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Equivalence of Optimality Criteria for Markov Decision Process and
Model Predictive Control

Arash Bahari Kordabad, Mario Zanon, Sebastien Gros

Abstract— This paper shows that the optimal policy and value
functions of a Markov Decision Process (MDP), either discounted
or not, can be captured by a finite-horizon undiscounted Optimal
Control Problem (OCP), even if based on an inexact model. This
can be achieved by selecting a proper stage cost and terminal
cost for the OCP. A very useful particular case of OCP is a Model
Predictive Control (MPC) scheme where a deterministic (possibly
nonlinear) model is used to reduce the computational complexity.
This observation leads us to parameterize an MPC scheme fully,
including the cost function. In practice, Reinforcement Learning al-
gorithms can then be used to tune the parameterized MPC scheme.
We verify the developed theorems analytically in an LQR case and
we investigate some other nonlinear examples in simulations.

Index Terms— Markov Decision Process, Model Predic-
tive Control, Reinforcement Learning, Optimality

I. INTRODUCTION

Markov Decision Processes (MDPs) provide a standard framework
for the optimal control of discrete-time stochastic processes, where
the stage cost and transition probability depend only on the current
state and the current input of the system [1]. A control system,
described by an MDP, receives an input at each time instance and
proceeds to a new state with a given probability density, and in the
meantime, it gets a stage cost at each transition. For an MDP, a
policy is a mapping from the state space into the input space and
determines how to select the input based on the observation of the
current state. This policy can either be a deterministic mapping from
the state space [2] or a conditional probability of the current state,
describing the stochastic policy [3]. This paper focuses on deterministic
policies. Solving an MDP refers to finding an optimal policy that
minimizes the expected value of a total cumulative cost as a function
of the current state. The cumulative cost can be either discounted
or undiscounted with respect to the time instant. Therefore, different
definitions for the cumulative cost yields different optimality criteria
for the MDPs. Dynamic Programming (DP) techniques can be used
to solve MDPs based on the Bellman equations. However, solving the
Bellman equations is typically intractable unless the problem is of very
low dimension [4]. This issue is known as “curse of dimensionality” in
the literature [5]. Besides, DP requires the exact transition probability
of MDPs, while in most engineering applications, we do not have
access to the exact probability transition of the real system.

Reinforcement Learning (RL) [6] and approximate DP [7] are two
common techniques that tackle these difficulties. RL offers powerful
tools for tackling MDP without having an accurate knowledge of
the probability distribution underlying the state transition. In most
cases, RL requires a function approximator to capture the optimal
policy or the optimal value functions underlying the MDP. A common
choice of function approximator in the RL community is to use a
Deep Neural Network (DNN) [8]. DNNs can be used to capture either
the optimal policy underlying the MDP directly or the action-value

Arash Bahari Kordabad and Sebastien Gros are
with Department of Engineering Cybernetics, Norwegian
University of Science and Technology (NTNU), Trondheim,
Norway. Mario Zanon is with the IMT School for Advanced
Studies Lucca, Italy. E-mail:arash.b.kordabad@ntnu.no,
mario.zanon@imtlucca.it and sebastien.gros@ntnu.no

function from which the optimal policy can be indirectly extracted.
However, the formal analysis of closed-loop stability and safety of
the policies provided by approximators such as DNNs is challenging.
Moreover, DNNs usually need a large number of tunable parameters
and a pre-training is often required so that the initial values of the
parameters are reasonable.

Model Predictive Control (MPC) is a well-known control strategy
that employs a (possibly inaccurate) model of the real system dynamics
to produce an input-state sequence over a given finite-horizon such
that the resulting predicted state trajectory minimizes a given cost
function while explicitly enforcing the input-state constraints imposed
on the system trajectories [9]. For computational reasons, simple
models are usually preferred in the MPC scheme. Hence, the MPC
model often does not have the structure required to correctly capture
the real system dynamics and stochasticity. The idea of using MPC as
a function approximator for RL techniques was justified first in [10],
where it was shown that the optimal policy of a discounted MDP
can be captured by a discounted MPC scheme even if the model is
inexact. Recently, MPC has been used in different systems to deliver
a structured function approximator for MDPs (see e.g., [10]–[12])
and partially observable MDPs [13]. Stability for discounted MPC
schemes is challenging, and for a finite-horizon problem, it is shown
in [14] that even if the provided stage cost, terminal cost and terminal
set satisfy the stability requirements, the closed-loop might be unstable
for some discount factors. Indeed, the discount factor has a critical
role in the stability of the closed-loop system under the optimal policy
of the discounted cost. The conditions for the asymptotic stability for
discounted optimal control problems have been recently developed in
[15] for deterministic systems with the exact model. Therefore, an
undiscounted MPC scheme is more desirable, where the closed-loop
stability analysis is straightforward and well-developed [9].

The equivalence of MDPs criteria (discounted and undiscounted)
has been recently discussed in [16] in the case an exact model of MDP
is available. However, in practice, the exact probability transition of
the MDP might not be available and we usually have a (possibly
inaccurate) model of the real system. This work extends the results
of [16] in the sense of the model mismatch and while extends also
the results of [10] to the case of using undiscounted MPC scheme
to capture a (possibly discounted) MDP. More specifically, we show
that, under some conditions, an undiscounted finite-horizon Optimal
Control Problem (OCP) can capture the optimal policy and the optimal
value functions of a given MDP, either discounted or undiscounted,
even if an inexact model is used in the undiscounted OCP. We then
propose to use a deterministic (possibly nonlinear) MPC scheme as a
particular case of the theorem to formulate the undiscounted OCP as
a common MPC scheme. By parameterizing the MPC scheme, and
tuning the parameters via RL algorithms one can achieve the best
approximation of the optimal policy and the optimal value functions
of the original MDP within the adopted MPC structure.

The paper is structured as follows. Section II provides the
formulation of MDPs under discounted and undiscounted optimality
criteria. Section III provides formal statements showing that using
cost modification in a finite-horizon undiscounted OCP one is able to
capture the optimal value function and optimal policy function of the
real system with discounted and undiscounted cost even with a wrong
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model. Section IV presents a parameterized MPC scheme as a special
case of the undiscounted OCP, where the model is deterministic (i.e.
the probability transition is a Dirac measure). Then the parameters
can be tuned using RL techniques. Section V provides an analytical
LQR example. Section VI illustrates different numerical simulation.
Finally, section VII delivers the conclusions.

II. REAL SYSTEM

In this section, we formulate the real system as Markov Decision
Processes (MDPs). We consider an MDP on a continuous state and
input spaces over Rn and Rm, respectively, with stochastic states
sk ∈ X ⊆ Rn in the Lebesgue-measurable set X and inputs ak ∈
U ∈ Rm. The triple (Ω,F , ρ) defines the probability space associated
with a Markov chain, where Ω = Π∞k=0X , with associated σ-field
F and ρ is the probability measure. We then consider stochastic
dynamics defined by the following conditional probability measure:

ρ [sk+1|sk,ak] , (1)

defining the conditional probability of observing a transition from
a given state-action pair sk, ak to a subsequent state sk+1. The
input a applied to the system for a given state s is selected by a
deterministic policy π : X → U . We denote sπ0,1,... the (possibly
stochastic) trajectories of the system (1) under policy π, i.e., sπk+1 ∼
ρ [·|sπk ,π(sπk )], starting from sπ0 = s, ∀π. We further denote the
measure associated with such trajectories as τπk in the same space
as ρ. More specifically, τπ0 (·) = ρ0(·), ∀π, where ρ0(·) is the initial
state distribution and τπk+1(·) :=

∫
X ρ [·|s,π(s)] τπk (ds) , k > 0.

A. Discounted MDPs

In the discounted setting, we aim to find the optimal policy π?,
solution of the following discounted infinite-horizon OCP:

V ?(s) := min
π

V π(s) := Eτπ
[ ∞∑
k=0

γk`(sπk ,π
(
sπk
)
)

]
, (2)

for all initial states sπ0 = s, where V ? : X → R is the optimal value
function, V π is the value function of the Markov Chain in closed-loop
with policy π, ` : X × U → R is the stage cost function of the real
system and γ ∈ (0, 1] is the discount factor. The expectation Eτπ
is taken over the distribution underlying the Markov Chain (1) in
closed-loop with policy π, i.e., sk ∼ τπk (·) for k > 0. The action-
value function Q?(s,a) and advantage function A?(s,a) associated
to (2) are defined as follows:

Q?(s,a) := `(s,a) + γEρ
[
V ?(s+)|s,a

]
, (3a)

A?(s,a) := Q?(s,a)− V ?(s). (3b)

Then from the Bellman equation, we have the following identities:

V ?(s) = Q?(s,π?(s)) = min
a
Q?(s,a), ∀s ∈ X , (4a)

0 = min
a
A?(s,a), π?(s) ∈ arg min

a
A?(s,a), ∀s ∈ X . (4b)

B. Undiscounted MDPs

Undiscounted MDPs refer to MDPs when γ = 1. In this case V ? is
in general unbounded and the MDP is ill-posed. In order to tackle this
issue, alternative optimality criteria are needed. Gain optimality is one
of the common criteria in the undiscounted setting. Gain optimality
is defined based on the following average-cost problem:

V̄ ?(s) := min
π

lim
N→∞

1

N
Eτπ

[
N−1∑
k=0

`(sπk ,π
(
sπk
)
)

]
, (5)

for all initial states sπ0 = s, ∀π, where V̄ ? is the optimal average
cost. We denote the optimal policy solution of (5) as π̄?. This optimal
policy is called gain optimal. The gain optimal policy π̄? may not be
unique. Moreover, the optimal average cost V̄ ? is commonly assumed
to be independent of the initial state s [17]. This assumption e.g.
holds for unichain MDPs, in which under any policy any state can be
reached in finite time from any other state. Unfortunately, the gain
optimality criterion only considers the optimal steady-state distribution
and it overlooks transients. As an alternative, bias optimality considers
the optimality of the transients. Precisely, bias optimality can be
formulated through the following OCP:

Ṽ ?(s) = min
π

Eτπ
[ ∞∑
k=0

(`(sπk ,π
(
sπk
)
)− V̄ ?)

]
, (6)

where Ṽ ? is the optimal value function associated to bias optimality.
Note that (6) can be seen as a special case of the discounted setting
in (2) when γ = 1 and the optimal average cost V̄ ? is subtracted
from the stage cost in (2). Therefore, for the rest of the paper we
will consider the discounted setting (2). Without loss of generality
we assume that V̄ ? = 0 in the case γ = 1. This choice yields a
well-posed optimal value function in the undiscounted setting. Clearly,
if this does not hold, one can shift the stage cost to achieve V̄ ? = 0.

III. MODEL OF THE SYSTEM

In general, we may not have full knowledge of the probability
transition of the real MDP (1). One then typically considers an
imperfect model of the real MDP (1), having the state transition:

ρ̂ [sk+1|sk,ak] . (7)

in the same space as ρ. In order to distinguish it from the real
system trajectory, let us denote ŝπ0,1,... the (possibly stochastic)
trajectories of the state transition model (7) under policy π, i.e.,
ŝπk+1 ∼ ρ̂ [·|ŝπk ,π(ŝπk )], starting from ŝπ0 = s, ∀π. We further
denote the measure associated with such trajectories as τ̂π . In general,
·̃ refers to the notations related to the imperfect model of the system
in this paper. It has been shown in [18] that proving closed-loop
stability of the Markov Chains with the optimal policy resulting
from an undiscounted OCP is more straightforward than a discounted
setting [16]. This observation is well-known in MPC of deterministic
systems [19]. Therefore, in this paper, we are interested in using an
undiscounted OCP for the model (7) in order to extract the optimal
policy and optimal value functions of the real system (1), as this
allows us to enforce stability guarantees.

A. Finite-horizon OCP
While MPC allows one to introduce stability and safety guarantees,

it also requires a model of the real system which is bound to be
imperfect, and it optimizes the cost over a finite horizon with unitary
discount factor. In other words, MPC is an MDP based on the imperfect
system model (7) which we will formulate in (8). In this section we
will prove that these differences between the MPC formulation and
the original MDP formulation do not hinder the ability to obtain the
optimal policy and the optimal value functions of the real system
through MPC. Consider the following undiscounted finite-horizon
OCP associated to model (7):

V̂ ?N (s) = min
π

V̂ πN (s) :=Eτ̂π
[
T̂ (ŝπN ) +

N−1∑
k=0

L̂(ŝπk ,π
(
ŝπk
)
)

]
,

(8)

with initial state ŝπ0 = s, where N ∈ N is the horizon length, T̂ ,
L̂, V̂ ?N and V̂ πN are the terminal cost, the stage cost, the optimal
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value function and the value function of the policy π associated to
model (7), respectively, and where N is the set of natural numbers.
The expectation Eτ̂π in (8) is taken over undiscounted closed-loop
Markov Chain (7) with policy π. We denote π̂?N the optimal policy
resulting from (8). Moreover, the action-value function Q̂?N associated
to (8) is defined as follows:

Q̂?N (s,a) := L̂(s,a) + Eρ̂
[
V̂ ?N−1(s+)|s,a

]
, (9a)

V̂ ?0 (s) := T̂ (s) (9b)

The next assumption expresses a requirement on the boundedness
of V ? under model trajectories ŝπ0,1,... with the optimal policy π?

which allows us to develop the theoretical results of this paper.

Assumption 1. The following set is non-empty for a given N̄ ∈ N.

S =:
{
s ∈ X

∣∣∣ ∣∣∣Eτ̂π?

[
V ?(ŝπ

?

k )
]∣∣∣ <∞, ∀ k ≤ N̄} (10)

Assumption 1 requires that there exists a non-empty set S such that
for all trajectories starting in it, the expected value of V ? is bounded
at all future times under the state distribution given by the model in
finite time under the optimal policy. This assumption plays a vital
role in the derivation of our main result. We will further detail this
assumption in Section V-A.

The next theorem provides theoretical support to the idea that one
can recover the optimal policy and value functions by means of an
MPC scheme which is based on an imperfect model and has an
undiscounted formulation over a finite prediction horizon.

Theorem 1. Suppose that Assumption 1 holds for N̄ ≥ N . Then,
there exist a terminal cost T̂ and a stage cost L̂ such that the following
identities hold, ∀ γ, N ∈ N and s ∈ S:

(i) π̂?N (s) = π?(s),

(ii) V̂ ?N (s) = V ?(s),

(iii) Q̂?N (s,a) = Q?(s,a), for the inputs a ∈ U such that
|Eρ̂

[
V ?(s+)|s,a

]
| <∞

Proof. We select the terminal cost T̂ and the stage cost L̂ as follows:

T̂ (s) = V ?(s) (11a)

L̂(s,a) = (11b){
Q?(s,a)− Eρ̂

[
V ?(s+)|s,a

]
If
∣∣Eρ̂ [V ?(s+)|s,a

]∣∣ <∞
∞ otherwise

Under Assumption 1, the terminal and stage costs in (8) have a finite
expected value for all ŝπ

?

0 ∈ S. By substitution of (11) in (8) and
using telescopic sum, we have:

V̂ πN (s)

= Eτ̂π
[
T̂ (ŝπN ) +

N−1∑
k=0

L̂(ŝπk ,π
(
ŝπk
)
)

]
(11)
= Eτ̂π

[
V ?(ŝπN ) +

N−1∑
k=0

(
Q?(ŝπk ,π

(
ŝπk
)
)− V ?(ŝπk+1)

)]

= Q?(s,π(s)) + Eτ̂π

[
N−1∑
k=1

(
Q?(ŝπk ,π

(
ŝπk
)
)− V ?(ŝπk )

)]

= Q?(s,π(s)) + Eτ̂π

[
N−1∑
k=1

A?(ŝπk ,π
(
ŝπk
)
)

]
, (12)

where ŝ0 = s. From (4a) and (4b), we know that:

π?(·) = arg min
π

A? (·,π (·)) = arg min
π

Q? (·,π (·)) (13)

then from (12):

π?(s) = arg min
π

V̂ πN (s) (14)

= arg min
π

Q?(s,π(s)) + Eτ̂π

[
N−1∑
k=1

A?(ŝπk ,π
(
ŝπk
)
)

]
Note that π? minimizes all terms in the cost above, i.e., A? and Q?,
such that is must also minimize V̂ πN . This proves (i), i.e.,

π?(s) = π̂?N (s).

In turn, this proves (ii), since

V̂ ?N (s) = V̂ π
?

N (s) = Q?(s,π?(s))+

+ Eτ̂π


N∑
k=1

A?(ŝπ
?

k ,π?
(
ŝπ

?

k

)
)︸ ︷︷ ︸

(4b)
= 0

∣∣∣∣ŝ0 = s


=Q?(s,π?(s))

(4a)
= V ?(s). (15)

Moreover, from (9a) and (11b), for any inputs a ∈ U such that
|Eρ̂

[
V ?(s+)|s,a

]
| <∞, we have:

Q̂?N (s,a) = L̂(s,a) + Eρ̂
[
V̂ ?N−1(s+)|s,a

]
(16)

(11b)
= Q?(s,a) + Eρ̂

[
V̂ ?N−1(s+)− V ?(s+)|s,a

]
= Q?(s,a),

where the last inequality is obtained by noting that (ii) for N > 1 and
V̂ ?0 (s) = T̂ (s) = V ?(s) for N = 1. This directly yields (iii). �

Theorem 1 states that, independent of the discount factor γ, it is
possible to find a finite-horizon OCP cost function that provides the
optimal policy and optimal value functions of a discounted MDP if an
inexact model is used in the finite-horizon OCP. We observe that the
setup of this paper has been analyzed in [16], under the assumption
of a perfect model, i.e., ρ̂[·|s,a] = ρ[·|s,a]. In that case (11b) reads:

L̂(s,a) = `(s,a) + (γ − 1)Eρ[V ?(s+)|s,a], ∀s ∈ S, (17)

which corresponds to the cost modification discussed in [16].

B. Infinite-horizon OCP

In this section, we investigate the case N →∞ for which, under
some conditions, the terminal cost can be dismissed. In this case, we
first make the next additional assumption.

Assumption 2. We assume that the optimal value function converges
to a constant and finite value with model (7) under the optimal policy
π?. I.e.:

−∞ < lim
N→∞

Eτ̂π?

[
V ?(ŝπ

?

N )
]

= v̂∞ <∞ (18)

Assumption 2 can be interpreted as some forms of the stability
condition on the model dynamics under the optimal policy π?. We will
explain this assumption in Section V-A. In this section, we consider
the following undiscounted value function without terminal cost:

V̂ ?∞(s) := min
π

V̂ π∞(s) := lim
N→∞

Eτ̂π
[N−1∑
k=0

L̂(ŝπk ,π
(
ŝπk
)
)

]
(19)

with initial state ŝπ0 = s. We denote the optimal policy solution of
(19) as π̂?∞(s). We then define the optimal action-value function Q̂?∞
associated to (19) as follows:

Q̂?∞(s,a) = L̂(s,a) + Eρ̂
[
V̂ ?∞(s+)|s,a

]
, (20)
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We are now ready to state the equivalent of Theorem 1 in case of an
infinite horizon without a terminal cost.

Theorem 2. Suppose that Assumptions 1 and 2 hold, then the
following hold ∀s ∈ S,∀γ:

(i) π̂?∞(s) = π?(s)
(ii) V̂ ?∞(s) = V ?(s)− v̂∞

(iii) Q̂?∞(s,a) = Q?(s,a) − v̂∞, for the inputs a ∈ U such that
|Eρ̂

[
V ?(s+)|s,a

]
| <∞

if the stage cost L̂ is selected according Equation (11b).

Proof. Using stage cost L̂ in (11b), we have:

V̂ π∞(s) = lim
N→∞

Eτ̂π
[N−1∑
k=0

Q?(ŝπk ,π
(
ŝπk
)
)− (21)

Eρ̂
[
V ?(ŝπk+1)|ŝπk ,π

(
ŝπk
)] ]

= lim
N→∞

Eτ̂π
[N−1∑
k=0

Q?(ŝπk ,π
(
ŝπk
)
)− V ?(ŝπk+1)

]

= Q?(s,π(s)) + lim
N→∞

Eτ̂π

[
− V ?(ŝπN )+

N−1∑
k=1

Q?(ŝπk ,π(ŝπk ))− V ?(ŝπk )

]

= Q?(s,π(s)) + lim
N→∞

Eτ̂π

[
− V ?(ŝπN ) +

N−1∑
k=1

A?(ŝπk ,π(ŝπk ))

]
where ŝπ0 = s. By (4a) and (4b) we know that the policy π(s) =
π?(s) minimizes all terms A?(·,π(·)) and Q?(·,π(·)), such that it
also minimizes V̂ π∞(s), i.e.,:

π̂?∞(s) = arg min
π

V̂ π∞(s) = π?(s) , (22)

which proves (i). Moreover:

V̂ π
?

∞ (s) = V ?(s)− lim
N→∞

E
[
V ?(ŝπ

?

N )
]
. (23)

Using (18) we have:

V̂ ?∞(s) = V̂ π
?

∞ (s) = V ?(s)− v̂∞. (24)

For the inputs a ∈ U such that |Eρ̂
[
V ?(s+)|s,a

]
| <∞:

Q̂?∞(s,a) = L̂(s,a) + Eρ̂
[
V̂ ?∞(s+)|s,a

]
(25)

= Q?(s,a)− Eρ̂
[
V ?(s+)|s,a

]
+ Eρ̂

[
V̂ ?∞(s+)|s,a

]
= Q?(s,a)− Eρ̂

[
V ?∞(s+)− V̂ ?(s+)|s,a

]
= Q?(s,a)− v̂∞,

which completes the proof. �

Theorem 2 extends Theorem 1 to the case of an infinite horizon
with zero terminal cost. Assumption 2 is necessary in order to be able
to remove the terminal cost. In the next section we will detail the
use of the theorems in practice and reformulate OCP (8) as a Model
Predictive Control (MPC) scheme.

IV. MPC AS A FUNCTION APPROXIMATOR FOR RL
As it was shown in the previous section, the optimal policy and

value functions of any MDP with either discounted or undiscounted
criteria can be captured using a finite-horizon undiscounted OCP (8)
even if the model is not accurate. Since the equivalence only holds
at the initial state, if one is interested in recovering the optimal MDP
policy, the finite-horizon OCP needs to be solved from scratch for each

initial state. In practice, this amounts to deploying the finite-horizon
OCP in an MPC framework, i.e., in a closed-loop.

As discussed above, the equivalence is only obtained if a properly
modified stage and terminal costs are introduced for the finite-horizon
undiscounted MPC scheme. However, finding such costs requires
knowledge about the optimal value functions of the real MDP. In
this section, we detail how the theorems we provided in the previous
sections can be used in practice to exploit MPC as a structured
function approximator of the optimal policy and value functions of
the real MDP. One of the main advantages of MPC is that it allows us
to straightforwardly introduce state and input constraints in the policy.
We parameterize the MPC scheme with parameter vector θ such
that RL methods can be deployed to tune θ in order to achieve the
equivalence yielding the optimal policy and value functions of the real
system and, consequently, the best possible closed-loop performance.

As the MPC model is not required to capture the real system
dynamics exactly, for the sake of reducing the computational burden,
and due to the (relative) simplicity of the resulting MPC scheme, a
popular choice of model ρ̂

[
s+|s,a

]
is a deterministic model, i.e.:

ρ̂
[
s+|s,a

]
= δ

(
s+ − fθ(s,a)

)
(26)

where δ(·) is the Dirac measure and fθ(s,a) is a parameterized
deterministic (possibly nonlinear) model. We approximate the modified
costs L̂ and T̂ by parametric functions Lθ and Tθ , respectively. Due to
the mismatch between the model and the real system, hard constraints
in the MPC scheme could become infeasible. This is a well-known
issue in the MPC community and one simple solution consists in
formulating the state constraints as soft constraints [20]. We therefore
formulate the MPC finite-horizon OCP as:

V̂ θN (s) = min
â,ŝ,σ

− λθ(ŝ0) + Tθ(ŝN ) + µ>f σN

+

N−1∑
k=0

Lθ(ŝk, âk) + µ>σk (27a)

s.t. ŝk+1 = fθ(ŝk, âk), ŝ0 = s, (27b)

âk ∈ U , 0 ≤ σk, 0 ≤ σN , (27c)

hθ(ŝk, âk) ≤ σ?k, h
f
θ(ŝN ) ≤ σ?N , (27d)

where V̂ θN is the MPC-based parameterized value function, hθ(s,a)
is a mixed input-state constraint, hf

θ(s) is the terminal constraint, σk
and σN are slack variables guaranteeing the feasibility of the MPC
scheme and µ and µf are constant vectors that ought to be selected
sufficiently large [20]. Note that these constants allow the MPC scheme
to find a feasible solution, but penalize constraint violations enough to
guarantee that a feasible solution is found whenever possible. While
alternative feasibility-enforcing strategies, e.g., robust MPC, do exist,
an exhaustive discussion on the topic is beyond the scope of this paper.
Function λθ parameterizes the so-called storage function, which has
been added to the cost in order to enable the MPC scheme to tackle
the case of so-called economic problems. Such situations arise when
the MDP stage cost is not positive definite, while the MPC stage
cost is forced to be positive definite in order to obtain a stabilizing
feedback policy. Note that since the term −λθ(ŝ0) only depends on
the current state, it does not modify the optimal policy. For more
details, we refer the interested readers to [10], [21].

While Theorem 1 states that one can find suitable stage and terminal
costs for any given model, adjusting the model parameters is not
essential from the theoretical perspective. However, in practice, the
stage and the terminal cost parameterization may not capture L̂ and T̂
exactly. Since L̂ and T̂ are (implicitly) functions of the model, using
a parameterized model fθ introduces extra degrees of freedom to
bring L̂ and T̂ closer to the functions that can be represented by Lθ
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and Tθ . In turn, this can yield a better approximation of the optimal
policy and value function. The MPC parameterized policy can be
obtained from (27) as follows:

π̂θN (s) = â?0(θ, s), (28)

where â?0 is the solution of (27), corresponding to the first input â0.
Moreover, the parameterized action-value function based on MPC
scheme (27) can be formulated as follows:

Q̂θN (s,a) := min
â,ŝ,σ

(27a) , s.t. (27b)− (27d) , â0 = a . (29)

Then one obtains the following identities:

V̂ θN (s) = min
a
Q̂θN (s,a), π̂θN (s) ∈ arg min

a
Q̂θN (s,a) . (30)

We can use RL techniques, such as Q-learning and policy gradient
method to tune the parameters θ of parameterized MPC scheme (27)
and approach the optimal parameter θ?. For instance, at each learning
step, Q-learning based on Temporal difference (TD) method uses the
following update rule for θ:

δk := `(sk,ak) + γV̂ θN (sk+1)− Q̂θN (sk,ak) (31a)

θ ← θ + ζδk∇θQ̂θN (sk,ak) (31b)

in order to capture the optimal value function Q̂θ
?

N ≈ Q? for the
optimal parameters θ?, where the scalar ζ > 0 is the learning step-
size, δk is labelled the TD error. The use of RL for the tuning the
MPC scheme can be found e.g., in [10], [22].

V. ANALYTICAL CASE STUDY

We consider a Linear Quadratic Regulator (LQR) example in order
to obtain the corresponding optimal value functions analytically and
verify Theorem 2. The real system state transition and stage cost are
given as follows:

s+ = As+Ba+ e, `(s,a) =

[
s
a

]> [
T N

N> R

] [
s
a

]
, (32)

where e ∼ N (0,Σ) with the discount factor γ. One can verify the
following optimal value functions:

V ?(s) = s>Ss+ v̂∞, (33)

Q?(s,a) = v̂∞ +

[
s
a

]> [
T + γA>SA N + γA>SB

N> + γB>SA R+ γB>SB

] [
s
a

]
,

where v̂∞ = γ
1−γTr(SΣ) and S is obtained from the following

Riccati equations:

T + γA>SA = S + (N + γA>SB)
(
K?
γ

)>
, (34a)

(R+ γB>SB)K?
γ = N> + γB>SA. (34b)

Then π?(s) = −K?
γs and π̄?(s) = π̃?(s) = −K?

1s, where K?
1 =

limγ→1K
?
γ . We then consider a linear deterministic model:

s+ =Âs+ B̂a, (35)

and an undiscounted OCP with the following stage cost, defined
according to Equation (11b) as:

L̂(s,a) = Q?(s,a)− V ?(ŝ+) (36)

(33)
=

[
s
a

]> [
T + γA>SA N + γA>SB

N> + γB>SA R+ γB>SB

] [
s
a

]

− (Âs+ B̂a)>S(Âs+ B̂a) :=

[
s
a

]> [
T̂ N̂

N̂> R̂

] [
s
a

]
.

The Riccati equations for the undiscounted problem with the
model (35) read as:

T̂ + Â>ŜÂ = Ŝ + (N̂ + Â>ŜB̂)
(
K̂?
)>

, (37a)

(R̂+ B̂>ŜB̂)K̂? = N̂> + B̂>ŜÂ. (37b)

with the optimal policy π̂?∞(s) = −K̂?s and the optimal value
function V̂ ?∞(s) = s>Ŝs. From (36), we have:

T + γA>SA− Â>SÂ = T̂ , (38a)

N + γA>SB − Â>SB̂ = N̂ , (38b)

R+ γB>SB − B̂>SB̂ = R̂. (38c)

Equivalently, this entails that T̂ , N̂ and R̂ must satisfy

T̂ + Â>SÂ = T + γA>SA, (39a)

N̂ + Â>SB̂ = N + γA>SB, (39b)

R̂+ B̂>SB̂ = R+ γB>SB. (39c)

Then:

T̂ + Â>SÂ
(39a)

= T + γA>SA
(34a)

= S+ (40)

S(N + γA>SB)
(
K?
γ

)> (39b)
= S + (N̂ + Â>SB̂)

(
K?
γ

)>
,

and

(R̂+ B̂>SB̂)K?
γ

(39c)
= (R+ γB>SB)K?

γ (41)
(34b)

= N> + γB>SA
(39b)

= N̂ + Â>SB̂.

Equations (40) and (41) show that Ŝ = S and K̂? = K?
γ satisfy

the undiscounted Riccati equations (37). Then it reads that π?(s) =
π̂?∞(s) and V ?(s) = V̂ ?∞(s) + v̂∞.

A. Satisfying the assumptions
Regarding Assumption 1, the value function will remain bounded in

the finite horizon prediction for every bounded initial condition s0 and
every linear model in form (35) for a given control policy π?(s) =
−K?

γs or π̄?(s) = π̃?(s) = −K?
1s. For Assumption 2, the linear

model matrices Â and B̂ must be chosen such that ρ(Â− B̂K?
γ) ≤ 1

in order to guarantee boundedness of the optimal value function (33).
For instance, for a scalar dynamics, the locus of Â and B̂ is shown
in Figure 1. Inspired by this example, we ought to point out here
that for linear systems Assumption 1 is automatically obtained if the
model is stabilized by the optimal policy, though the converse might
not be true (e.g., if the cost is 0). Note that, the systems without
constraint satisfying Assumption 1 is fairly straightforward while
in the presence of the system constraints, the model also must not
violate those constraints. To satisfy Assumption 2, a model must be
adopted whose trajectory does not diverge under the optimal policy
of the real system and satisfy the system constraint. It is clear that the
closer the model is to the real system the more likely it is to satisfy
this assumption. This model can be obtained based on offline system
identification. In [23], the authors proposed to use robust MPC in
order to ensure constraint satisfaction. A deeper discussion of these
assumptions can be found in [10] and [16].

VI. NUMERICAL EXAMPLES

A. Non-quadratic stage cost
In this example, we provide a benchmark optimal investment

problem with a non-quadratic stage cost. Consider the following
dynamics and stage cost [24]:

sk+1 = ak , `(s, a) = − ln(Asα − a), (42)
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Fig. 1. The blue area shows all Â and B̂ in the linear model such that
the resulting trajectory and optimal value function remain bounded for
the given optimal policy π?(s) = −K?

γs.

Fig. 2. (Left:) Optimal value functions (Right:) and optimal policy resulting
from the discounted real system and undiscounted MPC scheme with
the wrong model.

where A and 0 < α < 1 are given constants. It is known that for
the discount factor γ, the optimal value and policy functions are
V ?(s) = B + C ln(s) and π?(s) = γαAsα, where [25]:

B =
ln((1− αγ)A) + γα

1−γα ln(αγA)

γ − 1
, C =

α

αγ − 1
. (43)

We then consider a model of the dynamics with ŝk+1 = µâk and,
based on this model, we construct a finite-horizon undiscounted MPC
with the costs according Equation (11) in Theorem 1 and N = 10.
In this example we have considered A = 5, α = 0.34, µ = 0.8 and
γ = 0.9. Figure 2 compares the optimal value and policy functions
from the discounted real system (42) and from the MPC scheme with
a wrong model. As predicted by Theorem 1, one can see that they
match perfectly. Note that the results are valid for every discount
factor 0 < γ < 1, every horizon length and for other values of the
constants A, α, and µ.

B. Inverted pendulum with process noise

We consider the following discrete-time stochastic dynamics,
representing an inverted pendulum with a random support excitation:

sk+1 = sk +

[
sk(2)

( gl + ξ) sin(sk(1))

]
δt+

[
0
δt
ml2

]
ak (44)

where g = 9.81, l = 0.3, m = 0.5 and δt = 0.1 are constants
representing the gravity, mass, length and the sampling time of the
discrete dynamics. Disturbance ξ ∼ U [−0.5, 0.5] has a uniform
distribution and sk := [sk(1), sk(2)]> is the system state and ak
is the system input. We consider `(s,a) = s>s + a2 as a stage
cost with the discount factor γ = 0.95. We first aim to find an
approximate solution for the optimal policy and the optimal value
functions using Dynamic Programming (DP). We consider the state
constraints −1 ≤ sk(1) ≤ 1, −1 ≤ sk(2) ≤ 1 and the input
constraint −0.8 ≤ ak ≤ 0.8. Figure 3 shows the optimal value
function and the optimal policy function resulting from DP for the
discounted infinite-horizon MDP.

We build an undiscounted finite-horizon OCP with a wrong model
in order to capture the optimal value and the optimal policy functions
of the discounted infinite horizon MDP. To do this, we consider an
MPC scheme with a deterministic linearized form of the dynamics as

Fig. 3. Optimal Value (left) and policy (right) functions resulting from
ADP.

Fig. 4. The difference between the MPC based parameterized value
(left)\policy (right) and their optimal solutions for the beginning of the
learning (blue) and after 500 learning steps (red) and the exact cost
modification from theorem 1 (green).

a model of the real system as follows:

ŝk+1 = fθ(ŝk, âk) = ŝk +

[
ŝk(2)
g
θl
ŝk(1)

]
δt+

[
0
δt
mθ2

l

]
âk (45)

where ŝk := [ŝk(1), ŝk(2)]> and âk are the model state and input.
Moreover, we consider an uncertain l with a adjustable parameter θl,
with an initial value 0.25. We consider the parameterized MPC scheme
with the horizon length N = 10 and the following parameterized
quadratic stage and terminal cost:

Tθ(s) = s>Gs, Lθ(s,a) =

[
s
a

]>
H

[
s
a

]
(46)

where G and H are parametric positive definite matrices. Then the
parameters vector θ gathers all the adjustable parameters as θ =
{θl, G, H}. We use the Q-learning method in order to update the
parameters θ to achieve the optimal solutions of the real system and
improve the closed-loop performance. Figure 4 shows the difference
between the MPC value V̂ θN and policy π̂θN functions with their
optimal solutions computed by DP. The blue and red surfaces represent
this difference at the beginning of the learning and after 500 learning
steps, respectively. As it can be seen, the results are getting closer
to zero as the learning proceeds. Note that the stage and terminal
costs yielding a perfect match of V ? and π?, as per Theorem 1,
do not have a quadratic form, hence the selected MPC formulation
cannot capture them exactly. The green surfaces in Figure 4 have been
obtained by computing these stage and terminal costs numerically
and shows the corresponding V̂ ?N − V

? and π̂?N − π
?. As expected

the difference is zero, modulo tiny numerical inaccuracies.
Finally, Figure 5 illustrates the closed-loop performance of the

system under the MPC policy π̂θN . As the closed loop cost decreases,
this demonstrates that RL can be effective in tuning the MPC
parameters so as to achieve the best closed-loop performance.
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Fig. 5. The MPC-based value function V̂ θN (s0) during the learning.

m, l

x

M

u

gφ

Fig. 6. The cart-pendulum system. We use M = 0.5kg, m = 0.2kg,
l = 0.3m and g = 9.8m/s2 for the simulation.

C. Learning based MPC: Tracking stage cost
In this section, we consider the cart-pendulum balancing problem

shown in Figure 6 in order to illustrate the proposed method in a
constrained tracking problem. The dynamics are given by:

(M +m)ẍ+
1

2
mlφ̈ cosφ =

1

2
mlφ̇2 sinφ+ u, (47a)

1

3
ml2φ̈+

1

2
mlẍ cosφ = −1

2
mgl sinφ, (47b)

where M and m are the cart mass and pendulum mass, respectively, l
is the pendulum length and φ is its angle from the vertical axis. Force
u is the control input, x is the cart displacement and g is gravity.
We use the Runge-Kutta 4th-order method to discretize (47) with a
sampling time dt = 0.1s and cast it as s+ = f(s,a) + ξ, where
s = [x, ẋ, φ, φ̇]> is the state, a = u is the input, ξ is a Gaussian
noise and f is a nonlinear function representing (47) in discrete time.
We consider the state constraint x ≥ 0, discount factor γ = 0.95 and
the following MDP stage cost to stabilize the system at the origin
while penalizing the system constraint:

`(s,a) =

[
s
a

]> [
I4 0
0 0.01

] [
s
a

]
+ λmax(−x, 0), (48)

where λ is a large constant value introduced to model the state
constraint as a soft constraint. In the MPC scheme, we use the linear
model s+ = Âs+ B̂a obtained by linearizing f at the origin. We
provide a parametrized quadratic stage and terminal cost and select
prediction horizon N = 20. We use the deterministic policy gradient
method to minimize the performance function J(θ) := Es0 [V̂ θN (s0)],
and we run a simulation for 1000 learning steps of the policy gradient
method. Figure 7 shows the value function over the learning steps
for a fixed initial state. This illustrates that RL successfully manages
to reduce J throughout the iterates, therefore tuning MPC as desired.

Figure 8 shows the states and input trajectories of the real system
corresponding to the 1000th learning step of the policy gradient
method. The MPC scheme with the positive definite stage cost and
other stability conditions in the terminal cost, terminal constraint
is able to deliver the stabilizing policy for the closed-loop system
for the small enough model error [9]. Note that the terminal cost
and constraint conditions can be relaxed for the large enough MPC
horizon [26]. Figure 9 compares the state constraint violation for

Fig. 7. The closed-loop performance of the MPC scheme over RL-steps.

Fig. 8. States and input trajectories of the real system for the last
learning step.

x ≥ 0 in the first and the last (1000th) learning step. As one can see,
RL reduces the state constraint violation. Note that, we have used
a common MPC formulation as (27) in this example. However, one
can use robust MPC to avoid constraint violation as shown in [23].

D. Learning based MPC: Economic stage cost

In this example, we investigate an economic cost in the real system
with bias optimality criterion. We use a parameterized MPC scheme
with a parameterized storage function as a function approximator in
the Q-learning algorithm. Continuously Stirred Tank Reactor (CSTR)
is a common ideal reactor in chemical engineering, usually used for
liquid-phase or multiphase reactions with fairly high reaction rates.
The CSTR nonlinear dynamics can be written as follows (see [27]):

ĊA =
F

VR
(CA0 − CA)− k0e−E/RTC2

A (49)

Ṫ =
F

VR
(T0 − T )− ∆Hk0

ρRCp
e−E/RTC2

A +
q

ρRCpVR
,

where T denotes the temperature of the reactor contents, CA is the
concentration of A in the reactor, F is the flow rate, and q is the
heat rate. The remaining notation definitions and process parameter
values are given in e.g., [28]. Then s = [CA , T ]> and a = [F , q]>

are the state and input of the system, respectively. The input a must
satisfy the following inequality:

[0 , −2e5]> ≤ a ≤ [10 , 2e5]> (50)
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Fig. 9. Violation of the state constraint x ≥ 0 in the first step (red) and
the last step (blue).

Fig. 10. (Left:) The MPC-based value function V̂ θN (s0) during the
learning .(Right:) Convergence of the norm of the parameters during the
Q-learning steps.

An economic stage cost is defined as follows:

`(s,a) = −η F (CA0 − CA)︸ ︷︷ ︸
:=r

+βq (51)

where η and β are positive constants, and r is the production
rate. This cost maximizes the production rate and minimizes the
energy consumption of the production (the second term). We consider
η = 1.7e4 and β = 1 for the simulation. Sampling time 0.02h is
used to discretize the system (49). We use an MPC scheme with
a neural network-based storage function and parameterized stage
cost and terminal cost and we denote the adjustable parameters by
θ. Then we use Q-learning in order to update the parameters θ.
Figure 10 (left) illustrates the value function V̂ θN (s0). It can be seen
that the parameterized value function is decreasing during the learning.
Figure 10 (right) shows the convergence of the parameters.

VII. CONCLUSION

In this paper, we showed that a finite-horizon OCP can capture the
optimal policy and value functions of any MDPs with either discounted
or undiscounted cost even if we use an inexact model in the OCP. We
showed that an MPC scheme can be interpreted as a particular case of
the OCP where we use a deterministic model to avoid computational
complexity. In practice, we proposed the use of a parameterized MPC
scheme to provide a structured function approximator for the RL
techniques. RL algorithms then can be used in order to tune the
MPC parameters to achieve the best closed-loop performance. We
verified the theorems in an LQR case and investigated some nonlinear
examples to illustrate the efficiency of the method numerically.

REFERENCES

[1] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[2] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in Proceedings of the 31st
International Conference on Machine Learning, 2014, p. 387–395.

[3] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approximation,”
in Advances in neural information processing systems, 2000, pp. 1057–
1063.

[4] D. P. Bertsekas, Dynamic programming and optimal control. Athena
scientific Belmont, MA, 1995, vol. 1, no. 2.

[5] W. B. Powell, Approximate Dynamic Programming: Solving the curses
of dimensionality. John Wiley & Sons, 2007, vol. 703.

[6] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[7] D. P. Bertsekas, Approximate dynamic programming. Citeseer, 2008.
[8] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,

“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[9] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control:
theory, computation, and design. Nob Hill Publishing Madison, WI,
2017, vol. 2.

[10] S. Gros and M. Zanon, “Data-driven economic NMPC using Reinforce-
ment Learning,” IEEE Transactions on Automatic Control, vol. 65, no. 2,
pp. 636–648, 2019.

[11] A. B. Kordabad, W. Cai, and S. Gros, “Multi-agent battery storage
management using MPC-based reinforcement learning,” in 2021 IEEE
Conference on Control Technology and Applications (CCTA). IEEE,
2021, pp. 57–62.

[12] A. B. Kordabad, W. Cai, and S. Gros, “MPC-based reinforcement learning
for economic problems with application to battery storage,” in 2021
European Control Conference (ECC). IEEE, 2021, pp. 2573–2578.

[13] H. N. Esfahani, A. B. Kordabad, and S. Gros, “Reinforcement learning
based on MPC/MHE for unmodeled and partially observable dynamics,”
in 2021 American Control Conference (ACC), 2021, pp. 2121–2126.

[14] M. Granzotto, R. Postoyan, L. Buşoniu, D. Nešić, and J. Daafouz, “Finite-
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