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Abstract. In this paper, we present how to synthesize controllers to enforce ω-regular properties over linear

control systems affected by bounded disturbances. In particular, these controllers are synthesized based on

so-called hybrid controlled invariant (HCI) sets. To compute these sets, we first construct a product system
between the linear control system and the deterministic Streett automata (DSA) modeling the desired property.

Then, we compute the maximal HCI set over the state set of the product system by leveraging a set-based

approach. To ensure termination of the computation of the HCI sets within a finite number of iterations, we
also propose two iterative schemes to compute approximations of the maximal HCI set. Finally, we show the

effectiveness of our results via two case studies.

1. Introduction

Formal synthesis of control systems has received significant attention in the past few years [1] due to in-
creasing demand for correct-by-construction controllers in many safety-critical real-life applications, such as
autonomous vehicles and unmanned aerial vehicles. These synthesis problems become more challenging when
handling high-level logic properties, e.g. those expressed as linear temporal logic (LTL) formulae [2], which
are widely employed to specify properties for many applications, including [3,4]. In this paper, we focus on de-
signing controllers enforcing ω-regular properties [5], which is a superset of LTL properties, over discrete-time
linear control systems affected by bounded disturbances.

1.1. Related Works. In the computer science community, reactive synthesis [6] was introduced to synthesize
controllers enforcing high-level logical properties, see e.g. [6–8]. However, these results are only applicable to
systems with finite state and input sets. As for systems with continuous state and input sets, Hamilton-Jacobi-
based (HJ-based) methods [9, 10] are applicable to synthesize controllers against invariance and reachability
properties. However, it is challenging to apply these methods to enforce high-level logic properties, in general.
To cope with high-level logic properties, discretization-based approaches have been proposed in the past two
decades. Among them, symbolic techniques (see e.g. [11–13]) are widely applied for various types of properties,
such as (safe-)LTL (see e.g. [14, 15]) and ω-regular properties (see e.g. [16, 17]). These techniques require the
construction of symbolic models (a.k.a. finite abstractions) with finite state and input sets for the original
systems. Since the finite state and input sets are constructed by gridding the original sets, the number
of discrete states and inputs grow exponentially with respect to the dimensions of state and input sets,
respectively. This issue is known as the curse of dimensionality, which is one of the main challenges of
discretization-based approaches. Some recent results alleviate this issue partially by constructing abstractions
in a compositional manner (see e.g. [18–20]), by leveraging a counterexample-guided abstraction refinement
framework [21], or by applying a specification-guided framework (see e.g. [22–24]). However, these results
require either specific properties of the systems (e.g. dissipativity, mixed-monotonicity, etc.), or additional
assumptions regarding the properties (e.g. properties can be decomposed into several simpler ones).

Recently, other discretization-based approaches, which are developed based on interval analysis (referred to as
interval-analysis-based approaches), have been proposed to enforce invariance properties [25], reach-and-stay
properties [26], and properties modeled by deterministic Büchi automaton [27], which are subsets of ω-regular
properties. Despite improvements in terms of space complexity compared with the symbolic techniques,
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interval-analysis-based approaches also suffer from the curse of dimensionality, since discretization of the state
sets is still needed. Additionally, they are only applicable to systems without exogenous disturbances.

To avoid the curse of dimensionality introduced by discretizing the state and input sets, some discretization-free
approaches have been proposed. Results in [28] propose a set-based approach to enforce invariance properties
(i.e. the systems are expected to stay within a set). This result is further extended in [29–32] in terms of
termination and compositionality. Control barrier functions (CBF) [33] are also used to enforce invariance
properties (e.g. [34–37]), properties described by deterministic finite automata [38, 39], deterministic Büchi
automata [40], LTL [41], and ω-regular properties [42]. Unfortunately, constructing valid CBFs is an NP-hard
problem in general [43].

1.2. Contribution. In this paper, we propose new discretization-free approaches for synthesizing controllers
against ω-regular properties over discrete-time linear control systems affected by bounded disturbances. Con-
cretely, we develop set-based approaches that leverage iterative schemes to compute so-called hybrid controlled
invariant (HCI) sets. Based on these sets, one can construct controllers enforcing the desired ω-regular prop-
erties. A limited subset of the results in this paper has been presented in [44]. In this work, we provide
detailed proofs for the results in [44], which are omitted in [44]. Additionally, we generalize the results in [44]
for synthesizing the HCI-based controllers (c.f. Remark 3.8), and consider an additional iterative scheme for
computing under-approximations of the maximal HCI sets. If the maximal HCI set exists, we show that these
approximations can be obtained within a finite number of iterations using both iterative schemes. Moreover,
here, we show that one can obtain approximations that are arbitrarily close to the maximal HCI sets. Finally,
we provide a worst-case complexity analysis for the proposed set-based approaches.

Here, we also compare our approaches with existing results in the literature (see detailed discussion above in the
related works). In comparison with those discretization-based approaches, we do not need to discretize the state
and input sets, so that our proposed approaches can be efficient in some cases in terms of computation time
(c.f. Section 6.3). Compared with the discretization-free approaches based on CBFs, our proposed methods
are more systematic in the sense that given any linear control systems and desired ω-regular properties, one
can readily compute the HCI sets and construct their corresponding controllers by leveraging our results.
Meanwhile, the results in [42] tackle the synthesis problems by first decomposing the synthesis task for the
original property into several simpler ones and then computing CBFs for each simpler task by solving a series
of sum-of-square (SOS) optimization problems. For each SOS optimization problem, one needs to choose
the forms of the potential CBFs to be polynomials of fixed degrees and fix the forms of their corresponding
controllers heuristically, which requires much manual effort.

1.3. Organization. The remainder of this paper is structured as follows. In Section 2, we provide preliminary
discussions on notations, models, and the underlying problems to be solved. Then, we discuss in Section 3
how to solve the synthesis problem by leveraging a set-based approach for computing HCI sets. We provide in
Section 4 two iterative approaches to approximate the maximal HCI sets within a finite number of iterations.
Afterwards, we analyze the complexity of our approaches in Section 5. Finally, we apply our methods to two
case studies in Section 6 and conclude our work in Section 7.

2. Notations and Preliminaries

2.1. Notations. We use R and N to denote the sets of real and natural numbers, respectively. These symbols
are annotated with subscripts to restrict the sets in a usual way, e.g. R≥0 denotes the set of non-negative
real numbers. Moreover, Rn×m with n,m ∈ N≥1 denotes the vector space of real matrices with n rows and
m columns. For a, b ∈ R (resp. a, b ∈ N) with a ≤ b, the closed, open, and half-open intervals in R (resp.
N) are denoted by [a, b], (a, b) ,[a, b), and (a, b], respectively. We denote by 0n and In the column vector in
Rn with all elements equal to 0, and the identity matrix in Rn×n, respectively. Given N vectors xi ∈ Rni ,
ni ∈ N≥1, and i ∈ {1, . . . , N}, we use x = [x1; . . . ;xN ] to denote the corresponding column vector of dimension∑
i ni. Additionally, given a vector x ∈ Rn, we denote by |x| and ‖x‖ the infinity and Euclidean norm of x,
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respectively. We denote by Bn the closed unit ball centered at the origin in Rn with respect to the infinity
norm. Given sets A and B, we denote by f : A→ B an ordinary map from A to B. Given sets Xi, i ∈ [1, N ],
and their Cartesian product X1× . . .×XN , the projection of X onto Xi is denoted by mapping πXi : X → Xi.
Considering a set Π, Πω denotes the Cartesian product of an infinite number of Π. Given sets A and B with
A ⊂ B, B\A = {x|x ∈ B and x /∈ A} denotes the complement of A with respect to B. The Minkowski sum
of two sets A, B ⊆ Rn is denoted by A+B = {x ∈ Rn|∃a ∈ A, ∃b ∈ B, x = a+ b}. In this paper, we slightly
abuse the notation and use x + A instead of {x} + A to denote the Minkowski sum of set A and {x} where
x ∈ Rn. Moreover, A−B = {a ∈ A|a+B ⊆ A} denotes the Pontryagin set difference between A and B.

2.2. Systems. In this paper, we focus on discrete-time linear control systems (dtLCS), which are defined as
follows.

Definition 2.1. ( dtLCS) A discrete-time linear control system S is a tuple

S = (X,X0, U,W, f), (2.1)

where X ⊆Rn is the state set, U ⊂Rm and W ⊂Rn are compact sets of input and exogenous disturbances,
respectively. Set X0 ⊆ X is the set of initial states. Function f :X×U×W→X characterizes the discrete-time
dynamics as:

x(k + 1) = f(x(k), u(k), w(k)) := Ax(k) +Bu(k) + w(k), (2.2)

with A ∈ Rn×n and B ∈ Rn×m.

With these notations, the evolution of the system S as in (2.1) can be described by its paths, as defined below.

Definition 2.2. ( Path) A path of a dtLCS S as in (2.2) is

ξ := (x(0), u(0), . . . , x(k − 1), u(k − 1), x(k), . . .), k ∈ N

where x(k + 1) = Ax(k) +Bu(k) + w(k) for some w(k) ∈W .

Moreover, we denote by ξx := (x(0), x(1), . . . , x(k), . . .) and ξu := (u(0), u(1), . . . , u(k), . . .) the subsequences
of states and inputs in ξ, respectively. Next, we proceed with defining the properties of interest.

2.3. ω-Regular Properties. The main goal of this work is to synthesize controllers enforcing ω-regular
properties over discrete-time linear control systems. These properties can be modeled by deterministic Streett
automata (DSA) [45], as defined below.

Definition 2.3. A DSA is a tuple A = (Q, q0,Π, δ,Acc), where Q is a finite set of states, q0 ∈ Q is an
initial state, Π is a finite set of alphabet, δ ⊆ Q × Π × Q is the set of all feasible transitions among Q,
and Acc = {〈E1, F1〉, 〈E2, F2〉, . . . , 〈Er, Fr〉, . . . , 〈Er, Fr〉} denotes the accepting condition of the DSA where
〈Er, Fr〉, ∀r ∈ {1, . . . , r}, are accepting state set pairs, with Er, Fr ⊆ Q.

Consider an infinite word denoted by σ = (σ0, σ1, . . .) ∈ Πω. An infinite state run q = (q0, q1, . . .) ∈ Qω on σ
is an infinite sequence of states in which one has (qk, σk, qk+1) ∈ δ, ∀k ∈ N. Similarly, consider an finite word
denoted by σf = (σ0, . . . , σH) ∈ ΠH+1, with H ∈ N, we denote by q = (q0, . . . , qH) ∈ QH+1 the corresponding
finite state run. An infinite run q is an accepting run of A, if for all 〈Er, Fr〉 ∈ Acc, r ∈ {1, . . . , r}, one has

inf(q) ∧ Er = ∅ or inf(q) ∧ Fr 6= ∅, (2.3)

where inf(q) is the set of states in Q that are visited infinitely often in q. Additionally, an infinite word σ
corresponding to an accepting run q is said to be accepted by A. The set of words accepted by A, denoted by
L(A), is called the language of A. Next, we define a labeling function, which is used to connect a system S as
in (2.1) to a DSA A.

Definition 2.4. (Labeling function) Consider a dtLCS S = (X,X0, U,W, f) and a DSA A = (Q, q0,Π, δ,Acc).
We define a measurable labeling function L : X → Π as follows: given an infinite state sequence ξx =
(x(0), x(1), . . .) ∈ Xω of system S, the word of ξx over Π is L(ξx) = (σ0, σ1, . . . , σk, . . .), where σk = L(x(k))
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for all k ∈ N. Accordingly, we denote by L(ξx) |= A if L(ξx) ∈ L(A), and by S |= A, if L(ξx) |= A holds for
all possible ξx of S.

Note that in Definition 2.4, we slightly abuse the notation by applying the map L(·) over the domain Xω,
i.e. L((x(0), x(1), . . .)) = (L(x(0)), L(x(1)), . . . ). However, the distinction is clear from the context. It is also
worth noting that the set of alphabet Π = {σ1, σ2, . . . , σM} along with the labeling function L : X → Π
provide a partition of the state set X = ∪Mj=1Xj , where Xj := L−1(σj). Finally, we propose two additional
definitions related to the strongly connected components [46] in a DSA.

Definition 2.5. Consider a DSA A= (Q, q0,Π, δ,Acc). A set Q1⊆Q is strongly connected if any arbitrary
pair of states qa, qb ∈Q1 are mutually reachable, i.e. ∃(qa, . . . , qb)∈Qd1 , (qb, . . . , qa) ∈ Qd2 with d1, d2 ∈N. A
set Q1 ⊆ Q is a strongly connected component in A if Q1 is strongly connected, and @Q2⊆Q, with Q1⊂Q2,
such that Q2 is strongly connected. Additionally, we denote by SCC(A) ⊂ 2Q the set of all strongly connected
components in A.

Definition 2.6. ( reduced DSA) Consider a DSA A = (Q, q0,Π, δ,Acc). A reduced DSA of A with respect to
a set Q̄ ⊂ Q is defined as Ard(Q̄) := (Q′, q0,Π

′, δ′,Acc′), with Q′ ⊆ Q, Π′ ⊆ Π, δ′ ⊆ δ, and Acc′ ⊆ Acc such
that ∀Qscc ∈ SCC(Ard(Q̄)), @q ∈ Q̄ such that q ∈ Qscc.

Intuitively, the reduced DSA Ard(Q̄) is constructed such that it does not have any strongly connected com-
ponent containing the state within the set Q̄. So far, we have formally defined desired properties. Next, we
formulate the main problem we plan to solve in this work.

2.4. Problem Formulation. To formulate the main problem, we need the following definitions, which are
borrowed from [47].

Definition 2.7. ( Hyperplane) A hyperplane in Rn is a set

{x ∈ Rn|aTx = b}, (2.4)

where a ∈ Rn is non-zero and b ∈ R.

Definition 2.8. A Polytope is a bounded set of the form

P = {x ∈ Rn|Px ≤ p}, (2.5)

with P ∈Rnp×n, p∈Rnp , and np∈N, where the inequality in (2.5) is component-wise. Accordingly, we denote
by

numh(P) := np, (2.6)

the number of hyperplanes defining P, and denoted by P(n) the set of all polytopes in Rn.

Definition 2.9. ( P-collection) A P-collection U is a finite collection of polytopes in Rn, i.e.

U = ∪Nc
a=1Pa,

where Nc ∈ N, and Pa = {x ∈ Rn|Pax ≤ pa} are polytopes, with a ∈ [1,Nc], Pa ∈ Rnp,a×n, and pa ∈ Rnp,a .
Additionally, for a P-collection U , we define

larg(U) := max
a∈[1,Nc]

numh(Pa), (2.7)

and
num(U) := Nc, (2.8)

with numh(·) as in (2.6).

Now, we formulate the main problem in this work.

Problem 2.10. Consider a dtLCS S = (X,X0, U,W, f) as in (2.1), a DSA A = (Q, q0,Π, δ,Acc), and a
labeling function L : X → Π as in Definition 2.4. We aim to synthesize a controller (if existing) to enforce
the property modeled by A over S.
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For a better illustration of the theoretical results, we also employ a running example throughout this paper.

Example 1. (Running example) Consider a dtLCS as in (2.1), in which A=
[

0.9990 0.1846
−0.0074 0.5265

]
; B=

[
1.0209;7.3830

]
;

x(k)=[x1(k);x2(k)] is the state; X0 = [105, 110]×[−10, 10] is the initial state set; u(k) ∈ [−0.32, 0.68] denotes
the input; and w(k) ∈ [−0.18, 0.18]2 denotes the disturbances affecting the system. Here, we are interested in
an ω-regular property ψ which is modeled by a DSA A as in Figure 1. The temporal logic formula1 for A is given
by G((p2 ⇒ FGp2)∧(¬p3)), which, in English, requires that: 1) if the system enters the region X2 := L−1(p2),
it must eventually stay within X2; and 2) the system should not reach the region X3 := L−1(p3).

q0 q1 q2 q3

p1

p2

p1
p2

p1

p2

p3

p3

p3

p1 _ p2 _ p3

Figure 1. DSA A modeling ψ, with alphabet Π = {p1, p2, p3}; labeling function L : X → Π
with L(x) = p1 when x ∈ [105, 110] × [−10, 10], L(x) = p2 when x ∈ (110, 115]×
[−10, 10], and L(x) = p3 when x ∈ R2\([105, 115] × [−10, 10]); and accepting condition
Acc = {〈E1, F1〉, 〈E2, F2〉, 〈E3, F3〉}, in which E1 = {q3}, F1 = ∅, E2 = {q1}, F2 = {q2},
E3 = ∅, and F3 = {q0}. � and  indicate the states that can be visited finitely and infinitely
many times, respectively.

3. Controller Synthesis via Hybrid Controlled Invariant Sets

3.1. Product System. Consider a dtLCS S and a DSA A = (Q, q0,Π, δ,Acc). To solve Problem 2.10, a
product between a dtLCS S and a DSA A is required, which is formally defined as follows.

Definition 3.1. (Product of S and A) Consider a dtLCS S = (X,X0, U,W, f), a DSA A = (Q, q0,Π, δ,Acc),
and a labeling function L : X → Π. The product system between S and A is defined as

S ⊗A = (X,X0, U,W, f), (3.1)

with state set X := {(q, q′, x) ∈ Q×Q×X|∃σ ∈ Π, (q, σ, q′) ∈ δ, and x ∈ L−1(σ)}; the set of initial states
X0 := {(q0, q, x) ∈ {q0}×Q × X0|∃σ ∈ Π, (q0, σ, q) ∈ δ, with x ∈ L−1(σ)} ⊆ X; the input set U := U ;
and the disturbance set W := W . The transition f : X × U ×W → X is defined as x′ := f(x, u, w) with
x = (q, q′, x), x′ = (q′, q′′, x′), u ∈ U , and w ∈W in which x′ = Ax+Bu+ w and (q′, L(x′), q′′) ∈ δ.

Consider the hybrid set X as in (3.1), and any set X ′ ⊂ X. We also need the following definitions in this
paper:

• (Projection) We denote by

X ′(q, q′) := {x ∈ X|(q, q′, x) ∈ X ′}, (3.2)

the projection of X ′ on X with respect to some q, q′ ∈ Q. Accordingly, we define
(
q, q′, X ′(q, q′)

)
:=

{(q1, q2, x) ∈ X ′ | q1 = q, q2 = q′}.
• (Hybrid Minkowski sum) Consider a set X ⊆ X. We denote by X ′ ⊕ X the hybrid Minkowski sum

between X ′ and X, which is defined as

X ′ ⊕ X := {(q, q′, x)∈X | X ′(q, q′) 6= ∅, x ∈ X ′(q, q′) + X}; (3.3)

• (ε-expansion set) Consider an ε ∈ R≥0. We denote by X ′ε the ε-expansion of X ′, which is defined as

X ′ε := X ′ ⊕ εBn; (3.4)

1see [46, Section 5.1] for syntax and semantics of the formula.
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• (ε-contraction set) Consider an ε ∈ R≥0. We denote by X ′−ε the ε-contraction of X ′, which is defined
as

X ′−ε := {(q, q′, x) ∈ X | X ′(q, q′) 6= ∅, x ∈ X ′(q, q′)− εBn}. (3.5)

• (ρ-contraction product) Consider ρ ∈ R≥0. We denote by

(S ⊗A)−ρ := (X−ρ, (X0)−ρ, U − ρBm,W , f), (3.6)

the ρ-contraction of S ⊗A as in (3.1).
• (Distance) Consider any x1, x2 ∈ X, with x1 = (q1, q

′
1, x1) and x2 = (q2, q

′
2, x2). The distance between

x1 and x2 is defined as

d(x1, x2) :=

{
+∞ , if q1 6=q2 or q′1 6=q′2;

‖x1 − x2‖, if q1 =q2 and q′1 =q′2.
(3.7)

Additionally, we also define Hausdorf distance between any two hybrid sets X ′, X ′′ ⊂ X as follows.

Definition 3.2. Consider two hybrid sets X ′, X ′′ ⊂ X. The Hausdorf distance between X ′ and X ′′ is defined
as

dH(X ′, X ′′) := inf{ε ∈ R≥0|X ′⊆X ′′ε ∧X
′′⊆X ′ε}. (3.8)

Next, we proceed with discussing the solution to Problem 2.10.

Remark 3.3. Note that the ε-contraction set in (3.5) can be empty when ε is too large. Hence, the ρ-
contraction products as in (3.6) are only meaningful for those ρ with which the sets X−ρ, (X0)−ρ, and U−ρBm
are not empty.

3.2. Synthesis via Hybrid Controlled Invariant Set. Here, we show that Problem 2.10 can be solved
by computing HCI sets (cf. Definition 3.5) for the product system as in Definition 3.1. To this end, the next
result is required.

Theorem 3.4. Consider a dtLCS S = (X,X0, U,W, f), a DSA A = (Q, q0,Π, δ,Acc), a labeling function
L : X → Π, the product S ⊗ A as in Definition 3.1, and a set E ⊂X such that X\E is the state set of the
product system S ⊗Ard(E′), with Ard(E′) := (Qrd, q0,Πrd, δrd,Accrd), and

E′ := {q ∈ Q|∃r ∈ {1, . . . , r}, q ∈ Er}. (3.9)

One has S |= A if for any infinite state sequence ξ
x

= (x(0), x(1), . . . , x(k), . . .) of S ⊗A, x(k) /∈ E, ∀k ∈ N.

One can show Theorem 3.4 by considering the accepting condition of A as in (2.3). As a key insight, if one
can find a controller that keeps all infinite state sequences of S ⊗ A evolving within the set X\E, then any
state q ∈ E′ would be visited at most once considering the definition of the reduced DSA Ard(E′). One can
build such a controller by leveraging HCI sets for S ⊗A, as defined next.

Definition 3.5. ( HCI Set) A set I ⊆ X\E is an HCI set for S ⊗A, if ∀x ∈ I, ∃u ∈ U such that ∀w ∈ W ,
one has x′ := f(x, u, w) ∈ I, with E being the set as in Definition 3.4. Additionally, we denote by I∗ the

maximal HCI set in the sense that for any other HCI set I ′ ⊂ X\E, we have I ′ ⊂ I∗.

Note that the HCI set defined here is similar to the strongly reachable set in [28, Definition 2], but defined on
the hybrid set X instead of Rn. Based on the definition for the HCI set, we define an HCI-based controller as
follows.

Definition 3.6. ( HCI-based controller) Consider a dtLCS S = (X,X0, U,W, f), a DSA A = (Q, q0,Π, δ,Acc),
a labeling function L : X → Π, the product system S ⊗ A as in Definition 3.1, and a non-empty HCI set I
for S ⊗ A. An HCI-based controller µ : X → U is constructed as follows: given x(k) = (q, q′, x), input
u(k) = µ(x(k)) should be chosen such that ∀x′ ∈ Ax(k)+Bu(k)+W , one gets (q′, q′′, x′) ∈ I, with (q′, σ, q′′) ∈ δ
and σ = L(x′).



FORMAL SYNTHESIS FOR AGAINST ω-REGULAR PROPERTIES: A SET-BASED APPROACH 7

With Definition 3.6 in hand, the next result shows that once there exists a non-empty HCI set I, the con-
struction of an HCI-based controller is always feasible.

Proposition 3.7. Consider a dtLCS S, a DSA A modeling the desired ω-regular property, and the product
system S⊗A as in Definition 3.1. For any non-empty HCI set I of S⊗A, there exists an HCI-based controller
µ as in Definition 3.6.

The proof of Proposition 3.7 is shown in Appendix A.1. By virtue of Definition 3.6 and Proposition 3.7, we
reduce Problem 2.10 to the computation of (maximal) HCI sets for S ⊗A. In Section 3.3, we discuss how to
compute such sets.

Example 1 (continued). (Running example) For computing HCI set as in Definition 3.5, we select

E :=
⋃

∀q′∈{q1,q2}

(
q′, q1, X(q′, q1)

)
∪
⋃
∀q′∈Q

(
q′, q3, X(q′, q3)

)
, (3.10)

for which the corresponding reduced DSA Ard(E′) is depicted in Figure 2 (left). Note that the selection of the

q0 q1 q2

p1

p2 p2

p2
q0

p1

Figure 2. Reduced DSA Ard(E′) for different choice of E.

set E is not unique. One can also choose E such that X\E =
(
q0, q0, X(q0, q0)

)
, with the underlying reduced

DSA as in Figure 2 (right). However, such a choice essentially prevents all the states in the set E′ as in (3.9)
from being reached, which is more conservative than the choice in (3.10) (cf. Remark 3.8).

q0 q1 q2

q3

p1
p2

p1
p2

p1

p2

p3 p3
p3

p1 _ p2 _ p3

p3

q
0
1

q
0
2

p2

p2

p1

p1

q0

q1

q2p1

p2
p2 p2

q
0

1

q
0

2
p2

p2

p1

p1

Figure 3. Left: DSA A′ modeling ψ, with the same alphabet and labeling function as A in
Figure 1, and accepting condition Acc={〈E1, F1〉, 〈E2, F2〉, 〈E3, F3〉}, with E1 ={q3}, F1 =∅,
E2 = {q1, q′1}, F2 = {q2, q′2}, E3 = ∅, and F3 = {q0}. Transition (q′2, p3, q3) is omitted to keep
the figure less crowded. Right: The reduced DSA of A′ with E selected as in (3.10).

Remark 3.8. Theorem 3.4 generalizes the results in [44, Theorem 3.2], since [44, eq. (3.7)] essentially
provides a special choice of the set E in Theorem 3.4 that prevents states in the set E′ in (3.9) from being
reached. It is also worth mentioning that the results in Theorem 3.4 can readily be applied to synthesize
controllers that allow some states in E′ being visited at most N ′ times, where N ′ ∈ N≥1 is chosen by the
users. For instance, to synthesize a controller that allows E2 of A being visited at most twice (i.e. N ′ = 2),
one can first reformulate A in Figure 1 to another DSA A′ as in Figure 3 (Left). Then, one can apply
Theorem 3.4 to A′ by selecting E as in (3.10), which corresponds to a reduced DSA as in Figure 3 (Right),
and design an HCI-based controller accordingly (if existing). For the sake of simple presentation, the formal
definition of such reformulation is omitted here. In future work, we plan to work on building controllers that
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can enforce ω-regular properties by ensuring that for some r ∈ {1, . . . , r}, q ∈ Fr are visited infinitely many
often so that enforcing inf(q) ∧ Er = ∅ for these r is not required. However, this is beyond the scope of the
current work.

3.3. Computation of Maximal HCI Set. Inspired by the method proposed in [28] for computing maximal
strongly reachable set, we propose the following approach to compute the maximal HCI set.

Definition 3.9. Consider a dtLCS S as in (2.1), a DSA A modeling the desired ω-regular property, the
product system S ⊗A = (X,X0, U,W, f), and set E ⊂ X selected as in Theorem 3.4. The maximal HCI set
for S ⊗A can be computed with iteration (3.11) and stopping criterion (3.12) as:

I0 = X\E, Ii+1 = I0 ∩P(Ii), (3.11)

Ii = Ii+1, (3.12)

where

P(I) = {x ∈ X | ∃u ∈ U,∀w ∈W, such that f(x, u, w) ∈ I}, (3.13)

denotes the set of states that reach I in one step. Once the iteration in (3.11) is terminated by the stopping
criterion in (3.12), Ii is the maximal HCI set.

To ensure the convergence of the iteration scheme in Definition 3.9, we have the following assumption.

Assumption 3.10. Consider a dtLCS S, a DSA A representing the desired ω-regular property, a labeling
function L : X → Π as in Definition 2.4, and the corresponding product system S ⊗A = (X,X0, U,W, f) as
in (3.1). We assume:

(1) Input set U and disturbance set W are of the form of polytopes in Rm and Rn, respectively;
(2) The set (X\E)(q, q′), as defined in (3.2), is compact and of the form of a P-collection in Rn, ∀q, q′∈Q.

Algorithm 1: Computing maximal HCI Set I∗

Input: X\E, S ⊗A
Output: Maximal HCI set I∗

1 i = 0, I0 = X\E
2 while 1 do
3 Ii+1 = ∅, Pr = ∅;
4 for every (q′, q′′) s.t. ∃x, (q′, q′′, x) ∈ Ii do
5 Proj = pre(Ii(q

′, q′′));

6 for every q ∈ Q s.t. ∃σ ∈ Π, (q, σ, q′) ∈ δ do
7 Pr = Pr ∪ {(q, q′, x)|x ∈ Proj};

8 for every (q, q′) s.t. ∃x, (q, q′, x) ∈ Pr do
9 Ic = I0(q, q′) ∩ Pr(q, q′);

10 Ii+1 = Ii+1 ∪ {(q, q′, x)|x ∈ Ic};
11 if Ii = Ii+1 then
12 I∗ = Ii;

13 Stop successfully;

14 else if Ii+1 is empty then
15 Stop unsuccessfully;

16 else
17 i = i+ 1;
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With Definition 3.9 and Assumption 3.10, we show that Ii converges to maximal HCI set I∗ as i goes to
infinity.

Theorem 3.11. Consider a dtLCS S as in Definition 2.1, and a DSA A modeling the desired ω-regular
property such that Assumption 3.10 holds. Then, considering the iteration in (3.11), we have I∗ = lim

i→∞
Ii,

where the limit is in terms of the Hausdorff distance as in Definition 3.2.

The proof of Theorem 3.11 is inspired by [28] and can be found in Appendix A.1. Next, we discuss the
implementation of (3.11) and (3.12). Considering the dynamics as in (2.2), by the definition of f , P(I) as
in (3.13) can be rewritten as

P(I) = {(q, q′, x) ∈ X |x ∈ pre(I(q′, q′′)), with q, q′, q′′ ∈ Q s.t. ∃σ ∈ Π, (q, σ, q′) ∈ δ}, (3.14)

with

pre(X ′) = {x ∈ X|∃u ∈ U, ∀w ∈W, Ax+Bu+ w ∈ X ′}, (3.15)

and I(q′, q′′) 6= ∅ as defined in (3.2). Informally, pre(X ′) computes the one-step-backward projection of the
set X ′ considering the linear dynamics as in (2.2). Based on (3.14), we present the main implementation in
Algorithm 1. In each iteration, P(Ii) is computed as in line 3-7, where line 7 and 5 correspond to (3.14)
and (3.15), respectively; I0 ∩ P(Ii) is computed as in line 8-10. In particular, one can readily employ exist-
ing toolboxes, including multi-parametric toolbox MPT [48] and BENSOLVE [49], to perform those polyhedral
operations in each iteration. The iteration proceeds until either: 1) Ii = Ii+1 (line 11-13); or 2) Ii+1 = ∅
(line 14-15), meaning a non-empty HCI set does not exist.

Remark 3.12. If the set X\E is not compact, one can reselect the set E to ensure (if possible) the compactness
of X\E. Additionally, one can also (slightly) deflate the original set X\E such that one can start Algorithm 1
with a compact X\E. Such deflation is shown using the running example.

Figure 4. Computation of I1 based on I0 for the running example according to Algorithm 1.

Example 1 (continued). (Running example) With E selected as in (3.10), the set X\E is not compact.
Nevertheless, following the idea of Remark 3.12, one can ensure the compactness of X\E by slightly deflating



10 BINGZHUO ZHONG1, MAJID ZAMANI2,3, AND MARCO CACCAMO1

it such that X\E(q0, q1) = X\E(q1, q2) = [110 + ε, 115]× [−10, 10], with ε ∈ R>0 being any arbitrary positive
real number. Here, we select ε = 0.01 and proceed with the computation as in Algorithm 1. To provide more
intuition on how Algorithm 1 works, we demonstrate in Figure 4 the computation of I1 based on I0 for the
running example. Concretely, the iteration starts from I0 as depicted in Figure 4(a), (d), (g), and (j) (cf.
line 1 in Algorithm 1). Then, by leveraging (3.15), we compute the one-step-backward projection of I0(q0, q0),
I0(q0, q1), I0(q1, q2), and I0(q2, q2), as shown in Figure 4(b), (e), (h), and (k) , respectively (cf. line 5 in
Algorithm 1). Based on these projections, P(I0) as in (3.14) are computed (cf. line 7 in Algorithm 1), in
which

P(I0)(q0, q0) =
(
q0, q0, pre(I0(q0, q0)

)
;

P(I0)(q0, q1) =
(
q0, q0, pre(I0(q0, q1)

)
;

P(I0)(q1, q2) =
(
q0, q1, pre(I0(q1, q2)

)
;

P(I0)(q2, q2) =
(
q1, q2, pre(I0(q2, q2)

)
∪
(
q2, q2, pre(I0(q2, q2)

)
.

Finally, we compute I1 as in (3.11) based on P(I0) (cf. line 9 to 10 in Algorithm 1). Accordingly, one obtains

I1 =
(
q0, q0, I1(q0, q0)

)
∪
(
q0, q1, I1(q0, q1)

)
∪
(
q1, q2, I1(q1, q2)

)
∪
(
q2, q2, I1(q2, q2)

)
,

in which

I1(q0, q0) = I0(q0, q0) ∩
(
pre(I0(q0, q0)) ∪ pre(I0(q0, q1))

)
;

I1(q0, q1) = I0(q0, q1) ∩ pre(I0(q1, q2));

I1(q1, q2) = I0(q1, q2) ∩ pre(I0(q2, q2)),

I1(q2, q2) = I0(q2, q2) ∩ pre(I0(q2, q2)),

as illustrated in Figure 4 (c), (f), (i), and (l), respectively.

It is worth mentioning that when invariance properties are of interest, the iteration in (3.11) terminates within
a finite number of steps if there are additional assumptions on the system dynamics (see e.g. [50, Proposition
4]), or if X, U , and W have special shapes (see e.g. [51, Theorem 3.1], [50, Theorem 5], [30, Proposition
5.9],[29, Theorem 1 and Corollary 1]). However, there is no guarantee that (3.11) can be terminated within
a finite number of iterations, in general. This issue motivates us to propose two alternative iterative schemes
to compute approximations of I∗ (if existing) within a finite number of iterations, which are introduced in
Section 4.

4. Approximation of Maximal HCI Sets

In this section, we propose two methods for computing approximations of I∗ for S⊗A within a finite number
of iterations. For both methods, the following assumption for the dtLCS is required.

Assumption 4.1. Consider a dtLCS S as in Definition 2.1. We assume that (A,B) in (2.2) is controllable.

4.1. (εx,εu)-Contraction-based Approximation. In this subsection, we show how to compute an (εx,εu)-
contraction-based approximation of I∗ for S ⊗ A. This approximation is computed based on a sequence of
(εx, εu)-constraint i-step null-controllable sets, as defined below.

Definition 4.2. Consider a dtLCS S as in Definition 2.1 in which W = {0n}, and some εx, εu ∈ R>0. A
sequence of (εx, εu)-constraint i-step null-controllable sets, denoted by (Ni(εx, εu))i∈N, is recursively defined
as

N0(εx, εu) ={0n},
Ni+1(εx, εu) ={x ∈ Rn|∃u ∈ εuBm, Ax+Bu ∈ Ni(εx, εu)} ∩ εxBn. (4.1)

Moreover, we have the following lemma for (Ni(εx, εu))i∈N.
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Lemma 4.3. Consider a dtLCS S as in (2.2) in which W = {0n} and (A,B) is controllable, and a sequence
(Ni(εx, εu))i∈N as defined in (4.1). Then, ∃cx, cu ∈ R>0 and n′ ∈ N with n′ ≤ n such that ∀γ ∈ R>0, one has

γBn ⊆ Nn′(εx, εu), (4.2)

with εx = cxγ and εu = cuγ.

The proof of Lemma 4.3 is inspired by [31, Lemma 2] and given in Appendix A.2. Note that cx, cu, and n′ in
Lemma 4.3 can be obtained by leveraging the next Corollary.

Corollary 4.4. Consider the vertices zi ∈ Rn of Bn, with i ∈ [1, 2n]. One can select any cx, cu ∈ Rn, and
n′ ∈ N for Lemma 4.3 such that (4.2) holds, if the following constraints are respected for all zi:

An
′
zi +

n′−1∑
j=0

An
′−j−1Buj = 0n; (4.3)

|uj | ≤ cu, ∀j ∈ [0, n′ − 1]; (4.4)

|Adzi +

d−1∑
j=0

Ad−j−1Buj | ≤ cx,∀d ∈ [1, n′ − 1], (4.5)

with uj ∈ Rm, j ∈ [0, n′ − 1].

The proof of Corollary 4.4 is provided in Appendix A.2. Next, we propose the computation of (εx,εu)-
contraction-based approximation in Definition 4.5.

Definition 4.5. ((εx,εu)-contraction-based approximation) Consider a dtLCS S as in Definition 2.1 such
that Assumption 4.1 holds, a DSA A modeling the desired property, and the product system S ⊗ A =
(X,X0, U,W, f). Given cx, cu ∈ R>0 as in Corollary 4.4, and any γ ∈ R, we define iteration (4.6) and
stopping criterion (4.7) for computing the (εx,εu)-contraction-based approximation as:

I0 = (X\E)−εx , Ii+1 = I0 ∩P(εx,εu)(Ii), (4.6)

Ii ⊆ (Ii+n′)γ , (4.7)

where εx, εu, and n′ are as in Lemma 4.3 s.t. (4.2) holds, P(εx,εu)(I) is defined similarly to P(I) as in (3.14),
with

pre(X ′) = {x ∈ X|∃u ∈ U − εuBm,∀w ∈W,Ax+Bu+ w ∈ X ′}. (4.8)

By leveraging the iteration and stopping criterion as in Definition 4.5, we are able to construct the (εx,εu)-
contraction-based approximation using the following result.

Theorem 4.6. For any γ ∈ R>0 and the corresponding εx, εu ∈ R>0, n′ ∈ N as in Lemma 4.3, there exists
i ∈ N with which (4.7) holds. Moreover, consider (Ii)i∈N that is obtained through the iteration as in (4.6),
and the sequence (Ni(εx, εu))i∈N as in Definition 4.2. The set

I(εx, εu) =
⋃

i′∈[1,n′]

(Ii∗+i′ ⊕Ni′(εx, εu)), (4.9)

is an HCI set for the product system S ⊗ A, with i∗ ∈ N being the smallest index i for the given γ such
that (4.7) holds.

The proof of Theorem 4.6 can be found in Appendix A.3. Note that the existence of i ∈ N such that (4.7)
holds indicates that the iteration in (4.6) can be terminated within finite number of iterations. Since I(εx, εu)
in (4.9) is an HCI set for S ⊗ A, it is, by definition, an under-approximation of the maximal HCI set I∗

according to Definition 3.5. With the next result, we show how close this approximation is. In brief, we
show that given a ρ ∈ R>0 and a product system (S ⊗ A)−ρ as defined in (3.6), we are able to construct an
(εx,εu)-contraction-based approximation that contains the maximal HCI set for (S⊗A)−ρ by selecting εx and
εu properly.
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Theorem 4.7. Consider a dtLCS S as in Definition 2.1 such that Assumption 4.1 holds, a DSA A modeling
the desired property, and the product system S⊗A = (X,X0, U,W, f). For any ρ ∈ R>0, there exists γ ∈ R>0,
such that

I∗ρ ⊆ I(εx, εu), (4.10)

where I∗ρ is the maximal HCI set for (S ⊗ A)−ρ as defined in (3.6), I(εx, εu) is as in (4.9) with εx and εu
being computed as in Lemma 4.3 based on γ.

The proof of Theorem 4.7 is provided in Appendix A.3.

Figure 5. Result for (εx,εu)-contraction-based approximation (orange region), with εx =
2.8636 and εu = 0.67251, and the actual maximal HCI set I∗ (red dashed lines).

Example 1 (continued). To compute the (εx,εu)-contraction-based approximation, we choose n = 2 and
γ = 0.01. and get εx = 2.86 and εu = 0.67 considering Lemma 4.3 and Corollary 4.4. Then, we compute
the approximation applying Definition 4.5 and Theorem 4.6. The computation ends within 1.36 seconds with
4 iterations. The approximation contains 49 hyperplanes, and it is depicted in Figure 5. For comparison
purposes, we also show the actual maximal HCI set I∗.

4.2. ε-Expansion-based Approximation. Here, we discuss the computation of an ε-expansion-based ap-
proximation of the maximal HCI set for S ⊗A. Such approximations can be computed as in Definition 4.8.

Definition 4.8. (ε-expansion-based approximation) Consider a dtLCS S as in (2.2) such that Assump-
tion 4.1 holds, a DSA A modeling the desired property, and the product system S ⊗ A = (X,X0, U,W, f).
Given ε ∈ R>0, we define iteration (4.11) and stopping criterion (4.12) for computing the ε-expansion-based
approximation as:

I0 = X\E, Ii+1 = I0 ∩Pε(Ii), (4.11)

Ii ⊆ (Ii+1)ε, (4.12)

in which Pε(I) is defined similarly to P(I) as in (3.14), with

pre(X ′) = {x ∈ X|∃u ∈ U,∀w ∈W ′, Ax+Bu+ w ∈ X ′}, (4.13)

and W ′ := W + εBn.

Unlike (3.15), pre(X ′) as in (4.13) is defined based on an ε-expansion of the set W , i.e. W + εBn. With
Definition 4.8, the next theorem shows the termination of (4.11) and the construction of the ε-expansion-
based approximation.

Theorem 4.9. Consider any ε ∈ R>0. There exists i ∈ N with which (4.12) holds. Additionally, the set

I(ε) := Ii∗+1, (4.14)
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is an HCI set for the product system S ⊗ A, with i∗ ∈ N being the smallest index i for the given ε such
that (4.12) holds.

The proof of Theorem 4.9 can be found in Appendix A.3. Note that I(ε) in (4.14) is an HCI set for S ⊗A, it
is therefore also an under-approximation of the maximal HCI set I∗ according to Definition 3.5. Then, similar
to Theorem 4.7, we propose the next result to illustrate how close this approximation is.

Theorem 4.10. Consider a dtLCS S as in (2.2) such that Assumption 4.1 holds, a DSA A modeling the
desired property, and the product system S ⊗ A = (X,X0, U,W, f). For any ρ ∈ R>0, there exists ε ∈ R>0,
such that

I∗ρ ⊆ I(ε), (4.15)

where I∗ρ is the maximal HCI set for (S ⊗A)−ρ as defined in (3.6), and I(ε) is as in (4.14).

The proof of Theorem 4.10 can be found in Appendix A.3.

Example 1 (continued). (Running example) Here, we select ε = 0.1 and compute the ε-expansion-based
approximation by applying Definition 4.8 and Theorem 4.9. The computation terminates within 1.26 seconds
with 3 iterations. The approximation contains 36 hyperplanes and it is illustrated in Figure 6. Additionally,
we also depict the actual maximal HCI set I∗ for comparison purposes.

Figure 6. Result for ε-expansion-based approximation (yellow region), with ε = 0.1, and
the actual maximal HCI set I∗ (red dashed lines).

5. Complexity

In this section, we discuss the space and time complexities of our proposed approaches. Note that the space
and time complexities for the cases in which W has a non-empty interior is still open. As a key insight,
considering a P-collection, denoted by X ′ := ∪Nc

a=1X
′
a, one can verify that

larg
(
pre(X ′)

)
= larg

(
(X ′ −W ) + (−BU)

)
, (5.1)

holds by employing the results in [52, Section 3.3.3, pp. 44], in which larg(·) is defined in (2.7), and BU denotes
the linear mapping of the input set U regarding matrix B [52, Section 3.4.2]. However, if ∃j, k ∈ [1,Nc] such
that X ′j ∩X ′k 6= ∅, i.e. X ′a are not pairwise disjoint, it is still an open problem for what is the upper bound
of the number of polytopes within X ′ −W , and what is the maximal number of hyperplanes defining each
polytope within X ′ −W . Thus, in the remaining discussion, we only focus on the case in which W = {0n}.
To derive the space and time complexities for this case, the following definitions are required.
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Definition 5.1. Consider a dtLCS S= (X,X0, U,W, f) with W = {0n}, and p ∈ N. We define g̃S : N → N
as

g̃S(p) := max
X′∈P(n), with numh(X′)=p

numh(pre(X ′)), (5.2)

with numh(·) defined as in (2.6), pre(·) defined as in (3.15), n being the dimension of X, and X ′ ⊆ X.

Definition 5.2. Consider a dtLCS S=(X,X0, U,W, f) and a DSA A = (Q, q0,Π, δ,Acc) modeling the desired
ω-regular property. We define the set

Qrd := {q ∈ Q|∃q′ ∈ Q, such that X\E(q′, q) 6= ∅ or X\E(q, q′) 6= ∅}, (5.3)

with the set E being defined in Theorem 3.4.

Intuitively, g̃S(p) denotes the maximal number of hyperplanes defining pre(X ′), with X ′ being any arbitrary
polytope defined by p hyperplanes. The set Qrd is the finite state set of the reduced DSA corresponding to
the set E. With these definitions, we propose the next result that paves the way for deriving the worst-case
space and time complexities.

Theorem 5.3. Consider a dtLCS S = (X,X0, U,W, f) with W = {0n}, a DSA A = (Q, q0,Π, δ,Acc) modeling
the desired ω-regular property, and the sequence of Ii with i ∈ N as defined in (3.11) and (3.12). We have

num(Ii(q, q
′)) ≤ αiMi+1, (5.4)

larg(Ii(q, q
′)) ≤ gi(p′), (5.5)

for any q, q′ ∈ Qrd, with Qrd being defined as in (5.3), where

α := max
q∈Qrd

|out(q)| (5.6)

M := max
q,q′∈Qrd

num(I0(q, q′)), (5.7)

p′ := max
P,P⊂I0(q,q′) with q,q′∈Qrd

numh(P), (5.8)

in which |out(q)| is the cardinality of the set

out(q) := {q′ ∈ Q | ∃σ ∈ Π, (q, σ, q′) ∈ δ};
I0 is as in (3.11); num(·), larg(·), and numh(·) are defined in (2.8), (2.7) and (2.6), respectively; P is any
arbitrary polytope within I0(q, q′); and gi : N→ N, with i ∈ N, is recursively defined as

gi(p′) = p′, when i = 0;

gi(p′) = p′ + g̃S(gi−1(p′)), when i ≥ 1, (5.9)

where g̃S(·) is defined in (5.2).

Remark 5.4. As a key insight, Theorem 5.3 provides upper bounds on: 1) the number of polytopes within
Ii(q, q

′); 2) the number of hyperplanes defining each polytope within Ii(q, q
′). These upper bounds are con-

servative since they are derived without considering the possibility of eliminating redundant hyperplanes and
polytopes in practice. Concretely, intersections among polytopes in each iteration may contain some redundant
hyperplanes, which can be eliminated by computing the minimal representations of these intersections [53].
Additionally, one can also reduce num(Ii(q, q

′)) by computing unions among some of the polytopes within
Ii(q, q

′), in case these unions are in the form of polytopes.

The proof of Theorem 5.3 is provided in Appendix A.4. Based on Theorem 5.3, we propose the worst-case
space and time complexities of Algorithm 1 in the following corollary.

Corollary 5.5. Consider a dtLCS S = (X,X0, U,W, f) with W = {0n}, a DSA A = (Q, q0,Π, δ,Acc)
modeling the desired ω-regular property, and i ∈ N>0 the number of iterations. The worst-case space and time
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Table 1. Definition of c1, c2, and c3.

Functions Tasks

c1(a1, b1)
Compute pre(X ′), with X ′ being a P-collection in Rn for which
num(X ′) = a1, larg(X

′) = b1
c2(a2, b2) Concatenate matrices P1 ∈ Ra2×(n+1) with P2 ∈ Rb2×(n+1)

c3(a3, b3, a
′
3, b
′
3)

Check whether X ′i−1 ⊆ X ′i holds, with X ′i, X
′
i−1 ⊂ Rn being P-collections,

where num(X ′i) = a3, larg(X
′
i) = b3, num(X ′i−1) = a′3, larg(X

′
i−1) = b′3

complexities of Algorithm 1 are

O
(
|δ|αiMi+1gi(p′)n

)
, (5.10)

O
(
|δ|c1

(
αi−1Mi, gi−1(p′)

)
+|δ|αi−1Mi+1c2

(
p′, g̃S(gi−1(p′))

)
+ |δ|c3

(
αiMi+1, gi(p′), αi−1Mi, gi−1(p′)

))
, (5.11)

respectively, in which |δ| is the number of transitions among q, q′ ∈ Qrd, with Qrd as defined in (5.3); α,
M, p′ and gi(p′) are defined in (5.6)-(5.9), respectively; g̃S(·) is defined in (5.2); c1, c2, and c3 represent the
computation costs for accomplishing different tasks as defined in Table 1.

Remark 5.6. For each i ∈ N>0, the tasks for the iteration in (3.11) and (3.12) include: 1) computing the
one-step-backward projection P(Ii−1) of Ii−1; 2) computing the intersection I0∩P(Ii−1); 3) checking whether

Ii−1 ⊆ Ii holds2. Their computation costs correspond to the first, second, and third term in (5.11), respectively.
Here, the closed-form expressions of c1, c2, and c3 depend on the concrete methods that are deployed for their
associated tasks. For instance, given a polytope X ′ ⊂ Rn, computing pre(X ′) includes the computation of
inverse image of a polytope and polyhedral projection [54]. For linear systems as in (2.2), the inverse image of
a polytope can be obtained via simple matrix multiplications as in [31, Section 4], while different approaches
can be used to compute the projection of a polytope [55–57]. Similarly, various results can be applied to check
whether Ii−1⊆Ii holds, e.g. [53, 58].

Remark 5.7. With slight modifications, Definition 5.1, Theorem 5.3, and Corollary 5.5 can also be leveraged
to analyze the space and time complexities of the computation of (εx,εu)-contraction-based approximation.
Concretely, pre(·) in (5.2) should be defined as in (4.8) (instead of (3.15)), and I0 in (5.7) and (5.8) should
be defined as in (4.6) (instead of (3.11)).

The proof of Corollary 5.5 is provided in Appendix A.4. As for the closed-form expressions of g̃S(p) in (5.2)
and gi(p′) in (5.10) and (5.11), we have the following results.

Proposition 5.8. Consider a dtLCS S = (X,X0, U,W, f) as in Definition 2.1, where n is the dimension of
X, W = {0n}, and pU := numh(BU). Given p′ as in (5.8), and i ∈ N the number of iterations, one has

g̃S(p′) ≤


2, when n = 1;

pU + p′, when n = 2;

(4pU − 9)p′ + 26− 9pU, when n = 3.

(5.12)

Accordingly, one gets

gi(p′) ≤


2(i+ 1), when n = 1;

p′ + i(p′ + pU), when n = 2;

1− ãi+1

1− ã
p′ +

1− ãi

1− ã
b̃, when n = 3.

(5.13)

with ã = 4pU − 9, and b̃ = 26− 9pU.

2One can verify that Ii ⊆ Ii−1 always holds based on the way of computing Ii.
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Note that we have pU ≤ numh(U)+2(n−rank(B)) according to [52, Corollary 3.5]. Considering (5.1), solving
the closed-form expressions of g̃S(p′) is equivalent to answering the following question: given polytopes P1

and P2 defined by p′ and pU hyperplanes, respectively, what is the upper bound of the number of hyperplanes
defining P1 + P2? Trivially, 2 is the upper bound for the case n = 1. Additionally, one has pU + p′ being the
upper bound for the case n = 2 according to [59, Theorem 13.5], and (4pU − 9)p′ + 26− 9pU being the upper
bound for the case n = 3 according to [60, Theorem 5.2.1]. Then, (5.13) can accordingly be derived. As for
the cases n ≥ 4, to the best of our knowledge, there is no result providing the upper bounds of the number
of hyperplanes defining P1 + P2 based on p′ and pU. However, once the results for these upper bounds are
available, the space complexities for the cases n ≥ 4 can readily be derived based on Corollary 5.5.

Finally, we also want to point out the difficulties in having a fair comparison between those discretization-based
approaches and ours in terms of worst-case space complexity. It is well-known that the space complexities
of discretization-based approaches grow exponentially with respect to the dimension of the state (and input)
sets (see [27, Section 5-A] for detailed discussion) since they require the discretization of the original state
and input sets in order to construct the finite state and input sets. On the one hand, the space complexity
of our approaches does not have exponential growth regarding the dimensions since we do not require such
discretization. On the other hand, the complexity of our approaches grows exponentially with respect to the
number of iterations in the worst case. It is worth noting that, however, we do not observe such exponential
growth in the case studies (see Figure 11). As a key insight, at each iteration step i ∈ N, for all q, q′ ∈ Qrd, one
can reduce num(Ii(q, q

′)) and larg(Ii(q, q
′)) in (5.4) and (5.5) by computing the minimal representations [53]

and the union of (some of) the polytopes in Ii(q, q
′).

6. Case Study

To show the effectiveness of our results, we first simulate the running example with the HCI-based controllers,
which have already been computed in Section 4. Then, we apply our results to a cruise control example.
Finally, we compare our approaches with some currently existing tools in terms of computational time. The
synthesis and simulation are performed on a computer equipped with Quad-Core Intel Core i7 (2.7 GHz) and
16 GB of RAM running macOS Big Sur (Version 11.5.2), using MATLAB2019b along with multi-parametric
toolbox MPT [48] and optimization software MOSEK (version 9.3.6) [61]. It is also worth noting that controllers
in both cases can be applied over an infinite time horizon. The numbers of time steps for the simulation are
selected only for demonstration purposes.

6.1. Running Example. Here, we randomly select 10 different initial states from I∗(q0, q0), I(εx, εu)(q0, q0),
and I(ε)(q0, q0) (cf. Figure 5 and Figure 6), respectively, and simulate the running example for 30 time
steps. In the simulation, the disturbances affecting the system are randomly generated at each time instant
following a uniform distribution within the disturbance set. The simulation results for the maximal HCI set,
the (εx,εu)-contraction-based and ε-expansion-based approximation are shown in Figure 7. One can verify
that the desired property is respected.

6.2. Cruise Control. Here, we focus on a cruise control problem for a truck with a trailer as in Figure 8,
with dynamics as in (2.2), where

A :=
[
0.8855 −0.3628 0.3628
0.4081 0.4683 0.5317

0 0 1.0000

]
, B :=

[
0.1018
0.1372
0.5000

]
, (6.1)

x(k) = [x1(k);x2(k);x3(k)] is the state of the system, in which x1(k), x2(k), and x3(k) are the distance
between the truck and the trailer, the velocity of the trailer, and the velocity of the truck, respectively.
Moreover, u(k) ∈ [−5, 5]m/s2 denotes the acceleration of the truck that is used as the control input; and
w(k) ∈ [−0.04, 0.04]× [−0.02, 0.02]2 denotes the exogenous disturbances encompassing the model uncertainty
and unexpected interferences. The model as in (6.1) is adapted from [14] by discretizing it with a sampling
time ∆t = 0.5s and including exogenous disturbances. In this case study, the distance between the truck and
the trailer should be within [−1, 1]m to protect the spring-damper system, and the velocity of the truck and
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Figure 7. Simulation of the running example with the controllers associated with the maxi-
mal HCI set, the (εx,εu)-contraction-based approximation and the ε-expansion-based approx-
imation.

Figure 8. Cruise control problem for a truck with a trailer, with mtrailer = 4000kg the
mass of the trailer, ks = 4500N/kg and kd = 4600Ns/m the constants for the spring-damper
system, and d the distance between the truck and the trailer, where d = 0m is the position
at which there is no deformation on the spring.

q0 q1 q2

p1

p2

p3

p4

p5

p1 _ p2 _ p3 _ p4 _ p5

Figure 9. DSA Aq modeling ψq, with alphabet Π = {p1, p2, p3, p4, p5}; labeling function
L : X → Π with L(x) = p1 when x ∈ [−1, 1]× [5, 35]× [15, 25], L(x) = p2 when x ∈ [−1, 1]×
[5, 35]×(25, 35], L(x) = p3 when x ∈ [−1, 1]×[5, 35]×[5, 35], L(x) = p4 when x ∈ R3\L−1(p3),
and L(x) = p5 when x ∈ R3\(L−1(p1)∪L−1(p2)); and accepting condition Acc = {〈E1, F1〉},
with E1 = {q3}, F1 = ∅. The temporal logics formula for ψq is given by G((p1Up2) ∧ (¬p3)).

the trailer should be within [5, 35]m/s due to the traffic rules. Additionally, to increase the throughput of the
road traffic, the truck is not allowed to move slower than 15m/s unless it has moved faster than 25m/s. Such
a property, denoted by ψq, can be modeled by a DSA Aq as depicted in Figure 9. To synthesize controllers
enforcing ψq, we select E := ∪∀q′∈Q

(
q′, q2, X(q′, q2)

)
. Additionally, to ensure the compactness of X\E, we

slightly deflate X\E such that X\E(q0, q1) := [−1, 1] × [5, 35] × [20 + ε, 35], with ε = 0.001. The results of
controller synthesis are summarized in Table 2. Then, we randomly select 10 initial states from I∗(q0, q0),
I(εx, εu)(q0, q0), and I(ε)(q0, q0), respectively, and simulate the systems for 60 seconds (i.e. 120 time steps).
Moreover, the disturbances are randomly generated at each time step following a uniform distribution within
the disturbance set. The simulation results are shown in Figure 10, indicating that the desired property is
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Table 2. Synthesizing controllers for the cruise control problem by computing: 1) maximal
HCI set I∗; 2) contraction-based approximation I(εx,εu) with n= 3 and εx = εu = 0.036; 3)
expansion-based approximation I(ε) with ε = 0.002.

I∗ I(εx, εu) I(ε)

Number of iterations 5 6 4

Computation time (s) 21.34 19.59 16.12

Number of hyperplanes 120 259 149

enforced (note that trajectories of x3 become red after x3 has been larger than 25m/s). Additionally, Figure 11
shows that there is no exponential growth as in (5.4) and (5.5) in this case study.

Figure 10. Simulation of the cruise control problem

Figure 11. Evolution of the number of hyperplanes required to characterize Ii, denoted by
numhc(Ii), as i increases.

6.3. Comparison with Existing Results. In this subsection, we compare the proposed set-based ap-
proaches with existing results in terms of computation time for synthesizing controllers, including symbolic
techniques (OmegaThreads [17] and TuLiP [62]), interval-analysis-based approaches (ROCS [63]), CBF-based
approaches [34], and HJ-based approaches (helperOC [9] equipped with toolboxLS [64]). Moreover, since
interval-based approaches do not handle systems with exogenous disturbances [27, Section 2.D], and HJ-based
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Table 3. Comparison among the proposed HCI-based methods and existing results in terms
of computation time for synthesizing controllers enforcing: 1) (Case 1) ψq over system in (6.1)
with disturbances; 2) (Case 2) ψq over system in (6.1) without disturbances; 3) (Case 3) system
in (6.1) with disturbances reaching a target set within 3 time steps.

Methods
Maximal

HCI-set
(εx,εu)-contraction ε-expansion ROCS TuLiP OmegaThreads CBF-based HJ-based

Case 1 21.34 s 19.59 s 16.12 s N/A >6 h 2899.85 s N/A N/A

Case 2 2.92 s 7.44 s 7.04 s >6 h >6 h 1933.60 s N/A N/A

Case 3 51.02 s 86.27 s 44.30 s N/A >6 h 7123.81 s N/A 415.15 s

approaches do not handle ω-regular properties, for a fair comparison among these approaches, we consider three
different cases: 1) enforcing ψq in Session 6.2 over the system in (6.1); 2) enforcing ψq over the system in (6.1),
but without exogenous disturbance; 3) ensuring the system in (6.1) reaches the region [−1, 1]× [5, 35]× [25, 35]
from the region [−1, 1]× [5, 35]× [5, 25] within 3 time steps.

Following the same settings as in Table 2, we choose n = 3 and εx = εu = 0.036 to compute the (εx,εu)-
contraction-based approximation of the maximal HCI-set, and select ε = 0.002 to compute the ε-expansion-
based approximation. For applying ROCS, we select ε = 0.001 and µ = 0.001 as the lower bounds of dis-
cretization parameters for state and input sets, respectively, (see [27, Section 4-A] for their definitions) for
a fair comparison with the setting of ε-expansion-based approach [27, Lemma 1 and Theorem 1]. Moreover,
considering the limitation of our computer, 0.2 is used as the discritization parameter for discretizing the state
and input sets when deploying OmegaThreads, TuLiP, and helperOC. The computation time for synthesizing
controllers with different approaches is summarized in Table 3, which indicates that our approaches require
less computation time than other ones. Concretely, >6 h means that the corresponding synthesis procedures
did not terminate within 6h, and that the actual computation time is undecided. Additionally, when applying
OmegaThreads, no controller was found in all cases with the current discretization parameters. Therefore,
smaller discretization parameters for the state and input sets are needed to potentially obtain controllers,
which would, however, result in longer computation time. As for using CBF-based methods in [42], although
we set the potential control barrier function, the multipliers, and the controller as polynomials of up to degree
eight, no controller was found in any cases.

7. Conclusion

In this paper, we proposed for the first time a notion of so-called hybrid controlled invariant set (HCI set),
based on which we synthesize controllers to enforce ω-regular properties over linear control systems affected by
bounded disturbances. Given a linear control system and a deterministic Streett automata (DSA) modeling
the desired ω-regular property, we first construct a product system between the linear control system and
the DSA. Then, we compute the maximal HCI set by utilizing a set-based approach over the hybrid state set
of the product system. Additionally, we provide two approaches to compute approximations of the maximal
HCI sets within a finite number of iterations: one by deflating the original state and input sets, the other
by expanding the disturbance set. The effectiveness of our methods is shown by two case studies, and by
comparison with existing tools.
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Appendix A. Proof of Statements

A.1. Proof of Proposition 3.7 and Theorem 3.11. We first show the results for Proposition 3.7.

Proof of Proposition 3.7 Consider any controller sequence µ′ = {µ′0, µ′1, . . . , µ′i, . . .}, with i ∈ N, associated
with I such that for any initial state x(0) ∈ I, and infinite state sequence ξ = {x(0), x(1), . . . , x(i), . . .}, one
has x(i)∈I,∀i∈N, when µ′ is applied. Note that such controller sequence exists according to the definition of
the HCI set as in Definition 3.5. Hence, at time instant i = 0, ∀x ∈ I, ∀w ∈ W , one gets x′ := f(x, u, w) ∈ I
with u = µ′0(x). Since one has x′ ∈ I, then ∀w′ ∈ W , we again have x′′ := f(x′, u, w′) ∈ I with u = µ′0(x) at
time instant i = 1. Therefore, one can verify that with the sequence of controller µ′′ := {µ′′0 , µ′′1 , . . . , µ′′i , . . .}
with µ′′i = µ′0, ∀i ∈ N, one also has x(i)∈I,∀i∈N, when µ′′ is utilized. Note that µ′′ is a stationary controller
as in Definition 3.6, which completes the proof. �

Next, we proceed with showing Theorem 3.11, for which some additional definitions and lemmas are required.
First, we define a set

G(X ′) :={(x, u)∈X × U | ∀w ∈W, f(x, u, w)∈X ′}, (A.1)

where X ′ ⊆ X. Accordingly, consider I0 along with the iteration of Ii as in (3.11), we define Gi with i ∈ N>0

as:

G1(I0) := G(I0); (A.2)

Gi(I0) := G(Ii−1), i ≥ 2. (A.3)

Now, based on theses definitions, we propose Lemma A.1 and Lemma A.2, which are also necessary for showing
the proof of Theorem 3.11.

Lemma A.1. Consider a dtLCS S as in (2.2), a DSA A modeling the desired ω-regular property, and the
product dtLCS S ⊗A = (X,X0, U,W, f) such that Assumption 3.10 holds. Then, Gi(I0) are compact for all
i ∈ N>0, with Gi as defined in (A.2) and (A.3), and I0 as in (3.11).

Proof of Lemma A.1 In case that Gi(I0) = ∅, the assertion of Lemma A.1 holds trivially. Therefore, we
assume that Gi(I0) 6= ∅, for all i ∈ N>0. To this end, we first show that Ii are compact for all i ∈ N.
Then, we show that Gi(I) is compact when I is compact, and the compactness of (Gi(I0))i∈N>0

follows by the
compactness of (Ii)i∈N. Firstly, I0 as in (3.11) is compact according to Assumption 3.10. Since intersection
of two compact sets are still compact, we show the compactness of (Ii)i∈N by showing P(I) as in (3.13) is
compact if I is compact. For this purpose, we rewrite P(I) as P(I) = {x ∈ X | ∃u ∈ U, s.t. f(x, u,0n) ∈ I ′},
with I ′ a bounded set being defined as I ′ = {x′ | {x′} ⊕W ⊆ I}. Consider any x′′ := (q, q′, x′) /∈ I ′. By
definition of I ′, there exists at least one w ∈W such that one gets z := (q, q′, x′ +w) /∈ I. Since I is compact
(and therefore closed), then there exists an open ball B in the sense of the distance as defined in (3.7) centered
at (q, q′, 0) such that (z + B) ∩ I = ∅, with z + B denotes the Minkowski sum between z and B. Accordingly,
for any x′′ := (q, q′, x′) /∈ I ′, one gets (x′′ + B) ∩ I ′ = ∅, which implies that I ′ is closed. Therefore, ∀q, q′ ∈ Q
such that I ′(q, q′) 6= ∅, I ′(q, q′) is closed and bounded (and therefore compact). Note that Q is a finite set,
and finite union of compact sets is still compact. Hence, it is straightforward that I ′ = ∪q,q′∈QI ′(q, q′) is also
compact. Since the dynamics of dtLCS S as in (2.2) is continuous, mapping f is also continuous. Then, the

compactness of P(I) follows by the compactness of U , I, and I ′.

As for the compactness of Gi(I) given I is compact, we rewrite Gi(I) as in (A.1) as G(I) = {(x, u) ∈X ×
U | f(x, u,0n) ∈ I ′}. Then, the compactness of G(I) can be proved similarly to that of the compactness of
P(I), which completes the proof. �

Lemma A.2. Consider Gi as defined in (A.2) and (A.3), and I0 as in (3.11). We have

πX

( ∞⋂
i=1

Gi(I0)
)

= lim
i→∞

Ii, (A.4)

with πX(Gi(I0)) the projection of Gi(I0) on to X.
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Proof of Lemma A.2 To show Lemma A.2, we show that 1) πX

(⋂∞
i=1Gi(I0)

)
⊆ lim

i→∞
Ii; 2) lim

i→∞
Ii ⊆

πX

(⋂∞
i=1Gi(I0)

)
.

First, we show that

πX

( ∞⋂
i=1

Gi(I0)
)
⊆ lim
i→∞

Ii, (A.5)

holds. Let’s denote by ξ = {x(0), x(1), . . . , x(i), . . .} an infinite state sequence of S ⊗ A. On one hand,

according to the definition of Gi(I0), πX

(⋂∞
i=1Gi(I0)

)
denotes the set of x ∈ I0, from which there exists a

stationary controller µ̄ = {µ, µ, . . .} such that x(i) ∈ I0, for all i ∈ N. On the other hand, according to the
iteration in (3.11), lim

i→∞
Ii denotes the set of all x ∈ I0, from which there exists a controller (either stationary

or non-stationary) µ̄′ = {µ′1, µ′2, . . .} such that x(i) ∈ I0 for all i ∈ N. Therefore, (A.5) holds.

Next, we show that

lim
i→∞

Ii ⊆ πX
( ∞⋂
i=1

Gi(I0)
)
, (A.6)

holds. According to the definition of Gi(I0) and Ii, one gets

lim
i→∞

Ii =

∞⋂
i=1

πX(Gi(I0)). (A.7)

Therefore, we proceed with proving
∞⋂
i=1

πX(Gi(I0)) ⊆ πX
( ∞⋂
i=1

Gi(I0)
)
. (A.8)

Consider an x ∈
⋂∞
i=1 πX(Gi(I0)). Then, there exists a sequence {ui}i∈N, such that (x, ui) ∈ Gi(I0), ∀i ∈ N.

On one hand, according to the computation of Ii, i ∈ N as in (3.11), it is straightforward that I0 ⊇ I1 ⊇
. . . ⊇ Ii ⊇ . . .. Then, considering the definition of Gi((I0)) as in (A.2) and (A.3), for all i ∈ N>0, one has
G1(I0) ⊇ G2(I0) ⊇ . . . ⊇ Gi(I0) ⊇ . . .. Hence, ∀i′ ≥ i > 0, if one has (x, ui′) ∈ Gi′(I0), then one gets
(x, ui′) ∈ Gi(I0). On the other hand, since Gi(I0) are compact according to Lemma A.1, any sequences of
elements within Gi(I) has at least one limit point (x, u) ∈ Gi(I). This indicate that ∃(x, u) ∈ Gi(I0), ∀i ∈ N>0,

i.e., one has (x, u) ∈
⋂∞
i=1Gi(I0). This indicates that x ∈ πX

(⋂∞
i=1Gi(I0)

)
, which implies that (A.8) holds,

and as a result (A.6) holds. Then, we complete the proof by combining (A.5) and (A.6). �

With Lemma A.1, Lemma A.2, and Proposition 3.7, we are ready to prove Theorem 3.11.

Proof of Theorem 3.11 In case that I∗ = ∅, then there exists i ∈ N such that for all i′ ≥ i, Ii′ = ∅ according
the iteration as in (3.11). Therefore, I∗ = lim

i→∞
Ii holds trivially. This assertion can be proved by contradiction.

Suppose I ′ := lim
i→∞

Ii 6= ∅. Then, ∀x ∈ I ′, there exists an infinite sequence of inputs ξu(u(0), u(1), . . .) such

that the corresponding infinite state sequence ξx(x(0), x(1), . . .) can be enforced within I0, i.e., I ′ is an HCI
set for S ⊗A. However, this is contradictory to the fact that the maximal HCI set I∗ is empty.

Next, we consider the case in which I∗ 6= ∅. Considering (A.7), we first show that
⋂∞
i=1 πX(Gi(I0)) is an HCI

set for S ⊗A, which implies that
∞⋂
i=1

πX(Gi(I0)) ⊆ I∗, (A.9)

holds. Consider a controller µ : X → U such that for all x ∈
⋂∞
i=1 πX(Gi(I0)), (x, µ(x)) ∈

⋂∞
i=1Gi(I0) (such

controller exists according to Lemma A.2 by considering (A.4) and (A.7)). Then, by definition of Gi(I0),
∀x ∈

⋂∞
i=1 πX(Gi(I0)), and ∀w ∈ W , one gets f(x, µ(x), w) ∈

⋂∞
i=1 πX(Gi(I0)). Therefore,

⋂∞
i=1 πX(Gi(I0))

is an HCI set for S ⊗A so that (A.9) holds according to Definition 3.5.
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Next, we proceed with showing that

I∗ ⊆
∞⋂
i=1

πX(Gi(I0)), (A.10)

also holds. On one hand, according to Proposition 3.7, there exists a HCI-based controller µ, such that for
all x ∈ I∗, and for all w ∈ W , one gets f(x, µ(x), w) ∈ I∗. On the other hand, by definition of Gi(I0) and

the HCI-based controller, one has (x, µ(x)) ∈
⋂∞
i=1Gi(I0), indicating that x ∈ πX

(⋂∞
i=1Gi(I0)

)
. Meanwhile,

by (A.4) and (A.7), one has x ∈
⋂∞
i=1 πX(Gi(I0)), and therefore (A.10) also holds. Then, we are able to

complete the proof by combining (A.7), (A.9), and (A.10). �

A.2. Proof of Lemma 4.3 and Corollary 4.4. First, we propose Proposition A.3 that facilitates the proof
of Lemma 4.3 and Corollary 4.4.

Proposition A.3. If ∃cx, cu ∈ R>0 and n′ ∈ N such that for all x ∈ Rn, there exists ν : [0, n′] → Rm with
which the following conditions hold:

• (Cd.1) ξx(0) = x and ξx(n′) = 0n with ξx(k + 1) = Aξx(k) +Bν(k) for all k ∈ [0, n′];
• (Cd.2) ν(k) ≤ cu|x| holds for all k ∈ [0, n′];
• (Cd.3) ξx(k) ≤ cx|x| holds for all k ∈ [0, n′];

then, for all γ ∈ R>0, one has γBn ⊆ Nn′(εx, εu), with εx = cxγ and εu = cuγ.

Proof of Proposition A.3 According to Definition 4.2, (Cd.1) in Proposition A.3 indicates that there
exists some ε′x, ε

′
u ∈ R>0 such that ξx(t) ∈ Nn′−t(ε′x, ε′u), and then (Cd.2) as well as (Cd.3) guarantee that

ξx(t) ∈ Nn′−t(εx, εu) with εx = cx|x| and εu = cu|u|. Therefore, one has x ∈ |x|Bn ⊆ Nn′(εx, εu), which
completes the proof. �

Now, we are ready to show the proof of Lemma 4.3.

Proof of Lemma 4.3 The proof of Lemma 4.3 is given by leveraging Proposition A.3. Concretely, we show
the existence of cx and cu when n′ = n such that (Cd.1), (Cd.2) and (Cd.3) are fulfilled. Considering any
x ∈ Rn, (Cd.1) requires that there exists a control sequence

ν = [ν(n− 1)T ; ν(n− 2)T ; . . . ; ν(0)T ], (A.11)

with ν(k) ∈ Rm for all k ∈ [0, n − 1], such that ξx(n) = Anx + Cν = 0n, with C = [B;AB; . . . ;An−1B]T

the controllability matrix. Since (A,B) is controllable, one has rank(C) = n, indicating the existence of such
control sequence. Therefore, (Cd.1) holds. Let C′ ∈ Rn×n be a matrix that contains n linearly independent
columns of C. Here, we select ν as in (A.11) by setting the entries ν of ν associated with C′ of C as ν =
−(C′)−1Anx, and the remaining entries of ν as zero. Accordingly, one can verify that ξx(n) = Anx+ Cν = 0n
holds with such ν. In this case, since |ν| ≤ |(C′)−1An||x| holds, (Cd.2) also holds with

cu = |(C′)−1An|. (A.12)

Meanwhile, by applying the same ν, one obtains ξx(k) = Akx+
∑k−1
t′=0A

k−t′−1Bν(t′). Accordingly, one has

|ξx(k)| = |Akx+

k−1∑
t′=0

Ak−t′−1Bν(t′)|

≤ |Ak||x|+ |
k−1∑
t′=0

Ak−t′−1B||ν(t′)|

≤ (|Ak|+ |
k−1∑
t′=0

Ak−t′−1B|cu)|x|,

with cu as in (A.12) and |Ak| the infinity norm of matrix Ak. Hence, (Cd.3) holds with cx = maxk∈[0,n]

(|Ak|+ |
∑k−1
t′=0A

k−t′−1B|cu), which completes the proof. �
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Proof of Corollary 4.4 Consider cx, cu, n′, and uj with j ∈ [0, n′ − 1] such that (4.3) to (4.5) holds. We
prove Corollary 4.4 by showing that (Cd.1), (Cd.2) and (Cd.3) in Proposition A.3 also hold for all x ∈ Rn
with the same cx, cu, and n′. For any x′ ∈ Rn with |x′| = β and β ∈ R≥0, we consider u′j ≤ βuj with |uj | ≤ cu
for all j ∈ [0, n′ − 1], and z′i ∈ Rn, with i ∈ [1, 2n], which are the vertices of the βBn. Firstly, one has

An
′
z′i +

n′−1∑
j=0

An
′−j−1Bu′j = β(An

′
zi +

n′−1∑
j=0

An
′−j−1Buj) = 0n. (A.13)

As a result, (Cd.1) holds for all z′i, with i ∈ [1, 2n]. Secondly, one also has

|u′j | = |βuj | ≤ cuβ,∀j ∈ [0, n′ − 1], (A.14)

which implies that condition (Cd.2) holds. Finally, for all d ∈ [1, n′ − 1], one can verify that

|Adz′i+
d−1∑
j=0

Ad−j−1Bu′j |≤|Adzi+
d−1∑
j=0

Ad−j−1Buj ||β|≤cxβ, (A.15)

hold. Hence, (Cd.3) also holds for all z′i, with i ∈ [1, 2n]. Note that due to the convexity of βBn and the
linearity of (2.2), it is sufficient to show that (Cd.1) and (Cd.3) hold for all x′ ∈ Rn with |x′| = β by
showing (A.13) and (A.15) hold for all z′i with i ∈ [1, 2n]. Therefore, we are able to complete the proof by
combining (A.13), (A.14), and (A.15). �

A.3. Proof of Theorem 4.6, 4.7, 4.9, and 4.10. We first show the results for Theorem 4.6.

Proof of Theorem 4.6 First, we show the existence of i ∈ N such that (4.7) holds. Accordingly, we discuss
two cases:

(1) In case that Ii = ∅ for some i ∈ N, then ∀i′ ≥ i, one gets Ii′ = ∅, since (∅)γ = ∅ for any γ ∈ R>0 such
that (4.7) holds.

(2) In case that Ii 6= ∅ for all i ∈ N, one can verify from Theorem 3.11 that for any γ ∈ R>0, there exists
i ∈ N such that for all i′ ≥ i, dH(I∗, Ii′) < γ. Additionally, considering the computation of Ii, i ∈ N
as in (3.11), one can verify that I0 ⊇ I1 ⊇ . . . ⊇ Ii ⊇ . . .. Therefore, we have Ii ⊆ (Ii′)γ .

Thus, we conclude the proof of the existence of i by combining both cases above. Next, we proceed with
showing that I(εx, εu) as in (4.9) is an HCI set for S⊗A. Here, we only discuss the case in which I(εx, εu) 6= ∅
since ∅ is a trivial solution of an HCI set for S⊗A. Consider any x = (q, q′, x) ∈ I(εx, εu). Then, by definition
of I(εx, εu) as in (4.9), there exists an i′ ∈ [1, n′] such that x ∈ Ii∗+i′ ⊕Ni′(εx, εu). Without loss of generality,
we assume that x = x1 +x2, with x1 = Ii∗+i′(q, q

′) and x2 ∈ Ni′(εx, εu). On one hand, there exists u2 ∈ εuBm
such that x′2 := Ax2 +Bu2 ∈ Ni′−1(εx, εu). On the other hand, let x1 = (q, q′, x1). Considering the iteration
in (4.6), there exists u1 ∈ U − εuBm such that for all w ∈ W , x′1 := (q′, q′′, x′1) ∈ Ii∗+i′−1(q′, q′′) hold, with
x′1 = Ax1 + Bu1 + w and (q′, L(x′1), q′′) ∈ δ. Then, one can readily verify that for all w ∈ W , there exists
u = u1 + u2 ∈ U such that x′ ∈ Ii∗+i′−1 ⊕ Ni′−1(εx, εu) for all x′ = f(x, u, w). Now, we have the following
two cases regarding different i′:

(1) (Case 1) If i′ ≥ 2, one has x′ ∈ I(εx, εu) by definition of I(εx, εu);
(2) (Case 2) If i′ = 1, then according to (4.7), one gets x′ ∈ Ii∗ ⊆ (Ii∗+n)γ . Additionally, considering (3.3)

and Lemma 4.3, γBn ⊆ Nn(εx, εu) implies that (Ii∗+n)γ ⊆ Ii∗+n⊕Nn(εx, εu). Therefore, x′ ∈ I(εx, εu)
holds.

Combining Case 1 and Case 2, one can verify that I(εx, εu) is an HCI set for S⊗A according to Definition 3.5.�

Proof of Theorem 4.7 Consider any ρ ∈ R>0. Here, we assume that I∗ρ 6= ∅, since (4.10) holds trivially
when I∗ρ = ∅. For the following discussion, we define

(S ⊗A)(−εx,−εu) :=(X−εx , (X0)−εx , U − εuBm,W , f).
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Then, we show that the assertion of Theorem 4.7 holds if γ = min(ρ/cx, ρ/cu). If γ = ρ/cx, this implies that
cu ≤ cx. Consider the maximal HCI set I∗(εx,εu) for the product system (S ⊗A)(−εx,−εu). On one hand, one
has

I∗ρ ⊆ I
∗
(εx,εu), (A.16)

according to the definition of (S ⊗ A)−ρ, since εx = ρ and εu ≤ ρ. On the other hand, in the view of the
definition of an HCI set and the iteration as in (4.6), one has

I∗(εx,εu) ⊆ Ii, (A.17)

for all i ∈ N, with Ii being obtained through the iteration as in (4.6). Then, one can readily see that (4.10)
holds according to the definition of I(εx, εu) as in (4.9).

If γ = ρ/cu, we can similarly show that (4.10) holds. The key insight is that γ = ρ/cu implies cx ≤ cu, and
therefore one has εx ≤ ρ and εu = ρ for (S ⊗ A)(−εx,−εu). Then, we also have (A.16) and (A.17), which
completes the proof. �

Proof of Theorem 4.9 The existence of i ∈ N such that (4.12) holds can be proved similarly to the existence
of i in Theorem 4.6. Therefore, we proceed with showing that I(ε) in (4.14) is an HCI set for S ⊗ A. Here,
we only discuss the case in which I(ε) 6= ∅ since ∅ is a trivial solution of an HCI set for S ⊗ A. On one
hand, (4.12) implies that ∀q, q′ ∈ Q with Ii∗(q, q

′) 6= ∅, Ii∗(q, q′) ⊆ Ii∗+1(q, q′) ⊕ εBn hold. Hence, one has
(Ii∗)−ε ⊆ Ii∗+1. On the other hand, (4.11) shows that ∀x := (q, q′, x′) ∈ Ii∗+1, ∀w ∈ W + εBn, ∃u ∈ U such
that x′ ∈ Ii∗ holds, with x′ = f(x, u, w). This indicates that ∀x := (q, q′, x′) ∈ Ii∗+1 and ∀w′ ∈ W , ∃u ∈ U
such that we have x′′ ∈ (Ii∗)−ε ⊆ Ii∗+1, with x′′ = f(x, u, w′). Therefore, Ii∗+1 is an HCI set for S ⊗ A
according to Definition 3.5, which completes the proof. �

Proof of Theorem 4.10 Consider any ρ ∈ R>0. If I∗ρ = ∅, (4.15) holds trivially. Therefore, we focus on the
case in which I∗ρ 6= ∅. In the rest of this proof, we show that the assertion of Theorem 4.10 holds with

ε = min(
ρ

n′cx
,
ρ

n′cu
), (A.18)

in which cx, cu, and n′ are those in Corollary 4.4 such that (4.3)-(4.5) hold. To this end, we define a set

X ′ :=
⋃

i′∈[1,n′]

(I∗ρ ⊕Ni′(εx, εu)), (A.19)

in which εx and εu are computed based on γ = ε as in Lemma 4.3, with ε as in (A.18). Accordingly, one can
verify

εBn ⊆ Nn′(εx, εu), (A.20)

by leveraging Lemma 4.3. Moreover,one gets Ni′(εx, εu) ⊆ εxBn according to (4.1), εxBn ⊆ ρ
n′B

n for all
i′ ∈ [1, n′] according to (A.18), and I∗ρ ⊆ (I0)−ρ according to the definition of HCI sets as in Definition 3.5.
Therefore, one has

X ′ ⊆ (I0)−ρ ⊕ (n′ × ρ

n′
Bn) = I0, (A.21)

with I0 as in (4.11). Now, we start proving Theorem 4.10.

Consider any x := (q, q′, x) ∈ X ′. Without loss of generality, we assume that x = x̃ +
∑n′

i=1 xi, with
x̃ ∈ I∗ρ(q, q

′), and xi ∈ Ni(εx, εu) for all i ∈ [1, n′]. Since x̃ := (q, q′, x̃) ∈ I∗ρ, then ∃ũ ∈ U − ρBm such

that for all w ∈ W , we get (q′, q′′, x̃′) := f(x̃, u, w) ∈ I∗ρ, with x̃′ = Ax̃ + Bũ + w and (q′, L(x̃′), q′′) ∈ δ.
Accordingly, considering (A.20), there also exists ũ ∈ U − ρBm such that for all w′ ∈W + εBn,

(q′, q̃′′, x̃′′) := f(x̃, u, w′) ∈ I∗ρ ⊕Nn′(εx, εu), (A.22)

hold, with x̃′′ = Ax̃ + Bũ + w′ and (q′, L(x̃′′), q̃′′) ∈ δ. Moreover, according to Definition 4.2, for any
xi ∈ Ni(εx, εu) with i ∈ [1, n′], there exists ui ∈ εuBm such that

Axi +Bui ∈ Ni−1(εx, εu). (A.23)
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Combining (A.22) and (A.23), one can readily see that for any x := (q, q′, x) ∈ X ′, for all w′ ∈ W + εBn, we

get x′ := (q′, q′′, x′) ∈ X ′, with x′ = Ax + Bu + w′, (q′, L(x′), q′′) ∈ δ, and u = ũ +
∑n′

i=1 ui. Additionally,
since γ ≤ ρ

n′cu
according to (A.18), we obtain εu ≤ ρ

n′ and as a result u ∈ U . Hence, considering (A.21), one

can readily conclude that the set X ′ is an HCI set for a product S′ ⊗ A as defined in Definition 3.1, with
S′ = (X,X0, U,W + εBn, f), and hence, one gets

X ′ ⊆ I∗(ε), (A.24)

with I∗(ε) being the maximal HCI set of S′ ⊗ A. Moreover, according to (A.19), one can readily see that
I∗ρ ⊆ X

′ ⊆ I∗(ε), which completes the proof, since I∗(ε) ⊆ I(ε) considering (3.11), (3.12), and (4.11). �

A.4. Proof of Theorem 5.3 and Corollary 5.5. To prove Theorem 5.3, the following proposition is re-
quired.

Proposition A.4. Given P-collections U1 and U2, one has

larg(U1 ∩ U2) ≤ larg(U1) + larg(U2), (A.25)

num(U1 ∩ U2) ≤ num(U1)num(U2), (A.26)

larg(pre(U1)) ≤ g̃S(p), (A.27)

num(pre(U1)) ≤ num(U1), (A.28)

in which larg(·) and num(·) are defined in (2.7) and (2.8), respectively; pre(·) is as in (3.15), with exogenous
disturbance set W = {0n}; g̃S(·) is as in (5.2), and p = maxa∈[1,Nc] numh(Pa), with U1 = ∪Nc

a=1(Pa).

Proof of Proposition A.4 (A.25) and (A.26) hold trivially according to how the intersection between two
P-collection is computed, and (A.27) holds according to the definition for g̃S(·). As for (A.28), one can verify
that

num(pre(U1))=num(∪Nc
a=1pre(Pa))≤∪Nc

a=1num(pre(Pa))≤Nc.

Note that the last inequality holds since pre(Pa) is still a polytope given Pa is polytope [52, Section 3.3.3]. �

Proof of Theorem 5.3 Here, we show (5.4) and (5.5) by induction. When i = 1, for any q, q′, q′′ ∈ Qrd for
which ∃σ1, σ2 ∈ Π s.t. (q, σ1, q

′) ∈ δ and (q′, σ2, q
′′) ∈ δ, one has

num(I1(q, q′)) =
∑

q′′∈Qrd

num
(
I0(q, q′) ∩ pre(I0(q′, q′′))

)
≤
∑

q′′∈Qrd

num(I0(q, q′))num(pre(I0(q′, q′′)) (c1)

≤
∑

q′′∈Qrd

M2 ≤ αM2; (c2)

larg(I1(q, q′)) = larg
(
I0(q, q′) ∩ pre(I0(q′, q′′))

)
≤ larg(I0(q, q′)) + larg(pre(I0(q′, q′′)) (c3)

≤ p′ + g̃S(p′) ≤ g1(p′). (c4)

Hence, (5.4) and (5.5) hold for i = 1. Note that (c1)-(c4) hold according to Proposition A.4. Suppose that (5.4)
and (5.5) hold for i = k. Then, for i = k + 1, one has

larg(Ii+1(q, q′)) = larg
(
I0(q, q′) ∩ pre(Ii(q′, q′′))

)
≤ larg(I0(q, q′)) + larg(pre(Ii(q

′, q′′)) ≤ p′ + g̃S(gi(p′)) ≤ gi+1(p′).
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num(Ii+1(q, q′)) =
∑

q′′∈Qrd

num
(
I0(q, q′) ∩ pre(Ii(q′, q′′))

)
≤
∑

q′′∈Qrd

num(I0(q, q′))num(pre(Ii(q
′, q′′)) ≤

∑
q′′∈Qrd

MαiMi+1 ≤ αi+1Mi+2;

Therefore, (5.4) and (5.5) also hold for i = k + 1, which completes the proof. �

Proof of Corollary 5.5 In the following discussion, considering a P-collection U = ∪Nc
a=1Pa, we denote by

numhc(U) :=
∑Nc

a=1 numh(Pa) the total number of hyperplanes defining the polytopes within U . Then, based
on (5.4) and (5.5), one has

numhc(Ii(q, q
′)) ≤ num(Ii(q, q

′))larg(Ii(q, q
′)) ≤ αiMi+1gi(p′).

Therefore, Ii contains at most |δ|αiMi+1gi(p′) hyperplanes. Meanwhile, the parameters of these hyperplanes
can be stored in a |δ|αiMi+1gi(p′)-by-(n + 1) matrix. Hence, (5.10) is a valid upper bound for the space
complexities of Algorithm 1. Next, we proceed with showing that (5.11) is a valid upper bound for the time
complexity of Algorithm 1. First, considering (5.4), (5.7), (A.27), and (A.28), one has

num(pre(Ii−1(q, q′))) ≤ num(Ii−1(q, q′)) ≤ αi−1Mi,

larg(pre(Ii−1(q, q′))) ≤ g̃S(gi−1(p′)).

Accordingly, in the worst case, one needs to compute the intersection of two P-collections, which contains
M and αi−1Mi polytopes, respectively, to obtain I0 ∩P(Ii). Therefore, the worst-case computation time for
computing I0∩P(Ii) is |δ|αi−1Mi+1c2

(
p′, g̃S(gi−1(p′))

)
considering the definition of c2 and |δ|. Then, one can

readily verify that (5.11) is a valid upper bound for the time complexity of Algorithm 1 by considering the
definitions of c1 and c3. �
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