diffusion term does not

depend on the control input.

As a special case of PID, the PD controller has also attracted

many scientists and scholars, see [7], [13], [17], [21], [22]. In

order to understand the mechanism of the linear PD control,

it is of vital importance to take nonlinearity, uncertainty and

randomness into consideration. Moreover, efforts must be

taken to investigate the limitations of PD control in a general

framework. But, to the best of the our knowledge, these issues

have not been fully explored. In this article, we are devoted

to this fundamental problem by considering a basic class of

MIMO stochastic nonlinear uncertain systems, where both the

drift term and the diffusion term are functions of the state

variables and the control variables. The main contributions

are summarized as follows:

1) We have shown that the PD control has the ability to

globally stabilize such systems in mean square, if the upper

bounds of the partial derivatives of the nonlinear functions

satisfy a certain algebraic inequality. Moreover, a particular

polynomial is introduced, which can be used to determine

under what conditions the system is not stabilizable by PD

control, and thus demonstrating the fundamental limitations

of PD control.

2) Open and bounded parameter sets for the controller gains

are also constructed, which are based on some knowledge

of both the drift and diffusion functions. Besides, it will be

shown that the PD parameters cannot be chosen arbitrarily

large, which is also a significant difference from the existing

literature on PD controlled nonlinear uncertain systems, see

http://arxiv.org/abs/2205.04914v1


2 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

e.g. [9], [22], [6], [21].

The rest of this article is organized as follows. In Section

II, we will introduce the mathematical formulation. The main

results are presented in Section III. Section IV contains the

proofs of the main theorems. Section V will conclude the

article with some remarks.

II. MATHEMATICAL FORMULATION

A. Notations and Definitions

Let Rn be the n-dimensional Euclidean space, R
m×n be

the space of m×n real matrices. Denote ‖x‖ as the Euclidean

norm of a vector x, and xT as the transpose of a vector or

matrix x. The norm of a matrix P ∈ R
m×n is defined by

‖P‖ = supx∈Rn,‖x‖=1 ‖Px‖. For a square matrix P ∈ R
n×n,

denote P sym := (P +PT)/2 as the symmetrization of P , and

tr(P ) as the trace of P . For a symmetric matrix S ∈ R
n×n,

we denote λmin(S) and λmax(S) as the smallest and the largest

eigenvalues of S, respectively. For two symmetric matrices S1

and S2 in R
n×n, the notation S1 > S2 implies that S1−S2 is

a positive definite matrix; S1 ≥ S2 implies that S1 − S2 is a

positive semi-definite matrix. Let C1(Rn,Rm) be the space of

continuously differentiable functions from R
n to R

m, denoted

as C1(Rn) for simplicity when m = 1. Denote Ck(Rn) as

the space of functions from R
n to R with k−times continuous

partial derivatives.

B. The Control System

Consider a basic class of second order nonlinear uncertain

stochastic control system:

dx1 =x2dt

dx2 =f(x1, x2, u)dt+ g(x1, x2, u)dBt, (1)

where x1, x2 ∈ R
n are the system state vector, u ∈ R

n is

the control input, Bt ∈ R
1 is an one-dimensional standard

Brownian motion, and the nonlinear functions f and g belong

to C1(R3n,Rn), which may contain unknown dynamics.

In this article, we aim to study the capability together with

a design method of the classical PD control(also abbreviated

as “the PD control”):

u(t) = kpe(t) + kdė(t), e(t) = y∗ − x1(t), (2)

where y∗ ∈ R
n is the setpoint, e(t) is the regulation error, kp

and kd are the PD parameters.

The objective is to design suitable PD parameters to globally

stabilize and regulate system (1) in mean square, i.e.,

lim
t→∞

E
[
‖e(t)‖2+‖ė(t)‖2

]
= 0, ∀(x1(0), x2(0)) ∈ R

2n, (3)

where E denotes the expectation of a random variable.

We first introduce a basic assumption that will be used

throughout the article.

Assumption 1: The setpoint y∗ ∈ R
n is an equilibrium of

the uncontrolled stochastic system (1). To be precise,

f(y∗, 0, 0) = 0, g(y∗, 0, 0) = 0. (4)

It is worth noting that Assumption 1 is necessary for the

existence of (kp, kd) to achieve the control objective (3).

Specifically, we have the following proposition.

Proposition 1: Consider the PD controlled system (1)-(2),

where the functions f and g are Lipschitz continuous. Sup-

pose that there exist some PD parameters kp, kd and some

(x1(0), x2(0)) ∈ R
2n, such that the solution of the closed-

loop system satisfies limt→∞ E
[
‖e(t)‖2 + ‖ė(t)‖2

]
= 0, then

f(y∗, 0, 0) = 0 and g(y∗, 0, 0) = 0.

The proof of Proposition 1 is given in Appendix B.

Note that both f(·) and g(·) are uncertain functions, we

need to find a suitable measure to quantitatively describe the

size of uncertainty. The upper bounds of the partial derivatives

of the uncertain functions, which reflect the “sensitivity” to

their variables, are a natural choice for such measurement, see

e.g. [19], [22]. In addition, in order to enable the input signal

to affect the state of the controlled system, the control gain

matrix ∂f
∂u

should not vanish. These natural intuitions inspired

us to introduce the following assumption.

Assumption 2: The drift function f(·) ∈ FL1,L2
, where

FL1,L2
:=

{

f : ‖
∂f

∂xi

‖ ≤ Li;
∂f

∂u
≥ In, ∀x1, x2, u

}

, (5)

where L1, L2 are positive constants, In is the n× n identity

matrix, ∂f
∂xi

, ∂f
∂u

are the n × n Jacobian of f with respect to

xi and u, respectively. Moreover, the diffusion function g(·)
belongs to

GN1,N2,M :=
{

g : ‖
∂g

∂xi

‖ ≤ Ni, ‖
∂g

∂u
‖ ≤M, ∀x1, x2, u

}

,

(6)

where the constants N1, N2 are positive and M is nonnegative.

Next, we introduce the following definition.

Definition 1: We say that the uncertain stochastic system

(1) is (globally) stabilizable by the PD control (2), if there

exist some PD parameters (kp, kd) ∈ R
2, such that the control

performance (3) is satisfied for all functions f and g that

satisfy Assumptions 1 and 2. Otherwise, we say that system

(1) is not stabilizable by the PD control (2).

Remark 1: It is known that, if system (1) has the following

special form(the diffusion term does not depend on u):

dx1 =x2dt

dx2 =f(x1, x2, u)dt+ g(x1, x2)dBt, (7)

where f(y∗, 0, 0) = g(y∗, 0) = 0 and

‖
∂f

∂xi

‖ ≤ Li, ‖
∂g

∂xi

‖ ≤ Ni;
∂f

∂u
≥ In, ∀x1, x2, u,

then for any positive quadruple (L1, L2, N1, N2), the uncertain

stochastic system (7) is globally stabilizable by the PD control

(2), see Theorem 3.9 in [21]. Moreover, the selection of the

PD parameters kp and kd has wide flexibility, since they can

be arbitrarily chosen from an open and unbounded set in R
2.

Thus, one might naturally conjecture that this result can be

extended to the more general system (1) considered in this

article, where g(·) is a function of both the state variables and

the control variables. To be precisely, for any given positive

constants L1, L2, N1, N2 and M , an open and unbounded
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PD parameter set could be constructed, from which the PD

control (2) has the ability to globally stabilize the system (1),

for all functions f and g that satisfy Assumptions 1 and 2.

Surprisingly, the answer of the above problem is no. In fact,

these five constants have to meet suitable constraints before

such stabilizing PD parameters can be found.

III. MAIN RESULTS

A. Uncertain Nonlinear Stochastic System

For given positive constants L1, L2, N1 and N2, we first

define a family of parameter set {Ω0(M), M ≥ 0} as follows:

Ω0 :=

{

(kp, kd) ∈ R
2
+

∣
∣
∣
∣

k2p > k̄ + kdT
2
1

k2d − kp > k̄ + kdT
2
2

}

, (8)

where k̄ := (L1 + L2)(kp + kd), and T1, T2 are defined by

T1 :=N1 +Mkp, T2 := N2 +Mkd. (9)

Next, we list some geometric properties of the set Ω0:

• If M = 0, Ω0 is an open and unbounded set in R
2;

• The range of Ω0 will shrink as M increase, i.e.

Ω0(M1) ⊂ Ω0(M2), if 0 ≤ M2 < M1;

• Ω0 = ∅ if M ≥ M∗
0 , where M∗

0 is the unique positive

solution of 16L1s
4 + 16N1s

3 + 4L2s
2 + 4N2s = 1.

Let M∗
1 be the supremum of the set consisting of M that

makes Ω0 nonempty. More precisely,

M∗
1 := sup

{
M > 0 : Ω0(M) 6= ∅

}
.

Theorem 1: Consider the nonlinear stochastic system (1)-

(2), where Assumptions 1-2 are satisfied.

(i) If 0 ≤ M < M∗
1 , system (1) is stabilizable by the PD

control (2). Moreover, the stabilizing PD parameters can be

selected from Ω0.

(ii) If M ≥ M∗
2 , where M∗

2 is the unique positive root of

the following quartic polynomial:

4L1s
4 + 4N1s

3 + 2L2s
2 + 2N2s− 1 = 0, (10)

system (1) is not stabilizable by the PD control (2).

The proof of Theorem 1 will be provided in the next section.

Remark 2: Note that M ≥ M∗
2 is equivalent to

U := 4L1M
4 + 4N1M

3 + 2L2M
2 + 2N2M ≥ 1. (11)

Hence, it can be seen from Theorem 1(ii) that, if we regard the

quantity U as a measure of system uncertainty, the PD control

(2) will have fundamental limitations in dealing with the

uncertain nonlinear stochastic system (1), once the uncertainty

of the system is too large, namely, U ≥ 1.

Remark 3: The constant M∗
1 > 0 and satisfies

16L1M
∗4
1 +16N1M

∗3
1 +4L2M

∗2
1 +4N2M

∗
1 ≤1. (12)

Therefore, M∗
1 < M∗

2 . So, one naturally ask, whether system

(1) is stabilizable if M∗
1 ≤ M < M∗

2 ? Further, does it exist

a positive constant M∗, such that system (1) is stabilizable

by the PD control (2) if and only if M < M∗? In general,

these problems can be very challenging due to the inherent

nonlinearity, uncertainties and the strong coupling of high-

dimensional state variables and non-affine control input, and

remains open. However, the stabilizability problems have been

solved in this article, when system (1) has a specific linear

structure. In fact, the necessary and sufficient condition for a

class of uncertain linear stochastic systems to be stabilized by

the PD control (2) is U < 1, see Theorem 2 for details.

B. Uncertain Linear Stochastic System

Consider the following uncertain linear stochastic system:

dx1 =x2dt

dx2 =(ax1 + bx2 + u)dt+ (cx1 + dx2 + eu)dBt, (13)

where x1 ∈ R
n, u ∈ R

n, and a, b, c, d and e are unknown

n× n constant matrices with known upper bounds, namely,

‖a‖ ≤ L1, ‖b‖ ≤ L2, ‖c‖ ≤ N1, ‖d‖ ≤ N2, ‖e‖ ≤ M, (14)

where L1, L2, N1, N2 are positive constants, and M is non-

negative. Without loss of generality, assume that y∗ = 0, then

the PD control (2) takes the following form:

u(t) = −kpx1(t)− kdx2(t). (15)

Next, we will present a necessary and sufficient condition

on the five constants, under which the uncertain stochastic

system (13) is stabilizable by the PD control (15). Moreover,

necessary and sufficient conditions for the choice of PD

parameters are also provided.

Theorem 2: Consider the system (13), where (14) is satis-

fied. Then, the necessary and sufficient condition for system

(13) to be stabilizable by the PD control (15) is

4L1M
4 + 4N1M

3 + 2L2M
2 + 2N2M < 1. (16)

Moreover, under (16), the closed-loop system will satisfy (3)

for all constant matrices a, b, c, d and e satisfying (14), if and

only if kp and kd are chosen from the following set:

Ω :=
{
(kp, kd)

∣
∣ kp > L1, 2k̄1k̄2 > T 2

1 + k̄1T
2
2

}
, (17)

where T1, T2 are defined in (9) and k̄1, k̄2 are defined by

k̄1 := kp − L1, k̄2 := kd − L2. (18)

Remark 4: We provide some geometric properties of the

parameter set Ω defined by (17):

• The set Ω0 defined in (8) is a subset of Ω;

• If M = 0, Ω is an open and unbounded subset in R
2 for

any positive constants L1, L2, N1 and N2;

• If M > 0 and (16) holds, Ω is an open and bounded

convex subset in R
2.

Hence, the controller gains kp and kd cannot be chosen

sufficiently large for the case M > 0, which is a significant

difference from the existing literature on PD or PID controlled

nonlinear uncertain systems, see e.g. [9], [22], [6], [21].
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IV. PROOFS OF THE MAIN RESULTS

A. Proof of Theorem 1

First, we prove the first half of Theorem 1 in three steps.

Step 1: (Some properties of the PD parameter set Ω0)

Firstly, for given positive constants L1, L2, N1, N2 and

M ≥ 0, we define a set Ω′ as follows:

Ω′ :=
{
(kp, kd)

∣
∣ kp > L1, k̄1k̄2 > T 2

1 + k̄1T
2
2

}
, (19)

where T1, T2, k̄1 and k̄2 are defined in (9) and (18).

Property 1: The sets Ω0, Ω′ and Ω satisfy

Ω0 ⊂ Ω′ ⊂ Ω, (20)

where Ω0 and Ω are defined in (8) and (17), respectively.

The inclusion Ω′ ⊂ Ω is obvious by the definitions of Ω′ and

Ω. We only need to show Ω0 ⊂ Ω′. Indeed, if (kp, kd) ∈ Ω0,

then by definition (8), we know

k2p > k̄ := (L1 + L2)(kp + kd) > kp(L1 + L2), (21)

which yields kp > L1. Moreover, combine k2p > k̄ + kdT
2
1

with k̄ > kpL1, it can be obtained that k2p − kpL1 > kdT
2
1 ,

hence kp − L1 > kdT
2
1 /kp. Recall k̄1 := kp − L1, we have

k̄1 > kdT
2
1 /kp. (22)

On the other hand, since k2d−kp > k̄+kdT
2
2 > kdL2+kdT

2
2 ,

we have kd(kd − L2) > kp + kdT
2
2 . Therefore, we have

k̄2 := kd − L2 > kp/kd + T 2
2 . (23)

Combine (22) with (23), it is easy to obtain

k̄1
(
k̄2 − T 2

2

)
> T 2

1 . (24)

From (24) and recall kp > L1, we conclude that (kp, kd) ∈ Ω′.

Property 2: Ω0 will become smaller when M increase, i.e.

Ω0(M1) ⊂ Ω0(M2), if 0 ≤ M2 < M1. (25)

In fact, let 0 ≤ M2 < M1, and suppose (kp, kd) ∈ Ω0(M1),
then by (8) and note that kp > 0, kd > 0, it is easy to obtain

k2p > k̄ + kd(N1 +M1kp)
2 > k̄ + kd(N1 +M2kp)

2,

k2d − kp > k̄ + kd(N2 +M1kd)
2 > k̄ + kd(N2 +M2kd)

2,

hence, (kp, kd) ∈ Ω0(M2), which yields the relationship (25).

Property 3: If M = 0, Ω0 is an open and unbounded set.

To this end, let kp = kd = k > 0, then

k2p − k̄ − kdT
2
1 = k2 − 2k(L1 + L2)− kN2

1 > 0, as k → ∞.

Similarly, k2d − kp − k̄ − kdT
2
2 > 0 for k large enough.

Consequently, Ω0 is open and unbounded when M = 0.

Property 4: For given positive constants L1, L2, N1 and

N2, let M∗
0 be the unique positive solution of the polynomial

16L1s
4 + 16N1s

3 + 4L2s
2 + 4N2s = 1, (26)

then Ω0 = ∅ if M ≥ M∗
0 .

First, by the definition of M∗
0 , we know that M ≥ M∗

0 is

equivalent to 16L1M
4 + 16N1M

3 + 4L2M
2 + 4N2M ≥ 1.

From Lemma 2 in Appendix A, we know Ω′ is empty if and

only if M ≥ M∗
0 . Besides, by the inclusion relationship (20),

we conclude that Ω0 is also empty if M ≥ M∗
0 .

Let M∗
1 be the supremum that makes Ω0 nonempty, i.e.,

M∗
1 := sup

{
M > 0 : Ω0(M) 6= ∅

}
. (27)

Then, it is easy to obtain the following facts:

• The set Ω0 is not empty, if 0 ≤ M < M∗
1 ;

• The constant M∗
1 depends on L1, L2, N1, N2 only;

• M∗
1 ≤ M∗

0 , i.e., 16L1M
∗4
1 +16N1M

∗3
1 +4L2M

∗2
1 +

4N2M
∗
1 ≤1.

Step 2: (Write the closed-loop system into a linearity-like

form) Let us denote

z1(t) := −e(t) = x1(t)− y∗, z2(t) := −ė(t) = x2(t),
(28)

then the PD control (2) can be rewritten as u(t) = −kpz1(t)−
kdz2(t), and the PD controlled system (1)-(2) turns into

dz1 = z2dt

dz2 = f(z1 + y∗, z2, u)dt+ g(z1 + y∗, z2, u)dBt. (29)

u = − kpz1 − kdz2

By Assumption 1, we know that (z1, z2) = (0, 0) ∈ R
2n is an

equilibrium of (29). Besides, recall f(y∗, 0, 0) = 0 and note

that f ∈ FL1,L2
, one can obtain(details can be found in [23]):

f(z1+y∗, z2, u)=a(z1)z1+b(z1, z2)z2+θ(z1, z2, u)u, (30)

where a, b and θ are n× n matrices satisfying

‖a(z1)‖ ≤ L1, ‖b(z1, z2)‖ ≤ L2, θ(z1, z2, u) ≥ In, (31)

for all z1, z2, u. Similarly, since g(y∗, 0, 0) = 0 and g ∈
GN1,N2,M , the function g(z1+y∗, z2, u) can be expressed by

g(z1+y∗, z2, u)=c(z1)z1+d(z1, z2)z2+e(z1, z2, u)u, (32)

where c, d and e are n× n matrices satisfying

‖c(z1)‖ ≤ N1, ‖d(z1, z2)‖ ≤ N2, ‖e(z1, z2, u)‖ ≤ M. (33)

By the expressions of f and g in (30) and (32), the nonlinear

system (29) turns into the linearity-like form:

dz1 =z2dt

dz2 =
[
âz1 + b̂z2

]
dt+

[
ĉz1 + d̂z2

]
dBt, (34)

where â, b̂, ĉ and d̂ are nonlinear (matrix-valued) functions of

z = (z1, z2) defined by

â = a(z1)− kpθ(z, u), b̂ = b(z1, z2)− kdθ(z, u), (35)

ĉ = c(z1)− kpe(z, u), d̂ = d(z1, z2)− kde(z, u), (36)

with u = kpz1 + kdz2.
Now, suppose that M < M∗

1 and (kp, kd) ∈ Ω0. In the next

two steps, we proceed to prove the closed-loop system (1)-(2)

will satisfy the performance (3).

Step 3: (Construction of Lyapunov function)

We adopt a similar Lyapunov function V (z) as that used

for deterministic system(see [23]),

V (z) = kpkdz
T

1 z1+kpz
T

1 z2+kdz
T

2 z2/2, z = (z1, z2). (37)

Note that V = ‖
√

kpkdz1+
1
2

√

kp/kdz2‖2+
1
2 (kd−

kp

2kd
)‖z2‖2

and that k2d > kp, we know that V (z) is positive definite.
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Step 4: (Stability analysis based on Lyapunov methods)

By some manipulations, the operator L acting on the

function V (z) along the trajectories of (34) is given by

LV (z) =
∂V

∂z

[
z1

âz1+ b̂z2

]

︸ ︷︷ ︸

I

+
kd
2

∥
∥
∥ĉz1+d̂z2

∥
∥
∥

2

︸ ︷︷ ︸

II

. (38)

Denote A =

[
0n In
â b̂

]

and P =

[
2kpkdIn kpIn
kpIn kdIn

]

, where 0n

is the n× n zero matrix, then the first term can be estimated

as follows(see the proof of Proposition 4.3 in [23]):

I =zT
(
PA+ATP

)
z

≤− (k2p − k̄)‖z1‖
2 − (k2d − kp − k̄)‖z2‖

2. (39)

By the definitions of ĉ, d̂ in (36) and the properties (33), we

know that ‖ĉ‖ ≤ N1+kpM = T1 and ‖d̂‖ ≤ N2+kdM = T2.

Therefore, the second term has the following upper bound:

II =
kd
2

∥
∥ĉz1+d̂z2

∥
∥
2
≤ kd

(
T 2
1 ‖z1‖

2 + T 2
2 ‖z2‖

2
)
. (40)

Combine (39) and (40), we obtain the upper bounds of LV (z):

LV (z) ≤−(k2p−k̄−kdT
2
1 )‖z1‖

2 − (k2d−kp−k̄−kdT
2
2 )‖z2‖

2.

Since (kp, kd) ∈ Ω0, we know that

LV (z) ≤ −η‖z‖2, ∀z ∈ R
2n. (41)

for some positive constant η. Recall z1(t) = −e(t), z2(t) =
−ė(t), we conclude that the PD control system (1)-(2) will

satisfy the control objective (3).

Next, we prove the second half of Theorem 1. For this, it

suffices to show the following statement:

If there exist some (kp, kd) ∈ R
2, such that the closed-loop

system (1)-(2) satisfies the performance (3) for all f(·) and

g(·) satisfying Assumptions 1-2, then M < M∗
2 .

By the definition of M∗
2 in (10), one can see that

M < M∗
2 ⇐⇒ 4L1M

4 + 4N1M
3 + 2L2M

2 + 2N2M < 1.

Now, suppose that the functions f(·) and g(·) are given by

f(x1, x2, u) = a(x1 − y∗) + bx2 + u, x1, x2, u ∈ R
n, (42)

g(x1, x2, u) = c(x1 − y∗)+ dx2 − eu, x1, x2, u ∈ R
n, (43)

where a, b, c, d, e are five real numbers satisfying |a| ≤ L1,

|b| ≤ L2, |c| ≤ N1, |d| ≤ N2 and |e| ≤ M . Then it is easy to

see that Assumptions 1 and 2 hold.

Denote z1(t) = x1(t)− y∗ and z2(t) = x2(t),

z(t) :=

[
z1(t)
z2(t)

]

, A :=

[
0n In
a0In b0In

]

, B :=

[
0n 0n
c0In d0In

]

,

where

a0 = a− kp, b0 = b− kd, c0 = c+ kpe, d0 = d+ kde, (44)

then closed-loop equation (1)-(2) with f and g defined by (42)

and (43) turns into:

dz = Azdt+BzdBt. (45)

Define a 2n×2n time-varying matrix P (t) :=

[
p(t) r(t)
rT(t) q(t)

]

,

where p(t), r(t) and q(t) are n× n matrix defined by

p(t) := E
[
z1(t)z

T

1 (t)
]
, r(t) := E

[
z1(t)z

T

2 (t)
]
, (46)

q(t) := E
[
z2(t)z

T

2 (t)
]
, (47)

then it can be seen that P (t) = E
[
z(t)zT(t)

]
. From Theorem

8.5.5 in [1], we know that P (t) is the unique nonnegative-

definite symmetric solution of the equation

dP

dt
= AP (t) + P (t)AT +BP (t)BT. (48)

From (48), it can be obtained that

ṗ = r + rT

ṙ = a0p+ b0r + q (49)

q̇ = c20p+ (a0 + c0d0)
(
r + rT

)
+

(
2b0 + d20

)
q.

Let r0(t) = (r(t) + rT(t))/2 and define

Q =





0 2 0
a0 b0 1
c20 2(a0 + c0d0) 2b0 + d20



 , (50)

then it follows from (49) that

d

dt





p(t)
r0(t)
q(t)



 = Q⊗ In





p(t)
r0(t)
q(t)



 , (51)

where ⊗ denotes the Kronecker product.

Since for any initial state (z1(0), z2(0)) ∈ R
2n, the solu-

tion of (45) satisfies limt→∞ E
[
‖z1(t)‖2 + ‖z2(t)‖2

]
= 0,

which implies that limt→∞ ‖P (t)‖ = 0 for all initial state

(z1(0), z2(0)). We conclude that Q⊗ In is a Hurwitz matrix.

Note that the matrix Q ⊗ In shares the same spectrum with

Q. Hence, Q is also Hurwitz.

From the expression of Q in (50), the characteristic poly-

nomial of Q can be calculated as follows:

det(λI3 −Q) = λ3 + α2λ
2 + α1λ+ α0, (52)

where α0, α1 and α2 are given by

α1 =b0d
2
0 + 2b20 − 4a0 − 2c0d0 (53)

α0 =2(2a0b0 + a0d
2
0 − c20), α2 = −(3b0 + d20). (54)

From the Routh-Hurwitz stability criterion for third order

polynomials, the matrix Q is Hurwitz if and only if the

following inequalities holds:

α2 > 0, α0 > 0, α1α2 > α0. (55)

We next proceed to show the following statement:

Suppose that the matrix Q defined in (50) is Hurwitz for

all |a| ≤ L1, |b| ≤ L2, |c| ≤ N1, |d| ≤ N2, |e| ≤ M , then the

parameters kp and kd belong to the set Ω defined in (17).

Proof. First, from the definitions of α2 and b0 in (54) and

(44), we have α2 = −(3b0+d20) = 3(kd−b)−d20. In addition,

since α2 > 0, it follows that 3(kd − b) ≥ α2 > 0. Choose

b = L2, we conclude that

kd > L2. (56)
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Next, suppose for all |a| ≤ L1, |b| ≤ L2, |c| ≤ N1, |d| ≤
N2, |e| ≤ M , there is

α0 = 2(a−kp)(b−kd)+(a−kp)(d−ekd)
2− (c−ekp)

2 > 0,

Choose c = d = e = 0, it follows from (56) that kp > L1.

Moreover, if we choose a = L1, b = L2, c = −N1, d = −N2

and e = M , then we have

2k̄1k̄2 − k̄1(N2 +Mkd)
2 − (N1 +Mkp)

2 > 0. (57)

Combine (56)-(57), we conclude that (kp, kd) belongs to Ω.

Finally, by Lemma 1 in Appendix A, we know that the

necessary and sufficient condition for the set Ω to be non-

empty is 4L1M
4 + 4N1M

3 + 2L2M
2 + 2N2M < 1. Hence,

if M ≥ M∗
2 , where M∗

2 is the unique positive solution of the

equation (10), then Ω is empty, and thus there does not exist

kp and kd such that Q is Hurwitz for all |a| ≤ L1, |b| ≤ L2,

|c| ≤ N1, |d| ≤ N2 and |e| ≤ M . Therefore, the system (1) is

not stabilizable by the PD control (2). �

B. Proof of Theorem 2

Sufficiency: Suppose that (16) is satisfied. From Lemma

1 in Appendix A, we know that the set Ω defined by

(17) is not empty. Now, suppose (kp, kd) ∈ Ω and the

matrices a, b, c, d and e satisfy (14), we proceed to

show that the closed-loop system (13) and (15) will satisfy

limt→∞ E
[
‖x1(t)‖2+‖x2(t)‖2

]
= 0 for all initial states.

Substituting (15) into (13), we have

dx1 =x2dt

dx2 =
[
a0x1 + b0x2

]
dt+

[
c0x1 + d0x2

]
dBt, (58)

where a0, b0, c0, d0 are n× n constant matrices defined by

a0=a−kpIn, b0=b−kdIn, c0=c−kpe, d0=d−kde. (59)

Define

A :=

[
0n In
a0 b0

]

, X :=

[
x1

x2

]

, B :=

[
0n 0n
c0 d0

]

, (60)

then (58) can be rewritten in a more compact form:

dX = AXdt+BXdBt. (61)

Let us define a 2n× 2n matrix P as follows:

P :=

[
m rIn
rIn In

]

, (62)

where m is an n× n matrix defined by

m := −rb0 − aT0 − cT0d0, (63)

and r > 0 is a constant defined by

r :=
(
2k̄1k̄2 + T 2

1 − k̄1T
2
2

)
/
(
4k̄1

)
. (64)

Now, let V (X) = XTPX , where P is defined in (62), then

the differential operator L acting on V is

LV (X) = XT
(
PA+ ATP +BTPB

)
X

=XT

[
2ra

sym
0 + cT0 c0 m+ rb0 + aT0 + cT0d0

mT + rbT0 + a0 + dT0 c0 2rIn + 2bsym
0 + dT0 d0

]

X,

where

asym
0 = (a0 + aT0 )/2, bsym

0 = (b0 + bT0 )/2

are the symmetrization matrices of a0 and b0. Denote Q =
PA+ATP +BTPB, then from (63), it is easy to obtain

Q =

[
2rasym

0 + cT0 c0 0n
0n 2r + 2bsym

0 + dT0d0

]

. (65)

Note that ‖a‖ ≤ L1 and ‖b‖ ≤ L2, it follows that

λmax

[
asym
0

]
≤ L1 − kp = −k̄1, λmax

[
bsym
0

]
≤ −k̄2. (66)

Moreover, since ‖c‖ ≤ N1, ‖d‖ ≤ N2, ‖e‖ ≤ M , we have

‖c0‖ = ‖c− kpe‖ ≤ T1, ‖d0‖ = ‖d− kde‖ ≤ T2,

where T1, T2 are defined in (9). From (66), and recall

(kp, kd) ∈ Ω, it can be seen that

λmax

[
2rasym

0 + cT0 c0
]
≤ −2k̄1r + T 2

1

=
(
k̄1T

2
2 + T 2

1 − 2k̄1k̄2
)
/2 < 0, (67)

λmax

[
2r + 2bsym

0 + dT0d0
]
< 2r − 2k̄2 + T 2

2

=
(
k̄1T

2
2 + T 2

1 − 2k̄1k̄2
)
/(2k̄1) < 0, (68)

which implies LV (X) is a negative definite function.

Finally, we prove V (X) = XTPX is positive definite. By

the definition of P in (62), it suffices to show msym−r2In > 0.

Note that msym = −rb
sym
0 − a

sym
0 − [cT0 d0]

sym, we have

λmin

[
msym

]
≥ −rλmax

[
bsym
0

]
− λmax

[
asym
0

]
−
∥
∥[cT0d0]

sym
∥
∥ .

Therefore, it follows from (66) that

λmin

[
msym − r2In

]
≥ rk̄2 − r2 + k̄1 − T1T2

=− (r − k̄2/2)
2 + k̄22/4 + k̄1 − T1T2

=−
(
T 2
1 /(4k̄1)− T 2

2 /4
)2

+ k̄22/4 + k̄1 − T1T2. (69)

Consequently,

λmin

[
16k̄21(m

sym − r2In)
]

≥−
(
T 2
1 − T 2

2 k̄1
)2

+ 4k̄21 k̄
2
2 + 16k̄31 − 16k̄21T1T2

=4k̄21k̄
2
2 − T 4

1 − T 4
2 k̄

2
1 + 2T 2

1 T
2
2 k̄1 + 16k̄31 − 16k̄21T1T2

>4T 2
1T

2
2 k̄1 + 16k̄31 − 16k̄21T1T2 = 4k̄1

(
T1T2 − 2k̄1

)2

≥0, (70)

which implies that V (X) is positive definite. As a conse-

quence, the PD control system (13) and (15) will satisfy (3)

exponentially, for all initial values x1(0), x2(0) ∈ R
n.

Necessity: The necessity of Theorem 2 is similar to the proof

of Theorem 1(ii), we omit it here due to page limitation. �

V. CONCLUSION

This article investigates the capability and limitations of

the classical PD control for a class of nonaffine uncertain

stochastic systems. We have shown that the nonaffine uncertain

stochastic system can be globally stabilized by the PD control

in the mean square sense, if the upper bounds of the partial

derivatives of the system nonlinear functions satisfy a certain

algebraic inequality. Moreover, we have shown that the PD
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control has fundamental limitations in stabilizing the consid-

ered stochastic systems, once the size of the system uncertainty

exceeds a critical value. Furthermore, based on some prior

knowledge of both the drift and diffusion terms, necessary and

sufficient conditions on the selection of the controller gains are

also provided for a class of linear uncertain stochastic systems.

For further investigation, it would be meaningful to optimize

the PD parameters to get better transient performance, and

to consider more practical situations including time-delay and

saturation, etc.

APPENDIX

A. Auxiliary results

We provide two lemmas that are used in the proof of the

main results.

Lemma 1: A necessary and sufficient condition for the set

Ω defined by (17) to be non-empty is

4L1M
4 + 4N1M

3 + 2L2M
2 + 2N2M − 1 < 0. (71)

Sufficiency: First, suppose that (71) holds, we will show Ω 6= ∅
by verifying (k∗p , k

∗
d) ∈ Ω, where

k∗p :=
1−2N2M−2L2M

2−2N1M
3

2M4
, k∗d :=

1−N2M

M2
.

(72)

First, note that

k̄1 = k∗p − L1

=(1 −2N2M − 2L2M
2 −2N1M

3 −2L1M
4)/(2M4), (73)

then it follows from (71) that k̄1 > 0. Moreover, it can be

obtained that

k̄2 =k∗d − L2 =
(
1−N2M − L2M

2
)
/M2, (74)

T1 =N1 +Mk∗p =
(
1− 2N2M − 2L2M

2
)
/(2M3), (75)

T2 =N2 +Mk∗d = 1/M. (76)

It follows from (74)−(76) that

2k̄2 − T 2
2 = (1 − 2N2M − 2L2M

2)/M2 = 2MT1. (77)

From (73) and (75), we obtain the following identity:

2M3
(
2Mk̄1 − T1

)
= 4M4k̄1 − 2M3T1

=2− 4N2M − 4L2M
2 − 4N1M

3 − 4L1M
4

− (1− 2N2M − 2L2M
2)

=1− 2N2M − 2L2M
2 − 4N1M

3 − 4L1M
4. (78)

Thus, we have 2Mk̄1−T1 > 0. Consequently, it follows from

(77) and (78) that

2k̄1k̄2 − T 2
1 − k̄1T

2
2 = k̄1(2k̄2 − T 2

2 )− T 2
1

=2MT1k̄1 − T 2
1 = (2Mk̄1 − T1)T1 > 0. (79)

From (73) and (79), we know that (k∗p , k
∗
d) ∈ Ω, which implies

the non-empty property of Ω.

Necessity: Suppose that Ω is non-empty, we proceed to show

that (71) holds. It suffices to consider the case M > 0, since

(71) is automatically satisfied when M = 0.

Let Ω̄ be the closure of Ω, i.e.,

Ω̄ =
{
(kp, kd)| kp ≥ L1, 2k̄1k̄2 − T 2

1 − k̄1T
2
2 ≥ 0

}
. (80)

First, we show that Ω̄ is bounded(hence it is compact).

Suppose that (kp, kd) ∈ Ω̄, then 2k̄1k̄2 − k̄1T
2
2 ≥ 0, which

yields 2kd > 2k̄2 ≥ T 2
2 ≥ M2k2d. Hence, kd < 2/M2. Also,

from 2k̄1k̄2 > 0, we know that k̄2 > 0, i.e., kd > L2.

Next, we estimate the bounds of kp. It is easy to obtain

4kp/M
2 > 4k̄1/M

2 > 2k̄1kd > 2k̄1k̄2 ≥ T 2
1 > M2k2p, (81)

therefore L1 < kp < 4/M4. Combine this with the bounds of

kd, we find that Ω̄ is bounded.

Define a function H(·) as follows:

H(kp, kd) = 2k̄1k̄2 − T 2
1 − k̄1T

2
2 , (kp, kd) ∈ Ω̄.

By the definition (80) of Ω̄, we know that H(kp, kd) ≥ 0, for

(kp, kd) ∈ Ω̄ and H(kp, kd) > 0, for (kp, kd) ∈ Ω.

Since Ω̄ is compact, we know that H(·) can attain its

maximum value. Note that H(kp, kd) = 0 on the boundary

of Ω̄, thus the maximum point (k∗p, k
∗
d) ∈ Ω, and therefore

∂H
∂kp

∣
∣
(k∗

p,k
∗

d
)
= ∂H

∂kd

∣
∣
(k∗

p,k
∗

d
)
= 0. By simple manipulations, we

have

∂H

∂kp

∣
∣
∣
(k∗

p,k
∗

d
)
=2k̄2 − 2T1M − T 2

2 = 0, (82)

∂H

∂kd

∣
∣
∣
(k∗

p,k
∗

d
)
=2k̄1(1− T2M) = 0. (83)

It follows from (82) and (83) that

M(N2+Mk∗d) = 1, 2(N1+Mk∗p)M+(N2+Mk∗d)
2 = 2k̄2.

Hence, it can be obtained that k∗d = (1−MN2)/M
2 and

k∗p = (1 − 2MN2 − 2M2L2 − 2M3N1)/(2M
4),

which is exactly the formula given in (72).

Note that H(k∗p, k
∗
d) > 0, and from (78)−(79), we know

1− 2N2M − 2L2M
2 − 4N1M

3 − 4L1M
4

=2M3(2Mk̄1 − T1) = 2M3H(k∗p , k
∗
d)/T1 > 0. (84)

Hence, Lemma 1 is proved. �

Similar to the proof of Lemma 1, we can obtain:

Lemma 2: A necessary and sufficient condition for the set

Ω′ defined by (19) to be non-empty is

16L1M
4 + 16N1M

3 + 4L2M
2 + 4N2M − 1 < 0. (85)

B. Proof of Proposition 1.

Without loss of generality, we assume that y∗ = 0. Sup-

pose that for some kp and kd and for some initial state

(x1(0), x2(0)) ∈ R
n, the closed-loop equation (1)-(2) satisfies

lim
t→∞

E‖x1(t)‖
2 = 0 and lim

t→∞
E‖x2(t)‖

2 = 0, (86)

we proceed to show f(0, 0, 0) = g(0, 0, 0) = 0.

Note that u(t) = −kpx1(t)− kdx2(t), it follows from (86)

that limt→∞ E‖u(t)‖2 = 0. Recall dx2 = f(x1, x2, u)dt +
g(x1, x2, u)dBt, it follows that

x2(t+ 1)− x2(t) = Xt + Yt, (87)
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where

Xt =

∫ t+1

t

f(x1(s), x2(s), u(s))ds, (88)

Yt =

∫ t+1

t

g(x1(s), x2(s), u(s))dBs. (89)

Next, we proceed to show that

E
[
XT

t Yt

]
→ 0, as t → ∞. (90)

To this end, we first need to prove the following two facts:

lim
t→∞

E‖Xt − f(0, 0, 0)‖2 = 0, (91)

lim
t→∞

E
∥
∥Yt − g(0, 0, 0)(Bt+1 −Bt)

∥
∥
2
= 0. (92)

From the Cauchy-Schwarz inequality, we can obtain

lim
t→∞

E‖Xt − f(0, 0, 0)‖2

= lim
t→∞

E

∥
∥
∥

∫ t+1

t

[

f(x1(s), x2(s), u(s))− f(0, 0, 0)
]

ds
∥
∥
∥

2

≤ lim
t→∞

E

∫ t+1

t

‖f(x1(s), x2(s), u(s))−f(0, 0, 0)‖2ds. (93)

Moreover, from (93) and the Lipschitz property of f , we have

lim
t→∞

E‖Xt − f(0, 0, 0)‖2

≤ lim
t→∞

E

∫ t+1

t

C
[
‖x1(s)‖

2 + ‖x2(s)‖
2 + ‖u(s)‖2

]
ds

= lim
t→∞

C

∫ t+1

t

E
[
‖x1(s)‖

2 + ‖x2(s)‖
2 + ‖u(s)‖2

]
ds

=0, (94)

for some constant C > 0. Hence, (91) is proved. Similarly,

by the Ito’s isometry and the Lipschitz property of g, one

can prove (92) in a similar way. From (92), we know that

E‖Y (t)‖2 is a bounded function of t ∈ [0,∞).

By applying (91)-(92) again, it can be obtained that

lim
t→∞

E
[
XT

t Yt −fT(0, 0, 0)g(0, 0, 0)(Bt+1 −Bt)
]
= 0. (95)

On the other hand, note that

E
[
fT(0, 0, 0)g(0, 0, 0)(Bt+1 −Bt)

]
= 0, ∀t ≥ 0. (96)

Consequently, (90) follows from (95) and (96).

From (87), we know that

E
[
‖Xt‖

2 + ‖Yt‖
2 + 2XT

t Yt

]
= E [‖x2(t+ 1)− x2(t)‖]

2 .

Recall limt→∞ E‖x2(t)‖2 = 0, we conclude that

lim
t→∞

E
[
‖Xt‖

2 + ‖Yt‖
2 + 2XT

t Yt

]
= 0. (97)

From (90), we have limt→∞ E‖Xt‖2 + ‖Yt‖2 = 0. Combine

this with (91) and (92), we can obtain f(0, 0, 0) = 0 and

g(0, 0, 0) = 0. �
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