
Attitude Estimation from Vector Measurements: Necessary and Sufficient
Conditions and Convergent Observer Design

Bowen Yi ID , Lei Wang ID , and Ian R. Manchester ID

Abstract— The paper addresses the problem of attitude estima-
tion for rigid bodies using (possibly time-varying) vector measure-
ments, for which we provide a necessary and sufficient condition
of distinguishability. Such a condition is shown to be strictly
weaker than those previously used for attitude observer design.
Thereafter, we show that even for the single vector case the re-
sulting condition is sufficient to design almost globally convergent
attitude observers, and two explicit designs are obtained. To over-
come the weak excitation issue, the first design employs to make
full use of historical information, whereas the second scheme
dynamically generates a virtual reference vector, which remains
non-collinear to the given vector measurement. Simulation results
illustrate the accurate estimation despite noisy measurements.

Index Terms— Nonlinear system, observer design, ob-
servability, attitude estimation

I. INTRODUCTION

The attitude of a rigid body is its orientation with respect to an
inertial reference frame. Attitude estimation is an essential element
in a wide range of robotics and aerospace applications, in particular
control, navigation, and localization tasks. Many common sensor
types, e.g. magnetometers, accelerometers, and monocular cameras,
provide body-fixed measurements of quantities with a known inertial
value, e.g. the earth’s magnetic field and gravitational force, or the
bearing to certain known landmarks. These are known as comple-
mentary measurements [20]. In some less common scenarios a set of
known vectors in the body-fixed frame are measured in the inertial
frame, e.g. measurements from two GPS receivers attached to the
rigid body with a known base-line. These are known as compatible
measurements [20].

Estimation of attitude from multiple non-collinear vector measure-
ments was formulated as a total least-squares problem over rotation
matrices by Wahba [21]. Several efficient algorithms exist for its
solution, including singular value decomposition methods, TRIAD,
and QUEST [19].

However, when estimating a time-varying attitude it often is
beneficial to fuse the vector measurements with information from
gyroscopes using a dynamical model. The resulting dynamic esti-
mator is commonly known as a filter or observer. These approaches
can significantly reduce the impact of high-frequency measurement
noise. Furthermore, in many applications there is only a single vector
available for attitude estimation and in this case the attitude is not
completely determined at a single moment. Applications for estima-
tion from a single vector measurement include Sun sensors in eclipse
periods [12], improving reliability with redundant measurements and
simplifying designs [16], as well visual-inertial navigation with only
two feature points visible in some periods.
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Among filtering approaches, extended Kalman filter is the most
widely-applied for attitude estimation. However the domain of at-
traction is intrinsically local since the filter is based on first-order
linearization; see [7] for a recent review. Alternatively, interest in
nonlinear attitude observers was spurred by Salcudean’s seminal
work [17], and has achieved significant progress since then. There
are many nonlinear attitude observers making direct use of vector
measurements, e.g., with multiple measurements [10], [20], [26] or
single vector measurements [1], [2], [8], [9]. The latter works impose
a persistently non-constant condition on the single reference vector, or
similar conditions in which the uniformity of excitation with respect
to time plays an essential role to guarantee asymptotic convergence.
In [20], the authors provide a comprehensive treatment of observabil-
ity of a rigid-body attitude kinematic model with vectorial outputs.
However, as illustrated in [20, Remark 3.9], the condition is only
sufficient but not necessary for distinguishability, a specific type of
observability for nonlinear dynamical systems [4], [5]. In this paper,
we revisit the problem of observability analysis and propose two
novel attitude observers. To be precise, the main contributions of the
note are two-fold:

C1 For the problem of attitude estimation from vector measure-
ments, we provide the necessary and sufficient condition to
distinguishability of the associated dynamical model, which is
known as the necessity to reconstruct attitude over time in any
deterministic estimators;

C2 We show that the resulting distinguishability condition is also
sufficient to design a continuous-time attitude observer. By
focusing on single vector measurements, we provide two novel
almost globally convergent attitude observers, which require
significantly weaker conditions than existing methods.

The constructive tool we adopt in observer design is the parameter
estimation-based observer (PEBO), which was recently proposed in
Euclidean space [13], [14], and extended to matrix Lie groups by
the authors in [23], [24]. Its basic idea is to translate system state
observation into the estimation of certain constant quantities. The
interested reader may refer to [25] for the geometric interpretation
to PEBOs. In contrast to the case with at least two non-collinear
vectors in [23], [24], in this paper we consider a more challenging
scenario with only a single vector measurement available under a
weak excitation condition. We are unaware of any previous results
capable to deal with such a case. In the first observer design, after
translating the problem into on-line parameter identification, we
propose a mechanism to integrate both the historical and current
information to achieve uniform convergence. The second proposed
scheme uses a filter to generate a “virtually” measurable vector, which
remains non-collinear with respect to the given reference vector.

Notation. In ∈ Rn×n represents the identity matrix of dimension
n, and 0n ∈ Rn and 0n×m ∈ Rn×m denote the zero column vector
of dimension n and the zero matrix of dimension n×m, respectively.
We use N to represent the set of all natural integers, and N+ for the
set of positive integers. We also define the skew-symmetric matrix

J :=

[
0 −1
1 0

]
.
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Given a square matrix A ∈ Rn×n and a vector x ∈ Rn, the
Frobenius norm is defined as ‖A‖ =

√
tr(A>A), and |x| represents

the standard Euclidean norm. The n-sphere is defined as Sn :=
{x ∈ Rn+1 : |x| = 1}, and we use SO(3) to represent the
special orthogonal group, and so(3) is the associated Lie algebra
as the set of skew-symmetric matrices satisfying SO(3) = {R ∈
R3×3|R>R = I3, det(R) = 1}. Given a variable R ∈ SO(3),
we use |R|I to represent the normalized distance to I3 on SO(3)
with |R|2I := 1

4 tr(I3 − R). The operator skew(·) is defined as
skew(A) := 1

2 (A − A>) for a square matrix A. Given a ∈ R3,
we define the operator (·)× as

a× :=

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 ∈ so(3),

and its inverse operator is defined as vex(a×) = a.
The paper is organized as follows. In Section II, we recall the

dynamical models and some basic definitions used in the paper. It is
followed by the necessary and sufficient condition for observability
in Section III. Based on the proposed condition, we introduce two
nonlinear attitude observer design in Section IV, the simulation
results of which are presented in Section VI. Some discussions
with practical considerations may be found in Section V. The paper
is wrapped up by some concluding remarks in Section VII. A
preliminary version of this paper has been submitted to the 2022
IFAC Symposium on Nonlinear Control Systems (NOLCOS).

II. PROBLEM FORMULATION

The aim of this note is to study the observability and observer
design of the rotation matrix representing the coordinates of the body-
fixed frame {B} with respect to the coordinates of the inertial frame
{I}, which lives in the group SO(3). Its dynamics is given by

Ṙ = Rω×, R(0) = R0 (1)

with the rotational velocity ω ∈ R3 measured in the body-fixed
coordinate. Assume there is a vector g ∈ S2, known in the inertial
frame, being measured in the body-fixed frame, and the output is

yB = R>g (2)

with yB ∈ S2, which is known as complementary measurement. We
also consider the compatible measurement yI, i.e., a known vector
b ∈ S2 in the body-fixed frame is measured in the inertial frame

yI = Rb (3)

with yI ∈ S2. It is referred to [20, Sec. II] for more details about
“complementary” and “compatible” measurements and their practical
motivation.

Before closing this section, let us recall some definitions used
throughout the paper.

Definition 1: (Distinguishability [4]) Consider an open set X ⊂
Rn and a complete nonlinear system

ẋ = f(x, t), y = h(x, t) (4)

with state x ∈ Rn and output y ∈ Rm. The system (4) is
distinguishable on X if for all (xa, xb) ∈ X × X ,

h
(
X(t; t0, xa), t

)
= h

(
X(t; t0, xb), t

)
, ∀t ≥ t0 =⇒ xa = xb,

in which X(t; t0, xa) represents the solution at time t of (4) through
x0 at time t0. In this paper, we focus on the particular case t0 = 0.

Definition 2: (Persistent and interval excitation [15]) Given a
bounded signal φ : R+ → Rn, it is persistently excited (PE) if∫ t+T

t
φ(s)φ>(s)ds ≥ δIn, ∀t ≥ 0

for some T > 0, δ > 0; or intervally excited (IE), if there exists
T ≥ 0 such that for some δ > 0∫ T

0
φ(s)φ>(s)ds ≥ δIn.

III. NECESSARY AND SUFFICIENT CONDITIONS TO
OBSERVABILITY

First, we consider the observability for the case with multiple
measurements

yB,i = R>gi, i ∈ `1 := {1, . . . , n1}
yI,j = Rbj , j ∈ `2 := {1, . . . , n2}

(5)

with n1, n2 ∈ N.1 It is clear that the single measurement is
corresponding to the case n1 + n2 = 1, for which we will construct
two asymptotically convergent observers in the next section.

In the following proposition, we uncover a necessary and sufficient
condition to the distinguishability for attitude estimation.

Proposition 1: The time-varying system (1) with the output (5),
and n := n1 + n2 ≥ 1, is distinguishable if and only if there exist
two moments t1, t2 ≥ 0 such that∑
i,l∈`1,j,k∈`2

∣∣∣gi(t1)× gl(t2)
∣∣∣ +

∣∣∣gi(t1)×R0Φ(0, t2)bj(t2)
∣∣∣

+
∣∣∣bj(t1)×Φ(t1, t2)bk(t2)

∣∣∣ > 0,

(6)
in which Φ(s, t) is the state transition matrix of the time-varying
system matrix ω×(t) from s to t.

Proof: The state transition matrix Φ(s, t) of the linear time-
varying (LTV) system

ẋ = ω×x

with x ∈ R3 is defined as
∂

∂t
Φ(s, t) = ω×(t)Φ(s, t)

Φ(s, s) = I3.

It is equivalent to define Φ(s, t) = Q(s)−1Q(t), in which Q ∈
SO(3) is generated by the dynamics

Q̇ = Qω×, Q(0) = I3 (7)

with Q ∈ SO(3). From

˙︷ ︷
RQ> = ṘQ> −RQ>Q̇Q> = 0,

we have for all t, s ≥ 0

R(t)Q(t)> = R(0)Q(0)> ⇐⇒ R(t) = R0Q(t)

⇐⇒ R(t) = R(s)Φ(s, t),

with R0 := R(0).
Now we collect all the measured outputs in the vector

ȳ = col(yB,1, . . . , yB,n1 , yI,1, . . . , yI,n2).

With a slight abuse of notation, we denote the output signal ȳ from
the initial condition R0 ∈ SO(3) as ȳ(t;R0). In terms of Definition
1, the system is distinguishable from t = 0 if and only if

ȳ(t;Ra) 6≡ ȳ(t;Rb) =⇒ Ra 6= Rb (8)

1If ni = 0 (i = 1, 2), then the set `i is defined as the empty set ∅.
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for any Ra, Rb ∈ SO(3). Clearly, the above condition (8) is
equivalent to the identifiability of the constant matrix R0 ∈ SO(3)
from the nonlinear regressor equation

ȳ = h(R0, t) (9)

with the equation

h(R0, t) :=



Q>(t)R>0 g1(t)
...

Q>(t)R>0 gn1(t)
R0Q(t)b1(t)

...
R0Q(t)bn2(t)


.

The regressor equation (9) can be equivalently rewritten as

Y (t) = R>0 φ(t), R0 ∈ SO(3) (10)

with Y ∈ R3×n and φ ∈ R3×n given by

Y := Q
[
yB,1, . . . , yB,n1 , b1, . . . , bn2

]
φ :=

[
g1, . . . , gn1 , yI,1, . . . , yI,n2

]
.

Hence, the identifiability of the constant matrix R0 on SO(3) from
the nonlinear regression model (9) is equivalent to the solvability
of the Wahba problem for the regression model (10) over time [21]
– invoking that (10) holds for all t ≥ 0. That is the existence of
moments t1, t2 ≥ 0 such that

φi(t1)× φj(t2) 6= 0 (11)

for some i, j ∈ {1, . . . , n}, with φi representing the i-th column
vector of φ.

The last step of the proof is to show that the condition (11) is
equivalent to (6). There are totally three possible cases when (11)
holds true: 1) i, j ∈ {1, . . . , n1}, 2) i, j ∈ {n1 + 1, . . . , n}, and i ∈
{1, . . . , n1}, j ∈ {n1 + 1, . . . , n}.2 For the first case, the condition
(11) is equivalent to ∑

i,l∈`1

∣∣∣gi(t1)× gl(t2)
∣∣∣ > 0. (12)

The second case is equivalent to for some j, k ∈ `2
yI,j(t1)× yI,k(t2) 6= 0

⇐⇒ [R(t1)bj(t1)]×R(t2)bk(t2) 6= 0

⇐⇒ R(t1)[bj(t1)]×R(t1)>R(t2)bk(t2) 6= 0

⇐⇒ [bj(t1)]×R(t1)>R(t2)bk(t2) 6= 0

⇐⇒ [bj(t1)]×Φ(t1, t2)bk(t2) 6= 0

(13)

where in the second implication we use the identity (Rb)× =
Rb×R

>, the full-rankness of R(t1) in the third implication, and
in the last

R(t1)>R(t2) = Q(t1)>R>0 R0Q(t2)

= Φ(t1, t2).

Note that the last line of the condition (13) can be compactly written
as ∑

j,k∈`2

∣∣∣bj(t1)×Φ(t1, t2)bk(t2)
∣∣∣ > 0. (14)

Similarly, we get that for the third case the condition (11) is
equivalent to ∑

i∈`1, j∈`2

∣∣∣gi(t1)×R0Φ(0, t2)bj(t2)
∣∣∣ > 0. (15)

2We do not distinguish the order of i and j.

Combining these three cases, it is sufficient to obtain (6). On the
other hand, since each term in (6) is non-negative, if the condition
(6) holds, at least one of the above cases should be satisfied. We
complete the proof. �

For the case with only complementary or compatible measurements
(n1 · n2 = 0), then the distinguishability condition becomes∑
i,l∈`1,j,k∈`2

∣∣∣gi(t1)× gl(t2)
∣∣∣+
∣∣∣bj(t1)×Φ(t1, t2)bk(t2)

∣∣∣ > 0.

If there are two types of measurements, the identifiability is dependent
of the initial attitude R0, and this implies that some region in SO(3)
may be not distinguishable for a given specific trajectory. However,
the following corollary shows that such a region has zero Lebesgue
measure in the group SO(3). Note that the condition below does not
rely on the initial attitude R0.

Corollary 1: If the condition (6) is replaced by the initial attitude-
independent term∑
i,l∈`1,j,k∈`2

∣∣∣gi(t1)× gl(t2)
∣∣∣ +

∣∣∣gi(t1)×Φ(0, t2)bj(t2)
∣∣∣

+
∣∣∣bj(t1)×Φ(t1, t2)bk(t2)

∣∣∣ > 0,

(16)
the distinguishability is guaranteed almost surely.3

Proof: It is given in the appendix. �
Remark 1: In [20] the authors propose the following sufficient (but

not necessary, c.f. [20, Remark 3.9]) condition for distinguishability
of the given system.

λ2

∑
i∈`1

∫ T

0
gi(s)g

>
i (s)ds


+

∥∥∥∥∥∥
∫ T

0

∑
j∈`2

(
ω×bj(s) +

d

ds
bj(s)

)
ds

∥∥∥∥∥∥ > 0,

(17)

for some T > 0, with λ2(·) representing the second largest eigen-
value of a square matrix. Note that in the above condition it is
necessary to impose (piece-wise) smoothness of the signals bj . In the
following corollary, we show that the above condition is sufficient to
the proposed necessary and sufficient condition (6).

Corollary 2: Consider the time-varying system (1) with the output
(5), and n := n1 + n2 ≥ 1. If (17) holds, then the condition in
Proposition 1 is also verified.

Proof: It is given in the appendix. �

IV. ATTITUDE OBSERVER FOR A SINGLE VECTOR
MEASUREMENT

In this section, we show that the distinguishability condition –
identified in Proposition 1 – is adequate to design a continuous-time
observer with almost globally asymptotically convergent estimate to
the unknown attitude.

Since the scenario with only a single vector measurement is more
challenging than the multiple vector case, we focus on the former
in this section. The main results can be extended to the case with
multiple vector measurements in a straightforward manner.

A. Attitude Observer Using Integral Correction Term

Let us consider the observer design with a single complementary
measurement (2). In the first observer design, we construct a dynamic
extension – following the PEBO methodology [14] – in order to

3We refer to that the set of initial attitudes making the system lose
distinguishability has zero Lebesgue measure in the entire state space.



4

reformulate attitude estimation as an on-line consistent parameter
identification problem. By adding an elaborated construction of
“integral”-type correction term, we are able to achieve asymptotic
stability of the observer.

Proposition 2: For the system (1) with the complementary output
(2), we assume that all signals are piece-wisely continuous and the
reference satisfies the distinguishability condition, i.e.,

∃t1, t2 > 0,
∣∣g(t1)× g(t2)

∣∣ > 0, (18)

with a known bound T > 0 on the distinguishability interval.4 The
attitude observer

Q̇ = Qω× (19)

with Q(0) ∈ SO(3) and

˙̂
Qc = η×Q̂c, R̂ = Q̂>c Q (20)

with
η = γP(Q̂cg)× (QyB) + γIξ

ξ = 2vex
(
skew(AQ̂>c )

)
Ȧ =

{
QyBg

>, t ∈ [0, T )

03×3, t ≥ T.

with the gains γP, γI > 0 and A(0) = 03×3, guarantees R̂(t) ∈
SO(3) for all t ≥ 0 and the convergence

lim
t→∞

‖R̂(t)−R(t)‖ = 0 (21)

almost globally.
Proof: Let us consider the dynamic extension Q̇ = Qω× for the

initial condition Q(0) ∈ SO(3). By defining a variable E(R,Q) =
QR> – which also lives in SO(3) – we have

Ė = Q̇R> −QR>ṘR> = 0.

Therefore, there exists a constant matrix Qc ∈ SO(3) such that

Q(t)R>(t) = Qc, ∀t ∈ [0,+∞). (22)

Note that Q(t) is an available signal by construction, and Qc is
unknown. Invoking (22) and the full-rankness of Q, the estimation
of R is equivalent to the one of Qc.

Based on the above idea, we construct the following auxiliary
system

Σc :

{
Q̇c = Qc(ωc)×

yc = Qcbc,
(23)

in which Qc ∈ SO(3) is constant thus ωc = 03, the output

yc(t) := Q(t)yB(t),

and the “body-fixed coordinate” reference bc := g. It is clear that the
system Σc is exactly in the same form as the kinematic model with
a compatible measurement (1) and (3).

We now define the estimation error of Q̃c := Q̂cQ
>
c , the dynamics

of which is given by

˙̃Qc =
˙̂
QcQ

>
c − Q̂cQ>c Q̇cQ>c = η×Q̃c. (24)

The term η satisfies

η× = γP[(Q̂cg)× (QyB)]× + γIξ×

= γP
[
QyB(Q̂cg)> − Q̂cg(QyB)>

]
+ γIξ×

= γP
(
ycy
>
c Q̃
>
c − Q̃cycy>c

)
+ γIξ×

(25)

4Namely, there exists a known T > 0 such that 0 ≤ t1 < t2 ≤ T .

in which for t ∈ [0, T ]

ξ× =

∫ t

0

[
Q(s)yB(s)

(
Q̂c(t)g(s)

)> − Q̂c(t)g(s)
(
Q(s)yB(s)

)>]
ds

= 2skew
(∫ t

0
yc(s)y

>
c (s)ds · Q̃>c

)
,

and for t > T we have ξ(t) = ξ(T ).
Consider the candidate Lyapunov function V (Q̃c) = 3 − tr(Q̃c),

which has its minimal value zero has at Q̃c = I3. It yields

V̇ = −tr(η×Q̃c)

= −γPtr
(
ycy
>
c − Q̃cycy>c Q̃c

)
− γI

∫ t

0
tr
(
yc(s)y

>
c (s)− Q̃cyc(s)y>c (s)Q̃c

)
ds

= −γPy>c (I − Q̃2
c)yc − γI

∫ t

0
y>c (s)(I − Q̃2

c)yc(s)ds

= −2vex
(
skew(Q̃c)

)>
Γvex

(
skew(Q̃c)

)
≤ −λmin(Γ)‖skew(Q̃c)‖2,

where in the fourth equation we have used 2|v|2 = ‖v×‖2 for any
v ∈ R3, with the definition of Γ as

Γ = ΓP + ΓI (26)

with

ΓP(t) := γP(I − yc(t)y>c (t))

ΓI(t) :=

γI
∫ t

0

(
I − yc(s)y>c (s)

)
ds, t ∈ [0, T ]

ΓI(T ), t > T.

Let us study the property of the matrix Γ ∈ R3×3. From the
assumption |g(t1)× g2(t2)| > 0 for some t1, t2 ≤ T , we have

|yc(t1)× yc(t2)| = |(Qcg(t1))×(Qcg(t2))|
= |Qcg(t1)× g(t2)|
> 0.

It implies that

2I − yc(t1)y>c (t1)− yc(t2)y>c (t2) > 0, (27)

in which we have used the fact that for a, b ∈ S2, |a×b| > 0 implies
the positiveness of (2I − aa> − bb>); see [20, Lemma A.2] for its
proof. On the other hand, in terms of the continuity of yc and (27),
we have∫ t1+ε

t1

I − yc(s)y>c (s)ds+

∫ t2+ε

t2

I − yc(s)y>c (s)ds > 0

for some sufficiently small ε > 0, and thus∫ T

0
I − yc(s)y>c (s)ds > 0 =⇒ λmin(Γ(t)) > 0, ∀t ≥ T.

From V̇ ≤ −λmin(Γ)‖skew(Q̃c(s))‖2, we get that 0 ≤ V (Q̃c(t)) ≤
V (Q̃c(0)) and

V (Q̃c(t))− V (Q̃c(0)) ≤ −
∫ t

0
λmin(Γ(s))‖skew(Q̃c(s))‖2ds.

By taking t→∞, in terms of Barbalat’s lemma and the boundedness
of the time derivative of Q̃c, we have ‖skew(Q̃c)‖ → 0. The
set {Q̃c ∈ SO(3) : ‖skew(Q̃c)‖ = 0} only contains the stable
equilibrium I3 and the unstable equilibria U>diag(1,−1, 1)U . For
the latter case, the Lyapunov V (Q̃c) equals to its maximal value,
thus having zero Lebesgue measure. Therefore, the dynamics (24)
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is almost globally asymptotically stable on SO(3). Invoking the
algebraic relation R = Q>c Q, we complete the proof. �

Remark 2: In the above attitude observer design, the error term η
contains two parts

η = γP(Q̂cg)× (Qy)︸ ︷︷ ︸
current

+ γIξ︸︷︷︸
historical

,

which may be viewed as an observer design using a “proportional
+ integral”-type error term. The first term only utilizes the current
information, making it behave as an on-line design. The second
“integral” term, which may be written as

ξ(t) =


∫ t

0
[Q̂c(t)g(s)]× [Q(s)yI(s)]ds, t ∈ [0, T ]

ξ(T ), t ≥ T

enables to achieve asymptotic convergence of the estimation error
under the extremely weak identifiability condition (18). The gain
parameters γP and γI can be used as the weights on how we trust
the current and historical data.

Remark 3: The bound T > 0 is used in the dynamics of the
variable A in order to be able to guarantee its boundedness. Indeed,
the bound T is not necessarily known apriori, since the distinguisha-
bility condition (18) is an easily-checkable condition on measured
quantities. The proposed scheme may be modified as an adaptive
design in which such a condition is checked online continuously,
and the dynamics of A simply changes until the condition holds. It
is also natural to replace the condition (18) by |g(t1) × g(t2)| > δ
for some δ > 0, to deal with sensor noise.

Remark 4: As is shown above, the “integral” term only accumu-
lates information in the interval [0, T ], which, however, does not
have the sort of “fading memory” property on past measurements. As
long as the excitation condition, which is easily monitored on-line,
the observer performance can be improved considering the moving
interval [t− T, t] rather than [0, T ] in Proposition 2.

B. Attitude Observer Using Virtual Vectors
In this subsection, we provide an alternative observer design, which

does not need the information of T . The basic idea is to generate a
new “virtual” vector measurement

yv = Qcbv (28)

from the real measurement (23), such that

bv × bc 6= 0 (29)

uniformly after some moment with bc = g. Then, it becomes the
well-studied attitude observer design problem with (not less than) two
non-collinear vectors, which has been well addressed in the literature.

Proposition 3: For the system (1) with the output (2), we assume
that all signals are continuous and satisfy ∃ti > 0 (i = 1, 2, 3)

det
( [
g(t1) g(t2) g(t3)

] )
6= 0 (30)

Consider the dynamic extension (19) and the LTV filter

Ż = γzg(y>B Q
> − g>Z)

Ω̇ = − γzgg>Ω, Ω(0) = I3

Ṗ = γ(I3 − Ω)> [Z − ΩZ0 − (I3 − Ω)P ]

(31)

with γ, γz > 0, Z0 := Z(0), and the filtering outputs

bv = Ug, yv = P>Ug

in which U := diag(J , 1)diag(1,J ). Then, the observer (20) with

η = γc(Q̂cg)× (QyB) + γv(Q̂cbv)× yv (32)

and the gains γc, γv > 0 guarantees R̂(t) ∈ SO(3) for all t ∈ [0,∞)
and the convergence (21) almost globally.

Proof: First, let us study the property of the LTV filter (31). Note
that U can be decomposed as the product of three basic (element)
rotations U = Rx(θ1)Ry(θ2)Rz(θ3) with θ1 = θ3 = π

2 and θ2 = 0.
Hence, g× (Ug) 6= 0, verifying the equation (29). Then, we need to
verify (28) in an asymptotic sense.

According to the proof in Proposition 2, we may reformulate the
estimation of R as the one of Qc. From the dynamics of Ż, one has

d

dt
(Z −Q>c ) = γzg(y>c − g>Z)

= − γzgg>(Z −Q>c ),

and thus

Z −Q>c = Ω(Z0 −Q>c ) =⇒ Z − ΩZ0 = (I − Ω)Q>c .

Then, it yields

d

dt
(P −Q>c ) = − γφφ>(P −Q>c ). (33)

with φ := I3 − Ω>.
From the condition (30), for any non-zero x ∈ R3 it may always

be represented as

x = c1g(t1) + c2g(t2) + c3g(t3), (34)

with at least one of ci (i = 1, 2, 3) non-zero. Hence

x>
3∑
i=1

g(ti)g(ti)
>x > 0 =⇒

3∑
i=1

g(ti)g(ti)
> > 0

=⇒
∫ ti+ε

ti

3∑
i=1

g(s)g(s)>ds > 0

=⇒
∫ T

0
g(s)g(s)>ds > 0.

for some T > ti and some sufficiently small ε > 0. It implies
that the vector signal g is intervally excited. As a result, the matrix
φ = I3−Ω> is PE [22, Proposition 2]. Following [18, Thm. 2.5.1],
we are able to derive

lim
t→∞

‖P −Q>c ‖ = 0 =⇒ lim
t→∞

|P>Ug −Qcg| = 0 (35)

exponentially fast. Hence, the algebraic equation (28) is guaranteed
asymptotically, i.e.,

yv = Qcbv + εt

with an exponentially decaying term εt.
The last step is to study the convergence of the estimation error of

Qc, which is defined as Q̃c := QcQ̂
>
c . The observer ˙̂

Qc = η×Q̂c
with the output error term (32) may be written as the “standard”
compatible observer

˙̂
Qc = Q̂c

[
Q̂c
(
γc(Q̂cbc)× bc + γv(Q̂cbv + εt)× bv

)]
×

for the auxiliary dynamics (23) with ωc = 03. If the term εt was
zero, in terms of [20, Thm 4.3] and the uniform non-collinear relation
bc× bv 6= 0, we would obtain Q̂c → Qc as t→∞ almost globally.
However, the term εt is exponentially decaying to zero, and we may
follow the perturbation analysis in [23, Proposition 6] using a time-
varying Lyapunov function to obtain the almost global asymptotic
stability. We omit the details here. Invoking the algebraic relation
(22), we complete the proof. �

Remark 5: The condition (30) with three non-collinear moments is
slightly stronger than the one (18). However, it removes the necessity
of having a priori known bound T > 0 for the observer design in
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Proposition 3. The key idea to construct a new “virtual” non-collinear
reference vector bv is similar to some recent results on generation
of PE regressors from those only satisfying IE [6], [22], [23]. We
refer the reader to the monograph [5] for a discussion of excitation
in observer design.

Remark 6: For the case with a single compatible measurement (3),
we may still get the auxiliary model (23) by designing the dynamic
extension Q̇ = Qω×, but with the new definitions of yc := yI and
gc := Qb. Then, the above two designs are capable to solve the
problem with slight modifications accordingly.

V. DISCUSSIONS

In this section, we show some practical issues in attitude estimation
– intermittent and delayed measurements [1], [3] – can be easily (and
even trivially) tackled by the proposed methodology.

Remark 7: (Delayed measurement) Time delay in attitude esti-
mation is generally unavoidable, which is usually caused by low-
quality data sampling and poor sensors [1]. A common scenario is
that a known delay τ appears in the single vector measurement, i.e.
y(t) = yI(t − τ) = R>(t − τ)g(t − τ), in which τ(t) may be
constant or time-varying. After designing the dynamic extension (19),
the delayed output can be rewritten as y(t) = Q>(t−τ)Qcg(t−τ).
Then, we are still able to get the auxiliary model (23) with

yc := Q(t− τ)y(t), bc := g(t− τ). (36)

Since Qc is a constant matrix on the special orthogonal group, the
observers in Propositions 2-3 can provide asymptotically convergent
attitude estimation by modifying the “reference vector” bc and the
vector yc as (36).

Remark 8: (Intermittent measurement) Some types of sensors only
provide intermittent measurement yI at some instants of time tk
(k ∈ N+). Let sequence {tk}k∈N+

be strictly increasing, and
|t1| and |tk+1 − tk| (k ≥ 1) are upper and lower bounded by
two positive constants. In the proposed attitude PEBO framework,
we have translated the estimation of the variable R(t) into that of
constant Qc, and thus the intermittent measurement does not bring
any difficulty in observer design. By defining the vectors

yc(t) := Q(ti)y(ti), bc(t) := g(ti), ∀t ∈ [ti, ti+1]. (37)

Again, we get the auxiliary model (23) with the modified reference
vectors in (37). The proposed two continuous-time observers can
solve attitude determination.

Remark 9: (Robustness) In practice, the measurement vector is
perturbed by sensor noise, i.e., yM = yB + ny with a bounded term
ny , and yM, yB ∈ S2. Then, the correction term η of the observer in
Proposition 2 becomes ηM := η + ∆η , in which η is the nominal
part defined in Proposition 2 and ∆η is the additive term stemmed
from the noise term ny . Since Q̂c, Q, g and yB all live in some
compact sets, as well as the variable A being the integral over a
finite interval [0, T ], there exists a constant k > 0 such that |∆η(t)| ≤
k‖ny‖∞. For this case, the time derivative of the Lyapunov function
becomes V̇ ≤ −λmin(Γ)‖skew(Q̃c)‖2 + |tr((∆η)×Q̃c)|. Hence, we
are able to establish the robustness of the observer in the bounded-
input-bounded-output (BIBO) sense. The is also verified via noisy
simulations in the coming section.

VI. SIMULATIONS

Example 1: We consider a single time-varying inertial vector

g(t) =

{
e1, t ∈ [0, 5)s

e3, t ≥ 5s,
(38)

in which ei represents the i-th standard Euclidean basis in R3.
Clearly, it satisfies the sufficient excitation condition (18), but not for
the persistently non-constant reference vector assumption in many
works [2]. The attitude of the rigid-body starts from the initial
condition R(0) = diag(−1,−1, 1) under the rotational velocity
ω = [0.23 −0.5 0.15]>. We added noise to both the angular velocity
readings and the vector measurements.

First, we evaluate the performance of the scheme in Proposition
2. The observer is initialized from Q(0) = Q̂c(0) = I3, with the
gains γP = 3 and γI = 1. It corresponds to the initial yaw, pitch
and roll estimates all being 0◦. The results of simulations are shown
in Fig. 1 in the form of Euler angles, and also see the norm of the
estimation error |R̃|I in Fig. 5, which is drawn in a logarithmic scale
for the y-axis. During [0, 5] s, the error R̃ is converging to some non-
zero constant under a constant vector measurement. This is because
a single vector output makes two of three Euler angles partially
observable [11]. After 5s the model satisfies the distinguishability,
and then all Euler angles converge to their true values. Note that the
proposed scheme is robust vis-à-vis measurement noise. Then, we
test the second observer design in Proposition 3, with the simulation
results presented in the same figure. Though the reference vector g in
(38) does not satisfy the sufficient condition (30), it is interesting to
observe that all the Euler angles converge to zero asymptotically for
the same reference vector g. This implies that the condition (30) is
not necessary for the convergence of the second observer design. At
the end, let us compare the proposed schemes to the complementary
attitude observer in [20], whose convergence is guaranteed by a
persistent excitation condition. Clearly, this is not satisfied by the
inertial reference vector in (38). We show the simulation results for
in Fig. 5. As expected, the estimate R̂ from the observer in [20] fails
to converge to its true values. Besides, we note that the first design
in Proposition 2 is less sensitive to measurement noise.

Example 2: In the second example, we consider the problem set
in [8], i.e., the vector being the highly time-varying acceleration of a
helicopter. To be precise, a remotely controlled helicopter is equipped
with accelerometers to detect the acceleration yB = Ba in the body-
fixed frame, and the corresponding inertial acceleration Ia can be
calculated from the GPS velocity v using the relation v̇ = Ia. Clearly,
the relation Ba = R>Ia holds true. Note that the “dirty derivative” is
usually provided by the filtered approximation H1(p)[v] = αp

α+p [v]

with the differential operator p := d
dt and selecting α > 0 some

large parameter. It is widely known that such an operation yields the
phase shift. In our problem set, in terms of Proposition 3, we have the
identity Q(t)Ba(t) = Qcv̇(t). Applying the filter H2(p)[·] = α

α+p [·]
to the both sides – thanks to Qc being constant – we have

H2
[
QBa

]
= QcH1[v]. (39)

By injecting the above into the proposed observer, we are able to
overcome the phase-shifting issue caused by the filter H1(p), and
there is no need to require the parameter α large to approximate the
time derivative. Instead, a small α makes H2(p) behave as a low-pass
filter, which is capable to attenuate noise significantly.

We consider the helicopter trajectory as shown in Fig. 4. To
make the simulation more realistic, the gyros and the accelerometer
provide data at 100 Hz, and the GPS receiver is at 10 Hz – all
with high-frequency noise. Besides, in order to evaluate robustness
of the proposed design, we consider acceleration bias from the senor,
but do not make any compensation. The first observer design was
implemented at 1000 Hz using the solver “ODE 4 (Runge-Kutta)”
in Matlab/SimulinkTM, with γI = 1, γP = 5, α = 1, and the initial
conditions Q(0) = Q̂c(0) = I3. The simulation results are given
in Fig. 3, which illustrates its good robustness, though it brings
additional errors in the steady-state stage. We compare it to the design
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Fig. 1: Performance of the attitude observer in Proposition 2 (obs 1) and 3 (obs 2) with Euler angles (Example 1)
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Fig. 2: Comparison of the norms of estimation errors |R̃|I among
the proposed observers and [20] (Example 1)

in [8] using H1(p) with α = 8 approximate the differentiator. The
phase lag from the filter leads to the offset in estimates observed in
Fig. 3. This effect can be reduced by increasing α, but at the expense
of higher sensitivity to noise. As discussed above, using (39) the
proposed design does not suffer from this issue.

VII. CONCLUDING REMARKS

In this paper, we studied the observability and observer design
for the attitude estimation problem with vectorial measurements. By
translating the observation problem into one of on-line parameter
identification, we provided the necessary and sufficient condition to
the distinguishability for the dynamical model on SO(3), which is
complementary to the existing necessary conditions in the literature.
As is shown later, though the resulting distinguishability condition
is quite weak, we are still able to use it to derive a continuous-time
attitude observer with almost global asymptotic stability guaranteed
for the single vector case. Finally, simulation results demonstrated
accurate estimation performance in the presence of measurement
noise.

APPENDIX

PROOF OF COROLLARY 1
Proof: Compared to Proposition 1, the only difference relies on

the second term, which corresponds to the third case in the proof of
Proposition 1.

The modified condition assumes the existence of two indices
i ∈ `1, j ∈ `2 such that |gi(t1) × [Φ(0, t2)bj(t2)]| > 0. Since
Φ(0, t2)bj(t2) ∈ S2, we have∣∣∣gi(t1)×

[
R0Φ(0, t2)bj(t2)

]∣∣∣ > 0 (40)

if R0 is not in an inadmissible initial set

E := {R0 ∈ SO(3) | R0v = ±w} (41)

with v := Φ(0, t2)bj(t2) and w = gi(t1) both in S2. For a given
rotational velocity ω and the references bj , gi, two of three Euler
angles of the initial rotation matrix R0 is uniquely determined by
the equality in (41). Hence, the inadmissible initial set E has zero
Lebesgue measure in the group SO(3). As a result, we guarantee the
condition (15) from the modified assumption almost surely. �

PROOF OF COROLLARY 2
Proof: Since those two terms in (17) are non-negative, is should

satisfy at least one of the following cases:

(i) λ2

∑
i∈`1

∫ T

0
gi(s)g

>
i (s)ds

 > 0 (42)

(ii)

∥∥∥∥∥∥
∫ T

0

∑
j∈`2

(
ω×bj(s) +

d

ds
bj(s)

)
ds

∥∥∥∥∥∥ > 0. (43)

In the case (i), note that for a single vector gi(t) ∈ S2, the matrix
gi(t)g

>
i (t) has rank one at any instance t ≥ 0. Hence, a necessary

condition to (42) is the existence of t1, t2 ≥ 0 and i, l ∈ `1 (i and l
may be the same) such that

λ2

(
gi(t1)g>i (t1) + gl(t2)g>l (t2)

)
> 0, (44)

which implies
∑
i,l∈`1 |gi(t1) × gl(t2)| > 0, thus guaranteeing the

condition (6).
For the case (ii), we consider (piecewisely) smooth outputs yI,i

with i ∈ `2. Its dynamics is given by

ẏI,i = R(ω×bi + ḃi). (45)

A necessary condition to (43) is that there exist j and a moment
t1 > 0 such that

ω(t1)×bj(t1) + ḃj(t1) 6= 0 =⇒ ẏI,j(t1) 6= 0.

Let us select a sufficiently small ∆t > 0, and define t2 := t1 + ∆t.
It yields

yI,j(t2) = yI,j(t1) + ẏI,j(t1)∆t+ o(∆t2)

in which o(∆t2) represents the high-order remainder term, with the
constraint yI,j(t2) ∈ S2. Now, we show yI,j(t1) × d

dtyI,j(t1) 6=
0 by contradiction. If this cross product is equal to zero, invoking
d
dtyI,j(t1) 6= 0, we have ẏI,j(t1) = ayI,j(t1) for some non-zero
a ∈ R. Then, we have

|yI,j(t2)| =
∣∣∣(1 + a∆t)yI,j(t2) + o(∆t2)

∣∣∣
= |1 + a∆t|+ o(∆t2),

which contradicts with the fact yI,j(t2) ∈ S2. As a consequence, we
obtain that yI,j(t1) × yI,j(t2) 6= 0. Invoking the equivalence (13),
we have

(43) =⇒
∑
j,k∈`2

∣∣∣bj(t1)×Φ(t1, t2)bk(t2)
∣∣∣ > 0,
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Fig. 3: Simulation results for helicopter attitude estimation using the observers in Proposition 2 and in [8] (Example 2)

Fig. 4: The trajectory of the helicopter (Example 2)
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Fig. 5: Comparison of the norms of estimation errors |R̃|I among
the proposed observer and the design in [8] (Example 2)

thus verifying (6). It completes the proof. �
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