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Minimal controllability problem on linear structural

descriptor systems with forbidden nodes
Shun Terasaki and Kazuhiro Sato

Abstract—We consider a minimal controllability problem
(MCP), which determines the minimum number of input nodes
for a descriptor system to be structurally controllable. We investi-
gate the “forbidden nodes” in descriptor systems, denoting nodes
that are unable to establish connections with input components.
The three main results of this work are as follows. First, we
show a solvability condition for the MCP with forbidden nodes
using graph theory such as a bipartite graph and its Dulmage–
Mendelsohn decomposition. Next, we derive the optimal value of
the MCP with forbidden nodes. The optimal value is determined
by an optimal solution for constrained maximum matching, and
this result includes that of the standard MCP in the previous
work. Finally, we provide an efficient algorithm for solving
the MCP with forbidden nodes based on an alternating path
algorithm.

Index Terms—structural controllability, large-scale system,
descriptor system, bipartite graph, DM decomposition

I. INTRODUCTION

Controllability analysis for large-scale network systems,

such as multi-agent systems [1], [2], brain networks [3], [4],

and power networks [5], [6] has received a great deal of

interest in recent years, because it can be used to find important

nodes [7]. Controllability analysis problems include:

• quantitative problems; the maximization problems of con-

trollability metrics [8]–[12].

• qualitative problems; selecting input problems that render

the system controllable [7], [13]–[16].

The quantitative problems require the system parameters,

which are not precisely determined in practical systems. In

addition, quantitative problems often become computationally

intractable when the state dimension becomes large. Con-

versely, the structural information of a system, i.e., the nonzero

patterns of system parameters, is usually known. This is an

advantage for qualitative problems that deal only with nonzero

patterns. Also, it is known that the structural controllability

[17] of a structural system can be checked efficiently using

graph algorithms. Thus, for large-scale network systems, it is

more appropriate to consider qualitative problems.

Therefore, we consider a Minimal Controllability Problem

(MCP) of the following structural descriptor network system

with state x(t) ∈ R
n and input u(t) ∈ R

m, where R is the set

of real numbers:

F ẋ(t) = Ax(t) +Bu(t), (1)

where F,A ∈ R
n×n, B ∈ R

n×m, and F ∈ R
n×n can be a

singular matrix. That is, we assume that although the specific
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elements of F , A, and B remain unknown, their nonzero

patterns are known. The descriptor formulation aptly models

practical systems featuring algebraic constraints, such as those

found in electric circuit systems [18]–[20]. MCPs can be

divided into two main problems [21]:

• MCP0: A problem that finds an n × m matrix B for

system (1) to be structurally controllable where m is

minimum. For F = In or F 6= In, efficient algorithms

exist for solving MCP0 [7], [13], [14], [16].

• MCP1: A problem that finds an n × n diagonal matrix

B for system (1) to be structurally controllable and the

number of nonzero elements in B is minimum [14].

Although a polynomial time algorithm exists [15] for a

special case of (1) with F 6= In, MCP1 is known to be

NP-hard [16] in general.

It should be noted that as mentioned in Section 3.2 in [22],

there are only a few papers on MCP0 or MCP1 for system (1)

with F 6= In although just structural controllability analysis

under the assumption of a given (F,A,B) has been studied

in [19], [23], [24].

The previous work in [16] on structural descriptor system

(1) has not considered constraints on the input destination.

There is a gap between practical situations since most physical

systems have state variables to which inputs cannot be directly

connected. For instance, consider a system in which the posi-

tion x(t) and velocity v(t) of an object are the state variables.

In this case, the state equation involves ẋ(t) = v(t), but it

does not make practical sense to add an input to this equation.

Thus, specifying forbidden targets that cannot be connected

to inputs is an important practical constraint. Therefore, [13]

introduced forbidden nodes to MCP1 for system (1) with

F = In. However, no work applies MCPs with F 6= In.

In this paper, we address MCP0 with forbidden nodes for

structural descriptor system (1), because, in general, MCP1 for

system (1) with F 6= In is NP-hard, as shown in [16]. Here,

the forbidden nodes correspond to the indices of “equations”,

while those in [13], which studied (1) with F = In, correspond

to the indices of “variables”. This naturally generalizes to F 6=
In. In fact,

• for F = In, the time evolution of xi is characterized by

the i-th equation of (1). Thus, in this case, we can regard

the index of equations as that of variables.

• for F 6= In, the time evolution of xi is not characterized

by the i-th equation of (1). Thus, in contrast to the case

of F = In, here we cannot regard the index of equations

as that of variables.

The contributions of this study can be summarized as

follows.
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• We show a necessary and sufficient condition for the

existence of the optimal solution of MCP0 with forbidden

equations for structural descriptor system (1), which is

described in the language of graph theory. This result is

also useful in constructing the optimal solution.

• We provide the optimal value of MCP0 with forbidden

equations for structural descriptor system (1), by employ-

ing the graph-theoretic properties of the system, such as

a bipartite graph and its Dulmage–Mendelsohn (DM) de-

composition. The optimal value shows that the minimum

number of input nodes is determined by a variant of

the maximum matching problem with constraints on the

matched nodes. This result includes that of the MCP0

without forbidden equations for descriptor system (1)

[16].

• We also provide an efficient algorithm for solving the

above special matching problem by using the alternating

path algorithm. The time complexity of this algorithm is

O(|V |+|E|
√

|V |), which is on par with the algorithm for

the MCP0 [7], [16] without forbidden equations, where

|V | and |E| are the numbers of nodes and edges of the

bipartite graph corresponding to descriptor system (1),

respectively.

The remainder of this paper is organized as follows. The

basic concepts of graph theory are summarized in Section II.

The formulation of MCP0 with forbidden equations for struc-

tural descriptor systems is described in Section III. In Sec-

tion IV, we provide the analysis and the algorithm of MCP0

with forbidden equations for the descriptor system (1). The

conclusions are presented in Section V.

II. BASIC CONCEPTS OF GRAPH THEORY

In this section, we present a comprehensive overview of

the fundamental concepts of graph theory that are used in this

paper.

A strongly connected component (SCC) of a directed graph

with node set V is a maximal subset C ⊆ V whose nodes

u, v ∈ C can be connected by a directed path on the graph.

Let G = (V +, V −;E) be a bipartite graph. For an edge

e = (v+, v−) ∈ E, ∂+e and ∂−e denote the nodes of v+ ∈
V + and v− ∈ V −, respectively. That is, ∂+ : E → V + and

∂− : E → V −. The edge set M ⊆ E is a matching if it

does not share nodes of each edge. A matching M is termed

maximum matching if M contains the largest possible number

of edges. We define symbol ν(G) as the size of a maximum

matching of G.

We introduce the DM decomposition for a bipartite graph

G = (V +, V −;E), which is the unique decomposition al-

gorithm for bipartite graphs (see [19] for details). Algorithm

1 describes DM decomposition. We define M as a maxi-

mum matching of G and an auxiliary directed graph G̃M .

The edges of G̃M are oriented from V + to V − except for

M . The decomposition is illustrated in Fig. 1. Subgraphs

Gk (k = 0, . . . , b,∞) in Step 6 of Algorithm 1 are called

DM components of G. Gk (k = 1, . . . , b) are called consistent

DM components; G0 and G∞ are called inconsistent DM

components. The order Gi � Gj for the consistent DM

components Gi and Gj is defined as

Algorithm 1 Algorithm for DM decomposition.

1: Find a maximum matching M on G.

2: Construct an auxiliary directed graph G̃M .

3: V0 := {v ∈ V + ∪ V − | ∃u ∈ V + \ ∂+M u →G̃M
v},

where u →G̃M
v indicates the existence of a directed path

on G̃M from u to v.

4: V∞ := {v ∈ V + ∪ V − | ∃u ∈ V − \ ∂−M v →G̃M
u}.

5: Let G′ be the subgraph of G̃M defined by deleting all

nodes of V0 ∪ V∞ and all edges adjacent to the nodes.

6: Let Vk (k = 1, . . . , b) be the SCCs of G′. Let undirected

graph Gk (k = 0, 1, . . . , b,∞) be the subgraph of G

induced on Vk (k = 0, 1, . . . , b,∞).

“There is a directed path on G̃M from Gj to Gi,”

and the order between the consistent DM component Gi and

inconsistent DM components G0 and G∞ are defined as G0 �
Gi and Gi � G∞, respectively. Then, � is a partial order.

Moreover, the decomposition constructed by Algorithm 1 does

not depend on an initially chosen maximum matching M of

G in step 1), as shown in Lemma 2.3.35 in [19]. For example,

in Fig. 1, there is a directed edge from G2 to G1, and thus

G0 � G1 � G2 � G∞.

The greatest computational bottleneck in the construction

of the DM decomposition is to find the maximum matching

of G. This can be achieved in O(|E|
√

|V |) by using the

augmentation path algorithm [25]. Thus, the computational

complexity of DM decomposition is O(|E|
√

|V |).

III. PROBLEM SETTINGS

In this section, we formulate MCP0 with forbidden equa-

tions for the descriptor system (1).

First, we assume that system (1) is solvable, i.e., for any

initial state x(0) with an admissible input u(t), there exists a

unique solution x(t) to Eq. (1). This condition is equivalent

to

rank(A− sF ) = n, (2)

where s is an indeterminant [19] [26].

In this paper, we call system (1) controllable if for any

admissible initial state x(0) that satisfies equation (1), there

exists an input u(t) and a final time T ≥ 0 such that x(T ) = 0.

This controllability is usually referred to as R-controllability.

Additional controllability concepts can be found within the

framework of descriptor system theory [27].

An algebraic characterization of controllability can be de-

scribed as follows [26], [27]:

Proposition 1: Descriptor system (1) is controllable if and

only if

rank [A− zF | B] = n, (3)

where z is any complex number.



Fig. 1: Construction of DM decomposition. The bold edges

represent maximum matching M .

System (1) is termed structurally controllable if condition

(3) in Proposition 1 holds for (1) with generic matrices F , A,

and B. It should be noted that a matrix is considered generic

if each nonzero element is an independent parameter. For a

more precise definition of the generic matrix, see [19].
We now introduce MCP0 with forbidden equations for

descriptor system (1). Let R = {e1, . . . , en} be a set of
equation indices and F be a subset of R that denotes for-
bidden equations. Then, MCP0 with forbidden equations for
descriptor system (1) can be formalized as










minimize
B ∈ Gn×m

m (4)

subject to I) system (1) is structurally controllable,

II) indices of nonzero rows of B are in R \ F ,

where Gn×m denote the set of all n×m generic matrices. The

significant difference between the standard MCP0 and Problem

(4) is II) in (4). This constraint limits the input destination.

For instance, consider descriptor system (1) with

F =













0 f1 0 0 f2
f3 0 0 0 0
0 f4 0 0 0
0 0 0 f5 0
0 0 0 0 0













, A =













a1 0 0 0 0
a2 0 0 0 0
a3 0 0 0 0
0 0 a4 0 a5
0 0 a6 a7 0













.

(5)

Then, R = {e1, e2, . . . , e5}. Let F = {e3, e4} be the set of

indices of forbidden equations. The matrices

B1 =
[

b1 0 0 0 0
]⊤

, B2 =

[

0 0 0 0 b2
0 b1 0 0 0

]⊤

(6)

satisfy condition II).

IV. ANALYSIS AND ALGORITHM

In this section, we provide the analysis and the algorithm

of MCP0 with forbidden equations for descriptor system (1)

with generic matrices using a graph-theoretic approach.

To this end, we first describe the graph representation of

the descriptor system (1) with generic matrices and graph-

theoretical controllability. Although there are several graph

representations for descriptor system (1) [19], [24], [28], we

used the bipartite graph representation [19] in this study. While

the directed graph representation is common for system (1)

with F = In, the bipartite graph representation is often used

for F 6= In [23].

The bipartite graph G = (V +, V −;E) associated with

descriptor system (1) is defined as follows: the node sets V +

and V − are defined as
{

V + := X ∪ U,

V − := {e1, . . . , en},

where the state node set X and the input node set U are

defined as

X := {x1, . . . , xn}, U := {u1, . . . , um},

respectively, and ei in V − corresponds to the i-th equation of

system (1). That is, V + consists of state variables and inputs,

and V − is the set of indices of equations. Then, the edge set

E is defined as

E := EA ∪ EF ∪ EB , (7)

with EA := {(ei, xj) | Aij 6= 0}, EF := {(ei, xj) | Fij 6= 0}
and EB = {(ei, uj) | Bij 6= 0}. An edge belonging to EF is

termed an s-arc. We also define important subgraphs of G as

GA−sF = (X,V −;EA∪EF ), G[A|B] = (V +, V −;EA∪EB),
and GA = (X,V −;EA). For example, the bipartite represen-

tation of descriptor system (1) with (5) and B2 in (6), and its

subgraphs are illustrated in Fig. 2.

Furthermore, for a DM component of G that has s-arcs [16],

we call it a DM s-component, where G is G or GA−sF .

Let Gk (k = 0, . . . , b,∞) be DM components of G, and

Gk (k = 1, . . . , b) are called consistent DM components;

G0 and G∞ are termed inconsistent DM components. The

maximal consistent DM s-component is a consistent DM s-

component Gk of G such that no other DM s-components are

greater than Gk related to the partial order �. Note that there

can be multiple maximal consistent DM s-components.

For instance, consider descriptor system (1) with parameters

given in (5). The corresponding DM decomposition of the

bipartite representation GA−sF is depicted in Fig. 3. G1,

G2, and G3 are the consistent DM components of GA−sF ,

and G3 � G2 � G1. That is, a maximal consistent DM s-

component of this graph is G1, because there is no edge to

enter G1 from other DM components.

The following graph-theoretic characterization of structural

controllability for descriptor system (1) is found in [19].

Proposition 2: Descriptor system (1) is structurally control-

lable if and only if



(a) GA (b) GA−sF (c) G[A|B] (d) G

Fig. 2: Bipartite graph representation of descriptor system (1) with (5) and B2 in (6). The bold edges represent s-arcs.

Fig. 3: DM decomposition of GA−sF of descriptor system (1)

with (5). The bold edges represent s-arcs.

Fig. 4: DM decomposition of G of descriptor system (1) with

(5) and B1 in (6). The bold edges represent s-arcs.

Fig. 5: The optimal solution B in (10) to Problem (4) with F =
{e3, e4}. The bold edges represent the maximum matching M∗

of G[A|B]. The optimality of B will be shown in Section IV-D.

1) ν(GA−sF ) = n,

2) ν(G[A|B]) = n,

3) No consistent DM components of G contain s-arcs,

where ν(G) is the size of a maximum matching of a bipartite

graph G.

Condition 1) represents the solvability of the system de-

scribed in Eq. (2) in Section III, and the latter two conditions

correspond to (3) in Proposition 1. From assumption (2),

condition 1) in Proposition 2 is always satisfied. Assumption

(2) also implies that there are no inconsistent DM components

G0 and G∞ of GA−sF . This is because if we choose a

maximum matching M with a size of n in GA−sF , then V0

and V∞ in Steps 3–4 in Algorithm 1 are both empty.

The following lemma describes the characterization of the

consistent DM components of GA−sF and G.

Lemma 1: Consider descriptor system (1) which satisfies

solvability condition (2). Then, the following conditions are

equivalent:

1) A node v ∈ X ∪ V − of a consistent DM component Gi

in GA−sF belongs to an inconsitent DM component G0

in G.

2) There is a directed path on G̃M from an input node u ∈ U

to v ∈ X ∪ V − in Step 2 of Algorithm 1 for G.

Proof : From assumption (2), condition 1) in Proposition 2

holds. This means that we can find the same maximum

matching M with size of n in Step 1 of Algorithm 1 for

GA−sF and G. Then, in Step 2 of Algorithm 1, G̃M of

GA−sF is a directed subgraph of G̃M of G, as illustrated in

Fig. 1. Also, V + = X ∪ U , ∂+M = X , V − = ∂−M . Thus,

V + \ ∂+M and V − \ ∂−M in Steps 3 and 4 of Algorithm

1 coincide with U and ∅, respectively. That is, the node sets

V0 and V∞ of the inconsistent DM components in G are as

follows:

V0 = U ∪ {v ∈ X ∪ V − | ∃u ∈ U u →G̃M
v}, V∞ = ∅.

This implies that 1) and 2) are equivalent. ✷

For instance, consider descriptor system (1) with (5) and B1

in (6). The DM decomposition of the bipartite representation G

is depicted in Fig. 4. G0 is the inconsistent DM component, G1

is the consistent DM component, and G0 � G1. That is, G1 is

the maximal consistent DM s-component. Then, the consistent

DM component G1 in GA−sF (Fig 3) is also consistent in G



(Fig. 4), since there is no directed path from u1 to e2 or x1 in

G. Note that in general, there is a directed path from u ∈ U

to x ∈ X , because edges in a matching are undirected.

Lemma 1 gives another characterization of the structural

controllability condition for system (1) which satisfies solv-

ability condition (2). This property will be used in the proof

of Theorem 1 in the next subsection.

Corollary 1: Consider descriptor system (1) which satisfies

solvability condition (2). Then, descriptor system (1) is struc-

turally controllable if and only if

2’) ν(G[A|B]) = n,

3’) For each maximal consistent DM s-component Gi in

GA−sF , which is a subgraph of G, there is a directed

path on G̃M from U to Gi in Step 2 of Algorithm 1 for

G.

Proof : From assumption (2), condition 1) in Proposition 2

holds. Condition 2’) is equivalent to condition 2) in Proposi-

tion 2. Also, condition 3) in Proposition 2 holds if and only

if all nodes v ∈ X ∪ V − of consistent DM s-components Gi

in GA−sF belong to an inconsistent DM s-component G0 in

G, since consistent DM s-components contain s-arcs. Using

Lemma 1, this is equivalent to the following:

3*) For each consistent DM s-component Gi in GA−sF ,

which is a subgraph of G, there is a directed path on

G̃M from U to Gi.

This condition is also equivalent to 3’) in Corollary 1, since

the non-maximal consistent DM components in GA−sF have

a directed path from the maximal consistent DM component

in GA−sF from the definition of the partial order �. ✷

Consider descriptor system (1) with A and F given in (5)

and B1 in (6) again. In GA−sF , there is no directed path from

u1 to G1 (Fig. 4). This means condition 3’) in Corollary 1

does not hold. Thus, descriptor system (1) with (5) and B1 in

(6) is not structurally controllable.

A. Existence of solution to Problem (4)

Unlike the traditional MCP0, it is not obvious whether or not

an optimal solution exists for MCP0 with forbidden equations.

By using Proposition 2 and Corollary 1, we obtain the fol-

lowing theorem which characterizes the existence of solutions

to Problem (4). This theorem is employed to construct the

optimal solution to Problem (4) in Section IV-D.

Theorem 1: Problem (4) has a solution if and only if both

of the following conditions hold simultaneously:

a). For each node set Vi of maximal consistent DM s-

components Gi in GA−sF , there exists e ∈ Vi ∩ V −

such that e 6∈ F .

b). The graph-theoretic problem










maximize
M

|M |

subject to M is matching of GA,

F ⊆ ∂−M

(8)

is feasible.

Proof : We assume that B ∈ Gn×m is a solution to Problem

(4), and prove that conditions a) and b) hold. Note that this

B defines EB in (7). Suppose that a maximal consistent DM

s-component Gi of GA−sF , which is a subgraph of G, is not

connected to U , where U denotes the set of input nodes. This

means that there is no directed path on G̃M for G from U to Gi

in Step 2 of Algorithm 1. From Corollary 1, this implies that

system (1) with the given B is not structurally controllable,

which contradicts the assumption. Thus, in GA−sF , for the

all node set Vi of maximal consistent DM s-components Gi,

there exists an equation node e ∈ V −∩Vi which is connected

to an input u ∈ U . This means that e 6∈ F and condition a)

holds. Moreover, condition 2) in Proposition 2 implies that the

maximum matching M∗ of G[A|B] = (V +, V − ∪U ;E ∪EB)
and |M∗| = n exists. Then, M∗\EB is a matching in GA and

∂−(M∗ \ EB) contains F since ∂−EB ⊆ V − \ F (Fig. 5).

Thus, M∗ \ EB is a feasible solution to Problem (8), and

condition b) holds.

Next, we assume that conditions a) and b) hold, and prove

that Problem (4) has a solution. Consider the input nodes U

with a size of n − |M∗|, where M∗ is the optimal solution

to Problem (8). Then we can connect each equation node e ∈
V − \ ∂−M∗ ⊆ V − \F to an input node. This means that the

edge set EB in (7) with size |EB | = n−|M∗| was constructed

and forms a part of a matching of G[A|B]. That is, M∗ ∪EB

is a maximum matching of G[A|B], and thus condition 2’) in

Corollary 1 holds. Also, for each maximal consistent DM s-

component Vi of GA−sF , we can connect an equation node

e ∈ Vi \F to an input from condition a). That is, all maximal

consistent DM s-components of GA−sF have directed paths

from the input node set U . This means that condition 3’) in

Corollary 1 holds. Thus, Problem (4) has a solution. ✷

Theorem 1 implies that the existence of an optimal solution

to MCP0 with forbidden equations for system (1) can be

verified using pure graph theory.

For instance, consider descriptor system (1) with (5) de-

picted in Figs. 2 and 3.

1) Consider the case F = {e1, e3}. Then, MCP0 with F
is not feasible since condition b) in Theorem 1 does not

hold. In fact, the maximal consistent DM s-component

G1 in GA−sF has a node e2 which does not belong to

F . This means that condition a) in Theorem 1 holds.

However, since a set of nodes that connect to e1 or e3
is {x1} in GA in Fig. 2-(a), there is no matching M of

GA which satisfies F ⊆ ∂−M . Thus, Problem (8) is not

feasible.

2) Consider the case F = {e2}. Then, MCP0 with F is

not feasible since condition a) does not hold. In fact,

we can choose a feasible solution for Problem (8) as

MF := {(e2, x1)} which satisfies ∂−MF = {e2} ⊇ F .

Thus, condition b) holds. However, a node of a maximal

consistent DM s-component G1 in GA−sF is only e2 and

e2 ∈ F .

B. Optimal value for Problem (4)

Using the solution to Problem (8), we can compute the

optimal value for Problem (4).

Theorem 2: Suppose that an optimal solution to Problem

(4) exists. If the optimal value of Problem (8) is m∗, then



the minimum number of inputs that satisfy the constraints of

Problem (4) is

nD = max{n−m∗, 1}. (9)

Proof : We assume that B is an optimal solution with nD

column size to Problem (4), and prove that nD ≥ n − m∗,

where m∗ ≤ n by the definition. To this end, we assume nD <

n − m∗. From condition 2) in Proposition 2, ν(G[A|B]) =
n holds. Let M be a maximum matching of G[A|B]. Then,

M ′ := M \ EB is a feasible solution to Problem (8) and

|M ′| ≥ n−nD. Thus, we obtain |M ′| > m∗. This contradicts

the maximality of m∗.

If nD = 0, the corresponding system of the form (1) does

not satisfy condition I) of Problem (4). Thus, nD ≥ max{n−
m∗, 1}.

To prove that the equality holds, that is, (9) holds, we

assume that M∗
F is an optimal solution to Problem (8) such

that |M∗
F | = m∗, and construct a system that satisfies the

constraints of Problem (4) as follows.

1) Connect each input node to a node of V − \ ∂−M∗
F .

Then, ν(G[A|B]) = n is satisfied and i.e., condition 2’)

in Corollary 1 holds.

2) Connect the input nodes to all maximal consistent DM s-

components of GA−sF . Then condition 3’) in Corollary 1

is satisfied without increasing the number of input nodes.

A system constructed by 1) and 2) satisfies condition I) of

Problem (4). Moreover, a system constructed by 1) satisfies

condition II), which is equivalent to that ∂−EB ⊆ V − \ F .

This is because F ⊆ ∂−M∗
F . Note that in 2), we can choose

nodes so that condition II) is satisfied, because condition a)

in Theorem 1 implies that all maximal consistent DM s-

component has at least one node that is not in F . Therefore,

this system of the form (1) satisfies the constraints of Problem

(4) and nD is given by (9). ✷

If the set F of forbidden equations is empty, Eq. (9) can be

written as nD = max{n−ν(GA), 1}. This result is consistent

with the result of the standard MCP0 for system (1) [16].

The argument in the proof of Theorem 2 will be used to

develop an algorithm for Problem (4) in Section IV-D.

C. Algorithm for Problem (8)

Algorithm 2 describes an algorithm for solving Problem (8)

based on an alternating path algorithm [25]. Steps 1–4 check

the feasibility of solving Problem (8). This is because if there

is a feasible solution M to Problem (8), by restricting the

matching nodes in ∂−M to F ∩ ∂−M , a matching MF of

GF = (V +,F ;EA) is obtained that satisfies |F| = |MF |
(Fig. 6). The converse is shown to hold by the following

alternating path algorithm in Steps 5–9, as shown in the proof

of Theorem 3.

The alternating path algorithm that is used in Steps 5–9 is

explained as follows: Let M∗ be a maximum matching of GA

which does not satisfy the condition F ⊆ ∂−M∗ in (8). That

is, M∗ is not a feasible solution to Problem (8). Note that M∗

Fig. 6: GA and GF = (V +,F ;EA). The bold edges on the

left are a feasible solution M to Problem (8) while the right

is a matching MF of GF which satisfies |F| = |MF |.

Fig. 7: Alternating path algorithm.

can be computed by the Hopcraft-Karp algorithm [25]. Then,

v− ∈ F \ ∂−M∗ exists. Suppose a path

P = p1 6∈ M∗ → p2 ∈ M∗ → · · ·

→ p2l−1 6∈ M∗ → p2l ∈ M∗, l = 1, 2, . . . ,

exists, which starts with v− and ends with v−t ∈ V −\F . Then,

a new maximum matching M ′ is defined by the symmetric

difference (M∗\P )∪(P \M∗) between M∗ and P . Moreover,

the number of F \ ∂−M ′ is just one less than the number of

F \ ∂−M∗ since ∂−M ′ = (∂−M∗ \ {v−t }) ∪ {v−}. This

procedure is illustrated in Fig. 7. By repeating this process,

we can finally have a maximum matching M∗
F of GA which

satisfies F ⊆ ∂−M∗
F . Note that from the construction of the

alternating path, no paths that start at different vertices v− ∈
F \ ∂−M∗ share edges with each other. This means that all

desired alternating paths can be found by visiting each edge

only once. Thus, we can execute Steps 6–9 by the breadth-first

search algorithm with time complexity of O(|E|+ |V |) [25].

Theorem 3: If Problem (8) is feasible, Algorithm 2 outputs

the optimal solution of Problem (8).

Proof : Let M∗ be a maximum matching of GA. From the

feasibility assumption of Problem (8), there exists a maximum

matching M∗
F of the bipartite graph (V +, V − ∩ F ;EA) by

Steps 1–4 in Algorithm 2. Because of the construction of

Algorithm 2, it is sufficient to show that there is an alternating

path P for each v− ∈ F \ ∂−M∗. In particular, we show that

such P alternates between edges of M∗ and M∗
F \M∗. From

the definition of M∗
F , an edge p ∈ M∗

F exists that connects

to v−. Also, there exists p′ ∈ M∗ that ∂+p′ = ∂+p. This is

because otherwise M∗∪{p} is a matching, whose size is larger



Algorithm 2 Algorithm for solving Problem (8)

1: Find the maximum matching M∗
F of the graph GF :=

(V +,F ;EA).
2: if |F| > |M∗

F | then

3: Problem (8) is infeasible.

4: end if

5: Find the maximum matching M∗ of GA.

6: for v− ∈ F \ ∂−M∗ do

7: Find an alternating path P = {p1, · · · , p2l} which

starts with v− and ends with v−t ∈ V − \ F
8: M∗ := M∗ ∪ {p1, p3, · · · , p2l−1} \ {p2, p4, · · · , p2l}
9: end for

10: Output M∗.

Algorithm 3 Algorithm for solving Problem (4)

1: if condition a) in Theorem 1 is not satisfied then

2: Problem (4) is infeasible.

3: end if

4: Run Algorithm 2 and let M∗ be its output that is an

optimal solution to Problem (8).

5: Connect inputs U := {u1, . . . , unD
} to each equation

node of V − \ ∂−M∗, where nD is (9) in Theorem 2.

6: Connect inputs U to an arbitrary node of each maximal

consistent DM s-components of GA−sF , which does not

belong to F .

than M∗ and this contradicts the maximality of M∗. Thus,

there is a path with alternating the edges of M∗ and M∗
F \M∗

with a length of at least 2. To show that all alternating

paths end with a node v−t of V −, not of V +, suppose that

an alternating path P exists that ends with ṽ+ ∈ V +. We

also assume that P alternates between the edges of M∗ and

M∗
F \M∗. In this case, we have |M∗

F ∩ P | = |M∗ ∩ P |+ 1,

since P must start with p1 ∈ M∗
F and end with p2l−1 ∈ M∗

F

(Fig. 8). Thus, by replacing the M∗ ∩ P edges with M∗
F ∩ P

edges, we can obtain a matching larger than M∗ in size. This

contradicts the maximality of M∗. Thus, p2l ∈ M∗ exists and

P∪{p2l} is an alternating path. That is, p2l connects v−t ∈ V −.

If v−t ∈ V −∩F , there is an edge p′ ∈ M∗
F \M∗ that satisfies

v−t = ∂−p′, and P ∪ {p2l} ∪ {p′} is a new alternating path

between the edges of M∗ and M∗
F \M∗. Thus, by inductively

applying the above argument, we finally have an alternating

path P which ends with a node of V − \ F . ✷

To explain how Algorithm 2 works, consider Problem (8)

with GA of descriptor system (5) and forbidden equations

F = {e3, e4}. We can choose M∗
F in Step 1 of Algo-

rithm 2 as M∗
F = {(e3, x1), (e4, x3)}. In Step 5, we have

the maximum matching M∗ = {(e3, x1), (e4, x3), (e5, x4)}.

Moreover, Step 6–9 illustrated in Fig. 9 produces the new

maximum matching M ′ = {(e3, x1), (e4, x3), (e5, x4)} that

satisfies F ⊆ ∂−M ′ = {e3, e4, e5} in (8). In fact, we can

Fig. 8: Alternating path P = {p1, p2 . . . , p2l−1}.

p1, p3, . . . , p2l−1 are in M∗
F , and p2, p4, . . . , p2l−2 are

in M∗.

Fig. 9: Example of Step 6–9 in Algorithm 2. The bold edges

represent M∗ (left) and M ′ (right).

find an alternating path P = {(e1, x1), (e3, x1)} and obtain

the new matching M ′.

D. Algorithm for Problem (4)

Algorithm 3 shows an algorithm for solving Problem (4)

and has the following property.

Theorem 4: If Problem (4) has a feasible solution, then

Algorithm 3 outputs the optimal solution to Problem (4). If

Problem (4) is infeasible, Algorithm 3 determines the infeasi-

bility. Furthermore, the time complexity is O(|V |+ |E|
√

|V |).
Proof : Algorithm 3 is based on the argument in the proof of

Theorem 2. Steps 1–4 determine whether or not Problem (4)

is feasible, and Steps 1–3 are computed by Algorithm 1. Step

4 checks condition b) in Theorem 1 and output an optimal

solution M∗ of Problem (8). Steps 5 and 6 in Algorithm 3

output the optimal solution to Problem (4), as shown in the

proof of Theorem 2.

Next, we show that the time complexity is O(|V | +
|E|

√

|V |). Step 1–3 in Algorithm 3 can be checked by

Algorithm 1, its time complexity is O(|E|
√

|V |). The time

complexity of Step 4 is O(|V | + |E|
√

|V |). In fact, in Steps

1–5 in Algorithm 2 are computed by using the Hopcroft-

Karp algorithm [25], the time complexity is O(|E|
√

|V |).
Moreover, Steps 6–9 in Algorithm 2 can be computed by

breadth-first search algorithm in O(|V | + |E|), as mentioned

already. Steps 5–6 in Algorithm 3 can be computed in O(|V |)
at most. Therefore, the time complexity of Algorithm 2 is

O(|V |+ |E|
√

|V |). ✷

Theorem 4 means that more general problems than those

of [7], [16] can be solved with the same computational



complexity. In fact, the problem addressed by [7] is a special

case of Problem (4) with F = ∅ and F = In, and it can

be solved in O(|V | + |E|
√

|V |). Moreover, the algorithm

proposed in [16] deals with Problem (4) with F = ∅, and

the time complexity is O(|V |+ |E|
√

|V |).
To illustrate how Algorithm 3 works, consider descriptor

system (1) with (5) and forbidden equations F = {e3, e4}. In

this case, Steps 1–4 determine that Problem (4) is feasible. In

fact, the maximal consistent DM s-component G1 in Fig. 3

has a node e2 which does not belong to F . Also, in Step

4, we obtain M∗ = {(e3, x1), (e4, x3), (e5, x4)} from the

discussion of how Algorithm 2 works in IV-C. Thus, Problem

(4) is feasible, since conditions a) and b) in Theorem 1 hold.

Furthermore, Steps 5 and 6 produce

B =

[

b2 0 0 0 0
0 b1 0 0 0

]⊤

, (10)

that is an optimal solution to Problem (4). In fact, from

Theorem 2, we have the minimum number of inputs nD =
n−|M∗| = 2. Also, V −\∂−M ′ = {e1, e2}. Thus, connecting

u1 to e1, and u2 to e2 , we have B as (10).

V. CONCLUSION

In this study, we introduced the forbidden equations to

MCP0 for structural descriptor systems. We gave a necessary

and sufficient condition for the existence of solutions to the

problem and provided the solution to MCP0. The algorithm for

solving the problem can be computed in polynomial time as

for the standard MCP0. That is, our proposed algorithm is well

positioned for applications to large-scale descriptor systems.

In this paper, we focused on MCP0 for a structural descrip-

tor system, since, for a structural descriptor system, MCP1 is

NP-hard in general as shown in [16]. Thus, finding a solvable

condition for MCP1 with forbidden equations in polynomial

time would be a future project.

Furthermore, structural controllability considered in this

paper requires that the system parameters be algebraically in-

dependent. This means that all non-zero system parameters are

free, which may be a strong assumption for practical situations.

To avoid this assumption, strong structural controllability has

been proposed in [29], and studied from a graph-theoretic

perspective in [30]. A strong structural controllability problem

version in this paper is one of the future works.
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