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Rapid Stabilization of Timoshenko Beam by PDE
Backstepping
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Abstract—In this paper, we present a rapid boundary sta-
bilization of a Timoshenko beam with anti-damping and anti-
stiffness at the uncontrolled boundary, by using PDE backstep-
ping. We introduce a transformation to map the Timoshenko
beam states into a (2 + 2) × (2 + 2) hyperbolic PIDE-ODE
system. Then backstepping is applied to obtain a control law
guaranteeing closed-loop stability of the origin in the H1 sense.
Arbitrarily rapid stabilization can be achieved by adjusting
control parameters. Finally, a numerical simulation shows that
the proposed controller can rapidly stabilize the Timoshenko
beam. This result extends a previous work which considered a
slender Timoshenko beam with Kelvin-Voigt damping, allowing
destabilizing boundary conditions at the uncontrolled boundary
and attaining an arbitrarily rapid convergence rate.

Index Terms—Timoshenko beam, PDE backstepping, hyper-
bolic systems, boundary control, distributed parameter systems.

I. INTRODUCTION

Flexible beams are widely used in many applications rang-
ing from aerospace to civil structures. Correspondingly, beam
stabilization has become an important research topic. Among
all the beam models, Timoshenko model, as the most realistic
of the 1D distributed parameter models, takes into account
both the rotatory inertia of the beam cross-sections and the
deflection due to shear effect. In this paper, we focus on the
control of such a model by applying the backstepping method.

Extensive literature exists on the control of beams and
particularly on Timoshenko beams. We next give an overview
of past results. More than three decades ago, Kim and Re-
nardy [15] used a classical boundary damper feedback which
required both the space and time derivatives at the tip of the
beam. Later, considering a clamped-free Timoshenko beam,
Morgul [24] proposed a more general dynamic boundary feed-
back. Balakrishnan [2], [3] considered boundary conditions
leading to superstability (vanishing of the beam states in finite
time), for clamped boundary conditions on the uncontrolled
end. Taylor and Yau [30] studied a rotating Timoshenko beam
that can be stabilized by both applying a force at the free end
and a torque at the pivoted end. Xu et al. investigated the use
of pointwise feedback controls based on asymptotic analysis
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of eigenvalues and the eigenfunctions [33]. Soufyane et al.
achieved uniform stabilization by using a locally distributed
damping; in this case, stability can be guaranteed if and only if
the two wave equations have the same speeds [29]. Macchelli
et al. used a distributed port Hamiltonian (dpH) approach to
describe Timoshenko beams and proposed a finite dimensional
passive controller that shapes the beam’s total energy [21].
This approach has also been followed by other authors; for
instance, Siuka et al. also adopted a dpH model and proposed
an invariant-based method to achieve stabilization [25] and
Wu et al. used a passive LQG control design method [32].
Xu presented a boundary feedback design for the exponential
stabilization of a Timoshenko beam with both ends free, and
gave an explicit asymptotic formula of eigenvalues of the
closed loop system [34]. Considering a Timoshenko beam with
local Kelvin–Voigt damping, Zhao et al. obtained exponential
stability under some additional hypotheses [36]. Krstic et al.
extended the backstepping method, by using a singular pertur-
bation approach, to controller and observer design for a slender
Timoshenko beam, with actuation only at the beam base and
sensing only at the beam tip [16], [26]. For a nonuniform
Timoshenko beam with spatial-varying parameters, Ammar-
Khodja et al. [1] studied the stabilization for both internal and
boundary cases with one control force. He et al. designed an
output-feedback control law using a Lyapunov-based approach
with a disturbance observers [12]; the Lyapunov approach is a
powerful tool in design of control laws for beams, not only in
the Timoshenko model (see e.g. [7]). Extending the approach,
He et al. proposed an adaptive integral-Barrier Lyapunov func-
tion boundary control for inhomogeneous Timoshenko beams
with constraints [13]. Considering both system uncertainties
and uncertain input backlash non-linearity, He et al. gave
vibration boundary control law using a disturbance observer
[11]. Allowing for hysteresis of the boundary control input,
Liu and Xu proposed a dynamic feedback control law that
exponentially stabilized the beam with distributed delay [19].
Yildirim et al. proposed a novel optimal piezoelectric control
approach for suppressing vibrations [35]. Finally, to cite sev-
eral very recent contributions, Ma et al. introduced a prescribed
performance function restricting within an arbitrarily small
residual set [20], Guo and Meng consider a two-dimensional
robust output tracking for a Timoshenko beam equation by
using an observer-based error feedback control approach [9],
and Mattioni et al. address a beam clamped on a moving inertia
actuated by an external torque and force with the dpH method
using strong dissipation feedback [22], and also in the case of
having a mass at the controlled end [23].

In recent years, the backstepping method has proven itself
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as a powerful design method for control of infinite dimensional
systems. However, beyond the results in [16], [26] more
than a decade ago, backstepping has not been fully exploited
for Timoshenko beam control, even though it has produced
results for the shear beam model [17] and the Euler-Bernouilli
model [27], [31]. In the present paper, we aim to achieve
rapid stabilization of a Timoshenko beam with anti-damping
and anti-stiffness at the uncontrolled boundary. The decay
rate can be prescribed arbitrarily by setting the controller
parameters. Specifically, we propose an initial transformations
of the Timoshenko beam states to a new set of variables
verifying a system of (2 + 2) × (2 + 2) hyperbolic PIDEs,
coupled with two ODEs. Then the backstepping method is
directly applied to controller design of the new system, by
extending previously-developed tools [8].

Thus, the main contribution of this paper with respect to
previous results is allowing destabilizing boundary conditions
at the uncontrolled boundary (numerous works consider simple
clamped conditions) and attaining an arbitrarily rapid conver-
gence rate.

The paper is organized as follows: Section II presents the
Timoshenko beam model. Section III gives the design of the
boundary controller and the main result. Then, Section IV
analyzes the resulting controller. Section V studies the closed-
loop stability. Finally, Section VI validates the effectiveness of
the proposed controllers by numerical simulation and Section
VII closes the paper with some concluding remarks.

II. PROBLEM STATEMENT

The goal of this work is to design an exponentially stabi-
lizing feedback control law (with arbitrary convergence rate)
for the equilibrium at the origin of the following Timoshenko
beam model, which is given by the following system of PDEs

εutt = uxx − αx, (1)

µαtt = αxx +
a

ε
(ux − α) , (2)

where u(x, t) denotes the displacement, α(x, t) denotes the
angle of rotation, for x ∈ (0, 1), t > 0. The coefficients ε, µ >
0, and a ∈ R are non-dimensional physical parameters defined
in [10]. The boundary conditions of (1)–(2) are

ux (0, t) = α(0, t)− θut (0, t)− ξu(0, t), (3)
ux(1, t) = V1(t), (4)
αx(0, t) = 0, (5)
αx(1, t) = V2(t), (6)

with θ, ξ ∈ R (which represent, respectively, anti-damping
and anti-stiffness), and V1(t) and V2(t) the actuation variables
that have to be designed. The initial conditions for the system
(1)–(6) are denoted by u0(x) = u(x, 0), α0(x) = α(x, 0),
u0t = ut(x, 0), α0t = αt(x, 0).

Assumption 1: The anti-damping coefficient θ appearing in
(3) verifies θ 6=

√
ε.

This assumption is critical in the transformation posed next.
To understand its underlying reason, consider just a simple
wave equation εutt = uxx; then, a boundary condition of the
type ux (0, t) = −

√
εut (0, t) is ill-posed, since a solution by

the method of characteristics (or alternatively, d’Alambert’s
solution) will end up with one over-determined characteristic
and one under-determined characteristic; then, depending on
the other boundary condition, this leads to only trivial or
constant functions solving the equation, which in general will
not agree with the initial conditions.

III. CONTROLLER DESIGN AND MAIN RESULT

This section presents the design of our boundary control
law, starting in Section III-A with a transformation of the
Timoshenko beam states to a new set of variables verifying
a hyperbolic-ODE coupled system. Next, in Section III-B the
control law is introduced and the main result is stated.

A. Transformation of the wave PDE representation of the
beam to a system of hyperbolic PDEs coupled with ODEs

As a first step, the Timoshenko beam is transformed into a
first-order hyperbolic integro-differential system coupled with
ODEs. This represents an alternative, novel idea to design a
controller for this plant, since it opens the door to apply 1-
D hyperbolic system control designs. The system becomes
a (2 + 2) × (2 + 2) homodirectional system of hyperbolic
PIDEs, coupled with two ODEs, by using the following
transformations

p = ux +
√
εut, (7)

q = ux −
√
εut, (8)

r = αx +
√
µαt, (9)

s = αx −
√
µαt, (10)

x1 = u(0, t), (11)
x2 = α(0, t). (12)

Then (1)–(6) is equivalent to the PDE-ODE system

pt =
1√
ε
px −

1

2
√
ε

(r + s) , (13)

rt =
1
√
µ
rx +

a

2ε
√
µ

(p+ q)

− a

2ε
√
µ

[∫ x

0

(r (y, t) + s (y, t)) dy + 2x2

]
, (14)

qt = − 1√
ε
qx −

1

2
√
ε

(r + s) , (15)

st = − 1
√
µ
sx +

a

2ε
√
µ

(p+ q)

− a

2ε
√
µ

[∫ x

0

(r (y, t) + s (y, t)) dy + 2x2

]
, (16)

ẋ1 =
2√
ε− θ

[ξx1 − x2 + p(0, t)] , (17)

ẋ2 = − 1
√
µ
s (0, t) , (18)

with boundary conditions

q(0, t) = − (
√
ε+ θ)√
ε− θ

p(0, t)− 2
√
ε√

ε− θ
(ξx1 − x2), (19)

s(0, t) = −r(0, t), (20)
p (1, t) = Vp(t), (21)
r (1, t) = Vr(t), (22)
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where Vp(t) = V1(t) +
√
εut(1, t) and Vr(t) = V2(t) +√

µαt(1, t) are the redefined control variables for this plant.
It must be noted that (13)–(16) is a system of (2+2)×(2+2)

1-D hyperbolic PIDEs coupled with two ODEs (17)–(18)
that has not been explored before, but facilitates analysis
and design of controllers, as hyperbolic systems have been
widely explored [4]. For instance, it is easy to see that the
“superstability” (convergence in finite time) result stated in [2],
[3], using static output feedback, is only possible with clamped
boundary conditions u(0, t) = α(0, t) = 0, as they automati-
cally impose that the finite-dimensional states x1 and x2 are
zero. Note that in that case a straightforward application of
the standard backstepping method for hyperbolic systems [14]
can achieve finite-time stabilization in the minimum possible
time without the need of the additional conditions in [2].

The system (13)–(22) is similar to the one stabilized with
backstepping in [8]. Thus, the method therein can be easily
adapted. However, as a first step, the procedure requires
ordering the states p and r as function of their transport speeds,
namely 1√

ε
and 1√

µ . There are three possible cases: 1√
ε
> 1√

µ ,
1√
ε
< 1√

µ , and 1√
ε

= 1√
µ . In what follows, we assume

1√
ε
> 1√

µ ; the case 1√
ε
< 1√

µ can be treated analogously by
switching the order of the states p and r in all subsequent steps,
and the equality case becomes a straightforward extension of
the 2× 2 backstepping design. Define

Z =

[
p
r

]
, Y =

[
q
s

]
, X =

[
x1
x2

]
, V =

[
Vp
Vr

]
. (23)

Then, (13)–(22) can be written in the following simplified
matrix form

Zt = ΣZx + Λ1(Z + Y ) + Λ2X

+

∫ x

0

F [Z(y, t) + Y (y, t)]dy (24)

Yt = −ΣYx + Λ1(Y + Z) + Λ2X

+

∫ x

0

F [Z(y, t) + Y (y, t)]dy (25)

Ẋ = (A+B2D)X + (B1 +B2C)Z(0, t) (26)

with boundary conditions

Z(1, t) = V (27)
Y (0, t) = CZ(0, t) +DX (28)

where

Σ =

[
1√
ε

0

0 1√
µ

]
, Λ1 =

[
0 − 1

2
√
ε

a
2ε
√
µ 0

]
, (29)

Λ2 =

[
0 0
0 − a

ε
√
µ

]
, F =

[
0 0
0 − a

2ε
√
µ

]
, (30)

A =

[
2ξ√
ε−θ − 2√

ε−θ
0 0

]
B1 =

[ 2√
ε−θ 0

0 0

]
, (31)

B2 =

[
0 0
0 − 1√

µ

]
, C =

[
−
√
ε+θ√
ε−θ 0

0 −1

]
, (32)

D =

[
− 2
√
εξ√
ε−θ

2
√
ε√

ε−θ
0 0

]
. (33)

The system (24)–(28), differently from [8], contains integral
coupling terms, and the states of ODEs appearing inside the
domain of the PDEs.

B. Stabilizing control law and main result

For system (24)–(28), the following control law is obtained
in Section IV.

V =

∫ 1

0

K (1, y)Z (y, t)dy+

∫ 1

0

L (1, y)Y (y, t)dy+Φ(1)X,

(34)
whose gain kernels are the particular values of the 2 × 2
matrices

K(x, y) =

[
k11 k12
k21 k22

]
, L(x, y) =

[
l11 l12
l21 l22

]
,(35)

Φ(x) =

[
φ11 φ12
φ21 φ22

]
, (36)

evaluated at x = 1. These matrices verify the following (well-
posed) kernel equations

ΣKx +KyΣ = (K + L) Λ1 − Ω(x)K − F

+

∫ x

y

[K(x, s) + L(x, s)]Fds, (37)

ΣLx − LyΣ = (K + L) Λ1 − Ω(x)L− F

+

∫ x

y

[K(x, s) + L(x, s)]Fds, (38)

Φx = Σ−1ΦA− Σ−1Λ2 + Σ−1ΦB2D

−Σ−1Ω(x)Φ +

∫ x

0

Σ−1(K − L)Λ2dy

+Σ−1L(x, 0)ΣD, (39)

with boundary conditions for K and L

ΣL(x, x) + L(x, x)Σ = −Λ1, (40)
ΣK(x, x)−K(x, x)Σ = −Λ1 + Ω(x), (41)

K(x, 0)− (x, 0)ΣCΣ−1 = ΦB1Σ−1 + ΦB2CΣ−1, (42)

with

Ω(x) =

[
0 0
ω21 0

]
, (43)

where ω21(x, t) = ( 1√
µ −

1√
ε
)k21(x, x) + a

2ε and boundary
conditions for Φ(X) in (39) as follows

Φ(0) =

[
−ξ − δ1

κ 1 + 1√
µ

0 −δ2
√
µ

]
, (44)

where κ = 2/(
√
ε − θ). The parameters δ1, δ2 are arbitrary

values which directly determine the decay rate of the closed-
loop controlled Timoshenko beam (see Section V). The well-
posedness of the kernel equations for K(x, y), L(x, y),Φ(x)
is stated in Theorem 2 in Section IV-B.
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Expressing (34) in terms of the Timoshenko beam variables:

V1 = −
∫ 1

0

(k11,y(1, y) + l11,y(1, y))u(y, t)dy

+

∫ 1

0

√
ε (k11(1, y) + l11(1, y)ut(y, t)dy

−
∫ 1

0

(k12,y(1, y) + l12,y(1, y))α(y, t)dy

+

∫ 1

0

√
µ (k12(1, y) + l12(1, y)αt(y, t)dy

+ (k11(1, 1) + l11(1, 1))u(1, t)

− (k11(1, 0) + l11(1, 0)− φ11(1))u(0, t)

−(k12(1, 0) + l12(1, 0)− φ12(1))α(0, t)

+(k12(1, 1) + l12(1, 1))α(1, t)−
√
εut(1, t), (45)

V2 = −
∫ 1

0

(k21,y(1, y) + l21,y(1, y))u(y, t)dy

+

∫ 1

0

√
ε(k21(1, y) + l21(1, y))ut(y, t)dy

−
∫ 1

0

(k22,y(1, y) + l22,y(1, y))α(y, t)dy

+

∫ 1

0

√
µ(k22(1, y) + l22(1, y))αt(y, t)dy

+ (k21(1, 1) + l21(1, 1))u(1, t)

− (k21(1, 0) + l21(1, 0)− φ21(1))u(0, t)

− (k22(1, 0) + l22(1, 0)− φ22(1))α(0, t)

+ (k22(1, 1) + l22(1, 1))α(1, t)−√µαt(1, t),(46)

The main result is stated next.
Theorem 1: Consider system (1)–(6), with initial conditions

u0, α0 ∈ H1(0, 1), u0t, α0t ∈ L2, under the control law
(45)–(46). If the values of δ1, δ2 (the controller parameters
appearing in (44)) are set large enough so that the constant

C2 = min{δ1, δ2} − 2−max

{
4

(
√
ε− θ)2

,
1

µ

}
, (47)

is positive, there exists a solution u(·, t), α(·, t) ∈ H1(0, 1),
ut(·, t), αt(·, t) ∈ L2(0, 1) for t > 0, and the following
inequality is verified, guaranteeing the exponential stability of
the equilibrium u ≡ α ≡ ut ≡ αt ≡ 0:

‖u(·, t)‖2H1 + ‖α(·, t)‖2H1 + ‖ut(·, t)‖2L2 + ‖αt(·, t)‖2L2

≤C1e−C2t
(
‖u0‖2H1 + ‖α0‖2H1 + ‖u0t‖2L2 + ‖α0t‖2L2

)
.(48)

The proof of Theorem 1 is given in Section V.
Note that the constant C2 of Theorem 1 only depends on

the system parameters ε, µ and θ and the controller parameters
δ1 and δ2. Under Assumption 1 it is always possible to set C2

as large as desired, thus achieving arbitrary convergence rate.

IV. CONTROLLER ANALYSIS

This section presents the steps leading to (34). The back-
stepping method is used: first, the target system is pre-
sented in Section IV-A; next, the backstepping transformation
(of Volterra type) is introduced in Section IV-B. The well-
posedness of the kernel equations is stated in Theorem 2.

A. Target system
We design a target system as follows

σt = Σσx + Ω(x)σ, (49)

ψt = −Σψx + Λ1 (ψ + σ) +

∫ x

0

Ξ2(x, y)σ(y, t)dy

+

∫ x

0

Ξ3(x, y)ψ(y, t)dy + Ξ1(x)X, (50)

Ẋ = E1X + E2σ(0, t), (51)

with boundary conditions

σ(1, t) = 0, ψ(0, t) = E3X + Cσ(0, t), (52)

where

σ =

[
η
β

]
, E1 = (B1 +B2C)Φ(0) +A+B2D,(53)

E2 = CΦ(0) +D, E3 = B1 +B2C, (54)

and where the values of Ξ1(x, ), Ξ2(x, y), and Ξ3(x, y) are
obtained in terms of the inverse backstepping transformation,
in Section IV-B. The stability of this target system is shown
in Section V.

B. Backstepping transformation
Firstly, inspired by [18], we introduce the following back-

stepping transformation, of Volterra type

σ = Z −
∫ x

0

K (x, y)Z (y, t)dy

−
∫ x

0

L (x, y)Y (y, t)dy − Φ(x), (55)

ψ = Y. (56)

The kernel equations are deduced as usual, by a tedious
but straightforward procedure of taking derivatives in the
transformation, replacing the original and target equations,
and integrating by parts. The details are skipped for brevity.
Regarding their well-posedness, the following result holds.

Theorem 2: There exists a unique bounded solution
kij(x, y), lij(x, y), i = 1, 2; j = 1, 2, 3, 4 to the kernel equa-
tions (37)–(42); in particular, there exists a positive number
M such that for i, j = 1, 2

|kij(x, y)|, |lij(x, y)| ≤ MeMx. (57)

The proof follows along the lines of [8] and is skipped; it is
based on using the method of characteristics to write (37)–(42)
in the form of integral equations and then posing a solution in
terms of a successive approximation series, whose convergence
is proven recursively. It is evident that the derivations of [8]
can be easily adapted to the presence of integral terms and the
differences in the boundary conditions without much effort.

Since the kernels appearing in (55) are bounded, the trans-
formation is invertible from the theory of Volterra integral
equation. Thus one can define

Z = σ +

∫ x

0

^

K (x, y)σ (y, t)dy

+

∫ x

0

^

L (x, y)ψ (y, t)dy +
^

Φ (x)X, (58)

Y = ψ, (59)
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with bounded kernels. Both the transformation and its inverse
map L2 functions into L2 functions (see e.g. [14]).

From the inverse transformation, the kernels Ξ1(x),
Ξ2(x, y), Ξ3(x, y) appearing in (50) are

Ξ1(x) = Λ1

^

φ(x) + Λ2 +

∫ x

0

F
^

φ(y)dy, (60)

Ξ2(x, y) = Λ1

^

K(x, y) + F +

∫ x

0

F
^

K(s, y)ds, (61)

Ξ3(x, y) = Λ1

^

L(x, y) + F +

∫ x

0

F
^

L(s, y)ds, (62)

from which it can be deduced that they are bounded kernels.

V. STABILITY AND WELL-POSEDNESS OF CLOSED LOOP

This section proves Theorem 1. First, in Section V-A, the
solution of (49)–(52) is studied with the method of characteris-
tics. This helps to find stability conditions in Section V. Then,
a Lyapunov analysis in Section V-C shows exponential stabil-
ity. Section V-D finishes the proof of Theorem 1 addressing
the well-posedness of the system.

A. A semi-explicit solution for the target system
We start solving (49)–(52) with the method of characteris-

tics. Writing down the solution for σ, it is not difficult to see
that it converges to zero in finite time

√
µ. Thus, for t >

√
µ,

ψt(x, t) = −Σψx(x, t) + Λ1ψ(x, t) + Ξ1(x)X

+

∫ x

0

Ξ3(x, y)ψ(y, t)dy,

Ẋ = E1X,

ψ(0, t) = E3X. (63)

Solving for X we get X(t) = X(0)eE1t, where we have used
the matrix exponential. Then

ψt(x, t) = −Σψx(x, t) + Λ1ψ(x, t) + Ξ1(x)X(0)eE1t

+

∫ x

0

Ξ3(x, y)ψ(y, t)dy,

ψ(0, t) = E3X(0)eE1t. (64)

Applying the method of characteristics, two Volterra-type
integral equations can be found for the components of ψ. The
details are skipped, but it is easy to see that one can always
find an unique L2 solution for ψ.

B. Stability conditions
Obviously the only requirement for stability is that E1 is

Hurwitz as then the origin of the state is exponentially stable
for (63). Nevertheless, for rapid arbitrary stabilization, the
eigenvalues of E1 need to be set. Indeed, since D = − A√

ε
in (53), E1 is rewritten as

E1 = A

(
I − B2√

ε

)
+ (B1 +B2C)Φ(0). (65)

Which, remembering the definition κ = 2/(
√
ε − θ), results

in

E1 =

 κξ + κφ11(0) −κ
(

1 + 1√
µ

)
+ κφ12(0)

φ21(0)√
µ

φ22(0)√
µ

 . (66)

If we choose the boundary conditions Φ(0) as follows:

φ11(0) = −ξ − δ1
κ
, φ12(0) = 1 +

1
√
µ
, (67)

φ21(0) = 0, φ22(0) = −δ2
√
µ, (68)

with δ1, δ2 > 0, then E1 is a diagonal matrix with entries
−δ1 and −δ2, which become its eigenvalues. The rate of
convergence of X can be arbitrarily set by adjusting the value
δ1, δ2 and will be equal to c = min {δ1, δ2}.

C. Lyapunov-based stability analysis of target system

Next, we use a Lyapunov functional for the stability analysis
of target system, to show exponential stability of the origin
with a fixed convergence rate. Define

V = XTX + ζ

∫ 1

0

eδxσT (x, t)Σ−1σ(x, t)dx

+

∫ 1

0

e−δxψT (x, t)Σ−1ψ(x, t)dx. (69)

Differentiating (V-C) with respect to t, we have

V̇ = 2XTXt + 2ζ

∫ 1

0

eδxσT (x, t)Σ−1σt(x, t)dx

+2

∫ 1

0

e−δxψT (x, t)Σ−1ψt(x, t)dx (70)

Substituting (49)–(51) into (70) and then using integration by
parts and the fact that XTXt ≤ −cXTX , we have

V̇ ≤ −cXTX + 2XTE2σ(0, t)− ζσT (0, t)σ(0, t)

−ζ
∫ 1

0

eδxσT (x, t)(δI + 2Σ−1Ω(x))σ(x, t)dx

−
∫ 1

0

e−δxψT (x, t)(δI − 2Σ−1Λ1)ψ(x, t)dx

+2

∫ 1

0

e−δxψT (x, t)Σ−1(Λ1σ(x, t) + Ξ1(x)X)dx

+2

∫ 1

0

e−δxψT (x, t)Σ−1
∫ x

0

Ξ2(x, y)σ(y, t)dydx

+2

∫ 1

0

e−δxψT (x, t)(Σ)−1
∫ x

0

Ξ3(x, y)ψ(y, t)dydx

+ψT (0, t)ψ(0, t). (71)

Regarding the last line of (71), using ψ(0, t) = E3X +
Cσ(0, t), we have ψT (0, t)ψ(0, t) = XT eT3 E3X +
2XT eT3 Cσ(0, t)+σT (0, t)CTCσ(0, t). Then, the first line and
last line of (71) become

−XT (cI − eT3 E3)X + 2XT (E2 + eT3 C)σ(0, t)

−σT (0, t)(ζ − CTC)σ(0, t)

≤ −(c−M1)XTX − (ζ −M2)σT (0, t)σ(0, t), (72)
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with M1 = max
{
κ2, 1

µ

}
+ 1, M2 = ‖E2 + eT3 C‖2 + ‖C‖2.

The fourth line of (71) is bounded as follows

2

∫ 1

0

e−δxψT (x, t)Σ−1(Λ1σ(x, t) + Ξ1(x)X)dx

≤ 2(1 +M4)

∫ 1

0

e−δxψT (x, t)Σ−1ψ(x, t)dx

+M3

∫ 1

0

eδxσT (x, t)Σ−1σ(x, t)dx+XTX, (73)

with M3 = ‖Λ1‖2 and M4 = maxx∈[0,1] ‖Σ−1Ξ1(x)‖2. The
fifth line of (71) can be bounded as follows

2

∫ 1

0

e−δxψT (x, t)(Σ)−1
∫ x

0

Ξ2(x, y)σ(y, t)dydx

≤ 2

∫ 1

0

∫ 1

0

e−δx|ψT (x, t)|Σ−1|Ξ2(x, y)||σ(y, t)|dydx

≤
∫ 1

0

e−δxψT (x, t)Σ−1ψ(x, t)dx

+M5

∫ 1

0

eδxσT (x, t)Σ−1σ(x, t)dx, (74)

where M5 = maxx,y∈[0,1] ‖Ξ2(x, y)e−δy‖2. Finally, the sixth
line of of (71) is also bounded

2

∫ 1

0

e−δxψT (x, t)(Σ)−1
∫ x

0

Ξ3(x, y)ψ(y, t)dydx

≤ 2

∫ 1

0

e−δx/2|ψT (x, t)|Σ−1

×
∫ x

0

e−δx/2|Ξ3(x, y)||ψ(y, t)|dydx

≤ 2

∫ 1

0

∫ 1

0

e−δx/2|ψT (x, t)|Σ−1

×e−δy/2|Ξ3(x, y)||ψ(y, t)|dydx

≤ M6

∫ 1

0

e−δxψT (x, t)Σ−1ψ(x, t)dx, (75)

with M6 = 1 + maxx,y∈[0,1] ‖Ξ3(x, y)‖2. Thus,

V̇ ≤ −(c−M1 − 1)XTX − (ζ −M2)σT (0, t)σ(0, t)

−
∫ 1

0

eδxσT (x, t)(ζδI + 2ζΣ−1Ω(x))σ(x, t)dx

+

∫ 1

0

eδxσT (x, t)(M3 +M5)Σ−1σ(x, t)dx

+

∫ 1

0

e−δxψT (x, t)(2Σ−1Λ1 +M6Σ−1)ψ(x, t)dx

+

∫ 1

0

e−δxψT (x, t)(3 + 2M4 − δ)ψ(x, t)dx. (76)

Choosing c > c′ + M1 + 1 with c′ > 0, δ > max{2‖Λ1‖ +
M6+‖Σ−1‖(c′+1+2M4), ‖Σ−1‖(1+2 maxx∈[0,1] ‖Ω(x)‖)},
and ζ > max{M3 +M5,M2}, we obtain:

V̇ ≤ −c′XTX − c′ζ
∫ 1

0

eδxσT (x, t)Σ−1σ(x, t)dx

−c′
∫ 1

0

e−δxψT (x, t)Σ−1ψ(x, t)dx ≤ −c′V, (77)

with c′ > min {δ1, δ2} − 2 −max
{
κ2, 1

µ

}
. Thus setting the

controller parameters δ1 and δ2 sufficiently large, an arbitrary
convergence rate c′ > 0 is achieved for V .

From the Lyapunov inequality just obtained and using norm
equivalences, and the boundedness of the kernels of both direct
(55) and inverse (59) transformations, one obtains

‖p(·, t)‖2L2 + ‖q(·, t)‖2L2 + ‖q(·, t)‖2L2 + ‖s(·, t)‖2L2

+x21(t) + x22(t)

≤K1e−c
′t
(
‖p0‖2L2 + ‖q0‖2L2 + ‖q0‖2L2 + ‖s0‖2L2

+x21(0) + x22(0)
)
, (78)

for some K1 > 0. When rewritten in terms of the physical
Timoshenko beam states, the exponential stability bound of
Theorem 1 follows, since

u(t, x) = x1(t) +
1

2

∫ x

0

(p(t, y) + q(t, y))dy, (79)

α(t, x) = x2(t) +
1

2

∫ x

0

(r(t, y) + s(t, y))dy, (80)

ut(t, x) =
p(t, x)− q(t, x)

2
√
ε

, (81)

αt(t, x) =
r(t, x)− s(t, x)

2
√
µ

. (82)

D. Well-posedness of the closed-loop system

Under the assumptions of Theorem 1, we have that u0 ∈
H1, α0 ∈ H1, u0t ∈ L2, α0t ∈ L2and therefore the initial
conditions of p, q, r, s belong to L2. Therefore the initial
conditions of the transformed states are also L2. It is easy
to see that the target system is well-posed in L2 (see Section
IV.B.1); thus the original system will be as well, since the
inverse transformation maps L2 into L2. This finally implies
the well-posedness result of Theorem 1, by (80)–(82).

VI. NUMERICAL SIMULATION

To verify the effectiveness of the proposed boundary con-
troller, (1)–(6) is simulated with ε = 1, µ = 2, a = 1,
θ = −1, ξ = 1. The initial values are set to u0 = 2.8−2.8x−
1.8x2, ut0 = 0, α0 = x2, αt0 = 0. We use the HPDE tool in
MATLAB, in which the four equivalent one-order hyperbolic
PDEs (13)–(16) and the ODEs (17)–(18) are solved, and the
evolution of u(x, t), α(x, t) is obtained by using (80)–(81).
We first show in Fig. 1 the unstable response of the open-loop
system, which diverges due to anti-damping. Next, we apply
the proposed controller (45)–(46) to the Timoshenko beam.
The controller parameters are chosen as δ1 = 5, δ2 = 2. The
feedback gains K(1, y), L(x, y) and Φ(x) are shown in Fig. 2
and were computed using a power series approach as in [5].
There is a discontinuity in the kernel function k12(1, y) , which
is typically present when applying the backstepping method to
a (2+2)× (2+2) system and does not impact the result [14].
The variables u(x, t), ut(x, t), α(x, t) and αt(x, t) evolve as
shown in Fig. 3, converging to zero exponentially, as expected
from Theorem 1.
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VII. CONCLUDING REMARKS

This work considered boundary control of a Timoshenko
beam with anti-damping and anti-stiffness at the uncontrolled
boundary; firstly, we transform the Timoshenko beam states
into a hyperbolic PIDE-ODE system. Then, backstepping is
applied, obtaining arbitrarily fast decay. Simulations show
the effectiveness of the controller in setting the convergence
rate. As future work, the possibility of achieving finite-time
convergence (in the spirit of the superstability results of [2]),
by using time-varying backstepping [28], will be investigated.
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