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Duality for Nonlinear Filtering II: Optimal Control
Jin W. Kim, Student member, IEEE , and Prashant G. Mehta, Senior member, IEEE

Abstract— This paper is concerned with the develop-
ment and use of duality theory for a nonlinear filtering
model with white noise observations. The main contribu-
tion of this paper is to introduce a stochastic optimal
control problem as a dual to the nonlinear filtering prob-
lem. The mathematical statement of the dual relationship
between the two problems is given in the form of a duality
principle. The constraint for the optimal control problem
is the backward stochastic differential equation (BSDE)
introduced in the companion paper. The optimal control
solution is obtained from an application of the maximum
principle, and subsequently used to derive the equation of
the nonlinear filter. The proposed duality is shown to be an
exact extension of the classical Kalman-Bucy duality, and
different from other types of optimal control and variational
formulations given in literature.

Index Terms— Stochastic systems; Optimal control; Non-
linear filtering.

I. INTRODUCTION

In this paper, we continue the development of duality theory
for nonlinear filtering. While the companion paper (part I)
was concerned with a (dual) controllability counterpart of
stochastic observability, the purpose of this present paper (part
II) is to express the nonlinear filtering problem as a (dual)
optimal control problem. The proposed duality is shown to be
an exact extension of the original Kalman-Bucy duality [1],
[2], in the sense that the dual optimal control problem has the
same minimum variance structure for both linear and nonlinear
filtering problems. Because of its historical importance, we
begin by introducing and reviewing the classical duality for
the linear Gaussian model.

A. Background and literature review
The linear Gaussian filtering model is as follows:

dXt = ATXt dt+ σ dBt, X0 ∼ N(m0,Σ0) (1a)
dZt = HTXt dt+ dWt (1b)

where X := {Xt ∈ Rd : 0 ≤ t ≤ T} is the state process,
the prior N(m0,Σ0) is a Gaussian density with mean m0 ∈
Rd and variance Σ0 � 0, Z := {Zt : 0 ≤ t ≤ T} is the
observation process, and both B := {Bt : 0 ≤ t ≤ T} and
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W := {Wt : 0 ≤ t ≤ T} are Brownian motion (B.M.). It is
assumed that X0, B,W are mutually independent. The model
parameters A ∈ Rd×d, H ∈ Rd×m, and σ ∈ Rd×p.

For this problem, the dual optimal control formulations are
well-understood. These are of following two types:
• Minimum variance optimal control problem:

Minimize
{ut∈Rm:0≤t≤T}

=:u

: J(u) = |y0|2Σ0
+

∫ T

0

yT
t(σσ

T)yt + |ut|2 dt

(2a)

Subject to : − dyt
dt

= Ayt +Hut, yT = f (given)

(2b)

• Minimum energy optimal control problem:

Minimize
{ut∈Rp:0≤t≤T}=:u

m̃0∈Rd

: J(u, m̃0; z) = |m0 − m̃0|2Σ−1
0

+

∫ T

0

|ut|2 + |żt −HTm̃t|2 dt (3a)

Subject to :
dm̃t

dt
= A>m̃t + σut (3b)

where z = {zt ∈ Rm : 0 ≤ t ≤ T} is a given sample path of
observations.

These two types of linear quadratic (LQ) optimal con-
trol problems are known since 1960s and described in [3,
Sec. 7.3.1 and 7.3.2]. Because it is discussed in the seminal
paper [2] of Kalman and Bucy, the minimum variance dual-
ity (2) is also referred to as the Kalman-Bucy duality [4]. The
relationship of the two problems to the model (1) is as follows:
• Minimum variance duality is related to the filtering

problem for the model (1). The optimal control cost (2a)
comes from specifying a minimum variance objective for
estimating the random variable f TXT for f ∈ Rd.

• Minimum energy duality is related to a smoothing prob-
lem for the model (1). The optimal cost (3a) is obtained
from specifying a maximum likelihood (ML) objective
for estimating a trajectory {m̃t : 0 ≤ t ≤ T} given a
sample path {zt : 0 ≤ t ≤ T} of observations.

Their respective solutions are related to (1) as follows:
• The solution of the minimum variance duality (2) is

useful to derive the Kalman filter for (1) [5, Ch. 7.6].
The derivation helps explain why the covariance equation
of the Kalman filter is the same as the differential Ricatti
equation (DRE) of the LQ optimal control. Note however
that the time arrow is reversed: the DRE is solved in
forward time for the Kalman filter. This is because the
constraint (2b) is a backward (in time) ordinary differen-
tial equation (ODE).
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• The solution of the minimum energy duality (3) is a
favorite technique to derive the forward-backward equa-
tions of smoothing for the model (1). The Hamilton’s
equation for (3) is referred to as the Bryson-Frazier
formula [6, Eq. (13.3.4)]. By introducing a DRE, other
forms of solution, e.g., the Fraser-Potter smoother [7,
Eq. (16)-(17)], are possible and useful in practice.

Given this background for the linear Gaussian model (1),
there has been extensive work spanning decades on extending
duality to the problems of nonlinear filtering and smoothing.
The prominent duality type solution approaches in literature
include the following:

• Mortensen’s maximum likelihood estimator (MLE) [8].
• Minimum energy estimator (MEE) in the model predic-

tive control (MPC) literature [9, Ch. 4].
• Log transformation relationship between the Zakai equa-

tion of nonlinear filtering and the Hamilton-Jacobi-
Bellman (HJB) equation of optimal control [10].

• Mitter and Newton’s variational formulation of the non-
linear smoothing problem [11].

In an early work [8], Mortensen considered a slightly more
general version of the linear Gaussian model (1) where the
drift terms in both (1a) and (1b) are nonlinear. Both the
optimal control problem and its forward-backward solution are
straightforward extensions of (3). Since 1960s, closely related
extensions have appeared by different names in different
communities, e.g., maximum likelihood estimation (MLE),
maximum a posteriori (MAP) estimation, and the minimum
energy estimation (MEE) which is discussed next.

Based on the use of duality, the theory and algorithms
developed in the MPC literature are readily adapted to solve
state estimation problems. The resulting class of estimators
is referred to as the minimum energy estimator (MEE) [9,
Ch. 4]. The MEE algorithms are broadly of two types: (i)
Full information estimator (FIE) where the entire history of
observation is used; and (ii) Moving horizon estimator (MHE)
where only a most recent fixed window of observation is
used. An important motivation is to also incorporate additional
constraints in estimator design. Early papers include [12]–
[14] and more recent extensions have appeared in [15]–[18].
A historical survey is given in [9, Sec. 4.7] where Rawlings
et. al. write “establishing duality [of optimal estimator] with
the optimal regulator is a favorite technique for establishing
estimator stability”. Although the specific comment is made
for the Kalman filter, the remainder of the chapter amply
demonstrates the utility of dual constructions for both algo-
rithm design and convergence analysis (as the time-horizon
T → ∞). Convergence analysis typically requires additional
assumptions on the model which in turn has motivated the
work on nonlinear observability and detectability definitions.
A literature survey of these definitions, including the con-
nections to duality theory, appears in the introduction of the
companion paper [19].

While the focus of MEE is on deterministic models, duality
is also an important theme in the study of nonlinear stochastic
systems (hidden Markov models). A key concept is the log
transformation [20]. In [10], the log transformation was used to

transform the Zakai equation into a Hamilton-Jacobi-Bellman
(HJB) equation. Because of this, the negative log of a posterior
density is a value function for some stochastic optimal control
problem (this is how duality is understood in stochastic set-
tings [21, Sec. 4.8]). While the problem itself was not clarified
in [10] (see however [22]), Mitter and Newton introduced a
dual optimal control problem in [11] based on a variational
interpretation of the Bayes’ formula. This work continues to
impact algorithm design which remains an important area of
research [23]–[27]. A notable ensuing contribution appeared
in the PhD thesis-work [28] where Mitter-Newton duality is
used to obtain results on nonlinear filter stability.

Given the importance of duality for the purposes of stability
analysis in both deterministic and stochastic settings of the
problem, it is useful to return to the linear Gaussian model (1)
and compare the two types of duality (2) and (3). An important
point, that has perhaps not been stressed in literature, is that
minimum variance duality (2) is more compatible with the
classical duality between controllability and observability in
linear systems theory. This is because of the following reasons:
• Inputs and outputs. In (2), the control input u has the

same dimension m as the output process while in (3), the
control input u is the dimension n of the process noise.
Evidently, it is natural to view the inputs and outputs as
dual processes that have the same dimension.

• Constraint. If we ignore the noise terms in (1) then the
resulting deterministic state-output system (ẋt = A>xt
and zt = H>xt) shares a dual relationship with the
deterministic state-input system (2b). (It is shown in
part I [19, Sec. III-F] that (2b) is also the dual for the
stochastic system (1)). In contrast, the ODE (3b) is a
modified copy of the model (1a).

• Stability condition. The condition for asymptotic analysis
of (2) is stabilizability of (2b) and by duality detectability
of (AT, HT). The latter is known to be also the appropriate
condition for stability of the Kalman filter. In contrast,
for (3), asymptotic convergence of the optimal m̃T is
possible even with σ = 0. The important condition again
is detectability of (AT, HT) but it is not at all easy to see
from (3).

• Arrow of time. Because the respective DREs are solved
forward (resp. backward) in time for optimal filtering
(resp. control), the arrow of time flips between optimal
control and optimal filtering. Evidently, this is the case for
minimum variance duality (2) but not so for the minimum
energy duality (3): The constraint (2b) is a backward in
time ODE while the constraint (3b) is a modified copy
of the signal model which proceeds forward in time.

All of this suggests that a fruitful approach – for both
defining observability and for using the definition for asymp-
totic stability analysis – is to consider the minimum variance
duality, which naturally begets the following questions:
• What are the appropriate extensions of (2) and (3) for

nonlinear deterministic and stochastic systems?
• What type of duality is implicit in Mitter-Newton’s work?

It is already evident that MEE is an extension of (3).
Both of these questions are answered in the present paper
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(for the white noise observation model). Before discussing
the original contributions, it is noted that the past work
on minimum variance duality has been on refinement and
extensions of the linear model with additional constraints.
In [29], it is used to obtain the solution to a class of
singular regulator problems, and in [30], the Lagrangian dual
for an MEE problem with truncated measurement noise is
considered. Numerical algorithms for (2) and its extensions
appear in [31]–[34]. Prior to our work, it was widely believed
that the nonlinear extension of minimum variance duality is
not possible [4].

B. Summary of original contributions
The main contribution of this paper is to present a minimum

variance dual to the nonlinear filtering problem. As in the
companion paper (part I), the nonlinear filtering problem
is for the HMM with the white noise observation model.
The mathematical statement of the dual relationship between
optimal filtering and optimal control is given in the form of a
duality principle (Thm. 1). The principle relates the value of
the control problem to the variance of the filtering problem.
The classical Kalman-Bucy duality (2) is recovered as a special
case for the linear-Gaussian model (1).

Two approaches are described to solve the optimal control
problem: (i) Based on the use of the stochastic maximum
principle to derive the Hamilton’s equation (Thm. 2); and (ii)
Based on a martingale characterization (Thm. 3). A formula
for the optimal control as a feedback control law is obtained
and used to derive the equation of the optimal nonlinear filter.
Our duality is also related to Mitter-Newton duality with a
side-by-side comparison in Table I.

This paper is drawn from the PhD thesis of the first au-
thor [35]. A prior conference version appeared in [36]. While
the duality principle was already stated in the conference
paper, it relied on a certain assumption [36, Assumption A1]
which has now been proved. Various formulae are stated more
simply, e.g., the use of carré du champ operator to specify
the running cost. Issues related to function spaces have been
clarified to a large extent. While the conference version relied
on the innovation process, the present version directly works
with the observation process. Such a choice is more natural
for the problem at hand. As a result, most of the results
and certainly their proofs are novel. Comparison with Mitter-
Newton duality is also novel.

C. Paper outline
The outline of the remainder of this paper is as follows:

The mathematical model and necessary background appears
in Sec. II. The dual optimal control problem together with the
duality principle and its relation to the linear-Gaussian case is
described in Sec. III. Its solution using the maximum principle
and the martingale characterization appears in Sec. IV and
Sec. V, respectively. Duality-based derivation of the equation
of the nonlinear filter appears in Sec. VI. A comparison with
Mitter-Newton duality is contained in Sec. VII. The paper
closes with some conclusions and directions for future work
in Sec. VIII. All the proof are contained in the Appendix.

II. BACKGROUND

We briefly review the model and the notation as presented
in [19]. Although the presentation is self-contained, it is in an
abbreviated form with a focus on additional new concepts that
are necessary for this paper.

On the probability space (Ω,FT ,P), we consider a pair of
continuous-time stochastic processes (X,Z) as follows:
• The state process X = {Xt : Ω → S : 0 ≤ t ≤ T} is a

Feller-Markov process taking values in the state-space S.
The prior is denoted by µ ∈ P(S) (space of probability
measures) and X0 ∼ µ. The infinitesimal generator is
denoted by A.

• The observation process Z = {Zt : 0 ≤ t ≤ T} satisfies
the stochastic differential equation (SDE):

Zt =

∫ t

0

h(Xs) ds+Wt, t ≥ 0 (4)

where h : S → Rm is referred to as the observation
function and W = {Wt : 0 ≤ t ≤ T} is an m-
dimensional Brownian motion (B.M.). We write W is
P-B.M. It is assumed that W is independent of X .

The above is referred to as the white noise observation model
of nonlinear filtering. The model is denoted by (A, h).

An important additional concept in this paper is the carré
du champ operator Γ defined as follows (see [37]):

(Γf)(x) = (Af2)(x)− 2f(x)(Af)(x), x ∈ S

where f : S→ R is a test function. Explicit formulae for the
most important examples are described next.

A. Guiding examples
Example 1 (Finite state-space): S = {1, 2, . . . , d}. A real-

valued function f is identified with a vector in Rd where the
ith element of the vector is f(i). In this manner, the generator
A of the Markov process is identified with a row-stochastic
rate matrix A ∈ Rd×d (the non-diagonal elements of A are
non-negative and the row sum is zero). The carré du champ
operator Γ : Rd → Rd is as follows:

(Γf)(i) =
∑
j∈S

A(i, j)(f(i)− f(j))2, i ∈ S (5)

Example 2 (Euclidean state-space): S = Rd. The Markov
process X is an Itô diffusion modeled using a stochastic
differential equation (SDE):

dXt = a(Xt) dt+ σ(Xt) dBt, X0 ∼ µ

where a ∈ C1(Rd;Rd) and σ ∈ C2(Rd;Rd×p) satisfy appro-
priate technical conditions such that a strong solution exists for
[0, T ], and B = {Bt : 0 ≤ t ≤ T} is a standard B.M. assumed
to be independent of X0 and W . In the Euclidean case, all
the measures are identified with their density. In particular, we
use the notation µ to denote the probability density function
of the prior.

The infinitesimal generator A acts on C2(Rd;R) functions
in its domain according to [38, Thm. 7.3.3]

(Af)(x) := aT(x)∇f(x) + 1
2 tr
(
σσT(x)(D2f)(x)

)
, x ∈ Rd
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where ∇f is the gradient vector and D2f is the Hessian
matrix. For f ∈ C1(Rd;R), the carré du champ operator is
given by

(Γf)(x) =
∣∣σT(x)∇f(x)

∣∣2, x ∈ Rd (6)

Example 3 (Linear Gaussian model): The model (1) intro-
duced in Sec. I is a special case of Itô diffusion where the drift
terms are linear a(x) = ATx and h(x) = HTx, the coefficient
of the process noise σ(x) = σ is a constant matrix, and the
prior µ is a Gaussian density. A real-valued linear function is
expressed as

f(x) = f̃ Tx, x ∈ Rd

where f̃ ∈ Rd. Then Af is also a linear function given by(
Af
)
(x) = (Af̃)Tx, x ∈ Rd

and Γf is a constant function given by(
Γf
)
(x) = f̃ T

(
σσT
)
f̃ , x ∈ Rd (7)

B. Background on nonlinear filtering
The canonical filtration Ft = σ

(
{(Xs,Ws) : 0 ≤ s ≤

t}
)
. The filtration generated by the observation is denoted by

Z := {Zt : 0 ≤ t ≤ T} where Zt = σ
(
{Zs : 0 ≤ s ≤ t}

)
.

A standard approach is based upon the Girsanov change of
measure. Suppose the model satisfies the Novikov’s condition:
E
(

exp
(

1
2

∫ T
0
|h(Xt)|2 dt

))
<∞. Define a new measure P̃ on

(Ω,FT ) as follows:

dP̃

dP
= exp

(
−
∫ T

0

hT(Xt) dWt− 1
2

∫ T

0

|h(Xt)|2 dt
)

=: D−1
T

Then it is shown that the probability law for X is unchanged
but Z is a P̃-B.M. that is independent of X [28, Lem. 1.1.5].
The expectation with respect to P̃ is denoted by Ẽ(·).

The two probability measures are used to define the un-
normalized and the normalized (or nonlinear) filter are as
follows: For 0 ≤ t ≤ T and f ∈ Cb(S),

(un-normalized filter) σt(f) := Ẽ
(
Dtf(Xt)|Zt

)
(nonlinear filter) πt(f) := E

(
f(Xt)|Zt

)
As the name suggests, πt(f) = σt(f)

σt(1) which is referred to as
the Kallianpur-Striebel formula [39, Thm. 5.3] (here 1 is the
constant function 1(x) = 1 for all x ∈ S). Combining the
tower property of conditional expectation with the change of
measure gives

E(f(Xt)) = E(πt(f)) = Ẽ(σt(f)) (8)

C. Function spaces
The notation L2

ZT
(Ω;Rm) and L2

Z
(
[0, T ];Rm

)
is used to

denote the Hilbert space of ZT -measurable random vector
and Z-adapted stochastic process, respectively. These Hilbert
spaces suffice if the state-space is finite. In general settings,
let Y denote a suitable Banach space of real-valued functions
on S, equipped with the norm ‖ · ‖Y . Then
• For a random function, the Banach space L2

ZT
(Ω;Y) :={

F : Ω→ Y : F is ZT -measurable, Ẽ
(
‖F‖2Y

)
<∞

}
.

• For a function-valued stochastic process, the Banach
space is L2

Z([0, T ];Y) :=
{
Y : Ω × [0, T ] → Y :

Y is Z-adapted, Ẽ
( ∫ T

0
‖Yt‖2Y dt

)
<∞

}
.

In the remainder of this paper, we set Y := Cb(S) (the space
of continuous and bounded functions) equipped with the sup-
norm. The dual space M(S) (the space of rba measures) is
denoted by Y† where the duality pairing 〈f, ρ〉 = ρ(f) for
f ∈ Y and ρ ∈ Y†.

III. MAIN RESULT: THE DUALITY PRINCIPLE

A. Problem statement
For a function F ∈ L2

ZT

(
Ω;Y

)
, the nonlinear filter πT (F )

is the minimum variance estimate of F (XT ) [3, Sec. 6.1.2]:

πT (F ) = argmin
ST∈L2

ZT
(Ω;R)

E
(
|F (XT )− ST |2

)
(9)

Our goal is to express the above minimum variance optimiza-
tion problem as a dual optimal control problem.

The conditional variance is denoted by

VT (F ) := E
(
|F (XT )−πT (F )|2|ZT

)
= πT (F 2)−

(
πT (F )

)2
For notational ease, the expected value of the conditional
variance is denoted by

varT (F ) := E
(
VT (F )

)
Strictly speaking, the above is variance only at time T =
0. However, the verbiage is consistent with the “minimum
variance” interpretation of the nonlinear filter.

B. Dual optimal control problem
The function space of admissible control inputs is denoted

by U := L2
Z
(
[0, T ];Rm

)
. An element of U is denoted U =

{Ut : 0 ≤ t ≤ T}. It is referred to as the control input. The
main contribution of this paper is the following problem.
• Minimum variance optimal control problem:

Minimize:
U∈ U

JT (U) = var0(Y0) + E
(∫ T

0

l(Yt, Vt, Ut ;Xt) dt
)

(10a)
Subject to (BSDE constraint):

− dYt(x) =
(
(AYt)(x) + h(x)(Ut + Vt(x))

)
dt− V T

t (x) dZt

YT (x) = F (x), x ∈ S (10b)

where the running cost

l(y, v, u;x) := (Γy)(x) + |u+ v(x)|2

and var0(Y0) = E(|Y0(X0)− µ(Y0)|2) = µ(Y 2
0 )− µ(Y0)2.

Remark 1: The BSDE (10b) is introduced in the companion
paper (part I) as the dual control system. The data for the
BSDE is the given terminal condition F ∈ L2

ZT

(
Ω;Y

)
and

the control input U ∈ U . The solution of the BSDE is the pair
(Y, V ) = {(Yt, Vt) : 0 ≤ t ≤ T} ∈ L2

Z
(
[0, T ];Y × Ym

)
which is (forward) adapted to the filtration Z . Existence,
uniqueness, and regularity theory for linear BSDEs is standard
and throughout the paper, we assume that the solution of
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BSDE (Y, V ) is uniquely determined in L2
Z
(
[0, T ];Y × Ym

)
for each given YT ∈ L2

ZT
(Ω;Y) and U ∈ L2

Z
(
[0, T ];Rm

)
.

The well-posedness results for finite state-space can be found
in [40, Ch. 7] and for the Euclidean state space in [41].

The relationship of (10) to the minimum variance objec-
tive (9) is given the following theorem.

Theorem 1 (Duality principle): For any admissible control
U ∈ U , consider an estimator

ST := µ(Y0)−
∫ T

0

U T
t dZt (11)

Then
JT (U) = E

(
|F (XT )− ST |2

)
(12)

Proof: See Appendix A.

The problem (10) is a stochastic linear quadratic optimal
control problem for which there is a well established existence-
uniqueness theory for the optimal control solution. Application
of this theory is the subject of the following section. For now,
we assume that the optimal control is well-defined and denote
it as U (opt) = {U (opt)

t : 0 ≤ t ≤ T}. Because the right-hand
side of the identity (12) is bounded below by varT (F ), the
duality gap

JT (U (opt))− varT (F ) ≥ 0

In order to conclude that the duality gap is zero, it is both
necessary and sufficient to show that there exists a U ∈ U
such that the estimator ST , as given by (11), equals πT (F ).
Since Z is a P̃-B.M., the following lemma is a consequence
of the Itô representation theorem for Brownian motion [38,
Thm. 4.3.3].

Lemma 1: For any F ∈ L2
ZT

(Ω;Y), there exists a unique
U ∈ U such that

πT (F ) = Ẽ
(
πT (F )

)
−
∫ T

0

U T
t dZt, P̃-a.s.

Proof: See Appendix B.

Because the duality gap is zero, the following implications
are to be had:

• The optimal control U (opt) gives the conditional mean

πT (F ) = µ(Y0)−
∫ T

0

(
U (opt)
t

)T
dZt, P-a.s.

• The optimal value is the expected value of the conditional
variance

varT (F ) = var0(Y0) + E
(∫ T

0

l(Yt, Vt, U
(opt)
t ;Xt) dt

)
where (Y, V ) is the optimally controlled stochastic pro-
cess obtained with U = U (opt) in (10b).

In fact, these two implications carry over to the entire
optimal trajectory.

Proposition 1: Suppose U (opt) is the optimal control input
and that (Y, V ) is the associated solution of the BSDE (10b).
Then for almost every 0 ≤ t ≤ T ,

πt(Yt) = µ(Y0)−
∫ t

0

(
U (opt)
s

)T
dZs, P-a.s. (13)

vart(Yt) = var0(Y0) + E
(∫ t

0

l(Ys, Vs, U
(opt)
s ;Xs) ds

)
(14)

Proof: See Appendix C.

Consequently, the expected value of the conditional variance
is the optimal cost-to-go (for a.e. 0 ≤ t ≤ T ). We do
not yet have a formula for the optimal control U (opt). The
difficulty arises because there is no HJB equation for BSDE-
constrained optimal control problem. Instead, the literature on
such problem utilizes the stochastic maximum principle for
BSDE which is the subject of the next section. Before that,
we discuss the linear Gaussian case.

C. Linear Gaussian case

The goal is to show that the classical Kalman-Bucy dual-
ity (2) described in Sec. I for the linear Gaussian model (1)
is a special case. Consider a linear function F (x) = f Tx
where f ∈ Rd is a given deterministic vector. The problem
is to compute a minimum variance estimate of the scalar
random variable f TXT . It is given by E(f TXT |ZT ). Now, it
is a standard result in the theory of Gaussian processes that
conditional expectation can be evaluated in the form of a linear
predictor [42, Cor. 1.10]. For this reason, it suffices to consider
an estimator of the form

ST := b−
∫ T

0

uT
t dZt

where b ∈ R and u = {ut ∈ Rm : 0 ≤ t ≤ T} are both
deterministic (the lower case notation is used to stress this).
Consequently, for linear Gaussian estimation, we can restrict
the admissible space of control inputs to L2

(
[0, T ];Rm

)
which

is a much smaller subspace of L2
Z
(
[0, T ];Rm

)
. Using a de-

terministic control u, and the terminal condition F (x) = f Tx,
the solution of the BSDE is given by

Yt(x) = yT
tx, Vt(x) = 0, x ∈ Rd, 0 ≤ t ≤ T

where y = {yt ∈ Rd : 0 ≤ t ≤ T} is a solution of the
backward ODE:

− dyt
dt

= Ayt +Hut, yT = f

Using the formula (7) for the carré du champ, the running cost

l(Yt, Vt, Ut;Xt) = (ΓYt)(Xt) + |Ut + Vt(Xt)|2

= yT
t(σσ

T)yt + |ut|2

With the Gaussian prior, the initial cost var0(y0) = yT
0Σ0y0.

Combining all of the above, the optimal control problem (10)
reduces to (2) for the linear Gaussian model (1).

Remark 2: The solution of the optimal control problem
yields the optimal control input u(opt) = {u(opt)

t : 0 ≤ t ≤ T},
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along with the vector y0 ∈ Rd that determines the minimum-
variance estimator:

ST = µ(yT
0x)−

∫ T

0

(
u(opt)
t

)T
dZt = yT

0m0 −
∫ T

0

(
u(opt)
t

)T
dZt

The Kalman filter is obtained by expressing {St(f) : t ≥
0, f ∈ Rd} as the solution to a linear SDE [5, Ch. 7.6].

IV. SOLUTION OF THE OPTIMAL CONTROL PROBLEM

The BSDE constrained optimal control problem (10) is not
in its standard form [43, Eq. 5.10]. There are two issues:
• The probability space: The driving martingale of the

BSDE (10b) is Z, which is a P̃-B.M. However, the
expectation in defining the optimal control objective (10a)
is with respect to the measure P.

• The filtration: The ‘state’ of the optimal control prob-
lem (Y, V ) is adapted to the filtration Z . However, the
cost function (10a) also depends upon the non-adapted
exogenous process X .

The second problem is easily fixed by using the tower prop-
erty of conditional expectation. To resolve the first problem,
we have two choices:

1) Use the change of measure to evaluate JT (U) with
respect to P̃ measure, or

2) Express the BSDE using a driving martingale that is
a P-B.M. A convenient such process is the innovation
process.

In this paper, the standard form of the dual optimal control
problem is presented based on the first choice. For an analysis
based on the second choice, see [36] and [35, Sec. 5.5].

In order to express the expectation for the control objec-
tive (10a) with respect to P̃, we use the change of measure
(see Appendix D for the calculation) to obtain

JT (U) = var0(Y0) + Ẽ
(∫ T

0

`(Yt, Vt, Ut;σt) dt
)

where the Lagrangian ` : Y ×Ym×Rm×Y† → R is defined
by

`(y, v, u; ρ) = ρ
(
Γy
)

+ ρ
(
|u+ v|2

)
(15)

The dual optimal control problem (standard form) is now
expressed as follows:

Minimize
U∈U

JT (U) = var0(Y0) + Ẽ
(∫ T

0

`(Yt, Vt, Ut;σt) dt
)

(16a)
Subject to:

− dYt(x) =
(
(AYt)(x) + hT(x)(Ut + Vt(x))

)
dt− V T

t (x) dZt

YT (x) = F (x), x ∈ S (16b)

Remark 3: The Lagrangian is a time-dependent random
functional of the dual state (y, v) and the control u. The
randomness and time-dependency comes only from the last
argument σt.

A. Solution using the maximum principle
Because y ∈ Y is a function, the co-state p ∈ Y† is a

measure. The Hamiltonian H : Y×Ym×Rm×Y†×Y† → R
is defined as follows:

H(y, v, u, p; ρ) = −p
(
Ay + hT(u+ v)

)
− `(y, v, u; ρ)

In the following, the Hamilton’s equations for the optimal
trajectory are derived by an application of the maximum
principle for BSDE constrained optimal control problems [44,
Thm. 4.4].

The Hamilton’s equations are expressed in terms of the
derivatives of the Hamiltonian. In order to take derivatives
with respect to functions and measures, we adopt the notion
of Gâteaux differentiability. Given a nonlinear functional F :
Y → R, the Gâteaux derivative Fy(y) ∈ Y† is obtained from
the defining relation [3, Sec. 10.1.3]:

d

dε
F (y + εỹ)

∣∣∣
ε=0

=
〈
ỹ, Fy(y)

〉
, ∀ ỹ ∈ Y

For the problem at hand, the derivatives of the Hamiltonian
are as follows:

Hy(y, v, u, p; ρ) = −A†p−
(
ρ(Γy)

)
y

Hv(y, v, u, p; ρ) = −ph− 2(u+ v)ρ

Hu(y, v, u, p; ρ) = −p(h)− 2ρ(1)u− 2ρ(v)

Hp(y, v, u, p; ρ) = −Ay − hT(u+ v)

where A† is the adjoint of A (whereby (A†ρ)(f) = ρ(Af)
for all f ∈ Y, ρ ∈ Y†). Using this notation, the Hamilton’s
equations are as follows:

Theorem 2: Consider the optimal control problem (16).
Suppose U (opt) is the optimal control input and the (Y, V ) is
the associated solution of the BSDE (16b). Then there exists a
Z-adapted measure-valued stochastic process P = {Pt : 0 ≤
t ≤ T} such that

dPt = −Hy(Yt, Vt, U
(opt)
t , Pt;σt) dt

−HT
v(Yt, Vt, U

(opt)
t , Pt;σt) dZt (17a)

dYt = Hp(Yt, Vt, U (opt)
t , Pt;σt) dt+ Vt dZt (17b)

dP0

dµ
(x) = 2

(
Y0(x)− µ(Y0)

)
, YT (x) = F (x), x ∈ S

(17c)

where the optimal control is given by

U (opt)
t = −1

2

Pt(h)

σt(1)
− πt(Vt), P̃-a.s., 0 ≤ t ≤ T (18)

(In (17c), dP0

dµ denotes the R-N derivative of the measure P0

with respect to the measure µ0).

Proof: See Appendix E.

Remark 4: From linear optimal control theory, it is known
that Pt is related to Yt by a (Zt-measurable) linear trans-
formation [40, Sec. 6.6]. The boundary condition dP0

dµ (x) =

2
(
Y0(x)− µ(Y0)

)
suggests that the R-N derivative

dPt
dσt

(x) = 2
(
Yt(x)− πt(Yt)

)
, P̃-a.s., 0 ≤ t ≤ T, x ∈ S

(19)
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This is indeed the case as we show in Appendix F by verifying
that (19) solves the Hamilton’s equation. Combining this
formula with (18), we have a formula for optimal control input
as a feedback control law:

U (opt)
t = −

(
πt(hYt)− πt(h)πt(Yt)

)
− πt(Vt), 0 ≤ t ≤ T

B. Explicit formulae for the guiding examples

Example 4 (Finite state-space): (Continued from Exam-
ple 1). A real-valued function f (resp. a measure ρ) is
identified with a column vector in Rd where the ith element
of the vector represents f(i) (resp. ρ(i)), and ρ(f) = ρTf . In
this manner, the generator A is identified with a rate matrix
A ∈ Rd×d and the observation function h is identified with a
matrix H ∈ Rd×m. Let {e1, e2, . . . , ed} denote the canonical
basis in Rd, Q(i) =

∑
j∈SA(i, j)(ei − ej)(ei − ej)

T and
ρ(Q) =

∑
i∈S ρ(i)Q(i). For any vector b ∈ Rd, B = diag(b)

is a d× d diagonal matrix whose diagonal entires are defined
as B(i, i) = b(i) for i = 1, 2, . . . , d. For a d × d matrix B,
b = diag†(B) is a d-dimensional vector whose entries are
defined as b(i) = B(i, i) for i = 1, 2, . . . , d.

The Lagrangian ` : Rd × Rd×m × Rm × Rd → R and the
Hamiltonian H : Rd × Rd×m × Rm × Rd × Rd → R are as
follows:

`(y, v, u; ρ) = yTρ(Q)y + ρ(1)|u|2 + 2uTvρ+ ρT diag†(vvT)

H(y, v, u, p; ρ) = −pT(Ay +Hu+ diag†(HvT))− `(y, v, u; ρ)

The functional derivatives are now the partial derivatives. For
the Hamiltonian, these are as follows:

Hy(y, v, u, p; ρ) = −ATp− 2ρ(Q)y

Hv(y, v, u, p; ρ) = −diag(p)H − 2ρuT − 2 diag(ρ)v

Hu(y, v, u, p; ρ) = −HTp− 2ρ(1)u− 2vTρ

Hp(y, v, u, p; ρ) = −Ay −Hu− diag†(HvT)

The Hamilton’s equations are given by

dPt =
(
ATPt + 2σt(Q)Yt

)
dt

+
(

diag(Pt)H + 2σtU
T
t + 2 diag(σt)Vt

)
dZt

dYt = −
(
AYt +HUt + diag†(HV T

t )
)

dt+ Vt dZt

P0 = 2Σ0Y0, YT = F

where Σ0 := diag(µ)− µµ>.

Example 5 (Euclidean state-space): (Continued from Ex-
ample 2). We consider the Itô diffusion (2) in Rd with a prior
density denoted as µ. Likewise, ρ and p are used to denote the
density of the respective measures. Doing so, the Lagrangian
and the Hamiltonian are as follows:

`(y, v, u; ρ) =

∫
Rd

ρ(x)
(
|σT(x)∇y(x)|2 + |u+ v(x)|2

)
dx

H(y, v, u, p; ρ) = −
∫
Rd

p(x)
(
Ay(x) + hT(x)(u+ v(x))

)
dx

− `(y, v, u; ρ)

The functional derivatives are computed by evaluating the first
variation. These are as follows:

Hy(y, v, u, p; ρ) = −A†p+ 2∇ ·
(
σσT(∇y)ρ

)
Hv(y, v, u, p; ρ) = −ph− 2(u+ v)ρ

Hu(y, v, u, p; ρ) = −p(h)− 2ρ(1)u− 2ρ(v)

Hp(y, v, u, p; ρ) = −Ay − hT(u+ v)

where ρ(v) is now understood to mean
∫
ρ(x)v(x) dx and the

formula for adjoint is

(A†p)(x) = −∇ · (ap)(x) + 1
2

d∑
i,j=1

∂2

∂xi∂xj

(
[σσT]ijp

)
(x)

Therefore, the Hamilton’s equations are given by

dPt(x) =
(
(A†Pt)(x)− 2∇ ·

(
σσT(∇Yt)σt

)
(x)
)

dt

+
(
Pt(x)h(x) + 2(Ut + Vt(x))σt(x)

)
dZt

dYt(x) = −
(
AYt + hT(x)(Ut + Vt(x))

)
dt+ V T

t (x) dZt

P0(x) = 2µ(x)
(
Y0(x)− µ(Y0)

)
, YT (x) = F (x), x ∈ Rd

where note that Pt is now a (random) function (same as Yt).

V. MARTINGALE CHARACTERIZATION

Although we do not have an HJB equation, a martingale
characterization of the optimal solution is possible as described
in the following theorem:

Theorem 3: Fix U ∈ U . Consider a Z-adapted real-valued
stochastic process M = {Mt : 0 ≤ t ≤ T}

Mt := Vt(Yt)−
∫ t

0

`(Ys, Vs, Us;πs) ds, 0 ≤ t ≤ T

where (Y, V ) is the solution to the BSDE (10b) and π is the
nonlinear filter. Then M is a P-supermartingale, and M is a
P-martingale if and only if

Ut = −
(
πt(hYt)− πt(h)πt(Yt)

)
− πt(Vt) (20)

for 0 ≤ t ≤ T , P-a.s..

Proof: See Appendix G.

A direct consequence of Thm. 3 is the optimality of the
control (20), because

E(MT ) ≤ E(M0)

which means

E
(
VT (F )

)
≤ E

(
V0(Y0) +

∫ T

0

`(Yt, Vt, Ut;πt) dt
)

= JT (U)

with equality if and only if U = U (opt). Therefore, the expected
value of the conditional variance varT (F ) = E

(
VT (F )

)
is the

optimal value functional for the optimal control problem.

Remark 5: We now have a complete solution of the opti-
mal control problem (10). Remarkably, the solution admits a
meaningful interpretation not only at the terminal time T but
also for intermediate times 0 ≤ t ≤ T . At time t,
• The optimal value functional is vart(Yt) (formula (14)).
• The optimal control U (opt)

t is a feedback control law (20).
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• The optimal estimate is πt(Yt) (formula (13)).
Formula (13) for πt(Yt) explicitly connects the optimal control
to the optimal filter. In particular, the optimal control up to
time t yields an optimal estimate of Yt(Xt).

Because of the BSDE constrained nature of the optimal con-
trol problem (10), an explicit characterization of the optimal
value functional and the feedback form of the optimal control
are both welcome surprises. It is noted that the feedback
formula (20) for the optimal control is derived using two
approaches: using the maximum principle (Rem. 4) and using
the martingale characterization (Thm. 3).

VI. DERIVATION OF THE NONLINEAR FILTER

From Prop. 1, using the formula (20) for optimal control

πt(Yt) = µ(Y0)+

∫ t

0

(
πt(hYs)−πs(h)πs(Ys)+πs(Vs)

)T
dZs

(21)
for 0 ≤ t ≤ T , P-a.s.. Because the equation for Y is known, a
natural question is whether (21) can be used to obtain the
equation for nonlinear filter (akin to the derivation of the
Kalman filter described in Rem. 2). A formal derivation of
the nonlinear filter along these lines is given in Appendix H.

VII. COMPARISON WITH MITTER-NEWTON DUALITY

A. Review of Mitter-Newton duality
In [11], Mitter and Newton introduced a modified version

of the Markov process X . The modified process is denoted by
X̃ := {X̃t : 0 ≤ t ≤ T}. The problem is to pick (i) the initial
prior µ̃; and (ii) the state transition, such that the probability
law of X̃ equals the conditional law for X .

This is accomplished by setting up an optimization problem
on the space of probability laws. Let PX denote the law for
X , Q denote the law for X̃ , and PX|z denote the conditional
law for X given an observation sample path z = {zt ∈ Rm :
0 ≤ t ≤ T}. Assuming Q� PX , the objective function is the
relative entropy between Q and PX|z:

min
Q

EQ

(
log

dQ

dPX

)
− EQ

(
log

dPX|z
dPX

)
(22)

In [28], (22) is referred to as the variational Kallianpur-Striebel
formula. For Example 2 (Itô diffusion), this procedure yields
the following stochastic optimal control problem:

Min
µ̃, U

: J(µ̃, U ; z)

= E
(

log
dµ̃

dµ
(X̃0)− zTh(X̃T ) +

∫ T

0

l(X̃t, Ut ; zt) dt
)

(23a)

Subj. : dX̃t = a(X̃t) dt+ σ(X̃t)(Ut dt+ dB̃t), X̃0 ∼ µ̃
(23b)

where

l(x, u ; zt) := 1
2 |u|

2 + 1
2h

2(x) + zt(Auh)(x)

where Au is the generator of the controlled Markov process
X̃ . A similar construction is also possible for Example 1 (finite
state-space) [28, Sec. 2.2.2], [45, Sec. 3.3].

The problem (23) is a standard stochastic optimal control
problem whose solution is obtained by writing the HJB
equation (see [45]),

−∂vt
∂t

(x) =
(
A(vt + zth)

)
(x) + 1

2h
2(x)

− 1
2 |σ

T∇(vt + zth)(x)|2

vT (x) = −zTh(x), x ∈ Rd

and the optimal control Ut = u(opt)
t (X̃t) where

u(opt)
t (x) = −σT∇(vt + zth)(x)

By expressing the value function

vt(x) = − log
(
qt(x)ezth(x)

)
a direct calculation shows that the process {qt : 0 ≤ t ≤ T}
satisfies the backward Zakai equation of the smoothing prob-
lem [46], [47, Thm. 3.8]. This shows the connection to both the
log transformation and to the smoothing problem. In fact, the
above can be used to derive the forward-backward equations
of nonlinear smoothing (see [45] and [35, Appdx. B]).

Remark 6: The stochastic optimal control problem (23) is
equivalently stated as a deterministic optimal control problem
on Y† [45, Sec. 3.2]. Note that the optimal control problem
depends on a (fixed) observation sample path z, which is the
reason why a deterministic formulation is available.

B. Linear Gaussian case

The goal is to relate (23) to the minimum energy duality (3)
described in Sec. I for the linear Gaussian model (1). In the
linear Gaussian case, the controlled process (23b) becomes

dX̃t = ATX̃t dt+σUt dt+σ dB̃t, X̃0 ∼ N(m̃0, Σ̃0) (24)

where U , m̃0, Σ̃0 are decision variables. Because the problem
is linear Gaussian, it suffices to consider a linear control law
of the form

Ut = Kt(X̃t − m̃t) + ut (25)

where m̃t := E(X̃t) and the two deterministic processes

K = {Kt ∈ Rp×d : 0 ≤ t ≤ T}
u = {ut ∈ Rp : 0 ≤ t ≤ T}

are the new decision variables. With a linear control law (25),
the state X̃t is a Gaussian random variable with mean m̃t

and variance Σ̃t. It is possible to equivalently express (23) as
two un-coupled deterministic optimal control problems, for the
mean and for the variance, respectively. Detailed calculations
showing this are contained in Appendix I. In particular, it is
shown that the optimal control problem for the mean is the
classical minimum energy duality (3).
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TABLE I
COMPARISON OF THE MITTER-NEWTON DUALITY AND THE DUALITY PROPOSED IN THIS PAPER

Mitter-Newton duality Duality proposed in this paper

Filtering/smoothing objective Minimize relative entropy (Eq. (22)) Minimize variance (Eq. (9))

Observation (output) process Pathwise (z is a sample path) Z is a stochastic process

Control (input) process Ut has the dimension of the process noise U and Z are both elements of L2
Z([0, T ];Rm)

Dual optimal control problem Eq. (23) Eq. (10)

Arrow of time Forward in time Backward in time

Dual state-space S: same as the state-space for Xt Y: the space of functions on S

Constraint Controlled copy of the state process SDE (23a) Dual control system BSDE (10b)

Running cost (Lagrangian) l(x, u ; zt) = 1
2 |u|

2 + 1
2h

2(x) + zt(Auh)(x) l(y, v, u;x) = (Γy)(x) + |u + v(x)|2

Value function (its interpretation) Minus log of the posterior density Expected value of the conditional variance

Asymptotic analysis (condition) Unclear Stabilizability of BSDE ⇔ Detectability of HMM

Optimal solution gives Forward-backward equations of smoothing Equation of nonlinear filtering

Linear-Gaussian special case Minimum energy duality (3) Minimum variance duality (2)

C. Comparison
Table I provides a side-by-side comparison of the two types

of duality:
• Mitter-Newton duality (23) on the left-hand side; and
• Duality (10) proposed in this paper on the right-hand side.

In Sec. VII-B and Sec. III-C, the two are shown to be
generalization of the classical minimum energy duality (3)
and the minimum variance duality (2), respectively. All of this
conclusively answers the two questions raised in Sec. I.

We make a note of some important distinctions (compare
with the bulleted list in Sec. I):
• Inputs and outputs. In proposed duality (10), inputs and

outputs are dual processes that have the same dimension.
These are element of the same Hilbert space U .

• Constraint. The constraint is the dual control sys-
tem (10b) studied in the companion paper (part I).

• Stability condition. For asymptotic analysis of (10), sta-
bilizability of the constraint is the most natural condition.
The main result of part I was to establish that stabiliz-
ability of the dual control system is equivalent to the
detectability of the HMM. The latter condition of course
is central to filter stability.

• Arrow of time. The dual control system is backward in
time. However, it is important to note that the information
structure (filtration) is forward in time. In particular, all
the processes are forward adapted to the filtration Z
defined by the observation process.

A major drawback of the proposed duality is that the problem
(for the Euclidean state-space S = Rd) is infinite-dimensional.
This is to be expected because the nonlinear filter is infinite-
dimensional. In contrast, the state space in the minimum

energy duality is Rd which is important for algorithm design
as in MEE. Having said that, the linear quadratic nature of
the infinite-dimensional problem may prove to be useful in
practical applications of this work.

VIII. CONCLUSIONS AND DIRECTIONS OF FUTURE WORK

In this paper, we presented the minimum variance dual op-
timal control problem for the nonlinear filtering problem. The
mathematical relationship between the two problems is given
by a duality principle. Two approaches are described to solve
the problem, based on maximum principle and based on a
martingale characterization. A formula for the optimal control
as a feedback control law is obtained, and used to derive the
equation of the nonlinear filter. A detailed comparison with
the Mitter-Newton duality is given.

There are several possible directions of future research: An
important next step is to use the controllability and stabiliz-
ability definitions of the dual control system to recover the
known results in filter stability. Research on this has already
begun with preliminary results appearing in [35, Chapter 7-8]
and [48], [49]. Although some sufficient conditions have been
obtained and compared with literature, a complete resolution
still remains open.

Both the stability analysis and the optimal control formu-
lation suggest natural connections to the dissipativity theory.
Because the dual control system is linear, one might consider
quadratic forms of supply rate function as follows (compare
with the formula for the running cost l):

s(y, v, u;x) := γ|u+ v(x)|2 − |y(x)− ct|2
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where γ > 0 and c := {ct : 0 ≤ t ≤ T} ∈ L2
Z
(
[0, T ];R

)
is a

suitable stochastic process (which can be picked). Establishing
conditions for existence of a storage function and relating these
conditions to the properties of the HMM may be useful for
stability and robustness analysis.

Another avenue is numerical approximation of the nonlinear
filter by considering sub-optimal solutions of the dual optimal
control problem. The simplest choice is to consider determin-
istic control inputs U ∈ L2

(
[0, T ];Rm

)
. Some preliminary

work on algorithm design along these lines appears in [36,
Rem. 1], [35, Sec. 9.2] and [50, Ch. 4]. In particular for the
finite state space case, this approach provides derivation and
justification of Kalman filter for Markov chains [51]. In this
regard, it is useful to relate duality to both the feedback particle
filter (FPF) [52] and to the special cases (apart from the linear
Gaussian case) where the optimal filter is known to be finite-
dimensional, e.g. [53].
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APPENDIX

A. Proof of Thm. 1
For a Markov process, the following process is a martingale:

Nt(g) = g(Xt)−
∫ t

0

Ag(Xs) ds

Upon applying the Itô-Wentzell theorem [54, Thm. 1.17] on
Yt(Xt) (note here that all stochastic processes are forward
adapted),

dYt(Xt) = −U T
t dZt +

(
Ut + Vt(Xt)

)T
dWt + dNt(Yt)

Integrating both sides from 0 to T ,

F (XT ) = Y0(X0)−
∫ T

0

U T
t dZt

+

∫ T

0

(Ut + Vt(Xt))
T dWt +

∫ T

0

dNt(Yt)

Consider now an estimator

ST = b−
∫ T

0

U T
t dZt

where b ∈ R is a deterministic constant. Then

F (XT )− ST =
(
Y0(X0)− b

)
+

∫ T

0

(Ut + Vt(Xt))
T dWt

+

∫ T

0

dNt(Yt)

The left-hand side is the error of the estimator. The three terms
on the right-hand side are mutually independent. Therefore,
upon squaring and taking an expectation

E
(
|F (XT )− ST |2

)
= E

(
|Y0(X0)− µ(Y0)|2

)
+ (µ(Y0)− b)2

+E
(∫ T

0

|Ut + Vt(Xt)|2 + (ΓYt)(Xt) dt
)

The proof is completed by setting b = µ(Y0).

B. Proof of Lemma 1

Because Z is a P̃-B.M., the formula holds for πT (F ) ∈
L2
ZT

(Ω;R) by the Brownian motion representation theo-
rem [42, Thm. 5.18]. Note that

|πT (F )|2 ≤ ‖F‖2Y , P̃-a.s.

because ‖ · ‖Y is the sup norm. Therefore if F ∈ L2
ZT

(Ω;Y)
then πT (F ) ∈ L2

ZT
(Ω;R). The conclusion follows.

C. Proof of Prop. 1

Using optimal control U (opt) = {U (opt)
t : 0 ≤ t ≤ T} ∈ U ,

(Y, V ) = {(Yt, Vt) : 0 ≤ t ≤ T} ∈ L2
Z
(
[0, T ];Y ×Ym

)
is the

solution of the BSDE (10b) with YT = F ∈ L2
ZT

(Ω;Y). Fix
t ∈ [0, T ] and let

St = µ(Y0)−
∫ t

0

(
U (opt)
s

)T
dZs

Then by repeating the proof of Thm. 1 now over the time-
horizon [0, t],

E
(
|Yt(Xt)−St|2

)
= var0(Y0)+E(

∫ t

0

l(Ys, Vs, U
(opt)
s ;Xs) ds)

If E
(
|Yt(Xt)−St|2

)
= vart(Yt) then there is nothing to prove.

Because then St = πt(Yt) (P-a.s.) by the uniqueness of the
conditional expectation. Therefore, suppose

vart(Yt) = E
(
|Yt(Xt)− πt(Yt)|2

)
< E

(
|Yt(Xt)− St|2

)
In this case, we show that there exists a Ũ ∈ U such that
JT (Ũ) < JT (U (opt)). Because U (opt) is the optimal control,
this provides the necessary contradiction.

Set C := E(
∫ T
t
l(Ys, Vs, U

(opt)
s ;Xs) ds) and we have

JT (U (opt)) = E
(
|Yt(Xt)− St|2

)
+ C

Because Yt ∈ L2
Zt

(Ω;Y), by Lemma 1 there exists Û ∈
L2
Z([0, t];Rm) such that

πt(Yt) = Ẽ(πt(Yt))−
∫ t

0

Û T
s dZs, P̃-a.s.

Consider an admissible control Ũ as follows

Ũs =

{
Ûs s ≤ t
U (opt)
s s > t

and denote by (Ỹ , Ṽ ) the solution of the BSDE with the con-
trol Ũ . Because of the uniqueness of the solution, (Ỹs, Ṽs) =
(Ys, Vs) for all s > t and therefore

JT (Ũ) = E
(
|Yt(Xt)− πt(Yt)|2

)
+ C

< E
(
|Yt(Xt)− St|2

)
+ C = JT (U (opt))

This supplies the necessary contradiction and completes the
proof.
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D. Derivation of the Lagrangian
Using the change of measure formula (8),

E
(
(ΓYt)(Xt)

)
= Ẽ

(
σt(ΓYt)

)
E
(
|Ut + Vt(Xt)|2

)
= Ẽ

(
σt(|Ut + Vt|2)

)
Even though the formula (8) is stated for deterministic func-
tions, it is easily extended to Zt-measurable functions which
is how it is used above. Therefore,

JT (U) = var0(Y0) + E
(∫ T

0

(ΓYt)(Xt) + |Ut + Vt(Xt)|2 dt
)

= var0(Y0) + Ẽ
(∫ T

0

σt(ΓYt) + σt(|Ut + Vt|2) dt
)

= var0(Y0) + Ẽ
(∫ T

0

`(Yt, Vt, Ut;σt) dt
)

E. Proof of Thm. 2
Equation (17) is the Hamilton’s equation for optimal control

of a BSDE [44, Thm. 4.4]. The optimal control is obtained
from the maximum principle:

Ut = argmax
u∈Rm

H(Yt, Vt, u, Pt;σt)

Since H is quadratic in the control input, the explicit for-
mula (18) is obtained by evaluating the derivative and setting
it to zero:

Hu(Yt, Vt, u, Pt;σt) = 2σt(1)u+ 2σt(Vt) + Pt(h) = 0

F. Justification of the formula (19)
For notational ease, we drop the superscript (opt) and denote

the optimal control input simply as Ut. In this proof, 〈·, ·〉
is used to denote the duality paring between functions and
measures (e.g., 〈f, µ〉 = µ(f)).

Let f be an arbitrary test function. We show that

〈f, Pt〉 =
〈
2f(Yt − πt(Yt)), σt

〉
, 0 < t ≤ T

This is known to be true at time t = 0 because of the boundary
condition (17c). Therefore, the proof is carried out by taking
a derivative of both sides and showing these to be identical.

Using the Itô-Wentzell formula for measure valued pro-
cesses [55, Thm. 1.1],

d
〈
2f(Yt − πt(Yt)), σt

〉
= 2
〈
A(fYt)− f(AYt)− πt(Yt)(Af), σt

〉
dt

+ (〈2f(Ut + Vt), σt〉+ 〈fh, Pt〉) dZt

where we have used d
(
πt(Yt)

)
= −Ut dZt (Prop. 1). From

the Hamilton’s equation (17b), upon explicitly evaluating the
terms

d〈f, Pt〉 =
(
〈Af, Pt〉+

d

dε
σt
(
Γ(Yt + εf)

)∣∣∣
ε=0

)
dt

+ (〈fh, Pt〉+ 〈2f(Ut + Vt), σt〉) dZt

where
d

dε
Γ(Yt + εf)

∣∣∣
ε=0

= 2
(
A(Ytf)− Yt(Af)− f(AYt)

)
On comparing the terms, the two derivatives are the seen to be
the same where we use also the identity 〈g, Pt〉 =

〈
2g(Yt −

πt(Yt)), σt
〉

for g = Af .

G. Proof of Thm. 3

The proof uses the equation of the nonlinear filter and
dIt := dZt−πt(h) dt is the innovation increment. We evaluate
the derivative of Vt(Yt) = πt(Y

2
t )−

(
πt(Yt)

)2
.

dπt(Y
2
t )

= πt(AY 2
t ) dt+

(
πt(hY

2
t )− πt(h)πt(Y

2
t )
)

dIt

+ πt
(
− 2Yt

(
AYt + h(Ut + Vt)

)
+ |Vt|2

)
dt

+ 2πt
(
YtVt

)
dZt + 2

(
πt(hYtVt)− πt(h)πt(YtVt)

)
dt

= πt
(
ΓYt
)

dt+ πt(|Vt|2) dt− 2πt(hYt)Ut dt

+
(
πt(hY

2
t )− πt(h)πt(Y

2
t ) + 2πt(YtVt)

)
dIt

Similarly,

dπt(Yt) = πt(AYt) dt

+
(
πt(hYt)− πt(h)πt(Yt)

)(
dZt − πt(h) dt

)
− πt

(
AYt + h(Ut + Vt)

)
dt+ πt

(
Vt
)

dZt

+
(
πt(hVt)− πt(h)πt(Vt)

)
dt

=
(
πt(hYt)− πt(h)πt(Yt) + πt(Vt)

)
dZt

−
(
Ut + πt(hYt)− πt(h)πt(Yt) + πt(Vt)

)
πt(h) dt

= U (opt)
t dZt − (Ut − U (opt)

t )πt(h) dt

where U (opt)
t := −πt(hYt) + πt(h)πt(Yt)− πt(Vt). Therefore,

d
(
πt(Yt)

)2
= 2πt(Yt)U

(opt)
t dZt + |U (opt)

t |2 dt

− 2πt(Yt)(Ut − U (opt)
t )πt(h) dt

Collecting terms, we have

dMt =πt
(
ΓYt
)

dt+ πt(|Vt|2) dt− 2πt(hYt)Ut dt

+
(
πt(hY

2
t )− πt(h)πt(Y

2
t ) + 2πt(YtVt)

)
dIt

− 2πt(Yt)U
(opt)
t dZt + 2πt(Yt)

(
Ut − U (opt)

t

)
πt(h) dt

− |U (opt)
t |2 dt− `(Yt, Vt, Ut;πt) dt

=
(
πt(hY

2
t )− πt(h)πt(Y

2
t ) + 2πt(YtVt)

)
dIt

− |Ut − U (opt)
t |2 dt

Since −|Ut − U (opt)
t |2 ≤ 0 and I is a P-martingale, M is a

P-supermartingale, and it is a martingale if and only if Ut =
U (opt)
t for all t.

H. Formal derivation of the nonlinear filter

We begin with an ansatz

dπt(f) = αt(f) dt+ βt(f) dZt (26)

where the goal is to obtain formulae for αt and βt. Because
we have an equation (21) for πt(Yt), let us express d(πt(Yt))
in terms of the unknown αt and βt. Using the SDE (26) for
πt and the BSDE (10b) for Yt, apply the Itô-Wentzell formula
to obtain

d
(
πt(Yt)

)
= (αt(Yt) + βt(Vt)− πt(AYt + hT(Ut + Vt))) dt

+ (βt(Yt) + πt(Vt)) dZt
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Comparing with (21),

αt(Yt) + βt(Vt)− πt(AYt + hT(Ut + Vt)) = 0

βt(Yt) + πt(Vt) =
(
πt(hYt)− πt(h)πt(Yt)

)
+ πt(Vt)

for 0 ≤ t ≤ T , P-a.s.. Because F and therefore Yt is arbitrary,
the second of these equations suggests setting

βt(f) = πt(hf)− πt(h)πt(f)

using which the first equation is manipulated to show

αt(Yt) = πt(AYt)− πt(h)
(
πt(hYt)− πt(h)πt(Yt) + πt(Vt)

)
+ πt(hVt)− πt(hVt) + πt(h)πt(Vt)

= πt(AYt)− πt(h)
(
πt(hYt)− πt(h)πt(Yt)

)
which gives the following

αt(f) = πt(Af)− βt(f)πt(h)

Substituting the expressions for αt and βt into the ansatz (26)

dπt(f) =
(
πt(Af)− βt(f)πt(h)

)
dt+ βt(f) dZt

= πt(Af) dt+
(
πt(hf)− πt(h)πt(f)

)
( dZt − πt(h) dt)

This is the well known SDE of the nonlinear filter.

I. Mitter-Newton duality for the linear Gaussian model

Consider (24) with the linear control law (25). Then X̃t is
a Gaussian random variable whose mean m̃t and variance Σ̃t
evolve as follows:

dm̃t

dt
= ATm̃t + σut (27a)

dΣ̃t
dt

= (AT + σKt)Σ̃t + Σ̃t(A
T + σKt)

T + σσT (27b)

Note that the two equations are entirely un-coupled: ut affects
only the equation for m̃t and Kt affects only the equation for
Σ̃t. We now turn to explicitly computing the running cost. For
the linear Gaussian model

(Auh)(x) = HT(ATx+ σu)

and the running cost becomes

l(x, u ; zt) = 1
2 |u|

2 + |HTx|2 + ztH
T(ATx+ σu)

Because X̃t ∼ N(m̃t, Σ̃t),

E
(
l(X̃t, ut ; zt)

)
= 1

2 |ut|
2 + 1

2 tr(KT
tKtΣ̃t) + 1

2 |H
Tm̃t|2

+ 1
2 tr(HHTΣ̃t) + ztH

T(ATm̃t + σut)

and because µ̃ from µ are both Gaussian, the divergence

E
(

log
dµ̃

dµ
(X̃0)

)
= 1

2 (m0 − m̃0)TΣ−1
0 (m0 − m̃0)

+ 1
2 log

det(Σ̃0)

det(Σ0)
− d

2
+ 1

2 tr(Σ̃0Σ−1
0 )

and because h(·) is linear the terminal condition term

E
(
zTh(X̃T )

)
= zTH

Tm̃T

Combining all of the above, upon a formal integration by parts,
J(µ̃, U ; z) is expressed as sum of two un-coupled costs

J1(m̃0, u ; z) = 1
2 (m0 − m̃0)TΣ−1

0 (m0 − m̃0)

+

∫ T

0

1
2 |ut|

2 + 1
2 |żt −H

Tm̃t|2 dt

J2(Σ̃0,K ; z) = 1
2 log(det(Σ̃0)) + 1

2 tr(Σ̃0Σ−1
0 )

+

∫ T

0

1
2 tr(KT

tKtΣ̃t) + 1
2 tr(HHTΣ̃t) dt

plus a few constant terms that are not affected by the decision
variables. The first of these costs subject to the ODE con-
straint (27a) for the mean m̃t is the classical minimum energy
duality.
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“Lagrangian duality between constrained estimation and control,” Au-
tomatica, vol. 41, no. 6, pp. 935–944, 2005.

[31] P. K. Mishra, G. Chowdhary, and P. G. Mehta, “Minimum variance
constrained estimator,” Automatica, vol. 137, p. 110106, 2022.

[32] B. K. Kwon, S. Han, O. K. Kwon, and W. H. Kwon, “Minimum
variance FIR smoothers for discrete-time state space models,” IEEE
Signal Processing Letters, vol. 14, no. 8, pp. 557–560, 2007.

[33] S. Zhao, Y. S. Shmaliy, B. Huang, and F. Liu, “Minimum variance
unbiased FIR filter for discrete time-variant systems,” Automatica,
vol. 53, pp. 355–361, 2015.

[34] M. Darouach, M. Zasadzinski, and M. Boutayeb, “Extension of mini-
mum variance estimation for systems with unknown inputs,” Automatica,
vol. 39, no. 5, pp. 867–876, 2003.

[35] J. W. Kim, “Duality for nonlinear filtiering,” Ph.D. dissertation, Univer-
sity of Illinois at Urbana-Champaign, Urbana, 06 2022.

[36] J. W. Kim, P. G. Mehta, and S. Meyn, “What is the Lagrangian for
nonlinear filtering?” in 2019 IEEE 58th Conference on Decision and
Control (CDC). Nice, France: IEEE, 12 2019, pp. 1607–1614.

[37] D. Bakry, I. Gentil, and M. Ledoux, Analysis and geometry of Markov
diffusion operators. Springer Science & Business Media, 2013, vol.
348.

[38] B. Øksendal, Stochastic differential equations: an introduction with
applications. Springer Science & Business Media, 2013.

[39] J. Xiong, An Introduction to Stochastic Filtering Theory. Oxford
University Press on Demand, 2008, vol. 18.

[40] J. Yong and X. Y. Zhou, Stochastic controls: Hamiltonian systems and
HJB equations. Springer Science & Business Media, 1999, vol. 43.

[41] J. Ma and J. Yong, “On linear, degenerate backward stochastic partial
differential equations,” Probability Theory and Related Fields, vol. 113,
no. 2, pp. 135–170, 1999.

[42] J. F. Le Gall, Brownian Motion, Martingales, and Stochastic Calculus.
Springer, 2016, vol. 274.
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