
Stability Verification of Neural Network Controllers using
Mixed-Integer Programming

Roland Schwan1,2, Colin N. Jones1, and Daniel Kuhn2

Abstract— We propose a framework for the stability veri-
fication of Mixed-Integer Linear Programming (MILP) rep-
resentable control policies. This framework compares a fixed
candidate policy, which admits an efficient parameterization
and can be evaluated at a low computational cost, against a
fixed baseline policy, which is known to be stable but expensive
to evaluate. We provide sufficient conditions for the closed-
loop stability of the candidate policy in terms of the worst-
case approximation error with respect to the baseline policy,
and we show that these conditions can be checked by solving
a Mixed-Integer Quadratic Program (MIQP). Additionally,
we demonstrate that an outer and inner approximation of
the stability region of the candidate policy can be computed
by solving an MILP. The proposed framework is sufficiently
general to accommodate a broad range of candidate policies
including ReLU Neural Networks (NNs), optimal solution
maps of parametric quadratic programs, and Model Predictive
Control (MPC) policies. We also present an open-source toolbox
in Python based on the proposed framework, which allows
for the easy verification of custom NN architectures and MPC
formulations. We showcase the flexibility and reliability of our
framework in the context of a DC-DC power converter case
study and investigate its computational complexity.

I. INTRODUCTION

MPC has been extremely successful in control applications
for refineries and chemical plants [1], building control [2],
the control of quadcopters [3], robotics [4], and power
electronics [5], [6]. The main advantages of MPC are its
versatility, stability, and ability to account for input and state
constraints. With the transition from the process industry
to robotics and power electronics, the sampling times have
decreased from hours to only a few milli- or even microsec-
onds. This is especially challenging if one wants to deploy
controllers on embedded systems with low computational
resources and limited memory.

Hence, ideally, one would like to perform all heavy
computations offline and precompute the optimal control law
ψ⋆(·) that maps any feasible state to an optimal control
input. A well-known technique to compute such an optimal
control law ψ⋆(·) is explicit MPC [7]. For MPC controllers
with quadratic cost functions and linear dynamics, ψ⋆(·)
is a piecewise affine function defined over a polyhedral

This work was supported by the Swiss National Science Foundation under
the NCCR Automation project, grant agreement 51NF40 180545.

We thank Silvia Mastellone for valuable feedback on an earlier version
of this paper, and Emilio Maddalena for providing the experimental setup
of the DC-DC power convertor.

1Roland Schwan and Colin N. Jones are with the Automatic Control Lab,
EPFL, Switzerland.

2Roland Schwan and Daniel Kuhn are with the Risk Analytics and
Optimization Chair, EPFL, Switzerland.

{roland.schwan, colin.jones, daniel.kuhn}@epfl.ch

partition of the state space. Thus, in contrast to implicit MPC,
which computes the optimal control input online by solving
a different optimization problem for each state, explicit MPC
precomputes the optimal affine control policy across prede-
fined polytopic regions of the state space. Unfortunately, the
required number of polytopes explodes with the dimension
of the state and the number of constraints, which render
explicit MPC intractable for larger systems. Additionally, the
online search for the polytope containing the current state
may require excessive processing power or storage space.
Although these computational challenges can be mitigated by
using search trees [8] or hash tables [9], the required memory
may remain too large [10], especially for embedded systems.
Recent attempts to approximate explicit MPC directly either
suffer from a curse of dimensionality [11], or they rely on
expensive set projections [12], [13].

The limited scalability of explicit MPC and its variants has
promoted interest in general function approximators of MPC
policies, such as deep NNs [14]. Deep NNs are attractive
because they can exactly represent predictive controllers for
linear systems [15], while being relatively inexpensive during
online inference [16]. Unfortunately, one loses the stability
guarantees for the learned controllers. Statistical methods are
one way to verify the stability of the learned controllers
[17], with extensions to filter out severely suboptimal control
inputs with high probability [18].

However, NNs are not the only viable function approxima-
tors. In fact, every continuous nonlinear control law can be
represented as the minimizer mapping of a parametric convex
program [19]. Even the solutions of parametric linear pro-
grams (LPs) can represent any continuous piecewise affine
function [20]. Hence, parametric optimization problems give
rise to implicit function approximators, and by leveraging
the implicit function theorem, one can directly optimize
and learn the underlying problem parameters. Approaches
for calibrating parametric quadratic programs (QPs), general
convex programs, and root finding problems are described in
[21], [22], and [23], respectively.

NN control policies have been successfully employed in
applications for controlling chemical plants [24], robotic
arms [25] or DC-DC power electronic converters [6] at a
significant increase in computational speed. Thus, NN-based
controllers can not only result in better control performance
thanks to a tighter control loop, but also in drastic savings
of computational resources.

ar
X

iv
:2

20
6.

13
37

4v
2

 [
ee

ss
.S

Y
]

 3
1

M
ay

 2
02

3

A. Related Work

The idea to approximate predictive controllers with NNs
enjoys growing popularity. Some of the earliest work dates
back to the 90s, when single hidden layer NN approximations
were used to learn a nonlinear MPC policy [26]. More
recently, plain vanilla NN architectures have been enhanced
with parametric QP implicit layers [27]. Closed-loop stability
can be guaranteed by projecting the output of the NN
into a safety set [13]. This projection can be viewed as a
“Safety Filter” [28]. However, a computationally expensive
optimization problem has to be solved online.

The satisfaction of the closed-loop state-input constraints
and stability requirements can also be verified by performing
a reachability analysis using an MILP representation of the
NN controller [29] or by over approximating the NN output
bounds via semidefinite programming formulations [30].

Other approaches show closed-loop stability by learning
and verifying Lyapunov functions [31], [32]. However, the
underlying learner/verifier pattern can be computationally de-
manding because in each iteration adversarial points have to
be found (verifier), and a new candidate Lyapunov function
must be constructed, without guarantees of convergence.

Alternatively, one can guarantee stability by using an
MILP framework to combine the worst-case approximation
error of the NN controller with its Lipschitz constant [33]. In
this paper, we propose direct sufficient conditions for closed-
loop stability, which can be verified by solving an MIQP. We
show empirically that our approach is less conservative but
computationally more expensive than that proposed in [33]
because MIQPs are generically harder then MILPs.

Our approach to stability certification is closely related
to robustness certification techniques in image classification
based on MILPs [34], [35] or GPU-accelerated methods
[36]. We refer to these papers for a comprehensive litera-
ture review. While we use the same MILP formulations to
represent NNs, we extend these MILPs to a broader function
classes that are sufficiently expressive to represent parametric
QPs, which are needed for the verification of predictive
controllers.

B. Contributions

We introduce a general framework for the verification
of NN controllers via mixed-integer programming (MIP)
together with an open source toolbox.1 Specifically, we
introduce the concept of MILP-representable verification
problems, which is sufficiently general to cater for a variety
of commonly used control policies such as ReLU NNs and
the optimizer maps of parametric quadratic programs, which
include common MPC policies. Given a baseline policy (e.g.,
an MPC policy) and an approximate policy (e.g., a NN), we
propose two approaches to verify closed-loop stability of the
approximate policy:

• By computing the worst-case approximation error. Uti-
lizing robust MPC schemes such as Tube MPC [37], we

1The toolbox can be accessed under the following link:
https://github.com/PREDICT-EPFL/evanqp

can guarantee closed-loop stability by constraining the
approximation error to fall within the disturbance set of
the robust MPC scheme.

• By providing sufficient conditions for closed-loop sta-
bility, which can be directly formulated and checked by
solving an MIQP. We show that our conditions are less
conservative in practice than existing methods, i.e., they
are able to verify the closed-loop stability of a larger
class of approximate policies. In addition, we show that
outer and inner approximations of the stability region
of the approximate control law can be found by solving
MILPs.

We then exemplify the application of the proposed method
on a case-study of a DC-DC power convertor using different
NN architectures and MPC formulations. We compare our
methods against state-of-the-art approaches and show the
superiority of our formulation. Additionally, we provide
numerical experiments to show the performance of our
approach.

The toolbox is written in Python and allows the automatic
transcription of the discussed verification problems as MIPs.
It can directly import NN architectures from Pytorch [38] and
parametric QPs from CVXPY [39]. This not only allows for
a simplified problem formulation but also a tight integration
with the existing machine learning ecosystem.

NOTATION

We denote the set of real numbers by R, the set of n-
dimensional real-valued vectors by Rn and the set of n×m-
dimensional real-valued matrices by Rn×m. Furthermore, we
denote the subspace of symmetric matrices in Rn×n by Sn
and the cone of positive semi-definite and definite matrices
by Sn+ and Sn++, respectively. We use In to denote the n-
dimensional identity matrix, 1n to denote the n-dimensional
column vector of ones, and diag(·) to represent the mapping
that transforms a column vector to the corresponding diag-
onal matrix. Given two sets A,B ⊆ Rn, we denote their
Minkowski sum as A ⊕ B := {a+ b | a ∈ A, b ∈ B} and
their Pontryagin difference as A ⊖ B := {a | a⊕B ⊆ A}.
The interior of a set S ⊆ Rn is denoted by int(S). Finally,
we use gr(f) = {(x, y) | y = f(x)} to denote the graph of
a function f .

II. MILP-REPRESENTABLE VERIFICATION PROBLEMS

A verification problem consists of a baseline control policy
ψ1(x) (e.g., an MPC policy) and an approximate policy
ψ2(x) (e.g., a NN) on a common input domain X. The
outputs of the policies then enter a verification cost function
f(ψ1(x), ψ2(x)) that represents the objective of the verifi-
cation problem. An overview of the proposed architecture is
shown in Figure 1.

In the following, we define the concept of MILP-
representable functions. A MILP-representable function can
be represented exactly by linear equality and inequalities
with continuous and binary decision variables.

Definition 1: A function ψ : X → U with domain X ⊆ Rn
and range U ⊆ Rm is MILP-representable if there exists a

https://github.com/PREDICT-EPFL/evanqp

Input Domain X

Verification Cost

x0 x0

ψ1(x0) ψ2(x0)

MPC NN

f(ψ1(x0), ψ2(x0))

Fig. 1: Schematic of the verification approach.

polyhedral set P ⊆ Rn × Rm × Rc × Rb such that (x, u) ∈
gr(ψ) if and only if there exists z ∈ Rc and β ∈ {0, 1}b
such that (x, u, z, β) ∈ P .

A wide range of functions are MILP-representable. In
fact, one can show that the MILP-representable functions
are dense in the family of continuous functions on a compact
domain X with respect to the supremum norm. Examples of
MILP-representable functions include the optimal solution
maps of parametric QPs (e.g., MPC policies), ReLU NNs,
and piecewise affine functions. Additionally, compositions of
MILP-representable functions are also MILP-representable.

Lemma 1: If two functions ψi : Xi → Ui, i = 1, 2 with
X2 ⊆ U1 are both MILP-representable, then the composition
ψ1 ◦ ψ2 : X1 → U2 is MILP-representable.

Proof: Let P1 ⊆ Rn × Rm × Rc1 × Rb1 and P2 ⊆
Rm×Ro×Rc2×Rb2 be the polyhedral sets corresponding to
the MILP representations of ψ1 and ψ2 respectively. Then,
(xi, ui) ∈ gr(ψi) if and only if there exist zi ∈ Rci and
βi ∈ {0, 1}bi such that (xi, ui, zi, βi) ∈ Pi for i = 1, 2.
To compute the composition of ψ1 and ψ2, we now set the
output u1 of ψ1 equal to the input x2 of ψ2. Specifically,
we define new variables z = (z1, z2, u1) and β = (β1, β2),
and we construct a new polyhedral set P ⊆ Rn × Ro ×
Rc1+c2+m × Rb1+b2 , which includes all linear constraints
defining the original polyhedra P1 andP2 as well as the
equality constraint u1 = x2. Hence, by construction, it holds
that (x1, u2) ∈ gr(ψ1 ◦ψ2) if and only if (x1, u2, z, β) ∈ P ,
showing that the composition ψ1 ◦ ψ2 is indeed MILP-
representable.

In order to formalize the verification problem for compar-
ing the approximate control policy ψ2(·) against the baseline
policy ψ1(·), define X as the relevant input domain of the
control polices. For any property to be verified, we can pose
the verification problem as the task of certifying the non-
negativity of a function f(·) over the input domain X.

0 ≤ min
x0∈X

f(ψ1(x0)ψ2(x0)). (1)

Proposition 1: If X is a polyhedron and if ψ1, ψ2, and
f are MILP-representable, then the verification problem on
the right-hand side of (1) can be posed as the following

optimization problem, which is equivalent to an MILP:

min
τ,x0,u1,u2

τ

s.t. x0 ∈ X
(x0, u1) ∈ gr(ψ1)

(x0, u2) ∈ gr(ψ2)

(u1, u2, τ) ∈ gr(f).

(2)

Proof: The equivalence of the optimization problem in
(1) and (2) is immediate. In addition, one readily verifies
that problem (2) is equivalent to an MILP because X is a
polyhedron and f , ψ1 and ψ2 are MILP-representable.

In the next sections, we consider specific MILP-
representable functions relevant for control applications.

A. ReLU Neural Networks

We now demonstrate that NNs with ReLU activation
functions are MILP-representable. A fully-connected feed-
forward NN ψ : X ⊆ Rn → U ⊆ Rm is a function
representable as ψ = ψℓ ◦ ψℓ−1 ◦ · · · ◦ ψ1, where ψi : Xi ⊆
Rni−1 → Ui ⊆ Rni corresponding to the i-th layer is defined
through the componentwise maximum

ψi(zi−1) = ReLU(zi−1) = max(0,Wizi−1 + bi)

for some weight matrix Wi ∈ Rni×ni−1 and bias vector
bi ∈ Rni , i = 1, . . . , ℓ, and where n0 = n is the input
dimension and nℓ = m is the output dimension of the NN.

To prove that ψ is MILP-representable, we use the piece-
wise linearity of the ReLU activation functions to represent
them via linear constraints and binary decision variables
indicating which piece is active [34], [35].

Lemma 2: If X is a compact polyhedron, then the ReLU
NN ψ : X → U is MILP-representable, and there exist
constants mi, mi such that

gr(ψ) =

(x, u)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀i = 1, . . . , n− 1,

∃βi ∈ {0, 1}ni ,

∃zi ∈ Rni :

z0 = x,

z0 ∈ X,
zi ≥ 0

zi ≥Wizi−1 + bi,

zi ≤Wizi−1 + bi

− diag(mi)(1− βi),

zi ≤ diag(mi)βi,

u =Wnzn−1 + bn

. (3)

Proof: As X is bounded, there exist x, x ∈ Rn such that
X ⊆ [x, x]. Assume first that ψ : X → U is a single ReLU
neuron defined through u = max(0, x). Then the graph of ψ

can be represented via mixed-integer constraints as follows.

gr(ψ) =

(x, u)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃β ∈ {0, 1}n :

x ∈ X,
u ≥ 0,

u ≥ x,

u ≤ x− diag(x)(1− β),

u ≤ diag(x)β

(4)

Here, the binary decision variable β indicates whether the
neuron is active (u = x) or inactive (u = 0). Extending
this reasoning to the full NN and given the element-wise
upper and lower bounds mi ≤ Wizi−1 + bi ≤ mi on the
input of the i-th activation layer, we can use Lemma 1 to
derive the graph representation (3), where the binary decision
variables βi correspond to layer i. The constants mi and
mi always exist because X is compact, ψi is continuous for
every i = 1, . . . , ℓ, and continuous images of compact sets
are compact.

Remark 1: The bounds mi and mi can be computed using
interval arithmetic [40], zonotope propagation [41], or linear
programming [35]. State-of-the-art MILP solvers such as
Gurobi [42] are based on branch-and-cut methods. Hence,
tightening the bounds mi and mi can reduce computation
times in practice since branches can be pruned more effi-
ciently. If mi and mi can not be calculated, e.g., if X is
unbounded, then mi and mi correspond to the usual “big-
M” constants and have to be determined endogenously.

Remark 2: Lemma 2 extends to NNs with general piece-
wise linear activation functions such as leaky ReLUs. Note
also that the convex hull of gr(ψ) is a strict subset of
the polyhedron obtained by relaxing βi ∈ [0, 1] in (3).
The approximation quality can be improved by adding valid
cuts [43].

B. Box Saturation

Control policies are often subject to physical constraints.
To enforce these constraints, one may project the output of
an approximate policy to the feasible set. For example, the
projection ψ onto the box [x, x] ⊆ Rm with x ≤ x can be
viewed as a vector of element-wise projections of the form

ψ(x)i =

 xi if ui < xi,
ui if xi ≤ ui ≤ ui,
xi if ui > x.

(5)

Lemma 3: The projection ψ onto the box [x, x] ⊆ Rm is
MILP-representable.

Proof: The projection ψ defined through (5) can be
rewritten in the following form using the ReLU function:

ψ(x) = x− ReLU(x− (ReLU(x− x) + x)).

Hence, ψ can be recognized as a special instance of a ReLU
NN, which is MILP-representable according to Lemma 2.

C. Parametric QPs

We now show that the optimal solution mappings of
parametric QPs are MILP-representable. Specifically, we
define ψ(x) as the unique minimizer of the parametric QP

min
z

1

2
zTPz + (Qx+ q)T z

s.t. Az = Bx+ b

Fz ≤ Gx+ g,

(6)

with internal decision variable z ∈ Rnz and matrices P ∈
Snz
++, Q ∈ Rnz×n, q ∈ Rnz , A ∈ Rneq×nz , B ∈ Rneq×n,
b ∈ Rneq , F ∈ Rnineq×nz , G ∈ Rnineq×n, and g ∈ Rnineq .

Lemma 4: If the parametric QP (6) is feasible for every
x ∈ X, then its optimal solution mapping ψ(x) is MILP-
representable.

Proof: Since the feasible set of problem (6) is a
polyhedron, it admits a Slater point whenever it is non-empty.
Since the objective function of (6) is also strictly convex,
z⋆(x) for x ∈ X is uniquely determined by the necessary
and sufficient Karush-Kuhn-Tucker (KKT) conditions [44]

Primal feasibility
⌊Az = Bx+ b, Fz ≤ Gx+ g,

Stationarity⌊
Pz + (Qx+ q) +ATµ+ FTλ = 0,

Dual feasibility
⌊λ ≥ 0,

Complementarity⌊
λT (Fz −Gx− g) = 0,

where µ ∈ Rneq and λ ∈ Rnineq are the Lagrange multipli-
ers associated with the equality and inequality constraints,
respectively. By introducing a binary decision variable βi
that evaluates to 0 if Fiz < gi and to 1 if λi > 0 for
each i = 1, . . . , nineq, we can linearize the complementarity
condition as

0 ≤ λi ≤Mβi,
0 ≤ gi − Fiz ≤M(1− βi)

}
∀i = 1, . . . , nineq, (7)

where M is a suitable “big-M” constant [45]. Therefore, the
graph of ψ can be represented as

gr(ψ) =

(x, z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃β ∈ {0, 1}nineq ,

∃z ∈ Rnz ,

∃λ ∈ Rnineq ,

∃µ ∈ Rneq :

x ∈ X,
0 = Az −Bx− b,

0 = Pz + (Qx+ q) +ATµ

+ FTλ,

0 ≤ λi ≤Mβi ∀i = 1, . . . , nineq,

0 ≤ gi + (Gx)i − Fiz

≤M(1− βi) ∀i = 1, . . . , nineq

.

Thus, the claim follows.

Remark 3: Certain MILP solvers accept logical con-
straints and automatically transform them into “big-M” con-
straints or special-ordered set constraints. In these cases, the
MILP representations of logical constraints are optimally
chosen by the solver, which leads to faster convergence. Tight
“big-M” bounds suitable for numerical purposes can also be
calculated by solving auxiliary LPs. Details are relegated to
Appendix I.

D. Piecewise Affine Functions over Polyhedral Sets

Piecewise affine functions defined over polyhedral sets
lend themselves for modeling piecewise affine hybrid dy-
namical systems [46]. A continuous function ψ : X → U
is called piecewise affine if there exist polyhedra Xi =
{x ∈ X | Fix ≤ gi}, i ∈ I, with X =

⋃
i∈I Xi as well as

matrices Ai ∈ Rm×n and vectors ci ∈ Rn, i ∈ I, such that

ψ(x) = Aix+ ci ∀x ∈ Xi, ∀i ∈ I, (8)

where I is a finite index set.
Lemma 5: If X is a compact polyhedron, then the piece-

wise affine function defined in (8) is MILP-representable.
Proof: By [46, Theorem 3.5], the piecewise affine func-

tion (8) can be exactly represented using MILP constraints,
i.e., there exist binary variables βi ∈ {0, 1}, i ∈ I, such that

Fixi ≤ βigi ∀i ∈ I, (9a)

1 =
∑
i∈I

βi, x =
∑
i∈I

xi, (9b)

ψ(x) =
∑
i∈I

(Aixi + βici). (9c)

Note first that Xi ⊆ X inherits compactness from X. The
constraint (9a) implies that xi = 0 whenever βi = 0. Indeed,
if βi = 0, then (9a) forces xi to fall within the recession
cone of the compact polyhedron Xi, which coincides with
the singleton {0}. If βi = 1, on the other hand, then (9a)
forces xi to fall within Xi. The graph of ψ thus admits the
following MILP representation.

gr(ψ) =

(x, u)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃βi ∈ {0, 1} ∀i ∈ I,
∃xi ∈ Rn ∀i ∈ I :

Fixi ≤ βigi ∀i ∈ I,

1 =
∑
i∈I

βi,

x =
∑
i∈I

xi,

u =
∑
i∈I

(Aixi + βici)

(10)

Hence, the claim follows.

III. COMPUTATION OF THE APPROXIMATION ERROR

Consider now a verification problem of the form (1) with
baseline policy ψ1(·) and approximate policy ψ2(·), and set

the error function f(·) to the infinity norm ∥·∥∞. The worst-
case error over a bounded polytopic input set X is given by

γ = max
x∈X

∥ψ1(x)− ψ2(x)∥∞. (11)

The infinity norm is a natural choice for measuring the
mismatch between ψ1 and ψ2, and it is MILP-representable.

Lemma 6: The infinity norm f(t) = ∥t∥∞ is MILP-
representable on any bounded polytopic set X ⊆ Rm.

Instead of the infinity norm, one could also use the 1-norm
to quantify the worst-case error in (11).

Corollary 1: The 1-norm f(t) = ∥t∥1 is MILP-represen-
table on any bounded polytopic set X ⊆ Rm.

The proofs of Lemma 6 and Corollary 1 are standard and
therefore relegated to Appendices II and II-A, respectively.
Lemma 6 implies via Proposition 1 that if ψ1(x) and ψ2(x)
are MILP-representable, then the worst-case approximation
error (11) can be computed by solving an MILP.

Remark 4: By solving 2m MILPs one can also construct
a tight bounding box [γ, γ] ⊆ Rm that covers the approxima-
tion error ψ1(x)−ψ2(x) for every x ∈ X. Indeed, to compute
the components of the vector γ, we solve m MILPs of the
form

γ
i
= min
x,u1,u2

eTi (u1 − u2)

s.t. x ∈ X
(x, u1) ∈ gr(ψ1)

(x, u2) ∈ gr(ψ2),

(12)

where ei ∈ Rm is the i-th vector of the canonical basis.
To compute the components of γ, we simply convert the
minimization operator in (12) to a maximization operator.

A. Stability Verification Against Robust MPC

We can use the worst-case approximation error (11) to
verify an approximate MPC scheme against a robustly stable
MPC policy. As an example, consider the linear dynamical
system

x+ = Ax+Bu (13)

with state x ∈ Rn, input u ∈ Rm and system matrices
A ∈ Rn×n and B ∈ Rn×m. Let ψ1(x) be a control policy
that is robust against additive input disturbances in the set
W = {w ∈ Rm | ∥w∥∞ ≤ γ̂}. Such a control policy can
be obtained via the Tube MPC approach [37], for instance.
Additionally, suppose that there exists a feedback gain matrix
K ∈ Rm×n such that AK = A + BK is asymptotically
stable, and let E ⊆ Rn be the disturbance invariant set for
the controlled uncertain system x+ = AKx + Bw, which
satisfies

AKE ⊕BW ⊆ E .

In the context of Tube MPC, K corresponds to the solution
of a discrete LQR problem, and E is the minimum robust
invariant set with respect to the feedback gain matrix K,
to which the Tube MPC policy ψ1(·) will converge in
closed loop. In Section V-B we will see that ψ1(·) is MILP-
representable and that the invariant set E can be efficiently
computed offline.

Let now ψ̃2(·) be an approximation of ψ1(·). For example,
ψ2(·) can be obtained by sampling the baseline policy
ψ1(·) at different points of the state space and learning
a compatible input-output map by training a NN on the
samples. Then, set

ψ2(x) =

{
Kx if x ∈ E ,
ψ̃2(x) otherwise.

The following theorem provides a means to verify the closed-
loop asymptotic stability of approximate policies like ψ2(·).

Theorem 1: The control policy ψ2(·) constructed from
ψ̃2(·), the feedback gain matrix K and the invariant set E is
asymptotically stable in closed loop on a polyhedron X if

0 ≤ min
τ,x,u1,u2

γ̂ − τ

s.t. x ∈ X
(x, u1) ∈ gr(ψ1)

(x, u2) ∈ gr(ψ̃2)

(u1 − u2, τ) ∈ gr(∥ · ∥∞),

(14)

and if the robust control policy ψ1(·) converges asymp-
totically to the set E . The minimization problem in (14)
is equivalent to a MILP if ψ1(x) and ψ̃2(x) are MILP-
representable.

Proof: Let γ be the worst case approximation error
between ψ1(x) and ψ̃2(x) over the domain X as defined
in (11). Hence, ψ̃2(x) applied to the real system deviates
from ψ1(x) at most by γ with respect to the infinity norm.
Since the original policy ψ1(x) is robust against input
disturbances of magnitude up to γ̂ with respect to the infinity
norm, the inequality γ ≤ γ̂ is sufficient for ψ̃2(x) to be
stabilizing, and the state x converges asymptotically to the
set E . As soon as the set E is reached, the controller ψ2(x)
switches from ψ̃2(x) to the linear control law Kx. Since K
asymptotically stabilizes the underlying system and E is an
invariant set under the linear policy Kx, it follows that ψ2(x)
is asymptotically stable. We can verify the inequality γ ≤ γ̂
by solving (14) where, at optimality, τ coincides with the
worst case approximation error γ. If ψ1(x) and ψ̃2(x) are
MILP-representable, then (14) is equivalent to an MILP
because X is a polyhedron and because ∥ · ∥∞ is MILP-
representable thanks to Lemma 6.

Remark 5: In practice, (14) is solved with γ̂ = 0, and the
value of the decision variable τ at optimality determines the
worst-case error γ between ψ1(·) and ψ̃2(·).

IV. STABILITY VERIFICATION OF APPROXIMATE MPC

In Section III-A we verified the stability of an approximate
policy against a robustly stable MPC policy by checking an
inequality involving the worst-case approximation error. In
contrast, in this section we show that one can also directly
verify a Lyapunov decrease condition to show stability. To
this end, consider again the linear dynamical system (13),
and assume that the state x ∈ Rn and the input u ∈ Rm are

constrained to lie in the polytopic sets X ⊆ Rn and U ⊆ Rm,
respectively. Consider then the finite-horizon MPC problem

J⋆(x) = min
x,u

J(x,u) (15a)

s.t. xi+1 = Axi +Bui ∀i = 0, . . . , N − 1
(15b)

xi ∈ X, ui ∈ U ∀i = 0, . . . , N − 1
(15c)

xN ∈ XN (15d)
x0 = x (15e)

with cost function

J(x,u) =

N−1∑
i=0

ℓ(xi, ui) + VN (xN).

Throughout the paper we will assume that X, U and XN
contain a neighborhood of the origin and that the stage cost
function ℓ(x, u) as well as the terminal cost function VN (x)
are positive definite. For ease of notation, we henceforth use

F(x) =

(x,u)

∣∣∣∣∣∣∣
xi+1 = Axi +Bui ∀i = 0, . . . , N − 1,

xi ∈ X, ui ∈ U ∀i = 0, . . . , N − 1,

xN ∈ XN , x0 = x

as a shorthand for the feasible set of problem (15).

Assumption 1: There exists a linear control law ψ(x) =
Kx such that the terminal set XN ⊆ X is a polytopic
invariant set for the system x+ = Ax + BKx with state
and input constraints (15c) [47], and VN (x) is a Lyapunov
function for the same system that decreases by one stage
cost each time step, that is, VN (x+) − VN (x) ≤ ℓ(x,Kx)
for every x ∈ XN .

Assumption 1 is satisfied if the stage cost is quadratic, i.e.,

ℓ(xi, ui) = xTi Qxi + uTi Rui

with Q ∈ Sn++ and R ∈ Sm++, in which case the optimal
value function of the LQR problem corresponding to (15)
serves as the desired Lyapunov function VN (x) and the
optimal LQR controller ψ(x) = Kx serves as the desired
linear control law. Then, the control invariant set XN can
be calculated using the MPT toolbox [48], and the decrease
condition for VN (x) is fulfilled. To see this, consider the
LQR problem

VN (x) = min
x,u

∞∑
i=0

ℓ(xi, ui)

s.t. xi+1 = Axi +Bui ∀i = 0, . . . , N − 1

x0 = x
(16)

corresponding to (15). Clearly, if ψ(x) = Kx is an optimal
policy for the infinite-horizon problem (16), then VN (x+) =
VN (Ax + BKx) = VN (x) − ℓ(x,Kx). In addition, it is
well known that VN (x) is a Lyapunov function for the linear
system x+ = Ax+BKx; see, e.g., [49].

Consider now the optimal MPC policy ψ1(x) that maps
any state x to an optimal input u0 of problem (15), and

consider an MILP-representable approximate MPC controller
ψ2(x) of ψ1(x) that is cheap to evaluate (e.g., a NN). In the
following, we construct bilevel programs for the verification
of the stability of the approximate MPC controller ψ2(x). In
Section IV-D, we then show that these bilevel programs are
equivalent to MIQPs that are amenable to numerical solution.

A. Sufficient Condition for Lyapunov Decrease

The next lemma establishes a sufficient condition for the
approximate control law ψ2(x) to be stabilizing for a given
initial state set. The condition is inspired by [50] but has been
extended to allow for the verification of asymptotic stability.

Lemma 7: If Assumption 1 holds, ψ2(x) is a control law
defined over a neighborhood X0 ⊆ X of 0 and ϵ > 0, then the
optimal value function J⋆(x) of the MPC problem (15) is a
Lyapunov function for the system x+ = Ax+Bψ2(x) on X0

provided that for every x0 ∈ X0 there exists (x,u) ∈ F(x0)
with u0 = ψ2(x0) that satisfies the condition

J(x,u)− J⋆(x0) ≤ ℓ(x0, u0)− ϵ∥x0∥22. (17)
Proof: Choose any x0 ∈ X0. By assumption,

there exists a sequence (x0, . . . , xN , u0, . . . , uN−1) with
u0 = ψ2(x0) that is feasible in (15) for x = x0
and satisfies condition (17). Hence, the shifted sequence
(x1, . . . , xN+1, u1, . . . , uN) with uN = KxN and xN+1 =
AxN + BKxN is feasible in (15) for x = x1 thanks to
Assumption 1, which asserts that XN is an invariant set for
the system x+ = Ax + BKx. Evaluating the cost of this
shifted sequence in problem (15) then yields

J⋆ (x1) ≤
N∑
i=1

ℓ (xi, ui) + VN (xN+1)

=

N−1∑
i=0

ℓ (xi, ui)− ℓ(x0, u0) + VN (xN)

+ VN (xN+1)− VN (xN) + ℓ (xN , uN)

≤ J⋆(x0)− ϵ∥x0∥22.

Here, the second inequality holds again because of Assump-
tion 1, which requires that VN (x+) − VN (x) ≤ ℓ(x,Kx)
for every x ∈ XN , and because of (17). As x0 ∈ X0 was
chosen arbitrarily and as ε > 0, the optimal value function
J⋆(x) thus constitutes indeed a Lyapunov function for the
approximate closed-loop system x+ = Ax+Bψ2(x) on the
set X0.

Condition (17) is not easy to verify but is equivalent to the
requirement that for every initial state x0 ∈ X0 there exists
a sequence (x,u) ∈ F(x0) with u0 = ψ2(x0) and

0 ≤ ℓ(x0, u0)− ϵ∥x0∥22 − J(x,u) + J⋆(x0).

This condition is satisfied if and only if

inf
x0∈X0

sup
(x,u)∈F(x0)
u0=ψ2(x0)

ℓ(x0, u0)− ϵ∥x0∥22 − J(x,u) + J⋆(x0)

is non-negative. This is only possible if for all x0 ∈ X0

there exists (x,u) ∈ F(x0) with u0 = ψ2(x0). Otherwise,
the minimization player in the above zero-sum game can

force the value of the game to −∞ by selecting an x0 that
makes the inner maximization problem infeasible, in which
case condition (17) fails to hold. From now on, we may thus
assume without loss of generality that for all x0 ∈ X0 there
exists (x,u) ∈ F(x0) with u0 = ψ2(x0). Hence, both the in-
fimum and the supremum in the above min-max problem are
attained. By recalling that J⋆(x0) = min(x̃,ũ)∈F(x0) J(x,u),
the above min-max problem can then be recast as

min
x0∈X0

(x̃,ũ)∈F(x0)

J(x̃, ũ)

+ max
(x,u)∈F(x0)
u0=ψ2(x0)

ℓ(x0, u0)− J(x,u)− ϵ∥x0∥22.
(18)

The standard approach in robust optimization to simplify the
min-max problem (18) would be to dualize the inner maxi-
mization problem. Unfortunately, this leads to a minimization
problem with a bilinear term in the objective function, which
can not be easily linearized. The resulting minimization
problem is almost impossible to solve with a branch and
bound algorithm. Instead, we reformulate (18) as the bilevel
program

min J(x̃, ũ) + ℓ(x0, u0)− J(x,u)− ϵ∥x0∥22
s.t. x0 ∈ X0, (x̃, ũ) ∈ F(x0)

(x,u) ∈

 argmin J(x̄, ū)
s.t. (x̄, ū) ∈ F(x0)

ū0 = ψ2(x0).

(19)

By construction, condition (17) is thus fulfilled if and only if
the optimal value of the bilevel program (19) is non-negative.
However, solving bilevel programs of the form (19) is still
challenging. In Section IV-D we thus propose a reformulation
of (19) as an MIQP. Compared to dualizing the min-max
problem (18), we found that the mixed-integer reformulations
described in Section IV-D are more efficiently solvable in
practice. We believe that this is the case because the root
relaxation is bounded due to only having bounded primal
variables in the objective. Dualizing problem (18) intro-
duces dual variables in the objective, which are generally
unbounded.

Even if J⋆(x) is a Lyapunov function on the set X0, the
system may still fail to be stable if it is not invariant on X0.
Next, we thus establish conditions that guarantee stability.

Theorem 2: Let X0 ⊆ X be a neighborhood of 0 such
that for all x0 ∈ X0 there exists (x,u) ∈ F(x0) with u0 =
ψ2(x0). If Assumption 1 holds, ψ2(x) is a continuous control
law defined over X0 with ψ2(0) = 0 and the optimal value
of (19) is non-negative for some ϵ > 0, then there exists
a neighborhood Xψ2

0 ⊆ X0 of 0 such that the closed-loop
system x+ = Ax + Bψ2(x) converges asymptotically to 0
on Xψ2

0 .
Proof: As the optimal value of (19) is non-negative,

condition (17) is satisfied. Hence, all assumptions of
Lemma 7 hold, implying that J⋆(x) is a Lyapunov function
for the system x+ = Ax+Bψ2(x) on X0. Next, recall that
the sets X, U, XN and X0 all contain a neighborhood of
the origin, ψ2(x) is continuous and ψ2(0) = 0. In addition,

as ℓ(x, u) and VN (x) are positive definite, one can show
that J⋆(x) is also positive definite and that it has sublevel
sets that are arbitrarily small neighborhoods of 0. We may
thus define Xψ2

0 as a sublevel set of J⋆(x) that is both a
neighborhood of 0 and a subset of X0. By construction,
Xψ2

0 is an invariant set, and the closed-loop system x+ =
Ax+Bψ2(x) converges to 0 on Xψ2

0 .

B. Direct Verification of Lyapunov Decrease

Instead of verifying the sufficient condition (17), we can
also directly verify the Lyapunov decrease condition

J⋆(x+)− J⋆(x) ≤ −ϵ∥x∥22 ∀x ∈ X0 (20)

with x+ = Ax+ Bψ2(x). Note that (20) makes only sense
if both J⋆(x) and J⋆(x+) are finite for all x ∈ X0. From
now on, we may thus assume without much loss of generality
that for all x0 ∈ X0 there exist (x,u) ∈ F(x+0) and (x̃, ũ) ∈
F(x0). In analogy to Section IV-A, we can then reformulate
the direct condition (20) in terms of the bilevel program

min J(x̃, ũ)− J(x,u)− ϵ∥x0∥22
s.t. x0 ∈ X0, (x̃, ũ) ∈ F(x0)

(x,u) ∈

 argmin J(x̄, ū)
s.t. (x̄, ū) ∈ F(x̄0)

x̄0 = Ax0 +Bψ2(x0).

(21)

Indeed, condition (20) holds if and only if the optimal value
of the bilevel program (21) is non-negative. Note that, by
constructions, the lower level problem in (21) is feasible for
every x0 ∈ X0. Note also that the bilevel programs (19)
and (21) are very similar, that is, they only differ with regard
to the objective function of the upper level problem and the
feasible set of the lower level problem.

Corollary 2: Let X0 ⊆ X be a neighborhood of 0 such
that for all x0 ∈ X0 there exist (x,u) ∈ F(x+0) and
(x̃, ũ) ∈ F(x0). If Assumption 1 holds, ψ2(x) is a con-
tinuous control law on X0 with ψ2(0) = 0 and the optimal
value of (21) is non-negative for some ϵ > 0, then there
exists a neighborhood Xψ2

0 ⊆ X0 of 0 such that the closed-
loop system x+ = Ax + Bψ2(x) converges asymptotically
to 0 on Xψ2

0 .
The proof of Corollary 2 widely parallels that of Theo-

rem 2 and is therefore omitted for the sake of brevity.

C. Approximating the Stable Region

From Theorem 2 we know that the approximate controller
ψ2(x) is stable on a neighborhood Xψ2

0 of 0 provided
that the optimal value of the bilevel program (19) is non-
negative. Unfortunately, there is no explicit analytical or
efficient algorithmic characterization of Xψ2

0 in general. We
thus resort to computing outer and inner approximations. To
construct a convex polyhedral outer approximation for Xψ2

0 ,
recall first that Xψ2

0 ⊆ X0 and that for all x0 ∈ X0 there exists
(x,u) ∈ F(x0) with u0 = ψ2(x0). We can thus enclose Xψ2

0

in

Ω =
{
x0 ∈ X

∣∣ ∃(x,u) ∈ F(x0), u0 = ψ2(x0)
}
,

which in turn can be enclosed in the convex polyhedron

Ω = {x ∈ Rn | Cx ≤ c} ,

where C ∈ RnC×n is a fixed matrix, whose rows represent
the nC normal vectors of the polyhedron’s facets. The vector
c ∈ RnC is constructed by solving nC optimization problems

ci = max
x0∈Ω

Cix0 (22)

for i = 1, . . . , nC . This recipe yields the smallest polyhe-
dron Ω corresponding to the shape matrix C that contains Ω.
For example, if we select C = [In,−In]T , then Ω coincides
with the smallest rectangular box containing Ω.

To construct an ellipsoidal subset of the stability region,
we first consturct a large ball in Ω around the origin of Rn.
This is difficult because of the nonlinear constraint u0 =
ψ2(x0) in the definition of Ω. However, if ψ2(0) = 0 and
ψ2(x) is Lipschitz continuous with Lipschitz constant L, then
we have

∥u0∥2 = ∥ψ2(x0)− ψ2(0)∥2 ≤ L∥x0∥2.

Note that MILP techniques akin to those developed in this
paper can be used to compute the Lipschitz constant L if
ψ2(x) is a ReLU NN [51]. Next, consider the feasible set of
the MPC problem (15) projected to the first state and input,
that is,

Fx,u =
{
(x, u) ∈ Rn × Rm

∣∣ ∃(x,u) ∈ F(x), u0 = u
}
,

and note that Fx,u is the projection of a convex polyhedron,
thus constituting a lower-dimensional convex polyhedron. By
using Fourier-Motzkin elimination, one can find a represen-
tation for Fx,u in terms of linear inequalities, that is, we can
construct D ∈ Rnx,u×n, E ∈ Rnx,u×m and d ∈ Rnx,u with

Fx,u =
{
(x, u) ∈ Rn × Rm

∣∣ Dx+ Eu ≤ d
}
.

In fact, this explicit representation of Fx,u can be efficiently
computed with the MPT toolbox [48]. We may thus conclude
that Ω is guaranteed to contain the ball Ω around 0 of radius

max
r≥0

{
r
∣∣ (x0, u0) ∈ Fx,u ∀∥x0∥2 ≤ r, ∥u0∥2 ≤ Lr

}
=

{
max
r≥0

r

s.t. Dx0 + Eu0 ≤ d ∀∥x0∥2 ≤ r, ∥u0∥2 ≤ Lr

=

{
max
r≥0

r

s.t. (∥Di∥2 + ∥Ei∥2L)r ≤ di ∀i = 1, . . . , nx,u

= min
1,...,nx,u

di/(∥Di∥2 + ∥Ei∥2L) = r⋆.

From Theorem 2 we know that J⋆(x) is a Lyapunov function
on Ω and, consequently, also on Ω ⊆ Ω. While Ω may not be
invariant under ψ2(x), the defining properties of Lyapunov
functions imply that any sublevel set of J⋆(x) contained
in Ω must be invariant. As J⋆(x) is convex piecewise
quadratic and, in particular, coincides with VN (x) on XN ,
its smallest sublevel sets are concentric ellipsoids around 0
[52, Chapter 7.3]. One can thus define Xψ2

0 as the largest of
these sublevel sets contained in Ω ∩ XN , which can easily

be computed. By construction, the system Ax + Bψ2(x) is
asymptotically stable on Xψ2

0 (but Xψ2

0 constructed in this
manner is generally a strict subset of the entire stability
region).

D. MIP Reformulations of Bilevel Programs

The bilevel program (19) derived in Section IV-A cannot
be solved directly by standard solvers. We will now show,
however, that it can sometimes be reformulated as an MIQP.
To this end, we assume from now on that the stage cost
function ℓ(x, u) as well as the terminal cost function VN (x)
are convex and quadratic. In addition, we assume that the
sets X, U, XN and X0 are convex polyhedra. In this case,
the lower level problem in (19) aconstitutes a convex QP
parameterized by x0 and ψ2(x0) and can be represented
abstractly as

min
z

1

2
zTPz + qT z

s.t. Az = B[xT0 , ψ2(x0)
T]T + b

Fz ≤ g,

(23)

with z ∈ Rnz representing the decision variables (x̄, ū)
and with constant matrices P ∈ Snz

++, q ∈ Rnz , A ∈
Rneq×nz , B ∈ Rneq×(n+m), b ∈ Rneq , F ∈ Rnineq×nz , and
g ∈ Rnineq . By Lemma 4, the unique minimizer of (23) is
therefore MILP-representable, and the bilevel program (19)
is equivalent to

min J(x̃, ũ) + ℓ(x0, u0)−
1

2
zTPz − q̃T z̃ − ϵ∥x0∥22

s.t. x0 ∈ X0, (x̃, ũ) ∈ F(x0), z ∈ Rnz , u0 ∈ Rm

µ ∈ Rneq , λ ∈ Rnineq , β ∈ {0, 1}nineq

(x0, u0) ∈ gr(ψ2)

0 = Az −B[xT0 , u
T
0]
T − b

0 = Pz + q +ATµ+ FTλ

0 ≤ λi ≤Mβi ∀i = 1, . . . , nineq

0 ≤ gi − Fiz ≤M(1− βi) ∀i = 1, . . . , nineq,
(24)

where µ and λ represent the Lagrange multipliers associated
with the equality and inequality constraints of the lower level
problem (23), respectively, and β is the binary vector used
to linearize the complementary slackness conditions. The
auxiliary variable u0 serves as a placeholder for ψ2(x0),
and the abstract constraint (x0, u0) ∈ gr(ψ2) captures the
requirement u0 = ψ2(x0). If ψ2(x0) is MILP-representable
(e.g., if ψ2(x0) is a ReLU NN), then (24) is equivalent
to an indefinite MIQP, which can be readily solved with
commercial solvers such as Gurobi [42]. Similarly, the
bilevel program (21) can also be reformulated as an MIQP,
and the optimization problems (22) that need to be solved
to construct Ω can be reformulated as MILPs. Details are
omitted for brevity.

Remark 6: As its objective function is indefinite
quadratic, problem (24) is considerably harder to solve
than an MILP or an MIQP with a convex QP relaxation.
Modern solvers such as Gurobi 9.0 can solve problems of

the form (24), however, by translating the indefinite cost
into bilinear constraints and then using cutting plane and
spatial branching techniques.

V. CASE STUDY: DC-DC POWER CONVERTER

In this section, we consider the DC-DC power converter
from [6] as a case study. The original linear MPC controller
is approximated via a piecewise affine NN. Evaluating the
NN is considerably cheaper, allowing the approximate con-
trol policy to be deployed on a low cost microcontroller
operating at 80MHz and with a sampling frequency of
10 kHz. Simulation results show the effectiveness of the
approximate control in some cases, however, the work gives
no guarantee of stability. Using the techniques introduced
above, we can show that the NN controller is indeed stable
for the closed-loop system, and give an outer approximation
of the stability region.

Additionally, we design a tube MPC robust to input
disturbances. The robust controller is then approximated
using a NN. Using the formulation in Section III-A we
can guarantee the closed-loop system controlled by the NN
satisfies constraints and converges to the minimum robust
invariant set.

The model of the DC-DC converter is linearized and
discretized, giving us the following two-state x = (iL, vO)
(current and voltage), and one-input (duty cycle) linear
system

x+ = Ax+Bu =

[
0.971 −0.010
1.732 0.970

]
x+

[
0.149
0.181

]
u.

A more detailed derivation of the model dynamics along with
additional details on the physical system can be found in [6].

A. Nominal MPC

The problem of control design for tracking current and
voltage references in the DC-DC converter can be formulated
as a linear MPC controller. We formulate the MPC controller
which regulates to the steady-state xeq =

[
0.05 5

]T
, and

ueq = 0.3379 as

min
x,u

N−1∑
i=0

(
∥xi − xeq∥2Q + ∥ui − ueq∥2R

)
+ ∥xN − xeq∥2P

s.t. ∀i = 0, . . . , N − 1,

xi+1 = Axi +Bui,[
0
0

]
≤ xi ≤

[
0.2
7

]
, 0 ≤ ui ≤ 1

xN ∈ XN , x0 = x(0),

(25)

with horizon length N = 10, Q = diag(90, 1), R = 1, P
the solution of the associated discrete-time algebraic Riccati
equation, and XN the system’s maximal invariant set under
the LQR policy. The resulting control policy can be seen in
Figure 3.

We chose the same architecture for the approximate con-
troller as in [6], which can be seen in Figure 2, with the

x

Fx+ f

y1

argmin ∥Hz + y1∥22 + ε∥z∥22
s.t. z ≥ 0

y2

Gy2 + g

y3

sat(y3)

u

Fig. 2: The piecewise affine NN architecture.

appropriate dimensions of the layers fully determined by the
size of the optimization variable z ∈ Rnz , which was chosen
as nz = 3. Note that this is not a classic NN architecture,
since the second layer is the solution of a parametric QP.
This shows the flexibility of our toolbox, since we also allow
more unconventional layer structures.

The idea of the second layer is to approximate the original
MPC policy, which is a parametric QP, with a smaller
parametric QP where we can control the complexity with the
dimension nz . By leveraging the implicit function theorem,
one can optimize the QP parameters. For deployment, the
solution map of the QP can then be precalculated like in
explicit MPC. Compared to explicit MPC, we can trade off
the solution complexity with approximation accuracy. The
reader is referred to [6] for a more detailed description and
analysis of the architecture.

For the training data, 5000 samples of the original con-
troller (25) uniformly distributed from the feasible region
are taken, and the approximate controller is then trained
using Adam [53] as the optimizer. To formulate the convex
optimization layer, cvxpylayers [22] was used. The trained
simplified controller and the absolute approximation error
can be seen in Figure 3.

Using the formulation in Section III we find an absolute
worst-case approximation error of γ = 0.24 at iL = 0 and
vO = 6.79. Similarly, using both formulations in Sections
IV-A and IV-B, by solving an indefinite MIQP respectively,
we can verify the stability of the closed-loop system, which
is the case for this example. With this, we have successfully
verified the approximate control policy against the nominal
MPC. Additionally, we solve (22) to get an outer and inner
approximation of the stability region Ω, which can be seen in
Figure 3. Note that the outer approximation is smaller than
the feasible region of the MPC controller. This is expected
because due to the approximation error, we can not expect
to achieve the same stability region. On the other hand,
the inner approximation is very conservative, as one would
expect, since we are using conservative Lipschitz bounds for
its calculation.

0.0 0.1 0.2

iL

0.0

2.5

5.0

v
O

Original Controller

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2

iL

0.0

2.5

5.0

v
O

Simplified Controller

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2

iL

0.0

2.5

5.0

v
O

Approximation Error

Ω̄

Ω

0.0

0.1

0.2

Fig. 3: Original, approximate/simplified control policy (top),
and approximation error to the original MPC control policy
with outer and inner approximation of stability region (bot-
tom).

B. Robust Tube MPC

Starting from the MPC formulation in (25), we formulate
a robust tube MPC [37]. We assume that we have uncertain
dynamics

x+ = Ax+Bu+Bw,

with disturbance set W = {w ∈ R | −0.1 ≤ w ≤ 0.1}. The
objective is now to design a robust controller to withstand an
input disturbance with amplitude 0.1. The input disturbance
is typically associated to the distortion introduced by the
switching nature of the converter, but here we use it to verify
the stability of the approximate policy.

We extend the nominal MPC formulation (25) to the
following robust tube MPC formulation

min
z,v

N−1∑
i=0

(
∥zi − xeq∥2Q + ∥vi − ueq∥2R

)
+ ∥zN − xeq∥2P

s.t. ∀i = 0, . . . , N − 1,

zi+1 = Azi +Bvi,

zi ∈ X⊖ E , vi ∈ U⊖KE
zN ∈ XN , x(0) ∈ z0 ⊕ E ,

(26)
where E is the minimum robust invariant set with respect to
a linear feedback gain K, and the control law is given by
ψ1(x) = K(x − z⋆0(x)) + v⋆0(x). Here K is the feedback
gain and P is the solution of the Riccati equation associated
with the discrete LQR problem. The policy is robustly stable
for input disturbances in W [37, Theorem 1]. The horizon
length was increased to N = 20 to have a bigger feasible
region. Note that (26) is a pQP since the sets X⊖E , U⊖KE ,
and E are polyhedra that can be precalculated.

We then approximate the tube MPC with a NN with 2
hidden layers, 50 neurons each, and a saturation layer at
the end to clip the input between -1 and 1. Similar as in
Section V-A, 5000 samples of the tube MPC uniformly in
the feasible region are taken and the NN is trained using

0.0 0.1 0.2

iL

0.0

2.5

5.0

v
O

Original Robust Controller

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2

iL

0.0

2.5

5.0

v
O

Simplified Robust Controller

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2

iL

0.0

2.5

5.0

v
O

Approximation Error

0.00

0.02

0.04

0.06

Fig. 4: Original, approximate/simplified robust control policy
(top), and approximation error to the original robust MPC
control policy (bottom).

0 5 10 15

Time [ms]

0

1

2

3

4

5

v
O

[V
]

0.00

0.05

0.10

0.15

0.20

i L
[A

]

Fig. 5: Closed-loop startup response of the approximate
MPC.

standard techniques. The resulting NN controller together
with the original tube MPC can be seen in Figure 4.

We apply the formulation from Section III to find the
worst case approximation error, and get a value of γ =
0.073. Since we designed our controller to be robust for
input perturbations with a maximum magnitude of 0.1, we
have shown that the NN controller satisfies constraints and
converges to the minimum robust invariant set in the feasible
region of the tube MPC.

The set on which the closed-loop system is stable is
directly given by the feasible set of the tube MPC, compared
to the nominal MPC where we could only calculate an outer
approximation of the stability region. Additionally, to verify
stability, we only have to solve an MILP and not an indefinite
MIQP, which might be considerably harder to solve. But
for larger problem sizes, the solve times are not necessarily
larger as we discuss in Section VI-C.

C. Experimental Validation

The approximate nominal controller in Section V-A has
been implemented on an inexpensive STM32L476 micro-
controller for a prototype of the described DC-DC power
converter. The controller is running at a frequency of 10 kHz,

with the execution time of the control law being between
22.0 µs and 27.5 µs. The closed-loop startup response can be
seen in Figure 5. We can see that the constraints for both the
voltage vO and the current iL are satisfied, and an excellent
transient with a settling time of 2.33 ms. For more elaborate
implementation details, the reader is referred to [6].

VI. DISCUSSION

A. Comparison to Explicit MPC

Similar to explicit MPC, we obtain an explicit solution
map of the baseline MPC policy. The main difference lies in
the representation and exactness of this mapping. Whereas
the explicit MPC solution map is exact, compared to the
approximate, but verified, solution map obtained by our
method, it comes at the cost of storing polytopic regions of
the piecewise linear solution map. Even worse, the number
of stored regions grows, in the worst case, exponentially in
the dimension of the state and the number of constraints of
the baseline MPC policy [7]. Additionally, the online search
for the polytope containing the current state may require
excessive processing power or storage space. Although these
computational challenges can be mitigated by using search
trees [8] or hash tables [9], the required memory may remain
too large [10], especially for embedded systems.

The NN approximating the baseline MPC policy in our
method does not suffer from this exponential growth. Thus,
deploying the policy online does not require excessive
amounts of memory and no online search. The inference
of the NN is deterministic and does not change based on
the current state. This makes it especially suitable for time-
critical systems where low deterministic evaluation times are
critical. In [27], the authors could reduce the evaluation time
and required memory to store the solution map from 12.9 ms
and 518 kB for the explicit MPC to 1.5 ms and 17 kB for the
NN approximation. Considering this was a relatively simple
system with only n = 2 states and m = 1 input, it is to
be expected that for larger systems the savings in online
evaluation time and required memory storage only increases.

In the worst case, the verification method described in
Section IV scales worse than the offline calculation of
explicit MPC, since it not only exponentially grows with the
number of constraints, but also with the number of neurons of
the NN. The only advantage is that our method is that we can
rely on efficient branch-and-cut methods to reduce the search
space, while explicit MPC has to enumerate every polytopic
region. But it is worth noting that all this computational
complexity is offline, and our method does not suffer from
the exponential scaling in the online setting.

B. Comparison to Lipschitz Based Methods

We compare our method to the approach introduced in
[33]. The authors provide the following two main results.

Lemma 8 ([33, Lemma 3.2]): There exist ζc > 0 such
that, if γ < ζc, the LTI system in (13) with NN controller
ψ2(x) converges in finite time to a neighborhood of the
origin, for all x0 ∈ Ωc, with c := maxa {a ≥ 0 | Ωa ⊆ X}.

Theorem 3 ([33, Theorem 3.4]): Let Assumption 1 hold.
There exist ζc and ϑ such that, if γ < ζc and
L∞ (ψ1(x)− ψ2(x),XN) < ϑ, and b ≥ 0 can be chosen
so that Ωb ⊆ XN , then the LTI system in (13) with NN
controller ψ2(x) converges exponentially to the origin, for
all x0 ∈ Ωc, with c := maxa {a ≥ 0 | Ωa ⊆ X}.

Here Ωa denotes the a-sublevel set of J⋆(x), and
Lα(F,S) is the local α-Lipschitz constant over some set
S ⊆ Rn for a given mapping F : Rn → Rm.

Lemma 8 states that the NN policy is input-to-state-stable
(ISS) if the worst case approximation error is smaller than
a constant ζc. This does not guarantee asymptotic stability
yet, but in Theorem 3 exponential convergence to the origin
is shown if the Lipschitz constant of the approximation error
is smaller than a constant ϑ.

We are not going in more detail on how to calculate
these constants. The reader is referred to [33] for more
details, but it turns out that these constants become small in
practice. Since the NN almost surely does not approximate
the baseline control policy arbitrary well in practice, the
Lipschitz constant of the approximation error can grow
significantly, especially if the NN is over parameterized. To
demonstrate this, we consider a simple example of a double
integrator. We define the baseline MPC policy

min
x,u

N−1∑
i=0

(
∥xi∥2Q + ∥ui∥2R

)
+ ∥xN∥2P

s.t. ∀i = 0, . . . , N − 1,

xi+1 =

[
1 1
0 1

]
xi +

[
0
1

]
ui,[

−10
−10

]
≤ xi ≤

[
10
10

]
, −1 ≤ ui ≤ 1

xN ∈ XN , x0 = x(0),

(27)

with horizon length N = 10, Q = diag(1, 1), R = 0.1, P
the solution of the associated discrete-time algebraic Riccati
equation, and XN the system’s maximal invariant set under
the LQR policy.

We estimate the largest sublevel set Ωc ⊆ X with c = 180,
giving us ζ180 = 0.1673. This will only guarantee ISS. To
prove exponential stability, we estimate the largest sublevel
Ωb ⊆ XN with b = 1.1, giving us ζ1.1 = 0.0010 and ϑ =
0.0436.

For the training data, 1000 samples of the baseline con-
troller (27) uniformly distributed from the feasible region are
taken, and the approximate controller is then trained using
L-BFGS for different hidden layers and neurons per hidden
layer. The resulting worst case approximation error γ can
be seen in Figure 6. Note that for sufficiently large NN
architectures γ < ζ180, but γ > ζ1.1 for all architectures.
Hence, with the approach from [33] it is possible to show
ISS, but not exponential stability. In Figure 7 we also plot the
Lipschitz constant L∞ (ψ1(x)− ψ2(x),XN) of the approx-
imation error. Note that it is generally orders of magnitude
larger than ϑ, making it impossible to verify asymptotic
stability even if the approximation error is small enough.

1 5 10 15 20 25 30

Neurons per Hidden Layer

4
3

2
1

H
id

d
en

L
a
y
er

s

0.2

0.4

0.6

0.8

1.0

Fig. 6: Worst case approximation error γ.

1 5 10 15 20 25 30

Neurons per Hidden Layer

4
3

2
1

H
id

d
en

L
a
y
er

s

0.0

0.5

1.0

1.5

2.0

2.5

Fig. 7: Lipschitz constant L∞ (ψ1(x)− ψ2(x),XN) of the
approximation error.

1 5 10 15 20 25 30

Neurons per Hidden Layer

4
3

2
1

H
id

d
en

L
a
y
er

s

−400

−300

−200

−100

0

Fig. 8: Stability certificate ξ for solving (21). The green area
shows successful verification of asymptotic stability.

10 25 50 75 100

Neurons per Hidden Layer

6
5

4
3

2
1

H
id

d
en

L
a
y
er

s

100

101

102

103

104

Fig. 9: Solve times of (14) in seconds with MPC horizon
N = 10.

As a comparison, we run our direct verification method
by solving (21). The results can be seen in Figure 8. Note
that we not only verify asymptotic stability, but did so even
for NN policies with a very small number of hidden layers
and neurons, where the method in [33] failed to show ISS.

The failure to verify stability for NNs with 1 hidden layer
and 8–12 neurons per layer is an artifact of the stochastic
learning process. The outcome of the learning process de-
pends on the initial condition and general hyperparameters
(e.g., batch size, learning rate, etc.). Hence, with a more
careful training procedure, and hyperparameter tuning, it is
to be expected to be able to learn a NN control policy that
can be verified for stability.

C. Numerical Experiments

In this section, we assess the numerical performance of
our approach. All problems were solved using Gurobi 9.5
[42] using 32 Threads on a workstation with an AMD Ryzen
Threadripper 3990X 4.3 GHz CPU and 32 GB of RAM.

We approximate and verify against MPC problem (25),
and use a ReLU NN architecture as introduced in Section II-
A to approximate the MPC policy. For the training, we
collect 2000 samples from the MPC controller uniformly
distributed on the feasible region, and the NN is trained using
PyTorch [38] with ADAM [53] as the optimizer.

Here, we are not necessarily interested in the approxima-
tion accuracy of the NN, but more in the numerical perfor-
mance and scaling of the to-be-solved optimization problems.
Applying this method to a specific problem requires naturally
more tuning since the verification will only succeed if the
NN approximates the MPC policy closely enough, but the
presented results will still give a quantitative insight in solve
times and what can be expected if applied to a more specific
problem.

In a first experiment, we fix the horizon of the MPC
controller to be N = 10, and solve problem (14) for
different NN architectures varying in the number of hidden
layers and number of neurons per hidden layer. The resulting
solve times can be seen in Figure 9. We can note that the

20 40 60 80 100

Neurons per Hidden Layer

100

101

102

103

104

S
o
lv

e
ti

m
e

[s
]

nineq = 23

nineq = 38

nineq = 53

nineq = 68

Fig. 10: Solve times of (14) in seconds for 4 hidden layers
and MPC horizon lengths N = 5, 10, 15, 20.

20 40 60 80 100

Neurons per Hidden Layer

100

101

102

103

104

S
o
lv

e
ti

m
e

[s
]

error

sufficient

direct

Fig. 11: Solve times of (14), (19), and (21) in seconds for 4
hidden layers and MPC horizon N = 10.

computation time increases exponentially with the number
of hidden layers and neurons per hidden layer. This is as
expected, since each neuron adds a binary decision variable
to the MILP, increasing the solve time exponentially. On
the other hand, this also means that deeper architectures are
preferred since the representational power of the NN grows
faster with depth as compared to increasing the number of
neurons per hidden layer, resulting in architectures which can
be verified more quickly.

Next, we investigate the influence of the horizon length N
of the MPC problem. For this, we fix the NN to have four
hidden layers. Increasing the horizon increases the number of
inequalities in the parametric QP. Hence, we expect the solve
times to increase since we add a binary decision variable
per inequality, which can be observed in Figure 10. The
computation time increases with the number of inequalities
and the number of neurons per hidden layer. Note that the
complexity does not depend on the state dimension of the
system, meaning that our method does not necessarily suffer
from the curse of dimensionality.

As a final experiment, we compare the different methods
against each other. For this, we fix the horizon to N =
10 and the NN to have four hidden layers. We solve for
the maximum absolute error, and verify the MPC approx-

imation using the sufficient and direct methods introduced
in Section IV by solving problems (14), (19), and (21)
respectively. The resulting computation times can be seen
in Figure 11. We can see that for small problems, solving
for the maximum absolute error between the MPC and the
NN is faster than the verification methods. But for bigger
problems the verification problems are solved more quickly,
although solving an indefinite MIQP is considered to be
more difficult. Interestingly, the direct verification method
is slower to solve than the sufficient method. Potentially, the
cascading structure of the direct verification problem makes
the problem harder to solve.

Remark 7: While solving the described verification prob-
lems can be very costly, the computation times are still man-
ageable in practice. The alternative are statistical methods to
verify stability. While these methods can be faster if only
low probabilistic guarantees are needed, they tend to scale
very badly if a high probabilistic confidence is required.
For example, in [17] a problem similar in size to (27) is
considered. They need roughly 500 hours to verify that the
approximate learned controller is stable for the closed loop
system, with a probability of only 99%.

VII. SUMMARY

We have introduced a flexible framework that allows one
to formulate a variety of verification problems as MILPs or
indefinite MIQPs. In particular, we have shown that not only
NN with linear layers and ReLU activation functions are
representable in such a framework, but also more complex
layer structures such as parametric QPs and piecewise affine
functions on polyhedral sets can be represented and com-
bined.

Taking these formulations, we then constructed an MILP
problem, which gives us the maximum approximation error
between a given MPC and its NN approximation. Together
with an MPC formulation robust in the input (ex. tube
MPC), we can show constraint satisfaction and stability in
the feasible region of the MPC controller. Alternatively, we
provided indefinite MIQP formulations to directly verify
stability and calculate an outer approximation of the stability
region.

We compared our approach against a Lipschitz based
method and showed that our approach outperforms it, be-
ing able to verify asymptotic stability in cases where the
Lipschitz based method could only show ISS or could not
show stability at all.

REFERENCES

[1] S. Qin and T. A. Badgwell, “A survey of industrial model predictive
control technology,” Control Engineering Practice, vol. 11, no. 7, pp.
733–764, 2003.

[2] F. Oldewurtel, A. Parisio, C. N. Jones, D. Gyalistras, M. Gwerder,
V. Stauch, B. Lehmann, and M. Morari, “Use of model predictive
control and weather forecasts for energy efficient building climate
control,” Energy and Buildings, vol. 45, pp. 15–27, 2012.

[3] M. W. Müller and R. D’Andrea, “A model predictive controller for
quadrocopter state interception,” in European Control Conference,
2013.

[4] M. Neunert, M. Stäuble, M. Giftthaler, C. D. Bellicoso, J. Carius,
C. Gehring, M. Hutter, and J. Buchli, “Whole-body nonlinear model
predictive control through contacts for quadrupeds,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 1458–1465, 2018.

[5] P. Karamanakos, E. Liegmann, T. Geyer, and R. Kennel, “Model
predictive control of power electronic systems: Methods, results, and
challenges,” IEEE Open Journal of Industry Applications, vol. 1, pp.
95–114, 2020.

[6] E. T. Maddalena, M. W. F. Specq, V. L. Wisniewski, and C. N. Jones,
“Embedded PWM predictive control of DC-DC power converters via
piecewise-affine neural networks,” IEEE Open Journal of the Industrial
Electronics Society, vol. 2, pp. 199–206, 2021.

[7] A. Alessio and A. Bemporad, A Survey on Explicit Model Predictive
Control. Springer, 2009, pp. 345–369.

[8] C. N. Jones, P. Grieder, and S. V. Raković, “A logarithmic-
time solution to the point location problem for parametric linear
programming,” Automatica, vol. 42, no. 12, pp. 2215–2218, 2006.

[9] F. Bayat, T. A. Johansen, and A. A. Jalali, “Using hash tables to
manage the time-storage complexity in a point location problem:
Application to explicit model predictive control,” Automatica, vol. 47,
no. 3, pp. 571–577, 2011.

[10] M. Kvasnica and M. Fikar, “Clipping-based complexity reduction in
explicit MPC,” IEEE Transactions on Automatic Control, vol. 57,
no. 7, pp. 1878–1883, 2012.

[11] A. Domahidi, M. N. Zeilinger, M. Morari, and C. N. Jones, “Learning
a feasible and stabilizing explicit model predictive control law by
robust optimization,” in IEEE Conference on Decision and Control
and European Control Conference, 2011.

[12] S. Chen, K. Saulnier, N. Atanasov, D. D. Lee, V. Kumar, G. J. Pappas,
and M. Morari, “Approximating explicit model predictive control using
constrained neural networks,” in American Control Conference, 2018.

[13] J. A. Paulson and A. Mesbah, “Approximate closed-loop robust model
predictive control with guaranteed stability and constraint satisfaction,”
IEEE Control Systems Letters, vol. 4, no. 3, pp. 719–724, 2020.

[14] D. Psaltis, A. Sideris, and A. Yamamura, “A multilayered neural
network controller,” IEEE Control Systems Magazine, vol. 8, no. 2,
pp. 17–21, 1988.

[15] B. Karg and S. Lucia, “Efficient representation and approximation of
model predictive control laws via deep learning,” IEEE Transactions
on Cybernetics, vol. 50, no. 9, pp. 3866–3878, 2020.

[16] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2,
no. 5, pp. 359–366, 1989.

[17] M. Hertneck, J. Köhler, S. Trimpe, and F. Allgöwer, “Learning
an approximate model predictive controller with guarantees,” IEEE
Control Systems Letters, vol. 2, no. 3, pp. 543–548, 2018.

[18] X. Zhang, M. Bujarbaruah, and F. Borrelli, “Near-optimal rapid MPC
using neural networks: A primal-dual policy learning framework,”
IEEE Transactions on Control Systems Technology, vol. 29, no. 5,
pp. 2102–2114, 2021.

[19] M. Baes, M. Diehl, and I. Necoara, “Every continuous nonlinear
control system can be obtained by parametric convex programming,”
IEEE Transactions on Automatic Control, vol. 53, no. 8, pp. 1963–
1967, 2008.

[20] A. B. Hempel, P. J. Goulart, and J. Lygeros, “Every continuous
piecewise affine function can be obtained by solving a parametric
linear program,” in European Control Conference, 2013.

[21] B. Amos and J. Z. Kolter, “OptNet: Differentiable optimization as a
layer in neural networks,” in International Conference on Machine
Learning, 2017.

[22] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter,
“Differentiable convex optimization layers,” in Advances in Neural
Information Processing Systems, 2019.

[23] S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium models,” in
Advances in Neural Information Processing Systems, 2019.

[24] P. Kumar, J. B. Rawlings, and S. J. Wright, “Industrial, large-scale
model predictive control with structured neural networks,” Computers
& Chemical Engineering, vol. 150, p. 107291, 2021.

[25] J. Nubert, J. Köhler, V. Berenz, F. Allgöwer, and S. Trimpe, “Safe and
fast tracking on a robot manipulator: Robust MPC and neural network
control,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
3050–3057, 2020.

[26] T. Parisini and R. Zoppoli, “A receding-horizon regulator for
nonlinear systems and a neural approximation,” Automatica, vol. 31,
no. 10, pp. 1443–1451, 1995.

[27] E. Maddalena, C. da S. Moraes, G. Waltrich, and C. N. Jones, “A
neural network architecture to learn explicit MPC controllers from
data,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 11 362–11 367, 2020.

[28] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger,
“Learning-based model predictive control: Toward safe learning in
control,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 3, no. 1, pp. 269–296, 2020.

[29] B. Karg and S. Lucia, “Stability and feasibility of neural network-
based controllers via output range analysis,” in IEEE Conference on
Decision and Control, 2020.

[30] M. Fazlyab, M. Morari, and G. J. Pappas, “Safety verification and
robustness analysis of neural networks via quadratic constraints and
semidefinite programming,” IEEE Transactions on Automatic Control,
vol. 67, no. 1, pp. 1–15, 2022.

[31] H. Dai, B. Landry, M. Pavone, and R. Tedrake, “Counter-example
guided synthesis of neural network lyapunov functions for piecewise
linear systems,” in IEEE Conference on Decision and Control, 2020.

[32] S. Chen, M. Fazlyab, M. Morari, G. J. Pappas, and V. M. Preciado,
“Learning Lyapunov functions for hybrid systems,” in International
Conference on Hybrid Systems: Computation and Control, 2021.

[33] F. Fabiani and P. J. Goulart, “Reliably-stabilizing piecewise-affine
neural network controllers,” IEEE Transactions on Automatic Control,
pp. 1–15, 2022.

[34] R. R. Bunel, I. Turkaslan, P. Torr, P. Kohli, and P. K. Mudigonda,
“A unified view of piecewise linear neural network verification,” in
Advances in Neural Information Processing Systems, 2018.

[35] V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of
neural networks with mixed integer programming,” in International
Conference on Learning Representations, 2019.

[36] C. Müller, F. Serre, G. Singh, M. Püschel, and M. Vechev, “Scaling
polyhedral neural network verification on gpus,” in Proceedings of
Machine Learning and Systems, vol. 3, 2021.

[37] D. Mayne, M. Seron, and S. Raković, “Robust model predictive
control of constrained linear systems with bounded disturbances,”
Automatica, vol. 41, no. 2, pp. 219–224, 2005.

[38] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative
style, high-performance deep learning library,” in Advances in Neural
Information Processing Systems, 2019.

[39] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” Journal of Machine Learning
Research, vol. 17, no. 83, pp. 1–5, 2016.

[40] E. Wong and Z. Kolter, “Provable defenses against adversarial
examples via the convex outer adversarial polytope,” in International
Conference on Machine Learning, 2018.

[41] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri,
and M. Vechev, “Ai2: Safety and robustness certification of neural net-
works with abstract interpretation,” in IEEE Symposium on Security
and Privacy, 2018.

[42] Gurobi Optimization, LLC, “Gurobi optimizer reference manual,”
2022.

[43] R. Anderson, J. Huchette, W. Ma, C. Tjandraatmadja, and J. P.
Vielma, “Strong mixed-integer programming formulations for trained
neural networks,” Mathematical Programming, vol. 183, no. 1, pp.
3–39, Sept. 2020.

[44] D. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
[45] A. Bemporad and M. Morari, “Control of systems integrating logic,

dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427,
1999.

[46] T. Marcucci and R. Tedrake, “Mixed-integer formulations for optimal
control of piecewise-affine systems,” in International Conference on
Hybrid Systems: Computation and Control, 2019.

[47] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear
and Hybrid Systems. Cambridge University Press, 2017.

[48] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari, “Multi-
parametric toolbox 3.0,” in European Control Conference, 2013.

[49] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert, “Constrained model
predictive control: Stability and optimality,” Automatica, vol. 36,
no. 6, pp. 789–814, 2000.

[50] C. N. Jones and M. Morari, “Approximate explicit MPC using bilevel
optimization,” in European Control Conference, 2009.

[51] M. Jordan and A. G. Dimakis, “Exactly computing the local Lipschitz

constant of ReLU networks,” in Advances in Neural Information
Processing Systems, 2020.

[52] J. Rawlings, D. Mayne, and M. Diehl, Model Predictive Control:
Theory, Computation, and Design. Nob Hill Publishing, 2017.

[53] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in International Conference on Learning Representations, 2015.

APPENDIX I
IMPROVED BOUNDS FOR PARAMETRIC QP

FORMULATIONS

As we have seen in Section II-C, the complementarity
constraints of the KKT conditions can be linearized via “big-
M” constraints (7). In practice, choosing the constant M too
large can lead to numerical instability. Hence, ideally, one
should calculate a tight bound beforehand [45]. Also, unless
the parametric QP forms the last layer, then bounds on the
output y may even be required by the next layer.

Assuming we are given or have calculated upper and lower
bounds on the input, x ≤ x ≤ x, we can calculate

Mz
i = max

z,λ,µeq
gi − Fiz

s.t. x ≤ Dz ≤ x

Az = b, Fz ≤ g

Pz + q +ATµeq + FTλ = 0

λ ≥ 0

(28)

for i = 1, . . . , nineq and

Mλ
i = max

z,λ,µeq
λi

s.t. x ≤ Dz ≤ x

Az = b, Fz ≤ g

Pz + q +ATµeq + FTλ = 0

λ ≥ 0

(29)

for i = 1, . . . , nineq. Then, we can set

M = max(max
i
Mz
i ,max

i
Mλ
i).

If the linear programs (28) or (29) are unbounded, one may
restrict their feasible sets by including the MILP constraints

0 ≤ λi ≤Mβi (30a)
0 ≤ gi − Fiz ≤M(1− βi). (30b)

Even though the resulting MILPs can be solved orders of
magnitude faster than the actual verification problem, their
solution may still take a considerable amount of time because
we are solving 2nineq problem instances. In practice, these
MILPs are not solved to optimality but are interrupted after
a predefined timeout, and the best LP-Relaxation bound is
used.

APPENDIX II
TECHNICAL PROOFS

Proof: [Proof of Lemma 6] As the polytopic set X is
bounded, there exists a bounded box [t, t] ⊇ X. For every i =

1, . . . ,m, introduce a continuous decision variable zi ≥ 0 as
well as a binary decision variable βi ∈ {0, 1} that satisfy

ti ≤ zi ≤ ti + 2tβi, (31a)
−ti ≤ zi ≤ −ti − 2t(1− βi). (31b)

If ti > 0, then (31b) implies that βi = 0, and (31a) implies
that zi = ti. If ti < 0, on the other hand, then (31a) implies
that βi = 1, and (31b) implies that zi = −ti. If ti = 0,
finally, then (31) implies that zi = 0 irrespective of βi. In
any case, we thus have zi = |ti|. In order to express the
infinity norm f(t) = max(z1, . . . , zm) in terms of linear
constraints, we introduce continuous decision variables τ and
z̃i for every i = 1, . . . ,m as well as the binary decision
variables β̃i ∈ {0, 1}, i = 1, . . . ,m, subject to the constraints

1 =

m∑
i=1

β̃i, (32a)

τ =

m∑
i=1

z̃i, (32b)

τ ≥ zi ∀i = 1, . . . ,m, (32c)

0 ≤ z̃i ≤ max(|t|, |t|)β̃i ∀i = 1, . . . ,m, (32d)
z̃i ≤ zi ∀i = 1, . . . ,m. (32e)

The forcing constraints (32d) ensure that z̃i = 0 whenever
β̃i = 0, whereas (32a) ensures that β̃i = 1 for exactly one
i. Hence, (32b) sets τ = z̃i for the unique i with β̃i = 1.
By (32e), we thus have τ = z̃i ≤ zi ≤ max(z1, . . . , zm).
The constraint (32c), finally, ensure the converse inequality
τ ≥ zi ≥ max(z1, . . . , zm). Hence, f(t) = ∥t∥∞ is MILP-
representable, and its graph can be expressed as

gr(f) =

(t, τ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃β, β̃ ∈ {0, 1}m, z, z̃ ∈ Rm :

∀i = 1, . . . ,m :

t ∈ X,
ti ≤ zi ≤ ti + 2tβi,

−ti ≤ zi ≤ −ti − 2t(1− βi),

1 =

m∑
j=1

β̃j , τ =

m∑
j=1

z̃j ,

0 ≤ z̃i ≤ max(|t|, |t|)β̃i,
z̃i ≤ zi ≤ τ

.

This observation completes the proof.

A. Proof of Corollary 1

Proof: The proof widely parallels that of Lemma 6.
However, there is no need to introduce decision variables β̃
and z̃ because we can directly set

τ = ∥t∥1 =

m∑
i=1

zi.

Thus, the claim follows.

	Introduction
	Related Work
	Contributions

	MILP-Representable Verification Problems
	ReLU Neural Networks
	Box Saturation
	Parametric QPs
	Piecewise Affine Functions over Polyhedral Sets

	Computation of the Approximation Error
	Stability Verification Against Robust MPC

	Stability Verification of Approximate MPC
	Sufficient Condition for Lyapunov Decrease
	Direct Verification of Lyapunov Decrease
	Approximating the Stable Region
	MIP Reformulations of Bilevel Programs

	Case Study: DC-DC Power Converter
	Nominal MPC
	Robust Tube MPC
	Experimental Validation

	Discussion
	Comparison to Explicit MPC
	Comparison to Lipschitz Based Methods
	Numerical Experiments

	Summary
	References
	Appendix I: Improved Bounds for Parametric QP Formulations
	Appendix II: Technical Proofs
	Proof of Corollary 1

