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Generalized Invariance Principles for Stochastic
Dynamical Systems and Their Applications

Shijie Zhou, Wei Lin Senior Member, IEEE, Xuerong Mao, and Jianhong Wu

Abstract—Investigating long-term behaviors of stochastic dy-
namical systems often requires to establish criteria that are
able to describe delicate dynamics of the considered systems.
In this article, we develop generalized invariance principles for
continuous-time stochastic dynamical systems. Particularly, in a
sense of probability one and by the developed semimartingale
convergence theorem, we not only establish a local invariance
principle, but also provide a generalized global invariance prin-
ciple that allows the sign of the diffusion operator to be positive in
some bounded region. We further provide an estimation for the
time when a trajectory, initiating outside a particular bounded
set, eventually enters it. Finally, we use several representative ex-
amples, including stochastic oscillating dynamics, to illustrate the
practical usefulness of our analytical criteria in deciphering the
stabilization or/and the synchronization dynamics of stochastic
systems.

Index Terms—Invariance principle; local and global invari-
ance; stochastic dynamical systems; time estimation

I. Introduction
Long-term behaviors of complex systems have received

wide attention [63], [64]. Various types of theories have been
developed systematically, including Lyapunov stability theo-
ries and invariance principles [2], [3], [13], [39], [56], [57],
[61], center manifold and bifurcation theories [26], [27], [40],
[41], [55], [60], and chaos theories. The classical invariance
principle [1], which first originated from the Lyapunov second
methods [39], has been performed and extended from finitely
to infinitely dimensional spaces [4], [5], from autonomous to
non-autonomous dynamical systems [6], [7], [14], [37], [38],
from time-homogeneous to switching systems [8], [9], [45],
[50], [54], and from asymptotic synchronization and transient
chaos [24], [25], [53].

On the other hand, noise, which is unavoidable in real
systems, always makes it difficult but worthwhile to investigate
complex dynamics because it could bring about not only uncer-
tainty and disorder but also counter-initiative phenomena. Sev-
eral noise-induced phenomena have been studied in the litera-
ture, such as stochastic resonance [10], stochastic stabilization
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or/and synchronization [11], [20], [21], [25], [46], random-
temporal-structure-induced emergence [12], [15]–[18], [48]–
[51]. Also developed was the stochastic version of LaSalle’s
invariance principle [31]–[34], [45]–[47], [52], [53], which
describes the asymptotic stability of a stochastic dynamical
system by using a Lyapunov function or functional.

When applying such stochastic LaSalle’s invariance princi-
ples, one, according to the principles in the classical textbook,
usually needs to construct a Lyapunov function whose diffu-
sion operator (denoted by L V; see below for the definition)
is assumed to be at least negative semidefinite. However,
constructing such Lyapunov function is always difficult. Even
in the more generalized version of the theory [28], [35], [36],
the efficient criteria are still hard to satisfy because multiple
Lyapunov functions are needed. In addition, most of these
theories are used to study stochastic asymptotic stability, which
greatly limits the feasible range. Therefore, a generalized
version of invariance principle which allows the sign of the
diffusion operator to be positive is highly required.

In this article, we are to establish invariance principles for
stochastic autonomous differential equations. Significantly, in
a sense of probability one, we not only establish a local
invariance principle, but also provide a generalized global
invariance principle which allows the sign of the diffusion
operator to be positive in a bounded region. In addition,
we depict global dynamics by estimating the time for a
trajectory to enter or stay in a particular set. Finally, we
use several representative examples, including studying the
stochastic synchronized neural dynamics, to demonstrate the
practical usefulness of our theories.

The rest of this article is organized as follows. In Section
II, we describe model formulation and provide some extended
mathematical conditions. In Section III, we present our main
results for ensuring both local and global invariance. In Section
IV, we give the detailed proofs of the main theorems. Finally
in Section V, we provide several illustrative examples, includ-
ing some biological stochastic models, for demonstrating the
broad applicability of our main results.

II. Model Description and Useful Conditions
To begin with, we consider a p-dimensional continuous-time

stochastic dynamical system

dxt = f (xt)dt + g(xt)dBt, (1)

with the initial state x(0) = x0 ∈ R
p. Here, f : Rp → Rp

and g : Rp → Rp×m are both continuous functions and Bt =

[B1(t), B2(t), · · · , Bm(t)]> is a standard m-dimensional Brow-
nian motion. Furthermore, we denote by (Ω,F , {Ft}t≥0,P)
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the complete probability space with a filtration Ft satisfying
the usual condition (i.e., it is increasing and right continuous
while F0 contains all P-null sets) where the m-dimensional
Brownian motion Bt in system (1) is well defined.

According to the classical theory of stochastic differential
equations [29], we need locally Lipschitizian conditions for the
vector field f and g in the following to ensure the uniqueness
and existence of the solution of system (1).

Condition 2.1: (Locally Lipschitzian condition) For any
given positive number n, there exists a positive number Kn

such that

‖f (x) − f (y)‖ ≤ Kn‖x − y‖, ‖g(x) − g(y)‖ ≤ Kn‖x − y‖,

for any x,y ∈ Rp with ‖x‖ ≤ n and ‖y‖ ≤ n. Here, ‖ · ‖
represents any appropriate norm in Rn or Rn×m.

Akin to the traditional Lyapnouv approach in the ordinary
differential equation, we use a continuously twice differen-
tiable function V : Rp → R which satisfies particular
conditions to study the dynamics of system (1). One of the
typical constraints on function V is presented as follows.

Condition 2.2: Function V satisfies that lim‖x‖→+∞ V(x) =

+∞ and V(x) ≥ 0 for all x ∈ Rp.
In the theory of stochastic version of invariance principle,

the Itô formula plays a vital role. The differential form of Itô’s
formula [29] on V is as such:

dV(xt) = L V(xt)dt + DV(xt)dBt, (2)

where two operators L and D acting on continuously twice
differentiable functions are denoted, respectively, by

L V(x) , Vx(x)f (x) +
1
2

trace
[
g>(x)Vxx(x)g(x)

]
,

and DV(x) M= Vx(x)g(x). Here, the derivatives

Vx(x) =

[
∂V(x)
∂x1

,
∂V(x)
∂x2

, · · · ,
∂V(x)
∂xp

]
, Vxx(x) =

[
∂2V(x)
∂xi∂x j

]
p×p

stand, respectively, for the gradient vector and the Jacobian
matrix of V(x).

Denote a series of increasing open sets by

Mr ,
{
x ∈ Rp

∣∣∣ L V(x) > −r
}

for r ∈ R, and denote an increasing left continuous function
by p(r) M= supx∈Mr

V(x), which can be used to characterize
these sets. The following condition depicts the properties of
the set M0, one of the most important sets among them.

Condition 2.3: M0 is a bounded and nonempty set, which
indicates p(0) < +∞.

III. Main Results

In this section, we establish several generalized versions of
invariance principle.

First, we articulate a version which guarantees that some
particular set is invariant under the evolution of system (1) in
the sense of probability one .

Theorem 3.1: (Local invariance principle) Assume that, for
a given twice differentiable function V : Rp → R, the set

{
x ∈ Rp

∣∣∣ V(x) = C
}
, if it is a (p − 1)-dimensional mani-

fold, can divide Rp into two parts:
{
x ∈ Rp

∣∣∣ V(x) < C
}

and{
x ∈ Rp

∣∣∣ V(x) > C
}
. If there exist three numbers δ, k1, k2 > 0

such that

L V(x) ≤ k1
[
C − V(x)

] (
resp., L V(x) ≥ −k1

[
V(x) −C

])
and

∥∥∥DV(x)
∥∥∥ ≤ k2

∣∣∣C − V(x)
∣∣∣ for{

x ∈ Rp
∣∣∣ C − δ ≤ V(x) ≤ C

}(
resp.,

{
x ∈ Rp

∣∣∣ C + δ ≥ V(x) ≥ C
} )
.

Then, for any initial state x0 which satisfies
V(x0) < C

(
resp., V(x0) > C

)
, the trajectory of

system (1) does not leave the set
{
x ∈ Rp

∣∣∣ V(x) < C
}(

resp.,
{
x ∈ Rp

∣∣∣ V(x) > C
} )

in a finite-time duration almost
surely.

Remark 3.2: The condition in Theorem 3.1 indicates that,
on the manifold

{
x ∈ Rp

∣∣∣ V(x) = C
}

of (p−1)-dimension, we
have L V(x) ≤ 0

(
or L V(x) ≥ 0

)
and DV(x) = 0. Intuitively

speaking, it indicates that, if on the boundary of a specified
“ball”, the diffusive term, L V(x), makes the trajectory enter
(or leave) the “ball” and the noise is tangent to the surface,
then the trajectory never leaves (or enters) the “ball”.

Next, we need to validate a global invariance principle for
system (1). We first present a result on the global existence
and uniqueness of the solution for system (1), which can be
seen as a foot-stone for any deeper discussions.

Theorem 3.3: Assume Conditions 2.1-2.3 are all fulfilled.
Then, for any initial state x0 ∈ R

p, the trajectory xt in system
(1) is existent on the entire interval [0,+∞) almost surely,
so that it does not explode in any finite-time duration almost
surely.

The following theorem depicts the trajectory of system (1)
in different types.

Theorem 3.4: Denote by

Ω1
M
=

{
lim

t→+∞
dist(xt,A ) = 0 and lim

t→+∞
V(xt) exists finitely

}
,

and by

Ω2
M
=

{
xt travels in between M0 and N

for infinite number of times
}
,

where

A =
{
x ∈ Rp

∣∣∣ L V(x) = 0, DV(x) = 0
}

(3)

and N =
{
x ∈ Rp

∣∣∣ L V(x) < 0
}
. Assume that Conditions

2.1-2.3 are all fulfilled. Then, Ω = Ω1 ∪ Ω2, a.s.. Here
and throughout, “a.s.” represents an abbreviation of “almost
surely”.

Remark 3.5: Theorem 3.4 describes how the trajectory of
system (1) evolves in the phase space in the presence of
stochastic perturbations. However, in most cases, the probabil-
ity P(Ω1) � 1 or even it is zero. Thus, we need a more delicate
description for the trajectory in Ω2. Next theorem renders it
possible to estimate the time when an orbit, initiating outside
a particular bounded set, finally enters it.

Generalized invariance principles for stochastic dynamical systems and their applications
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Theorem 3.6: Assume that Conditions 2.1-2.3 are all valid
and that, for some positive r, p(r) < +∞. If ν is a stopping
time which satisfies L V(xν) < −r in the set {ν < +∞} and
E
[
V(xν); ν < +∞

]
< +∞. Denote a stopping time by µ ,

inf
{
t > ν

∣∣∣ V(xt) ≤ p(r)
}
. Then, we have

E
[
µ − ν; ν < +∞

]
≤

1
r
E
[
V(xν); ν < +∞

]
−

p(r)
r
P
[
ν < +∞

]
.

Remark 3.7: Theorem 3.6 gives a rough estimation for the
time that a trajectory needs to approach particular sets. In fact,
when p(r) is smooth, a more precise estimation can be given.

Theorem 3.8: If V(x0) > p(R) for some R > 0 and EV(x0) <
+∞. Denote a stopping time by

µ
M
= inf

{
t > 0

∣∣∣ V(xt) ≤ p(r)
}
.

If p(r) is differentiable, then we have

E
[
µ
]
≤
EV(x0) − p(R)

R
+

∫ R

r

p′(s)
s

ds. (4)

Theorem 3.9: Denote an index by fr(t) =
∫ t

0 1xs∈Mr ds,
where 1S is the standard indicator function with respect to a
given set S and r > 0. Assume that both Conditions 2.1 &
2.3 are valid. Then, we have{

lim inf
t→+∞

fr(t)
t
≥

r
r + B

}
⊆ Ω3

M
=

{
sup
t>0

∥∥∥xt

∥∥∥ < +∞

}
a.s., (5)

where B M= supx∈Rp L V(x) < +∞.
Remark 3.10: Theorem 3.9 shows that the trajectory stays

in a particular set for a large amount of time. Although we
cannot confirm the boundedness of the solution of system (1)
analytically in many cases, the time estimation presented in
(5) is still valid in most cases. Such validity will be shown in
the latter section using a number of representative examples.

IV. Proofs ofMain Theorems

Here, we include the detailed proofs for all the main
theorems established in Section III.
Proof of Theorem 3.1. We only need to prove the situation
in which V(x0) < C. The proof for the other side case is
similar. Denote by χ the time when trajectory leaves the set{
x ∈ Rp

∣∣∣ V(x) < C
}
. Denote by an increasing sequence of

stopping times as follows:

ψ1
M
= inf

{
t
∣∣∣V(xt) ≥ C −

δ

2
}
,

ψ2
M
= inf

{
t ≥ ψ1

∣∣∣V(xt) < C − δ
}
, · · ·

ψ2n+1
M
= inf

{
t ≥ ψ2n

∣∣∣V(xt) ≥ C −
δ

2
}
,

ψ2n+2
M
= inf

{
t ≥ ψ2n+1

∣∣∣V(xt) < C − δ
}
, · · ·

where ψ0 = 0 and inf ∅ = +∞.
First, we need to validate that limn→+∞ ψn = +∞. If this is

not the case, suppose that limn→+∞ ψn = M < +∞. Due to the
continuity of xt, we obtain that

C −
δ

2
= lim

n→+∞
V(xψ2n+1 ) = V(M) = lim

n→+∞
V(xψ2n+2 ) = C − δ,

which is a contradiction.

If P
[
χ < +∞

]
> 0, then there exists an integral number n

such that

P
[
ψ2n+1 < χ < ψ2n+2;ψ2n+1 < +∞

]
> 0.

Denote by χε
M
= inf

{
t ≥ ψ2n+1

∣∣∣ V(xt) ≥ C − ε
}

for sufficiently
small ε. Thus, limε→0+ χε = χ. Applying Itô’s formula to
log

[
C − V(xt)

]
on the time interval

[
ψ2n+1, ψ2n+2 ∧ (ψ2n+1 +

t) ∧ χε
]

yields:

log
[
C − V(xψ2n+2∧(ψ2n+1+t)∧χε )

]
= log

[
C − V(xψ2n+1 )

]
+

∫ ψ2n+2∧(ψ2n+1+t)∧χε

ψ2n+1

 L V(xs)
V(xs) −C

−
1
2

∥∥∥DV(xs)
∥∥∥2[

V(xs) −C
]2

 ds

+

∫ ψ2n+2∧(ψ2n+1+t)∧χε

ψ2n+1

DV(xs)
V(xs) −C

dBs.

Multiplying both sides by 1ψ2n+1<+∞ and then taking expecta-
tion on both sides give

log ε · P
[
ψ2n+1 < χε < ψ2n+2 ∧ (ψ2n+1 + t);ψ2n+1 < +∞

]
+ log δ ·

{
P
(
ψ2n+1 < +∞

)
− P

[
ψ2n+1 < χε < ψ2n+2 ∧ (ψ2n+1 + t);ψ2n+1 < +∞

]}
≥ E

[
log

[
C − V(xψ2n+1 )

]
;ψ2n+1 < +∞

]
−

k1 +
k2

2

2

 t · P
[
ψ2n+1 < +∞

]
≥ log

[
δ

2

]
· P

[
ψ2n+1 < +∞

]
−

k1 +
k2

2

2

 t · P
[
ψ2n+1 < +∞

]
.

Letting ε → 0+ and t → +∞ in the above inequality enables
us to get

P
[
ψ2n+1 < χ < ψ2n+2;ψ2n+1 < +∞

]
= 0,

which is a contradiction. �
Proof of Theorem 3.3. We are to prove that the trajectory
of system (1) does not diverge in a finite time duration.
Condition 2.3 implies that there exists a positive number
C such that L V(x) ≤ C for any x ∈ Rp. Denote by
σr

M
= inf

{
t ≥ 0

∣∣∣V(xt) ≥ r
}
, and denote the explosion time

by σ∞
M
= limr→+∞ σr.

The integral form of (2) on the interval [0, σr ∧ t] yields:

V(xσr∧t) = V(x0) +

∫ σr∧t

0
L V(xs)ds +

∫ σr∧t

0
DV(xs)dBt.

(6)
By taking the expectation on both sides of Eq. (6), we obtain
E
[
V(xσr∧t)

]
≤ E

[
V(x0)

]
+ Ct. A further estimation yields

rP
[
σr ≤ t

]
≤ E

[
V(xσr∧t)

]
≤ E

[
V(x0)

]
+ Ct,

which further indicates that

P
[
σ∞ ≤ t

]
= lim

r→+∞
P
[
σr ≤ t

]
= 0.

Letting t → +∞ here enables us to get P
[
σ∞ < +∞

]
= 0. This

completes the proof. �
Proof of Theorem 3.4. Denote two increasing sequences of
stopping times as: γ1

n
M
= inf

{
t ≥ n

∣∣∣ L V(xt) > 0
}

and
γ2

n
M
= inf

{
t ≥ n

∣∣∣ L V(xt) < 0
}
. Obviously, limn→+∞ γ

i
n =

Generalized invariance principles for stochastic dynamical systems and their applications
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+∞, i = 1, 2. Hence, Ω can be decomposed into three disjoint
measurable sets, i.e., Ω = Γ1 ∪ Γ2 ∪ Γ3, in which

Γi M=

{
There exists a positive integral number n such that

γi
n = +∞

}
, i = 1, 2,

and

Γ3 M=

{
For all positive integral numbers n, γ1

n < +∞ and

γ2
n < +∞

}
.

Obviously, Γ3 is equal to the set Ω2 as defined above.
The integral form of Eq. (2) can be written as

V(xt) = V(x0) + A1
t − A2

t + Mt, (7)

where
A1

t =

∫ t

0
L V(xs)1L V(xs)>0ds,

A2
t = −

∫ t

0
L V(xs)1L V(xs)<0ds, and Mt =

∫ t

0
DV(xs)dBs.

For any event ω ∈ Γ1, there exists a positive number T (ω) ,
such that L V(xt) ≤ 0 for t ≥ T (ω), which further indicates
that limt→+∞ A1

t < +∞.
With the validity of Condition 2.2, we have V(xt) ≥ 0.

According to Lemma 7.1, we conclude that

Γ1 ⊆

{
lim

t→+∞
A2

t < +∞

}
∩

{
lim

t→+∞
V(xt) exists finitely

}
a.s..

Furthermore, limt→+∞ A2
t < +∞, together with L V(xt) ≤ 0 for

t > T , implies that
∫ +∞

0 |L V(xs)|ds < +∞ for almost every
event ω ∈ Γ1.

Another conclusion that limt→+∞ V(xt) exists finitely,
with Condition 2.2, gives that supt>0 ‖xt‖ < +∞ almost
surely. Applying Lemma 7.2 results in a conclusion that
limt→+∞L V(xt) = 0 almost surely in Γ1.

At last, we need to validate that limt→+∞DV(xt) = 0. For
this, we consider Q(x) = −e−x. A direct calculation leads to

L Q
[
V(xt)

]
= e−V(xt)

[
L V(xt) −

1
2

∥∥∥DV(xt)
∥∥∥2

]
,

Thus, L Q
[
V(xt)

]
≤ 0 for t > T (ω). Since we have derived

that
Γ1 ⊆

{
lim

t→+∞
Q
[
V(xt)

]
exists finitely

}
a.s.,

an application of Lemma 7.1 to the semimartingale Q
[
V(xt)

]
yields a convergence of the integral, i.e.,∫ +∞

0

∣∣∣L Q
[
V(xs)

]∣∣∣ ds < +∞ a.s..

Using Lemma 7.2 again results in a limit, i.e.,
limt→+∞L Q

[
V(xt)

]
= 0, which further suggests, in Γ1,

limt→+∞DV(xt) = 0 almost surely.
Finally, we need to prove that limt→+∞ dist(xt,A ) = 0

in Γ1. If this is not the case, we can find a number h >
0 and a sequence {tk} such that limk→+∞ tk = +∞ and

dist(xtk ,A ) > h. Since xtk is bounded, it is reasonable to
suppose that limk→+∞ xtk = x∗ a.s.. This convergence indicates
that dist(x∗,A ) ≥ h, L V(x∗) = 0, and DV(x∗) = 0. From
the definition of A , we get a contradiction. This completes
the proof of Γ1 ⊆ Ω1 a.s..

Similarly, for every event ω ∈ Γ2, we consider the decom-
position of the semimartingale as follows:

− V(xt) = −V(x0) + A2
t − A1

t − Mt, (8)

where A1
t , A2

t and Mt are the same as those in (7). There also
exists T (ω) > 0 such that L V(xt) ≥ 0 for t > T (ω), which
indicates that supt>T (ω) V(xt) ≤ p(0) a.s.. This suggests that the
increasing process limt→+∞ A2

t < +∞ a.s. and inft>0 −V(xt) >
−∞ a.s.. Similarly, an application of Lemmas 7.1 and 7.2 again
yields Γ2 ⊆ Ω1 a.s. This completes the whole proof of the
theorem. �
Proof of Theorem 3.6. Applying Itô’s formula to the consid-
ered system on the time interval [ν, (ν + t) ∧ µ] yields that

V(x(ν+t)∧µ)

= V(xν) +

∫ (ν+t)∧µ

ν

L V(xs)ds +

∫ (ν+t)∧µ

ν

DV(xs)dBs.
(9)

By taking the expectation on both sides, we get an estimation
as:

E
[
V(x(ν+t)∧µ); ν < +∞

]
≤ E

[
V(xν); ν < +∞

]
− rE

[
(ν + t) ∧ µ − ν; ν < +∞

]
.

Since V(x(ν+t)∧µ) ≥ p(r), we have that

E
[
(ν+t)∧µ−ν; ν < +∞

]
≤
E
[
V(xν); ν < +∞

]
− p(r)P

[
ν < +∞

]
r

.

Therefore, letting t → +∞ completes the proof. �
Remark 4.1: A direct corollary of this theorem is that if
E
[
V(xν); ν < +∞

]
< +∞, µ < +∞ a.s. in the set

{
ν < +∞

}
.

Proof of Theorem 3.8. Define stopping times by

µs
M
= inf

{
t > ν

∣∣∣ V(xt) ≤ p(s)
}

for s ≤ R. We select r = r0 < r1 < r2 < · · · < rn = R. Thus,
we have

E
[
µrn

]
≤
EV(x0) − p(rn)

rn
, E

[
µrn−1 − µrn

]
≤

p(rn) − p(rn−1)
rn−1

, · · ·

E
[
µrk−1 − µrk

]
≤

p(rk) − p(rk−1)
rk−1

, E
[
µr0 − µr1

]
≤

p(r1) − p(r0)
r0

.

The summation of these inequalities yields the following
estimation:

E
[
µ
]
≤
EV(x0) − p(R)

R
+

n∑
k=1

p(rk) − p(rk−1)
rk−1

.

When max1≤k≤n
[
rk − rk−1

]
→ 0, the summation of the right-

hand side of the inequality converges to a Lebesgue Stieltjes
Integral. This thus leads to an estimation as

E
[
µ
]
≤
EV(x0) − p(R)

R
+

∫ R

r

1
s

dp(s).

As p(r) is differentiable, it can written as

E
[
µ
]
≤
EV(x0) − p(R)

R
+

∫ R

r

p′(s)
s

ds. (10)

Generalized invariance principles for stochastic dynamical systems and their applications
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This completes the proof. �
Proof of Theorem 3.9. The integral form of system (2) yields
that

V(xt) = V(x0) +

∫ t

0
L V(xs)ds +

∫ t

0
DV(xs)dBs,

which can be rewritten as

V(xt) − V(x0)
t

−

∫ t
0 DV(xs)dBs

t

=

∫ t
0 L V(xs)1xs∈Mr ds

t
+

∫ t
0 L V(xs)1xs<Mr ds

t
.

(11)

Since, for x < Mr, L V(x) < −r, the second term on the
right-hand side of Eq. (11) can be estimated as:∫ t

0 L V(xs)1xs<Mr ds

t
≤ −r

∫ t
0 1xs<Mr ds

t
= −r

[
1 −

fr(t)
t

]
.

In addition, the first term on the right-hand side of Eq. (11)
can be estimated as:∫ t

0 L V(xs)1xs∈Mr ds

t
≤ B

∫ t
0 1xs∈Mr ds

t
=

B fr(t)
t

.

On the other hand, using the strong law of the large numbers
for the martingale [42] and noticing the boundedness of the
trajectory, we obtain that, almost surely in Ω3,

lim
t→+∞

1
t

∫ t

0
DV(xs)dBs = 0, lim

t→+∞

1
t

[V(xt) − V(x0)] = 0.

All these estimations give that

lim inf
t→+∞

{
−r

[
1 −

fr(t)
t

]
+

B fr(t)
t

}
≥ 0,

which leads to a conclusion that lim inft→+∞
fr(t)

t ≥
r

r+B almost
surely in Ω3. �

V. Illustrative Examples

Here, several examples, including the stochastic oscillating
dynamics, are provided to demonstrate the efficacy of the
above-established criteria.

Example 5.1: First, we investigate how the synchronization
dynamics are emergent in the stochastically-coupled FitzHugh-
Nagumo neuronal dynamics:

dvi =

vi −
v3

i

3
− wi + 0.5

 dt + k
∑
j,i

ai j(v j − vi)dBt,

dwi = 0.1 (vi + 0.7 − 0.8wi) dt + k
∑
j,i

ai j(w j − wi)dBt,
(12)

where i = 1, · · · ,N, each ai j is the connection matrix element,
and k is the coupling gain. The purely stochastic couplings in
system (12) are often regarded as the diffusion in a fluctuating
environment, which can be rewritten as k

∑N
j=1 ai jv jdBt and

k
∑N

j=1 ai jw jdBt in that we set aii = −
∑

j,i ai j for all i as usual.
To investigate the dynamics of this system, we choose

W(v1, · · · , vN ,w1, · · · ,wN) ,
N−1∑
i=1

[
(vi − vN)2 + 10(wi − wN)2

]
,

V(v1, · · · , vN ,w1, · · · ,wN) , W0.1.

Thus, the diffusion operator with respect to V along the system
(12) becomes

L V = 0.1W−1.9
{

W
N−1∑
i=1

[
2(vi − vN)2

1 − v2
i + vivN + v2

N

3


− 1.6(wi − wN)2

]
+ k2

[
W(vTBTBv + 10wTBTBw)

− 1.8(vTBv + 10wTBw)2
]}
,

where v and w are vectors defined, respectively, by v , [v1 −

vN , · · · , vN−1 − vN] and w , [w1 − wN , · · · ,wN−1 − wN], and
the elements of the matrix B are defined by bi j , ai j − aN j.
Suppose that B satisfies

xTBTBx − 1.8(xTBx)2 ≤ −α < 0 (13)

for any x ∈ RN−1 satisfying ‖x‖ = 1. This thus implies that
the set

P ,
{
(v1 − vN , · · · , vN−1 − vN ,w1 − wN , · · · ,wN−1 − wN)∣∣∣ L V > 0

}
is bounded. According to Theorem 3.4, we obtain Ω = Ω1 ∪

Ω2 a.s., where

Ω1 =

{
lim

t→+∞
[vi(t) − vN(t)] = lim

t→+∞
[wi(t) − wN(t)] = 0,∀i

}
and

Ω2 =
{
(v1 − vN , · · · , vN−1 − vN ,w1 − wN , · · · ,wN−1 − wN)

wanders in between the sets circumscribed, respectively,
by L V > 0 and L V < 0

}
.

On one hand, a direct computation gives L V ≤ 0 for
k >

√
2/α. Further, with this kind of k, we have L V = 0

if and only if vi − vN = wi − wN = 0 for each i. As such,
the set P as defined above is empty, which further implies
that P(Ω2) = 0 and P(Ω1) = 1. Consequently, provided with
k >
√

2/α, the stochastically-coupled neuronal oscillators are
synchronized with probability one. On the other hand, for
k <

√
2/α, denote two indexes B(k) and R(k), respectively,

by

B(k) , sup
vi, wi, i=1,··· ,N

L V(v1, · · · , vN ,w1, · · · ,wN),

R(k) , sup
L V>−B(k)

W(v1, · · · , vN ,w1, · · · ,wN), (14)

where B(k) is defined in the same manner as B in Theorem 3.9
for a given k. If B(k) < +∞, which will be numerically
validated for specific cases, we define two time indices, T (k)
and F(k), by:

T (k) , lim inf
t→+∞

∫ t
0 1W≤R(k)ds

t
, F(k) , lim inf

t→+∞

∫ t
0 1xs∈MB(k) ds

t
,

(15)
both of which describe how often the trajectories stay in
specified bounded sets. By virtue of Theorem 3.9, we get that

T (k) ≥ F(k) ≥
1
2

(16)

almost surely for any bounded trajectory of system (12).

Generalized invariance principles for stochastic dynamical systems and their applications
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Fig. 1. (a) Unsynchronized and synchronized spiking dynamics of the membrane potential variables of the first and the second neurons in the stochastically-
coupled FitzHugh-Nagumo system (12) for different coupling gain k. (b) To display more clearly in the phase space, trajectories of the first two neurons are
depicted at different level. The solid (blue and green) lines represent the trajectories of the neurons 1 and 2, respectively. The dashed (yellow) lines represent
line connecting different nodes at the same time instants. (c) Two indexes R(k) and B(k), defined in (14), change, respectively, with k. (d) Dependence of the
time index for a particular bounded set, T (k), which is defined in Eq. (15), on the noise of coupling k. Here, the time index (the blue solid curve) is calculated
as the minimum of 100 random numerical realization of system (12), while the dashed (red) line stands for the analytical lower bound obtained from (16).

Now, we investigate the above stochastically-coupled sys-
tem more specifically. We select the coupling settings partic-
ularly as: N = 100, ai j = 1 for i , j and 1 ≤ j ≤ 99,
ai,100 = −98 for 1 ≤ i ≤ 99, aii = 0 for 1 ≤ i ≤ 99,
and a100,100 = −99. For these stochastic couplings, setting
α = 0.8 makes the inequality in (13) valid. As is shown in
the lower panel of Fig. 1(a), the system displays synchronized
dynamics as the sufficient condition k >

√
2.5 for stability is

satisfied. However, as displayed in the upper panel of Fig. 1(a)
and in Fig. 1(b) as well, unsynchronized dynamics could
be observed for sufficiently small k with 0 < k <

√
2.5.

Next, we show numerically in Fig. 1(c) that B(k) < +∞

and R(k) < +∞ for 0 < k <
√

2.5. Thus, according to the
above estimations obtained in (16), we have T (k) ≥ 1

2 almost
surely for any bounded trajectory. Numerical results presented
in Fig. 1(d) confirm this analytical estimation on how often the
bounded trajectory stay in the considered set. To be candid,
the numerical result for T (k) is much larger than 1/2, which
also indicates that our analytical estimation could be improved
further. �

Example 5.2: We consider the stochastic synchronization
among the N coupled bursting neurons. The dynamics are
described by the stochastically-coupled Hindmarsh-Rose os-

cillators as:

dxi = (yi − x3
i + 3x2

i − zi + 3)dt + k
∑
j,i

ai j(x j − xi)dBt,

dyi = (1 − 5x2
i − yi)dt + k

∑
j,i

ai j(y j − yi)dBt,

dzi = 0.01(4xi + 6.4 − zi)dt + k
∑
j,i

ai j(z j − zi)dBt,

(17)

where k, in front of the stochastic terms, is the cou-
pling strength and each uncoupled neuron with the pa-
rameters specified in the vector field displays burst-
ing dynamics as reported in the literature. Here, we
set W(xi, yi, zi) ,

∑N
i=1

[
(xi − x)2 + (yi − y)2 + (zi − z)2

]
and

V(xi, yi, zi) , W0.1(xi, yi, zi), where

x =
1
N

N∑
i=1

xi, y =
1
N

N∑
i=1

yi, z =
1
N

N∑
i=1

zi

represent the mean fields of the corresponding states of the
coupled neurons. For simplicity, we set Xi , [xi, yi, zi]T, the
mean field vector X , [x, y, z]T, and the vector field function

F (Xi) , [y− x3 + 3x2 − z + 3, 1− 5x2 − y, 0.01(4x + 6.4− z)]T.

Furthermore, we assume that the connection matrix A = {ai j}

are symmetric and satisfies aii = −
∑

j,i ai j. With these settings,

Generalized invariance principles for stochastic dynamical systems and their applications
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the diffusion operator with respect to V(Xi) along system (17)
becomes

L V(Xi) = 0.1W−1.9

2W
N∑

i=1

〈
Xi −X ,F (Xi) − F (X)

〉
+ k2

W 〈 N∑
j=1

ai j(X j −X),
N∑

j=1

ai j(X j −X)
〉

−1.8

 N∑
i=1

〈
Xi −X ,

N∑
j=1

ai j(X j −X)
〉

2


with 〈·, ·〉 representing the product of two given vectors. Here,
we set an assumption that the matrix A satisfies

xTATAx − 1.8(xTAx)2 ≤ −α < 0 (18)

for any x ∈ Rn with ‖x‖ = 1 and [1, 1, · · · , 1]x = 0. We also
have the following estimations:〈

Xi −X ,F (Xi) − F (X)
〉

= (xi − x)(yi − y) − (xi − x)2
(
x2

i + xix + x2
)

+ 3(xi − x)2(xi + x) − 5(xi − x)(xi + x)(yi − y) − (yi − y)2

− (xi − x)(zi − zi) + 0.04(xi − x)(zi − z) − 0.01(zi − z)2

≤ 31 · |xi − x| · |yi − y| + 18(xi − x)2 − (yi − y)2

+ 0.96 · |xi − x| · |zi − zi|

≤ 10(xi − x)2 + 29(yi − y)2 + 18(xi − x)2 − (yi − y)2

+ 0.5(xi − x)2 + 0.5(zi − z)2

≤ 29
[
(xi − x)2 + (yi − y)2 + (zi − z)2

]
.

Here, we use the boundedness of the trajectory close to the
synchronization manifold of system (17) (i.e., |xi| ≤ 3 and |x| ≤
3), which we numerically demonstrate in Fig. 2(a). Hence,
together with the above assumption and the estimations, the
diffusion operator computed above becomes:

L V(Xi) ≤ 0.1W−0.9
[
58W − αk2W

]
in the vicinity of the synchronization manifold. Thus, for
k ≥ kc ,

√
58/α, we have L V ≤ 0 near and within the

synchronization manifold. Therefore, in light of Theorem 3.4,
we can achieve stochastic bursting synchronization, i.e.,

lim
t→+∞

xi(t) − x(t) = lim
t→+∞

yi(t) − y(t) = lim
t→+∞

zi(t) − z(t) = 0

for k ≥ kc and ∀i. On the other hand, for 0 < k ≤ kc, denote
two indexes B(k) and R(k), respectively, by

B(k) , sup
|xi |≤3,∀i

L V(Xi), R(k) , sup
L V>−B(k), |xi |≤3,∀i

W(Xi),

whose boundedness is validated numerically [see Fig. 2(b)].
Also, for each k, we use the notations for T (k) and F(k), the
same as those defined in (15). Hence, by virtue of Theorem
3.9, we get the following estimation:

T (k) ≥ F(k) ≥
1
2
, (19)

almost surely for any bounded trajectory of system (17).
Now, we investigate the above stochastically-coupled burst-

ing neurons more specifically. We select the coupling matrix

A particularly as: N = 100, ai j = 1 for i , j and the diagonal
elements aii = −99 for 1 ≤ i ≤ 100. Using these stochastic
couplings and α = 0.8 makes the inequality in (18) valid.
This further indicates that kc =

√
72.5. As is shown in the

lower panel of Fig. 2(a), the system (17) using only stochastic
couplings can display synchronized bursting dynamics as the
sufficient condition k > kc is satisfied. However, as displayed in
the upper panel of Fig. 2(a) as well, unsynchronized dynamics
could be observed for a sufficiently small k violating k > kc.
Next, we show numerically in Fig. 2(b) that B(k) < +∞ and
R(k) < +∞ for 0 < k < kc. Thus, according to the above
estimations obtained in (19), we have T (k) ≥ 1

2 almost surely
for any bounded trajectory. Numerical results presented in
Fig. 2(c) confirm this analytical estimation on how often the
bounded trajectory stay in the considered set. �

The final example provides a more delicate application of
our analytical results.

Example 5.3: Finally, we consider the following noise-
perturbed oscillator in a normal form as:

dzt =
(
i + 1 − |zt |

2
)

ztdt +
(
iw + C − |zt |

2
)

ztdBt, (20)

where all the deterministic coefficients are supposed to be
perturbed by the external noise. Here, zt ∈ C is a complex-
valued state, i2 = −1, and C ≥ 1, 1 ≥ w ≥ 0 are tunable
parameters.

Now, we select V(z) , |z|2 and Wα(z) , |z|2α with a
sufficiently small α > 0. Hence, operations of L and D ,
respectively, on V and Wα along system (20) yield:

L V(z) = 2|z|2
(
1 − |z|2

)
+ |z|2

(
C − |z|2

)2
+ w2|z|2,

DV(z) = 2|z|2
(
C − |z|2

)
,

and

L Wα(z) = α|z|2α
[
2
(
1 − |z|2

)
+ w2 + (2α − 1)

(
C − |z|2

)2
]
,

DWα(z) = 2α|z|2α
(
C − |z|2

)
.

Thus, we have{
z ∈ C | L V(z) = 0, DV(z) = 0

}
=

{
z ∈ C | L Wα(z) = 0, DWα(z) = 0

}
= {0}

for C , 1 + 1
2 w2, and{

z ∈ C | L V(z) = 0, DV(z) = 0
}

=
{
z ∈ C |

L Wα(z) = 0, DWα(z) = 0
}

= {0} ∪
{
z ∈ C | |z| =

√
C
}

for C = 1 + 1
2 w2. Also notice that

{
z ∈ C

∣∣∣ L Wα(z) > 0
}

is a
bounded set for sufficiently small α.

First, we use the function V(z). For C > 1 + 1
2 w2, we take

a sufficiently small δ > 0 and construct a set as{
z ∈ C

∣∣∣ C − δ ≤ |z|2 ≤ C
}
.

In this set, we have

|DV(z)| = 2|z|2
(
C − |z|2

)
≤ 2|C|2

(
C − |z|2

)
= 2|C|2 [C − V(z)] ,

and

|L V(z)| = |z|2
(
C − |z|2

)2
+ |z|2

(
2 − 2|z|2 + w2

)
≤

[
2 + w2 − 2(C − δ)

]
(C − δ) + δ2C2 ≤ 0 ≤ 2 [C − V(z)] .

Generalized invariance principles for stochastic dynamical systems and their applications
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Fig. 2. (a) Unsychronized and synchronized bustring dynamics of the membrane potential variables of the two oscillators that are described by the stochastically
coupled Hindmarsh-Rose neurons (17) for different coupling gain k. (b) Both R(k) and B(k) change with k, respectively, for the coupled system (17). (c)
Dependence of the time index for a particular bounded set, T (k), on the noise of coupling k. Here, the time index(the blue solid curve) is calculated as the
minimum of 100 random numerical realization of system (12), while the dashed (red) line stands for the analytical lower bound obtained from (19).

Fig. 3. Stochastic and complex dynamics of system (20) for different
parameters. (a),(c) The evolutionary trajectories on the complex plane. The
solid (blue) lines represent the trajectories of system (20), and the invariant set{
z ∈ C

∣∣∣ |z|2 ≤ C
}

analytically obtained is circumstanced by the dashed (red)
circles. (b),(d) The dynamics of the norm of the complex valued state |zt |

changes with t. Here, the parameters are set as w = 0, C = 1.01 for (a)-(b),
and w = 1, C = 1.55 for (c)-(d).

As such, the constants δ and k1,2, as required in the estimations
of Theorem 3.1, have been found. Therefore, it follows that
{z ∈ C | |z|2 ≤ C} is an invariant set, which is further
numerically shown in Fig. 3.

Moreover, to further use the function Wα(z) appropriately,
we, based on L Wα(z), set a function as

fα(x) , 2(1 − x) + w2 + (2α − 1)(C − x)2,

and we obtain its derivative as f ′α(x) = −2 + (2α − 1)(x − C),
where α > 0 is sufficiently small. Thus, we get that f ′α(x) > 0
on (0,C+ 1

2α−1 ) and that f ′α(x) < 0 on (0,C+ 1
2α−1 ). This directly

implies that fα(x) attains its maximum f max
α = 2−2C− 1

2α−1 +w2

at x = C + 1
2α−1 .

Case I: C > 1.5 + 1
2 w2. For each C, there exists α > 0 such

that f max
α = 2 − 2C − 1

2α−1 + w2 < 0, which further implies
fα(x) < f max

α < 0 for all x ≥ 0. Hence, we get L Wα(z) ≤
0 for all z ∈ C, so that Ω2 defined in Theorem 3.4 is an
empty set. Consequently, according to Theorem 3.4, we have
P(Ω1) = P(Ω) = 1. This indicates limt→+∞ zt = 0 a.s., which is
numerically displayed in Fig. 4.

Fig. 4. Stochastic convergent dynamics of (20) with different initial values.
(a),(c) The trajectories convergent to the origin, highlighted by the green
point, on the complex plane. The solid (blue) and dashed (red) lines represent
the trajectories of (20) with different initial values. (b),(d) The convergent
dynamics of the norm |zt | changes with t. Here, the parameters are w = 0,
C = 1.51 for (a)-(b), and w = 1, C = 2.01 for (c)-(d).

Case II: 1 + 1
2 w2 < C < 1.5 + 1

2 w2. Denote by s1,α and s2,α
the two roots for the equation fα(x) = 0 with s1,α > s2,α and
s1,α < C for C > 1 + 1

2 w2. Thus, we compute as follows:{
z ∈ C

∣∣∣ L Wα(z) > 0
}

=
{
z ∈ C

∣∣∣ s2,α < |z| < s1,α

}
,{

z ∈ C
∣∣∣ L Wα(z) < 0

}
=

{
z ∈ C

∣∣∣ |z| > s1,α or 0 < |z| < s2,α

}
,

for
√

2 + w2 < C < 1.5 + 1
2 w2, and{

z ∈ C
∣∣∣∣ L Wα(z) > 0

}
=

{
z ∈ C

∣∣∣∣ 0 < |z| < s1,α

}
,{

z ∈ C
∣∣∣∣ L Wα(z) < 0

}
=

{
z ∈ C

∣∣∣∣ |z| > s1,α

}
.

for 1 + w2

2 < C <
√

2 + w2. Hence, according to Theorem 3.4,
the trajectory of system (20) almost surely enters the circle{
z ∈ C

∣∣∣ |z| = √C
}
. This results in a conclusion that Ω = Ω1 ∪

Ω2 a.s., where Ω1 =
{
ω

∣∣∣ limt→+∞ zt = 0
}

and

Ω2 =

{
ω

∣∣∣∣ zt oscillates between A+ and A− infinite times
}
.

Here, we denote by A+ ,
{
z ∈ C

∣∣∣ L Wα(z) > 0
}
, whose

boundedness has been pointed above, and denote by

A− ,
{
z ∈ C

∣∣∣∣ L Wα(z) < 0
}
∩

{
z ∈ C

∣∣∣∣ |z| < √C
}
.

Generalized invariance principles for stochastic dynamical systems and their applications
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Fig. 5. Stochastic complex dynamics of system (20) starting from different
initial values. (a),(c) The trajectories on the complex plane, where the green
point represents the origin and the solid (blue) and the dashed (red) lines
represent the trajectories with different initial values. (b),(d) The wandering
dynamics of the norm |zt |. Here, the parameters are set as w = 0, C = 1.3 for
(a)-(b), and w = 1, C = 1.8 for (c)-(d).

Finally, we are to estimate the time that a trajectory uses
to enter the circle

{
z ∈ C

∣∣∣ |z| = √C
}

from any initial value
z0 >

√
C. To this end, denote this time by

µw,C , inf
{
t > 0

∣∣∣∣ |zt | ≤
√

C
}
,

and select U(z) , log |z| where U is defined in the set{
z ∈ C

∣∣∣ |z| ≥ √C
}
. Hence, a direct computation yields:

L U(z) = 1 +
w2

2
− |z|2 −

(
C − |z|2

)2

2
and

p(r) =
1
2

log
(√

3 + w2 + 2r − 2C + C − 1
)
.

Consequently, according to Theorem 3.8, we obtain the esti-
mation for the average of the time as:

E
[
µw,C

]
≤

∫ r2

r1

p′(s)
s

ds, (21)

where the upper and the lower bounds r1,2 satisfy that p(r1) =
1
2 log C and p(r2) = log |z0|. In Fig. 6, both the numerical results
and the results obtained using (21) are shown, illustrating the
usefulness of our analytical criteria.

VI. Concluding Remarks

This article has developed several versions of invariance
principle for continuous-time and autonomous differential
equations with stochastic perturbations. Indeed, this article
has not only established a local invariance principle, but
also provided a generalized global invariance principle which
allows the sign of the diffusion operator to be positive in a
bounded region. Furthermore, the article has provided a time
estimation for the trajectory entering or staying in a particular
set. Finally, the article has used several examples, including
the stochastic neural dynamics, to demonstrate the efficacy of
the established analytical criteria.

For future directions, a few issues remain open. For ex-
ample, if the set for which the diffusion operator along
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Fig. 6. Dependence of the mean value, E
[
µw,C

]
, on the parameters w and C.

The solid (blue) curves correspond to the numerical evaluation of µw,C , which
is counted as the average over the 100 random realizations of system (20).
The dashed (red) curves correspond to the upper bound obtained from the
analytical estimation specified in (21). Here, C=2 (a), C=2.5 (b), C=3 (c),
C=3.5 (d), and the initial values are uniformly and randomly chosen from the
circle

{
z ∈ C

∣∣∣ |z| = 10
}
.

the system is unbounded, how can we describe the long-
term behaviors of the trajectories produced by the stochastic
dynamical systems? Besides, as we can see in Examples 5.1-
5.3, the time estimation for the orbit entering or staying in a
particular bounded set is fairly away from the corresponding
numerical result. This naturally suggests that a more precise
estimation is in demand. Practically, applications of the current
or/and the developing results to more physical, biological, and
ecological models are highly expected.

VII. Appendix

Lemma 7.1: 1 Let A1
t and A2

t be two non-decreasing adapted
processes with A1

0 = A2
0 = 0. Let also Z be a semimartingale

with initial state EZ0 < +∞ and

Zt = Z0 + A1
t − A2

t + Mt, t ≥ 0,

where M is a local martingale with M0 = 0. If A1
t and Zt are

both continuous processes, then{
lim

t→+∞
A1

t < +∞

}
∩

{
inf
t≥0

Zt > −∞
}
⊆

{
lim
t→∞

Zt exists finitely
}

∩

{
lim

t→+∞
A2

t < +∞

}
∩

{
lim
t→∞

Mt exists finitely
}

a.s..

Proof of Lemma 7.1. Denote by stopping times κn
M
=

inf
{
t ≥ 0

∣∣∣ A1
t − Zt ≥ n

}
. Due to the continuity of both A1

t and
Zt, we obtain A1

t∧κn
− Zt∧κn ≤ max {n,−Z0}. Furthermore, we

have
Mt∧κn = (Zt∧κn − A1

t∧κn
) + A2

t∧κn
− Z0

≥ min {−n,Z0} − Z0 ≥ min {−n − Z0, 0} .

According to Fatou’s lemma [58], we conclude that Mt∧κn is a
supermartingale with an integrable lower bound. Thus, using

1Reference [30] only considered the situation of Zt ≥ 0; however, we
generalize it to a situation where the trajectory of Zt has a lower bound (but
not necessarily in uniform manner). The proof for this Lemma is inspired by
those arguments used in [30].

Generalized invariance principles for stochastic dynamical systems and their applications
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the well-known Doob Martingale Convergence Theorem [30]
yields that the limit limt→+∞ Mt∧κn exists finitely almost surely.

Moreover, limt→+∞ Mt exists finitely almost surely in the
set

{
κn = +∞

}
, which further indicates that supt>0 Mt < +∞

almost surely. Therefore, in the set
{
κn = +∞

}
, A2

t = Z0 + (A1
t −

Zt)+ Mt ≤ Z0 +max
{
n,−Z0

}
+ supt>0 Mt. This estimation about

the monotonous process A2
t implies the existence of the limit

limt→+∞ A2
t in the set

{
κn = +∞

}
. Since

{
lim

t→+∞
A1

t < +∞

}
∩

{
ω : inf

t≥0
Zt > −∞

}
⊆ ∪+∞

n=1 {κn = +∞} ,

we derive that{
lim

t→+∞
A1

t < +∞

}
∩

{
inf
t≥0

Zt > −∞
}
⊆

{
lim

t→+∞
A2

t < +∞

}

∩

{
lim
t→∞

Mt exists finitely
}

a.s..

Finally, the boundedness of the non-decreasing process A1
t

also implies the convergence of it, which further suggests the
convergence of Zt. This completes the proof. �

Lemma 7.2: Suppose that h(x) is a nonnegative continuous
function defined on Rp. Then, for the solution of system (1),

Λ
M
=

{
sup
t>0

∥∥∥xt

∥∥∥ < +∞

}
∩

{∫ +∞

0
h(xt)dt < +∞

}
⊆

{
lim

t→+∞
h(xt) = 0

}
a.s..

Proof of Lemma 7.2 2. The set Λ can be writ-
ten as Λ = ∪+∞

n=1Λn, where Λn
M
=

{
supt>0

∥∥∥xt

∥∥∥ < n
}
∩{∫ +∞

0 h(xt)dt < n
}
. It suffices to show that, for each n, the

probability P
[
Λn ∩

{
lim supt→+∞ h(xt) > 0

}]
= 0. If this is

not the case, there exists a number ε > 0 such that
P
[
Λn ∩

{
lim supt→+∞ h(xt) > 2ε

}]
> ε. Denote a stopping

time by ζ = inf
{
t > 0

∣∣∣∣∥∥∥xt

∥∥∥ ≥ n or
∫ t

0 h(xs)ds ≥ n
}
. This thus

leads to that P
[
{ζ = +∞} ∩

{
lim supt→+∞ h(xt) > 2ε

}]
> ε. In

addition, we have

E

[∫ +∞

0
h(xt)dt; ζ = +∞

]
≤ n. (22)

Now, we define an increasing sequence of stopping times,
respectively, by

T1
M
= inf

{
t ≥ 0

∣∣∣h(xt) ≥ ε
}
, T2

M
= inf

{
t ≥ T1

∣∣∣h(xt) ≤
ε

2
}
, · · ·

T2m−1
M
= inf

{
t ≥ T2m−2

∣∣∣h(xt) ≥ ε
}
,

T2m
M
= inf

{
t ≥ T2m−1

∣∣∣h(xt) ≤
ε

2
}
, · · ·

2The proof for this Lemma used the arguments analogous to those used in
[22], [31].

Therefore, h(xt) ≥ ε/2 for T2i−1 < t < T2i, which, in light of
Fubini’s Theorem [58], allows us to estimate the expectation
in (22) as

n ≥ E
[∫ +∞

0
h(xt)dt; ζ = +∞

]
≥ E

 +∞∑
i=1

∫ T2i

T2i−1

h(xt)dt; ζ = +∞


=

+∞∑
i=1

E

[∫ T2i

T2i−1

h(xt)dt; ζ = +∞,T2i−1 = +∞

]

≥

+∞∑
i=1

E

[∫ T2i

T2i−1

ε

2
dt; ζ = +∞,T2i−1 < +∞

]

=
ε

2

+∞∑
i=1

E
[
T2i − T2i−1; ζ = +∞,T2i−1 < +∞

]
.

(23)

To further estimate the expectations of the differences between
the states at different stopping times, we, using Doob’s mar-
tingale inequality [30], compute as

E

[
sup

0≤t≤T
‖xζ∧(T2i−1+t) − xζ∧T2i−1‖

2; ζ ∧ T2i−1 < +∞

]
= E

[
sup

0≤t≤T

∥∥∥∥∥∥
∫ ζ∧(T2i−1+t)

ζ∧T2i−1

f (xs)ds +

∫ ζ∧(T2i−1+t)

ζ∧T2i−1

g(xs)dBs

∥∥∥∥∥∥2

;

ζ ∧ T2i−1 < +∞

]

≤ 2E

 sup
0≤t≤T

∥∥∥∥∥∥
∫ ζ∧(T2i−1+t)

ζ∧T2i−1

f (xs)ds

∥∥∥∥∥∥2

; ζ ∧ T2i−1 < +∞


+ 2E

 sup
0≤t≤T

∥∥∥∥∥∥
∫ ζ∧(T2i−1+t)

ζ∧T2i−1

g(xs)dBs

∥∥∥∥∥∥2

; ζ ∧ T2i−1 < +∞


≤ 2E

 sup
0≤t≤T

∥∥∥∥∥∥
∫ ζ∧(T2i−1+t)

ζ∧T2i−1

f (xs)ds

∥∥∥∥∥∥2

; ζ ∧ T2i−1 < +∞


+ 8E

[
sup

0≤t≤T

∫ ζ∧(T2i−1+t)

ζ∧T2i−1

‖g(xs)‖2ds; ζ ∧ T2i−1 < +∞

]
≤ 2E

[
M2

n t2; ζ ∧ T2i−1 < +∞
]

+ 8E
[
M2

n t; ζ ∧ T2i−1 < +∞
]

≤ 2M2
n t(t + 4),

where Mn = sup‖x‖≤n
{
‖f (x)‖, ‖g(x)‖

}
< +∞. The consistent

continuity of h in any compact set ensures the existence of
δ > 0 such that, for any ‖x‖ ≤ n and ‖y‖ ≤ n with ‖x−y‖ ≤ δ,
we have |h(x) − h(y)| ≤ ε

2 . By using Chebyshev’s Inequality
[30], we obtain

P

[
sup

0≤t≤T
‖xζ∧(T2i−1+t) − xζ∧T2i−1‖ ≥ δ; ζ ∧ T2i−1 < +∞

]
≤

2M2
n t(t + 4)
δ2 ,

Generalized invariance principles for stochastic dynamical systems and their applications
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which further indicates that
P
[
T2i − T2i−1 ≤ t; ζ = +∞, T2i−1 < +∞

]
≤P

[
sup

0≤t≤T
‖xζ∧(T2i−1+t) − xζ∧T2i−1‖ ≥ δ; ζ = +∞, T2i−1 < +∞

]
≤P

[
sup

0≤t≤T
‖xζ∧(T2i−1+t) − xζ∧T2i−1‖ ≥ δ; ζ ∧ T2i−1 < +∞

]
≤

2M2
n t(t + 4)
δ2 .

By selecting a sufficiently small T satisfying 2M2
n T (T+4)
δ2 < ε

2 ,
we have

P
[
T2i − T2i−1 > T ; ζ = +∞, T2i−1 < +∞

]
=P

[
ζ = +∞, T2i−1 < +∞

]
− P

[
T2i − T2i−1 ≤ T ; ζ = +∞, T2i−1 < +∞

]
≥P

[
{ζ = +∞} ∩

{
lim sup

t→+∞

h(xt) > 2ε
}]

− P
[
T2i − T2i−1 ≤ T ; ζ = +∞, T2i−1 < +∞

]
≥
ε

2
,

All these estimations together yield a lower bound for the
expectation of the stopping time differences as

E
[
T2i − T2i−1; ζ = +∞,T2i−1 < +∞

]
≥ TP

[
T2i − T2i−1 > T ; ζ = +∞,T2i−1 < +∞

]
≥

T ε
2
.

This, together with (23), results in

n ≥
ε

2

+∞∑
i=1

E
[
T2i − T2i−1; ζ = +∞, T2i−1 < +∞

]
≥
ε

2

+∞∑
i=1

T ε
2

= +∞.

This however is a contradiction, which implies a completion
of the proof. �

References
[1] LaSalle J. Some extensions of Liapunov’s second method[J]. IRE

Transactions on Circuit Theory, 1960, 7(4): 520-527.
[2] Ryan E P. An integral invariance principle for differential inclusions

with applications in adaptive control[J]. SIAM Journal on Control and
Optimization, 1998, 36(3): 960-980.

[3] Nolen J. An invariance principle for random traveling waves in one
dimension[J]. SIAM journal on mathematical analysis, 2011, 43(1): 153-
188.

[4] Hale J K, Lunel S M V. Introduction to functional differential equa-
tions[M]. Springer Science & Business Media, 2013.

[5] Slemrod M. Asymptotic behavior of a class of abstract dynamical
systems[J]. Journal of Differential Equations, 1970, 7(3): 584-600.

[6] Sell G R. Nonautonomous differential equations and topological dynam-
ics I. The basic theory[J]. Transactions of the American Mathematical
Society, 1967, 127(2): 241-262.

[7] Sell G R. Nonautonomous differential equations and topological dynam-
ics. II. Limiting equations[J]. Transactions of the American Mathemat-
ical Society, 1967, 127(2): 263-283.

[8] Hespanha J P. Uniform stability of switched linear systems: Extensions
of LaSalle’s invariance principle[J]. IEEE Transactions on Automatic
Control, 2004, 49(4): 470-482.

[9] Bacciotti A, Mazzi L. An invariance principle for nonlinear switched
systems[J]. Systems & Control Letters, 2005, 54(11): 1109-1119.

[10] Gammaitoni L, Hänggi P, Jung P, et al. Stochastic resonance[J]. Reviews
of Modern Physics, 1998, 70(1): 223.

[11] Appleby J A D, Mao X, Rodkina A. Stabilization and destabilization
of nonlinear differential equations by noise[J]. IEEE Transactions on
Automatic Control, 2008, 53(3): 683-691.

[12] Ren W, Xiong J. Krasovskii and Razumikhin stability theorems for
stochastic switched nonlinear time-delay systems[J]. SIAM Journal on
Control and Optimization, 2019, 57(2): 1043-1067.

[13] Li H, Ding X. A control Lyapunov function approach to feedback
stabilization of logical control networks[J]. SIAM Journal on Control
and optimization, 2019, 57(2): 810-831.

[14] Huang G, Liu X, Takeuchi Y. Lyapunov functions and global stability
for age-structured HIV infection model[J]. SIAM Journal on Applied
Mathematics, 2012, 72(1): 25-38.

[15] Guo Y, Lin W, Chen G. Stability of switched systems on randomly
switching durations with random interaction matrices[J]. IEEE Transac-
tions on Automatic Control, 2017, 63(1): 21-36.

[16] Guo Y, Lin W, Chen Y, et al. Instability in time-delayed switched
systems induced by fast and random switching[J]. Journal of Differential
Equations, 2017, 263(2): 880-909.

[17] Guo Y, Lin W, Sanjuan M A F. The efficiency of a random and fast
switch in complex dynamical systems[J]. New Journal of Physics, 2012,
14(8): 083022.

[18] Guo Y, Lin W, Ho D W C. Discrete-time systems with random switches:
From systems stability to networks synchronization[J]. Chaos, 2016,
26(3): 033113.

[19] Khasminskii R. Stochastic stability of differential equations[M]. Springer
Science & Business Media, 2011.

[20] Mao X. Stochastic stabilization and destabilization[J]. Systems & Con-
trol Letters, 1994, 23(4): 279-290.

[21] Mao X, Yin G G, Yuan C. Stabilization and destabilization of hybrid
systems of stochastic differential equations[J]. Automatica, 2007, 43(2):
264-273.

[22] Wu Z, Xia Y, Xie X. Stochastic Barbalat’s lemma and its applications[J].
IEEE Transactions on Automatic Control, 2011, 57(6): 1537-1543.

[23] Wu Z, Karimi H R, Shi P. Dissipativity-based small-gain theorems for
stochastic network systems[J]. IEEE Transactions on Automatic Control,
2015, 61(8): 2065-2078.

[24] Wen G, Yu W, Hu G, et al. Pinning synchronization of directed networks
with switching topologies: A multiple Lyapunov functions approach[J].
IEEE Transactions on Neural Networks and Learning Systems, 2015,
26(12): 3239-3250.

[25] Rodrigues H M, Alberto L F C, Bretas N G. On the invariance principle:
Generalizations and applications to synchronization[J]. IEEE Transac-
tions on Circuits and Systems I: Fundamental Theory and Applications,
2000, 47(5): 730-739.

[26] Church K E M, Liu X. Cost-effective robust stabilization and bifurcation
suppression[J]. SIAM Journal on Control and Optimization, 2019, 57(3):
2240-2268.

[27] Nijholt E, Rink B, Sanders J. Center manifolds of coupled cell net-
works[J]. SIAM Journal on Mathematical Analysis, 2017, 49(5): 4117-
4148.

[28] Lin W, Chen X, Zhou S. Achieving control and synchronization merely
through a stochastically adaptive feedback coupling[J]. Chaos, 2017,
27(7): 073110.

[29] Oksendal, B. Stochastic Differential Equations and Their Applications.
World Scientific Press, New York, NY, USA, 2005.

[30] Liptser R, Shiryayev A N. Theory of Martingales[M]. Springer Science
& Business Media, 2012.

[31] Mao X. A note on the LaSalle-type theorems for stochastic differential
delay equations[J]. Journal of Mathematical Analysis and Applications,
2002, 268(1): 125-142.

[32] Mao X. LaSalle-type theorems for stochastic differential delay equa-
tions[J]. Journal of Mathematical Analysis and Applications, 1999,
236(2): 350-369.

[33] Mao X. Stochastic versions of the LaSalle theorem[J]. Journal of
Differential Equations, 1999, 153(1): 175-195.

[34] Mao X. Exponential Stability of Stochastic Differential Equations[M].
Marcel Dekker, 1994.

[35] Yuan C, Mao X. Asymptotic stability and boundedness of stochastic
differential equations with respect to semimartingales[J]. 2003.

[36] Mao X. Some contributions to stochastic asymptotic stability and bound-
edness via multiple Lyapunov functions[J]. Journal of Mathematical
Analysis and Applications, 2001, 260(2): 325-340.

[37] Shuai Z, van den Driessche P. Global stability of infectious disease
models using Lyapunov functions[J]. SIAM Journal on Applied Mathe-
matics, 2013, 73(4): 1513-1532.

[38] Shu H, Wang L, Watmough J. Global stability of a nonlinear viral
infection model with infinitely distributed intracellular delays and CTL
immune responses[J]. SIAM Journal on Applied Mathematics, 2013,
73(3): 1280-1302.

Generalized invariance principles for stochastic dynamical systems and their applications



12

[39] Lyapunov A M. The general problem of the stability of motion[J].
International Journal of Control, 1992, 55(3): 531-534.

[40] Chow S N, Hale J K. Methods of bifurcation theory[M]. Springer
Science & Business Media, 2012.

[41] Karydas N, Schinas J. The center manifold theorem for a discrete
system[J]. Applicable Analysis, 1992, 44(3-4): 267-284.

[42] Liptser R S. A strong law of large numbers for local martingales[J].
Stochastics, 1980, 3(1-4): 217-228.

[43] Hu S, Liao X, Mao X. Stochastic Hopfield neural networks[J]. Journal
of Physics A: Mathematical and General, 2003, 36(9): 2235.

[44] Cheng C Y, Lin K H, Shih C W. Multistability in recurrent neural
networks[J]. SIAM Journal on Applied Mathematics, 2006, 66(4): 1301-
1320.

[45] Hespanha J P. Uniform stability of switched linear systems: Extensions
of LaSalle’s invariance principle[J]. IEEE Transactions on Automatic
Control, 2004, 49(4): 470-482.

[46] Mao X, Yin G G, Yuan C. Stabilization and destabilization of hy-
bridsystems of stochastic differential equations[J]. Automatica, 2007,
43(2):264-273

[47] Zong X, Yin G, Li T, et al. Stability of stochastic functional differential
systems using degenerate Lyapunov functionals and applications[J].
Automatica, 2018, 91: 197-207.

[48] Yang J, Liu X, Liu X. Stability of stochastic functional differential
systems with semi-Markovian switching and Lévy noise by functional
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