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Abstract— In this paper, we propose a distributed zeroth-
order policy optimization method for Multi-Agent Reinforce-
ment Learning (MARL). Existing MARL algorithms often
assume that every agent can observe the states and ac-
tions of all the other agents in the network. This can be
impractical in large-scale problems, where sharing the state
and action information with multi-hop neighbors may incur
significant communication overhead. The advantage of the
proposed zeroth-order policy optimization method is that
it allows the agents to compute the local policy gradients
needed to update their local policy functions using local
estimates of the global accumulated rewards that depend
on partial state and action information only and can be ob-
tained using consensus. Specifically, to calculate the local
policy gradients, we develop a new distributed zeroth-order
policy gradient estimator that relies on one-point residual-
feedback which, compared to existing zeroth-order estima-
tors that also rely on one-point feedback, significantly re-
duces the variance of the policy gradient estimates improv-
ing, in this way, the learning performance. We show that
the proposed distributed zeroth-order policy optimization
method with constant stepsize converges to the neighbor-
hood of a policy that is a stationary point of the global ob-
jective function. The size of this neighborhood depends on
the agents’ learning rates, the exploration parameters, and
the number of consensus steps used to calculate the local
estimates of the global accumulated rewards. Moreover, we
provide numerical experiments that demonstrate that our
new zeroth-order policy gradient estimator is more sample-
efficient compared to other existing one-point estimators.

Index Terms— Distributed Zeroth-Order Optimization,
Multi-Agent Reinforcement Learning, Partial Observation

I. INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) has received
a lot of attention in recent years due to its wide applicability in
real-world large-scale decision making problems, e.g., cloud
autonomous driving, distributed multi-robot planning, and
distributed resource allocation, to name a few. The goal is
to enable a team of agents to collaboratively determine the
global optimal policy that maximizes the sum of their local
accumulated rewards. To do so, the agents typically need to
communicate with each other in order to obtain information
about the global state and action of the team. This is because
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their states and rewards are generally affected by the actions
of their other peers. However, sharing such information can
be undesirable, due to significant communication overhead or
privacy concerns. Therefore, there is a great need for MARL
algorithms that rely only on partial observations of the global
state and action information.

A major challenge in developing cooperative MARL meth-
ods under partial observations is that the environment, as
perceived by every individual agent when it interacts with
the other agents, is non-stationary since it changes as a
result of changes in the policies of those agents [1]. In [1]–
[3], this challenge is addressed using a centralized Critic
function that can mitigate the effect of non-stationarity in the
learning process. Then, the trained policies can be executed
in a decentralized way. In [4], a distributed offline experience
replay technique is developed to enable fully decentralized
training, which requires that all agents receive a global reward
at each timestep. However, when the global reward is defined
as the sum of local agent rewards, as in cooperative MARL,
this global reward can not be easily available to the local
agents in practice. Cooperative MARL methods that maximize
the sum of local rewards are considered in [5]–[8]. These
works develop fully decentralized Actor-Critic methods where
the agents maintain local estimates of the global value or
policy functions, that depend on the states and actions of
all other agents and update those estimates until they reach
consensus. Then, these local estimates of the global value
or policy functions are used to compute the policy gradient
estimates needed for optimization. Since these policy gradient
estimates require knowledge of the global state and action
information, such Actor-Critic methods can not be used for
cooperative MARL with partial state and action information.

In this paper, we propose a new distributed zeroth-order
estimator of the local policy gradients, which is an extension
of the one-point zeroth-order gradient estimator developed in
[9] for centralized optimization problems that estimates the
gradient using the residual of the function values at two con-
secutive iterations. As such, it queries the function value only
once at each iteration. Specifically, our proposed estimator
computes the local policy gradients by locally perturbing the
local agent policies, using information about the sum of local
accumulated rewards that can be obtained using consensus; the
sum of local accumulated rewards is global information that
is not otherwise accessible to the local agents.The advantage
of our proposed zeroth-order policy optimization method is
that it makes it possible to estimate the local policy gradients
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without having access to the global Critic function, which is
not available under partial state and action information.

Related work: Zeroth-order policy optimization has been
considered in [10], [11] for a special case of single-agent
RL problems, namely, Linear Quadratic Regulation (LQR)
problems. These results were extended in [12] for distributed
LQR problems. All these works use the one-point zeroth-
order policy gradient estimator proposed in [13], [14], which
is known to have large variance that slows down learning [15].
Instead, our proposed distributed residual-feedback estimator
returns policy gradient estimates with significantly lower vari-
ance which improves the learning performance. Our work is
also related to distributed optimization methods, as in [16]–
[20]. In these works, the agents collaborate to find a decision
variable that maximizes the sum of local objective functions.
For this, the method in [18] assumes that the gradient can
be computed, while the methods proposed in [16], [17], [19],
[20] do not assume knowledge of the gradient and instead
compute the zeroth-order gradient estimates of the local ob-
jective functions with respect to all decision variables, even
those owned by other agents. However, in MARL with partial
observations, the agents can not have access to all decision
variables and, therefore, can only compute the zeroth-order
gradient estimate of their local objective functions with respect
to those partial decision variables to which they have access.
Therefore, the methods in [16], [17] cannot be used to solve
the MARL problems considered here. In fact, recent work
on cooperative MARL [21] relies on the assumption that the
local agents can observe the team reward. This is in contrast
to the problem considered here where the agents can only
observe their local rewards, while the team rewards, which
are the summation of local rewards, are not accessible locally.
Therefore, the method in [21] cannot be applied to the problem
considered in this paper. Related is finally work on multi-agent
game formulations of MARL problems [22], [23]. While these
problems rely on partial state and action information, they are
non-cooperative in nature since the goal of the agents is to
optimize their local policies in order to maximize their local
accumulated rewards, as opposed to maximizing the sum of
their local accumulated rewards. As a result, in these problems,
the agents converge to a Nash equilibrium point rather than an
optimal policy that maximizes the global accumulated rewards.

Contributions: In this paper, we propose a new distributed
zeroth-order policy optimization method for general coop-
erative MARL problems. Compared to the one-point pol-
icy gradient estimators in [10]–[12], our proposed residual-
feedback policy gradient estimator reduces the variance of
the policy gradient estimates and, therefore, improves the
learning performance. Compared to the centralized estimator
in [9] that produces unbiased gradient estimates, the proposed
distributed policy gradient estimator is biased due to possible
consensus errors in distributedly estimating the sum of local
accumulated rewards needed for the estimation of the policy
gradients. We show that the proposed zeroth-order policy
optimization method with constant stepsize converges to a
neighborhood of a stationary point (policy) of the global
objective function. The size of this neighborhood depends
on the number of consensus steps needed to control the

bias in the policy gradient estimates. Moreover, we propose
a value tracking method to reduce the numer of consensus
steps needed to achieve a desired user-specified solution ac-
curacy. Finally, compared to existing distributed zeroth-order
optimization methods [16], [17], our method is the first that
does not require a perturbation of all decision variables or
knowledge of all local objective function values to compute
the zeroth-order gradients of the local objective functions, but
still converges to a stationary point of the global objective
function. To the best of our knowledge, this is the first work
that provides convergence guarantees for collaborative multi-
agent reinforcement learinng problems when global states and
actions are partially observable and agents can only receive
local rewards.

The rest of the paper is organized as follows. In Section
2, we present the MARL problem under consideration and
introduce preliminary results on zeroth-order optimization. In
Section 3, we develop our proposed algorithm and present the
convergence analysis. In Section 4, we verify the effectiveness
of our algorithms using numerical experiments. In Section 5,
we conclude the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a multi-agent system consisting of N agents.
The agent dynamics are governed by a Makov Decision
Process (MDP) defined by a tuple (S,A,R,P, γ), where st =
[s1,t, s2,t, . . . , sN,t] ∈ S and at = [a1,t, a2,t, . . . , aN,t] ∈ A
denote the joint state and action spaces of the N agents at
time instant t. The reward vector r = [r1,t, r2,t, . . . , rN,t] ∈ R
denotes the local rewards received by each agent at time
t. The local reward ri,t(st, at, wt) is affected by the joint
state and action of all the agents in the network, and is also
subject to noise wt. The transition function P (st, at, st+1) :
S×A×S → [0, 1] ∈ P denotes the probability of transitioning
to state st+1 when the agents take action at at state st. Let
oi,t ∈ Oi represent the local observation received at agent
i at time t, which contains partial entries of the joint state
and action vectors, st and at. Agent i selects its action ai,t
based on the observation oi,t using its local policy function
πi : Oi → Ai. Let π denote the joint policy function
which consists of all local policy functions πi. Then, the
accumulated discounted reward received by agent i is defined
as Qπ

i (s, a) = E[
∑T

t=0 γ
tri,t|s0 = s, a0 = a] or V π

i (s) =

E[
∑T

t=0 γ
tri,t|s0 = s], when the agents start from the state-

action pair (s, a) or state s, follow the joint policy π, and
apply a discount factor γ ≤ 1 to their future rewards 1.

Our goal in this paper is to find an optimal joint policy
function π∗ that solves the problem maxπ

1
N

∑N
i=1 Ji(π),

where Ji(π) = E(s0,a0)∼ρ0
[Qπ

i (s0, a0)] and ρ0 is a distribution
that the initial state-action pair is sampled from. To do so,
we assume that the local policy function πi is parameterized
as πi(θi,k), where θi,k ∈ Rdi is the local policy parameter
during episode k. Stacking these local policy parameters into
the global policy parameter vector θ ∈ Rd, we can rewrite the

1Although we consider a task with accumulated discounted rewards in
this paper, our proposed methods can be easily adapted to task considering
averaged rewards.
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problem we consider in this paper as

max
θ∈Rd

J(θ) :=
1

N

N∑
i=1

Ji(θ). (1)

Assumption 2.1: We assume that the local objective func-
tion Ji(θ) is non-convex and non-smooth for all i =
1, 2, . . . , N .

Problem (1) can be solved using distributed Actor-Critic
methods as in [5], [6]. These methods require that all agents
maintain local estimates of the global value function or the
global policy function and that these local estimates are
parameterized in the same way and depend on the global
states and actions of all other agents. Therefore, they cannot
be used for MARL with partial state and action information.
Instead, in this paper, we propose a new distributed zeroth-
order policy optimization method that relies on the stochastic
gradient ascent update

θk+1 = θk + α∇J(θk) + ϵk (2)

to determine optimal policy parameters θk that solve Prob-
lem (1), where ϵk represents the noise in gradient estimate and
α denotes the stepsize. The key idea that makes it possible to
use partial state and action information in the update (2) is the
use zeroth-order estimators ∇̃J(θk) of the true policy gradient
∇J(θk). Zeroth-order gradient estimators have been recently
proposed in [15], [24], [25], and take the form

∇̃J(θk) =
J(θk + δuk, ξk)

δ
uk, (3)

or ∇̃J(θk) =
J(θk + δuk, ξk)− J(θk − δuk, ξk)

2δ
uk, (4)

where J(θk + δuk, ξk) is an unbiased noisy sample 2 of the
accumulated rewards under the perturbed policy θk + δuk,
δ ∈ R is the exploration parameter, uk ∈ Rd is the random
exploration direction sampled independently from a standard
multivariate normal distribution N (0, Id) and Id is an identity
matrix with dimension d. The estimator (3) is called a one-
point estimator because it requires one policy evaluation at
a single perturbed policy, θk + δuk. On the other hand, the
estimator (4) is called a two-point estimator because it requires
two policy evaluations at two different perturbed policies,
θk + δuk and θk − δuk. While the two-point estimator (4)
typically produces gradient estimates with lower variance, it
is difficult to use in decentralized MARL problems. This is
because, to compute zeroth-order policy gradient estimates in
MARL, requires coordination between the agents to evaluate
their local policies. Specifically, the agents need to initialize an
episode, randomly perturb their local policies and implement
the perturbed policies until the end of episode. This procedure
requires synchronization, which can incur delays. And the
more points are used to estimate the zeroth-order gradient, the
longer these delays become as multi-point gradient estimation
requires synchronization over multiple episodes to implement
one udpate. In practice, this waiting time forces the agents to

2For RL problems, the noise vector ξk in the function evaluation is due
to noise in the initial state and action samples, the state transition dynamics
and the reward signals.

remain at a sub-optimal policy for longer than the proposed
one-point gradient estimator.

To address the above limitations akin to estimators (3) and
(4), in this paper, we adopt the one-point residual-feedback
policy gradient estimator

∇̃J(θk) =
J(θk + δuk, ξk)− J(θk−1 + δuk−1, ξk−1)

δ
uk

(5)

originally proposed in [9]. Same as the estimator (3), the
estimator (5) only requires one policy evaluation at each
iteration, but can use the history of policy evaluations to
effectively reduce the variance of the current policy gradient
estimate and, therefore, improve the learning rate. We note
that the estimator (5) cannot be directly used to solve MARL
problems where the agents can only observe the value of their
local objective functions Ji. To address this challenge, in this
paper, we let agents implement a finite number of consensus
steps to approximate the value of the global objective function
J and analyze the effect of consensus errors on the gradient
estimator (5), as we discuss below. 3

According to [9], [24], both estimators (3) and (5) provide
unbiased gradient estimates of a smoothed function Jδ(θ) at
θk, where Jδ(θ) is defined as Jδ(θ) := Eu

[
J(θ + δu)

]
and

u is subject to a standard multivariate normal distribution.
Therefore, updating the policy parameter θk as in (2) using
the gradient estimates (3) or (5) will in fact converge to a
stationary point of the smoothed function Jδ(θ) rather than
a stationary point of the value function J(θ) that may be
nonsmooth. To ensure that the stationary point found by this
process is meaningful for the original MARL problem, we
need to define appropriate optimality conditions that addi-
tionally ensure that Jδ(θ) and J(θ) are close to each other.
Specifically, we consider the following optimality criterion

∥∇Jδ(θ)∥2 ≤ ϵ, and |Jδ(θ)− J(θ)| ≤ ϵJ , (6)

which suggests that θ is an ϵ−stationary point of the smoothed
value function Jδ(θ), and that the smoothed value function
Jδ(θ) is ϵJ -close to the true value function J(θ). In this paper,
we use the notation ∥ · ∥ to denote the Euclidean vector norm,
or the induced matrix norm induced by the Euclidean norm. To
bound the distance between the smoothed function Jδ(θ) and
the original value funtion J(θ) in (6), we need the following
assumption on the value function J(θ).

Assumption 2.2: The function J(θ) is Lipschitz with con-
stant L0, that is, |J(θ1) − J(θ2)| ≤ L0∥θ1 − θ2∥, for all
θ1, θ2 ∈ Rd.
We note that Assumption 2.2 can be restrictive in selecting the
class of policy functions. However, even with Assumption 2.2,
to the best of our knowledge, this work is the first to show
convergence of distributed policy optimization under partial
observability. Furthermore, it is the first to show convergence
of distributed zeroth-order optimization when the local agents
can only perturb their local decision variables and observe their

3We note that since the original submission of this paper, a new one-
point zeroth-order estimator has been proposed in [26] that improves on the
performance of the estimator in (5). However, this method is centralized and
does not directly apply to the MARL problem under consideration.
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local objective function value. For comparison, the methods in
[16], [17] require that the full decision variable is perturbed at
every local agent, which imply that they can all observe global
states and actions. Given Assumption 2.2, the following result
for the smoothed value function Jδ(θ) holds.

Lemma 2.1: (Gaussian Approximation [24]) Given As-
sumption 2.2, the smoothed function Jδ(θ) satisfies |Jδ(θ)−
J(θ)| ≤ δL0

√
d, for all θ ∈ Rd.

According to Lemma 2.1, to control the approximation accu-
racy of the smoothed function Jδ(θ), the parameter δ needs
to be selected appropriately. The choice of this parameter will
be discussed in Section III. Note that although the random
exploration direction uk ∼ N (0, Id) needed to evaluate the
estimator (5) can be sampled in a fully decentralized way, the
global value J(θk + δuk) =

1
N

∑N
i=1 Ji(θk + δuk, ξk) is not

accessible by the local agents. In the next section, we design
a new algorithm that relies on partial state and action infor-
mation only to produce a fully decentralized implementation
of the estimator (5).

III. ALGORITHM DESIGN AND THEORETICAL ANALYSIS

In this section, we propose a fully distributed zeroth-orther
policy optimization algorithm for MARL that employs the
residual-feedback zeroth-order policy gradient estimator (5).
Specifically, we first introduce a consensus step so that the
global value J(θk + δuk, ξk) in the estimator (5) can be com-
puted locally. Given a finite number of consensus iterations,
the local estimates of J(θk + δuk, ξk) will be inexact and,
therefore, the local policy gradient estimates will be biased. To
control this bias, we then introduce a value tracking technique
that reduces the bias at the current episode using the local
estimates of J(θk + δuk, ξk) from previous episodes. Finally,
we provide convergence results showing that the proposed
distributed zeroth-order policy optimization method with con-
stant stepsize converges to a neighborhood of the stationary
point of the smoothed global objective function.The size of
this neighborhood is controlled by the number of consensus
steps during each episode. Proofs of all theoretical results that
follow can be found in the Appendix.

Our proposed algorithm is summarized in Algorithm 1.
In what follows, we also assume that the N agents form a
communication graph G = (V, E), where V = {1, 2, . . . , N}
is the index set of agents and E represents the set of edges.
The edge (i, j) ∈ E if agents i and j ∈ N can directly
send information to each other. Moreover, we define by W ∈
RN×N a weight matrix associated with the graph G such that
the entry Wij > 0 when (i, j) ∈ E and Wij = 0 otherwise.
Note that the communication graph G is independent of the
coupling between agents in their state transition function
P(st, at, st+1) and reward functions {ri(st, at)} defined in
Section II.

A. Distributed Residual-Feedback Zeroth-Order Policy
Optimization

In this section, we describe and analyze our proposed
residual-feedback zeroth-order policy optimization algorithm
in the absence of value tracking, i.e., when DoTracking =

Algorithm 1: Distributed Residual-Feedback Zeroth-
Order Policy Optimization

Input: Exploration parameter δ, stepsize α, consensus
matrix W , number of consenseus steps Nc, initial
policy parameter θ0, discount ratio γ, maximum
number of time steps run per episode tmax, number
of episodes K, and the logic variable DoTracking.

1 Set µ−1
i (Nc) = 0 for all i = 1, 2, . . . , N ;

2 for episode k = 0, 1, 2, . . . ,K do
3 For agents i = 1, 2, . . . , N , let agent i sample a random

exploration direction ui,k from the standard
multivariate normal distribution ;

4 Let all agents implement their perturbed policy
πi(θi,k + δui,k) for tmax time steps and construct
unbiased estimates of their local accumulated rewards
{Ji(θk + δuk, ξk)} ;

5 For all agent i = 1, 2, . . . , N ,
6 if DoTracking = False or k == 0 then
7 set µk

i (0) = Ji(θk + δuk, ξk) ;
8 else
9 set µk

i (0) = µk−1
i (Nc) + Ji(θk + δuk, ξk)−

Ji(θk−1 + δuk−1, ξk−1) ;
10 end
11 for m = 0, 1, 2, . . . , Nc − 1 do
12 For agents i = 1, 2, . . . , N , let agent i send µk

i (m)
to its direct neighbors j ∈ Ni and conduct local
averaging by computing
µk
i (m+ 1) =

∑
j∈Ni

Wijµ
k
j (m) ;

13 end
14 For agents i = 1, 2, . . . , N , let agent i update its current

policy parameter θi,k by

θi,k+1 = θi,k + α
µk
i (Nc)− µk−1

i (Nc)

δ
ui,k. (7)

15 end
Output: Uniformly sample an integer k within the interval

[0,K] and output θk.

False in Algorithm 1 (line 6). Specifically, at the beginning
of episode k, the agents randomly perturb their current policy
parameters θk using a random exploration direction uk and
conduct on-policy local policy evaluation to obtain an un-
biased estimate of the local accumulated rewards {Ji(θk +
δuk)}i=1,2,...,N (lines 3-4). To conduct local policy evalua-
tions, existing MARL methods [5], [6] usually assume that
the global state-action pairs (st, at) are available to all local
agents. Under this assumption, it is possible to update the local
Critic functions Qπ

i (st, at) in [5], [6] to reduce the variance
of policy evaluations and, therefore, the variance of the policy
gradient estimates [27]. However, when the agents only have
access to local observations oi,t which contain partial entries
of (st, at), these methods cannot be used. Therefore, in this
paper, evaluate the local policies as Ji(θk + δuk, ξk) =
ri(1) + γri(2) + γ2ri(3) + · · · + γtmax−1ri(tmax), same as
in REINFORCE [28]. This policy evaluation method can be
implemented in a fully decentralized way but is subject to
large variance, which increases the variance of the zeroth-order
policy gradient estimates and degrades the converegence speed
of the algorithm. The residual-feedback policy gradient estima-
tor (5) can effectively reduce this variance as we will discuss
later. In what follows, we make the following assumption on
the local policy value estimator.
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Assumption 3.1: For all agents, the local policy evalua-
tion is subject to bounded variance. That is, E

[
(Ji(θ, ξ) −

Ji(θ))
2
]
≤ σ2 for i = 1, 2, . . . , N .

After all agents compute local policy values Ji(θi,k+δuk, ξk)
as Ji(θk + δuk, ξk) = ri(1) + γri(2) + γ2ri(3) + · · · +
γtmax−1ri(tmax), which is an unbiased estimation according
to [28], they conduct Nc rounds of local averaging on their
local policy values {Ji(θk + δuk, ξk)}i=1,2,...,N (lines 7, 11-
13). As a result, they obtain inexact estimates µk

i (Nc + 1) of
the global accumulated rewards J(θk+δuk, ξk). To bound this
estimation error, we need the following two assumptions.

Assumption 3.2: The undirected communication graph G is
connected and fixed for all episodes. In addition, the associated
weight matrix W is doubly stochastic. That is, W1N = 1N

and WT1 = 1N , where 1N denotes a N dimensional vector
of elements 1.

For simplicity of notations, in the following we neglect
the subscript N in 1N and write it as 1. The dimension
of the vector can be taken as appropriate within its context.
Assumption 3.2 is introduced to ensure that agents’ local
estimates µk

i of the global objective function value can reach
consensus on their average 1

N

∑
i µ

k
i within an error that

depends on the number of consensus steps. In this paper we
assume that the communication networks is fixed. If it is not,
then consensus methods for time-varying graphs, such as that
proposed in [29] can be used to estimate the global objective
function value. The analysis in this case is left for future
research

Assumption 3.3: The local values Ji(θ, ξ) are upper
bounded by Ju and lower bounded by Jl for all i =
1, 2, . . . , N and all policy parameters θ.

Assumption 3.3 can be easily satisfied for episodic RL
problems with bounded rewards over all state-action pairs.
Let µ⃗k(m) = [µk

1(m), . . . , µk
N (m)]T . Then, we can show the

following lemma.
Lemma 3.1: Given Assumptions 3.2 and 3.3, we have that

∥µ⃗k(Nc) − J(θk + δuk, ξk)1∥ ≤ ρNc

W

√
N(Ju − Jl), where

ρW = ∥W − 1
N 11T ∥ < 1.

Lemma 3.1 shows that the bias in the local estimate µ⃗k(Nc)
can be controlled by choosing a large enough Nc, when the
local policy values are upper and lower bounded by Ju and
Jl. Using the estimates µ⃗k(Nc), the agents can then construct
the decentralized policy gradients (7) and update their policy
parameters θi,k (line 14). This completes episode k. The
decentralized residual-feedback estimator (7) can reduce the
variance of the policy gradient estimates, since the value
estimate of the last policy iterate µ⃗k−1

i (Nc) can provide a
baseline to compare µ⃗k

i (Nc) to. Effectively, the value estimate
of the last policy iterate has an analogous variance reduction
effect to the state value V π(s) that is used as a baseline for
the action value Qπ(s, a) in Actor-Critic methods [27]. 3 Next,
we show how to select Nc so that the optimality criterion (6)
is satisfied.

Theorem 3.2: (Learning Rate of Algorithm 1 with-
out Value Tracking) Let Assumptions 2.2, 3.1, 3.2 and

3Note that the fact that the value of past policy iterates can also be used
as a baseline to reduce the variance of policy gradient estimates may be of
interest in its own right in the development of policy gradient methods.

3.3 hold and define δ = ϵJ√
dL0

, α =
ϵ1.5J

4d1.5L2
0

√
K

, and

Nc ≥ log(
√
ϵϵJ√

2d1.5L0(Ju−Jl))
)/ log(ρW ). Then, running Al-

gorithm 1 with DoTracking = False, we have that
1
K

∑K−1
k=0 E[∥∇Jδ(θk)∥2] ≤ O(d1.5ϵ−1.5

J K−0.5) + ϵ
2 , where

the expectation is taken over the trajectory of sampled vector
uk and evaluation noise ξk.

As shown in Theorem 3.2, Algorithm 1 converges to a
neighborhood of the stationary point of the smoothed global
objective function. Specifically, according to the optimality
conditions in (6), the approximation error on the smoothed
objective function Jδ(θk) compared to the original function
J(θk) is controled by the parameter ϵJ . And the neighbor-
hood around the stationary solution is characterized by the
parameter ϵ. Given the user specified parameters ϵJ and ϵ,
Theorem 3.2 says that the number of iterations K can be
selected according to the bound in (32). Note that computing
this bound requires knowledge of the problem parameters
J∗
δ −Jδ(θ0), E[∥gδ(θ0)∥2] and L0. In practice, we can replace

these parameters in (32) by bounds selected sufficiently large.
Note also that selecting the number K according to (32) can be
conservative. We leave the study of tighter theoretical bounds
on K for our future research.

The size of the neighborhood ϵ can be controlled by choos-
ing the number of consensus steps Nc. Specifically, according
to Lemma 3.1, the number of steps Nc controls the consensus
error ∥µ⃗k(Nc) − J(θk + δuk, ξk)1∥, which in turn bounds
the error ϵ of the solution; see the proof of Theorem 3.2
in the Appendix. Moreover, the number of consensus steps
Nc depends not only on the user-specified accuracy level ϵ
and ϵJ , but also on the range of the policy bounds Ju and
Jl. This is because the consensus iteration at each episode is
independent of those at previous episodes. Therefore, to select
Nc to control the estimation bias |µk

i (Nc)− J(θk + δuk, ξk)|,
we need to select the term Ju − Jl in the definition of Nc

in Theorem 3.2 as the difference between the initial estimates
µk
i (0) = Ji(θk + δuk, ξk) ∈ [Jl, Ju] that have the maximum

and minimum value.

B. Distributed Residual-Feedback Zeroth-Order Policy
Optimization with Value Tracking

As discussed in Section III-A, the estimation bias |µk
i (Nc)−

J(θk + δuk, ξk)| at episode k can be reduced by using
local policy estimates from previous episodes. Specifically,
rather than resetting µk

i (0) = Ji(θk + δuk, ξk) in line 7
of Algorithm 1, we update it using the estimate µk−1

i (Nc)
from the last episode as µk

i (0) = µk−1
i (Nc) + Ji(θk +

δuk, ξk)−Ji(θk−1+δuk−1, ξk−1). Then, we run Nc consensus
iterations on µk

i (0) as before. Let µ̄k(m) = 1
N

∑N
i=1 µ

k
i (m).

The following lemma shows that the value tracking updates
preserve the global information J(θk + δuk, ξk).

Lemma 3.3: Let Assumption 3.2 hold. Then, running Al-
gorithm 1 with DoTracking = True, we have that µ̄k(m) =
J(θk + δuk, ξk) = 1

N

∑N
i=1 Ji(θi,k, ξk), for all m =

1, 2, . . . , Nc and all k.
Lemma 3.3 implies that the local estimation bias |µk

i (Nc) −
J(θk + δuk, ξk)| is equal to the consensus error |µk

i (Nc) −
µ̄k(Nc)|. Using value tracking, the bias at episode k can be
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controlled by the consensus steps of past episodes. This is
formally shown in the following lemma.

Lemma 3.4: Let Assumptions 2.2, 3.1, 3.2 hold and define
Ek

µ = ∥µ⃗k(Nc) − µ̄k(Nc)1∥. Then, running Algorithm 1
with DoTracking = True, we have that E

[
(Ek

µ)
2
]

≤(
2E

[
(Ek−1

µ )2
]
+ 32dL2

0
α2

δ2 E
[
(Ek−1

µ )2∥uk−1∥2
]
+ 32d2L2

0

α2

δ2 E
[
(Ek−2

µ )2
])

ρ2Nc

W + 16NL2
0α

2E
[
∥∇̃J(θk−1)∥2

]
ρ2Nc

W +

32NdL2
0δ

2ρ2Nc

W + 16Nσ2ρ2Nc

W .
Compared to Lemma 3.1, the proposed value tracking tech-
nique makes it possible to bound the consensus error at episode
k with the consensus errors from episodes k − 1 and k − 2.
Furthermore, at each episode, this error is perturbed by the
second order momentum of the policy gradient estimate (5)
which can be controlled by choosing a small stepsize α and
a large number Nc. To see the benefit of this result, when the
consensus errors from episodes k − 1 and k − 2 are small,
value tracking needs fewer consensus iterations to achieve
small consensus error at episode k. This is in contrast to the
case without value tracking, where Nc is selected regardless
of previous consensus errors. The following result shows
convergence of Algorithm 1 using value tracking.

Theorem 3.5: (Learning Rate of Algorithm 1
with Value Tracking) Let Assumptions 2.2, 3.1,
3.2 hold and define δ = ϵJ√

dL0
, α =

ϵ1.5J

4d1.5L2
0

√
K

,

and Nc ≥ max
(
log(ρW )−1 log( 1

2
√
2
), log(ρW )−1

log(
√

ϵ

4
(
G2ϵJ+32(d+4)2dL2

0+16d3L2
0σ

2/ϵ2J

) )) where G2 =

max

(
E
[
∥∇̃J(θ0)∥2

]
, 2ϵJϵ

dK + 32L2
0(d + 4)2 +16d2L2

0
σ2

ϵ2J

)
.

Then, running Algorithm 1 with DoTracking = True, we
have that 1

K

∑K−1
k=0 E[∥∇Jδ(θk)∥2] ≤ O(d1.5ϵ−1.5

J K−0.5)+ ϵ
2 ,

where the expectation is taken over the trajectory of the
sampled vector uk and evaluation noise ξk.

In Theorem 3.5, the constant G2 represents the uni-
form bound on E[∥∇̃J(θk)∥2] for all k = 1, 2, . . . ,K.
Moreover, from the bounds on Nc in Theorems 3.2 and
3.5, when ϵ and ϵJ are close to 0, we obtain that
Nc ∼ O

(
log(

√
ϵϵJ

d1.5σ )/ log(ρW )
)

in Theorem 3.5 and Nc ∼
O
(
log(

√
ϵϵJ

d1.5(Ju−Jl)
)/ log(ρW )

)
in Theorem 1. This suggests

that the choice of Nc in Theorem (3.5) depends on the variance
of function evaluation σ2, while in Theorem 3.2 the choice
of Nc depends on the range of value functions [Jl, Ju]. In
practice, the standard deviation of function evaluation σ can
be much smaller than the range of its value [Jl, Ju]. To see this,
note that by Assumption 3.3, we have that the noisy sample
of the objective function value Ji(θ, ξ) has bounded support.
Then, applying the Popoviciu’s inequality on variances, we get
that the variance σ2 satisfies that σ2 ≤ 1

4 (Ju − Jl)
2, that is,

σ ≤ 1
2 |Ju − Jl|. Therefore, Algorithm 1 with value tracking

requires fewer consensus steps per episode than without value
tracking.

Remark 3.4: The proposed value-tracking technique can
also be combined with the existing distributed one-point policy
gradient estmiator [12] to reduce the variance of its gradient
estimates. To see this, note that the global value function
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Fig. 1. Distributed zeroth-order policy optimization with the proposed
residual-feedback estimator (5) (orange) versus the one-point estimator
(3) (blue). In each case, Algorithm 1 is run 10 times. (a): Results without
value tracking. (b): Results with value tracking.
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Fig. 2. Distributed zeroth-order policy optimization with value tracking
(orange) versus without value tracking (blue). In each case, Algorithm 1
is run 10 times. (a): Comparative results for the one-point estimator (3).
(b): Comparative results for the proposed residual-feedback estimator
(5). (c) Maximum absolute consensus errors maxi |µk

i (Nc)−J(θk+
δuk, ξk)| over episodes.

J(θk + δuk, ξk) used in the one-point estimator (3) can be
replaced by the local esimate of the value J(θk+δuk, ξk), i.e.,
µk
i (Nc). Then, we obtain the following distributed one-point

policy gradient estimator with value tracking: ∇̃θi,kJ(θk) ≈
µk
i (Nc)
δ ui,k = ui,k

(∑
j∈Ni

[WNc ]ij
(
µk−1
j (Nc) + Jj(θk +

δuk, ξk) − Jj(θk−1 + δuk−1, ξk−1)
))
/δ. We observe that

the estimator ∇̃θi,kJ(θk) has the same structure as the
distributed residual-feedback policy gradient estimator with-
out value tracking (7) except for an additional noise term∑

j∈Ni
[WNc ]ijµ

k−1
j (Nc)

δ ui,k. Therefore, the variance of the es-
timator ∇̃θi,kJ(θk) is reduced through a similar mechanism
as that of the distributed residual-feedback policy gradient
estimator without value tracking. As a result, the learning
performance is improved compared to that of the existing
distributed one-point policy gradient estimator [12], as we will
demonstrate in the next section.

IV. EXPERIMENTS

In this section, we illustrate our proposed MARL algorithm
on stochastic multi-agent multi-stage decision making prob-
lems. Specifically, we conduct an ablation study to demon-
strate the benefits of applying the decentralized residual-
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Fig. 3. (a) Algorithm 1 with value tracking (orange) versus without value
tracking (blue) under the communication graph which does not respect
the coupling relationship among agents. (b) Comparative results for Al-
gorithm 1 with value tracking under different number of consensus steps
Nc and the centralized algorithms with partial and full observations. In
each case, Algorithm 1 is run 10 times.

feedback zeroth-order policy gradient estimate (7) and the
value tracking technique separately. We consider 16 agents
that are located on a 4 × 4 grid. Agent i has state si(t) =
[mi(t), di(t)], which denotes the resources it stores and the lo-
cal demand it receives in the amount of mi(t) and di(t) at time
t, respectively. In the meantime, agent i takes actions aij(t),
which denote the resources it shares with its neighbors j ∈ Ni

in the grid. Specifically, aij(t) ∈ [0, 1] denotes the fraction of
resources agent i sends to its neighbor j at time t. The local
resources and demands at agent i are defined as mi(t+ 1) =
mi(t)−

∑
j∈Ni

aij(t)mi(t)+
∑

j∈Ni
aji(t)mj(t)−di(t) and

di(t) = Ai sin(ωit+ϕi)+wi,t, where wi,t is the noise in the
demand. At time t, agent i receives a local reward ri(t), such
that ri(t) = 0 when mi(t) ≥ 0 and ri(t) = −mi(t)

2 when
mi(t) < 0. We consider a partial observation scenario, where
agent i can only observe its local resources and demands, that
is, oi(t) = [mi(t), di(t)]

T . Agent i determines its actions
{aij(t)} using its local policy function πi(oi(t)|θi), where
θi is the policy function parameter for agent i. Specifically,
we have that aij = exp(zij)/

∑
j exp(zij), where zij =∑9

p=1 ∥oi−cp∥2θij(p) and cp is the p-th feature parameter. We
consider episodes of length T = 30, and select the discount
factor as γ = 0.75. The goal of the agents is to find the optimal
joint policy parameter θ, so that their total accumulated reward
J(θ) = Es0,a0∼ρ0

[∑30
t=0 γ

t
∑N

i=1 ri(t)
∣∣π(θ)] is maximized.

The communication graph is assumed to be a chain graph.
Moreover, we select the number of consensus steps Nc = 1,
and show that Algorithm 1 with value tracking can achieve
policy improvement even in this challenging scenario. The
stepsizes are selected so that the convergence speed is op-
timized.

First, we compare the performance of Algorithm 1 using
the decentralized policy gradients (5) and (3), without value
tracking. The learning progress is presented in Figure 1(a).
We observe that the decentralized residual-feedback policy
gradient estimator has less variance than the existing one-point
policy gradient estimator and, therefore, improves faster and
finds a better policy in the end of the learning. The same effect
is observed in Figure 1(b), when both estimators are imple-
mented with value tracking. This suggests that the residual-
feedback zeroth-order policy gradient estimator is superior to
the one-point policy gradient estimator for decentralized policy
optimization problems.

Next, we demonstrate the merit of using value tracking.
Specifically, we first run Algorithm 1 with the decentralized
one-point policy gradient estimator (3), with and without
value tracking. The difference in the performance is shown in
Figure 2(a). We observe that using value tracking results in less
variance and also achieves better policies. This is because the
decentralized one-point policy gradient estimator with value
tracking ∇̃θi,kJ(θk) has the same variance reduction effect
on the policy gradient estimates as the residual feedback
estimator 5, as we have discussed in Remark 3.4. Figure 2(b)
shows the results of using the residual-feedback policy gradi-
ent estimator (5) with and without value tracking. We observe
that Algorithm 1 with value tracking performs slightly better
in the mean than without value tracking. This is because value
tracking can track the value of the global objective function
better, as shown in Figure 2(c) where the maximum consensus
error maxi |µk

i (Nc) − J(θk + δuk, ξk)| at each episode k is
presented. The improvement achieved by value tracking is not
very significant in Figure 2(b) because the underlying com-
munication graph respects the coupling relationship among
agents. Specifically, we say that the communication graph
respects the coupling relationship between agents if the action
of every agent i that can directly communicate with an agent j
also directly affects the reward and transition function of that
agent j. In this case, the rewards received from an agent’s
local neighbors can approximate this agent’s contribution to
the global reward well even without tracking the information
from other distant neighbors in the graph.

To further demonstrate the advantage of combining the
decentralized residual-feedback gradient estimator with value
tracking, we consider a challenging scenario where the com-
munication graph does not respect the coupling relationship
among agents as described above. The performance of Al-
gorithm 1 using the residual-feedback estimator (5) with
and without value tracking is presented in Figure 3(a). In
this case, using rewards from the local neighbors does not
approximate well the local agent’s contribution to the global
reward. Therefore, value tracking can help obtain a better
estimate of the global reward information. As a result, the
decentralized residual-feedback policy gradient estimator with
value tracking outperforms the one without value tracking, as
shown in Figure 3(a). The numerical results presented above
show that the performance of Algorithm 1 is affected by the
structure of the communication graph among the agents. As
shown in Lemma 3.1, the second largest singular value of
the matrix W , ρW , captures the speed at which the agents
can reach consensus on the global objective function value.
As shown in (23) in Lemma 1.3, the bound on the second
moment of the gradient estimate is related to the consensus
error terms, e.g., ∥µ⃗k−1− µ̄k−11∥,. Therefore, the smaller the
value of ρW , the smaller is the second moment and, therefore,
the variance of the gradient estimate. This suggests that the
variance in learning can be further reduced for communication
graphs that enable fast consensus.

Finally, we demonstrate the effect of the consensus steps Nc

on Algorithm 1 by comparing to a centralized algorithm that
uses the gradient estimator (5) with both full and partial ob-
servations. Specifically, in the centralized algorithm, the value
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of the global objective function J(θk + δuk, ξk) is directly
provided to each local agent at each episode, and the local
agents’ policy functions receive all agents’ states as inputs
when full observations are assumed and only receive the neigh-
boring agents’ states as inputs when partial observations are
assumed. As shown in Figure 3(b), as the number of consensus
steps Nc increases, the performance of Algorithm 1 with value
tracking approaches that of the centralized algorithm with
partial observations. And the performance of the centralized
algorithm with partial observations slightly underperforms that
of the centralized algorithm with full observations. This is
because policy functions learned using partial observations
constitute a subset of those that can be learned using full
observations. Note that the centralized algorithm requires all
the agents to observe the values of all local objective functions,
which is not a scalable approach in practice. Its performance is
provided here as a benchmark to compare to the performance
of the proposed distributed algorithm.

V. CONCLUSION

In this paper, we proposed a new distributed zeroth-order
policy optimization method for MARL problems. Compared
to existing MARL algorithms that require all the agents’
states and actions to be accessible by every local agent,
our algorithm can be applied even when each agent only
observes partial states and actions. Specifically, we developed
a new distributed residual-feedback zeroth-order estimator of
the policy gradient and analyzed the effect of bias in the local
policy gradient estimates on the convergence of the proposed
MARL algorithm. Furthermore, we introduced a value tracking
technique to reduce the number of consensus steps needed at
each episode to control the bias in the estimation of the policy
gradient. Finally, we provided numerical experiments on a
stochastic multi-agent multi-stage decision making problem
that demonstrated the effectiveness of both the decentralized
residual-feedback policy gradient estimator and the value
tracking technique.
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APPENDIX

Lemma 3.1. Given Assumptions 3.2 and 3.3, we have that
∥µ⃗k(Nc) − J(θk + δuk, ξk)1∥ ≤ ρNc

W

√
N(Ju − Jl), where

ρW = ∥W − 1
N 11T ∥ < 1.

Proof: First, we show that 1
N 1T µ⃗k(m) = J(θk+δuk, ξk)

for all m = 0, 1, . . . , Nc. Note that the consensus step
µk
i (m+1) =

∑
j∈Ni

Wijµ
k
j (m) (line 12 in Algorithm 1) can

be equivalently written in a compact form as µ⃗k(m + 1) =
Wµ⃗k(m). Therefore, we have that

1

N
1T µ⃗k(m+ 1) =

1

N
1TWµ⃗k(m) =

1

N
1T µ⃗k(m), (8)

where the second equality is due to Assumption 3.2, that
the matrix W is doubly stochastic. Extending equality (8)
from m to 0, we obtain that 1

N 1T µ⃗k(m) = 1
N 1T µ⃗k(0) =

1
N

∑N
i=1 Ji(θk + δuk, ξk) = J(θk + δuk, ξk), for m =

0, 1, . . . , Nc.
Next, we show that ∥µ⃗k(m) − 1

N 11T µ⃗k(m)∥ ≤ ∥W −
1
N 11T ∥m∥µ⃗k(0) − 1

N 11T µ⃗k(0)∥, for m = 1, 2, . . . , Nc. To
see this, we have that

∥µ⃗k(m+ 1)− 1

N
11T µ⃗k(m+ 1)∥

= ∥Wµ⃗k(m)− 1

N
11TWµ⃗k(m)∥

= ∥Wµ⃗k(m)− 1

N
11T µ⃗k(m)∥, (9)

where the second equality is due to Assumption 3.2. According
to (9), we have that ∥µ⃗k(m+1)− 1

N 11T µ⃗k(m+1)∥ = ∥(W−
1
N 11T )µ⃗k(m)∥ = ∥(W − 1

N 11T )(µ⃗k(m) − 1
N 11T µ⃗k(m))∥.

This is because (W − 1
N 11T ) 1

N 11T µ⃗k(m) = 0. Therefore,
we get that

∥µ⃗k(m+ 1)− 1

N
11T µ⃗k(m+ 1)∥

≤ ∥W − 1

N
11T ∥∥µ⃗k(m)− 1

N
11T µ⃗k(m)∥

≤ · · · ≤ ∥W − 1

N
11T ∥m+1∥µ⃗k(0)− 1

N
11T µ⃗k(0)∥. (10)

The first inequality is due to the definition of the induced
matrix norm ∥W− 1

N 11T ∥. According to Assumption 3.2, we
have that ρW = ∥W − 1

N 11T ∥ < 1. Furthermore, recalling
the fact that 1

N 1T µ⃗k(m) = 1
N 1TJi(θk + δuk, ξk) = J(θk +

δuk, ξk) for m = 0, 1, . . . , Nc, we obtain that

∥µ⃗k(Nc)− J(θk + δuk, ξk)1∥
≤ ρNc

W ∥µ⃗k(0)− J(θk + δuk, ξk)1∥. (11)

Since µk
i (0) = Ji(θk + δuk, ξk) ∈ [Jl, Ju] and J(θk +

δuk, ξk) =
1
N

∑N
i=1 Ji(θk + δuk, ξk) ∈ [Jl, Ju], we have that

∥µ⃗k(0) − J(θk + δuk, ξk)1∥ ≤
√
N(Ju − Jl). Plugging this

inequality into the bound in (11), we complete the proof.
In the subsequent proof, we need the following lemma by

[24].
Lemma 1.1: (Lipschitz Properties of the Smoothed Func-

tion, [24] Given Assumption 2.2, the smoothed function
Jδ(θ) is differentiable and its gradient is Lipschitz, that is,
∥∇Jδ(θ1)−∇Jδ(θ2)∥ ≤

√
dL0

δ ∥θ1− θ2∥, lfor all θ1, θ2 ∈ Rd.
Next, we present a lemma that bounds the squared norm of
the gradient of the smoothed function ∇Jδ(θk) at iterate θk.

Lemma 1.2: Let Assumptions 2.2 and 3.1 hold. Then, for
all k ≥ 0, we have that

E[∥∇Jδ(θk)∥2|Fk−1] ≤
2

α
(E[Jδ(θk+1)− Jδ(θk)|Fk−1])

+ 2
√
dL0

α

δ
E[∥gδ(θk)∥2|Fk−1]

+
di
δ2

E[∥µ⃗k − µ̄k1∥2∥uk∥2|Fk−1]

+ 4
√
ddiL0

α

δ3
E[∥µ⃗k − µ̄k1∥2∥uk∥2|Fk−1]

+ 4d1.5diL0
α

δ3
E[∥µk−1 − µ̄k−11∥2|Fk−1], (12)

where the filtration Fk−1 = σ(ut, ξt|t ≤ k − 1), gδ(θk) =
J(θk+δuk,ξk)−J(θk−1+δuk−1,ξk−1)

δ uk and µ̄k = 1
N 1T µ⃗k =

J(θk + δuk, ξk).
Proof: According to Assumption 2.2 and Lemma 1.1, we

have that the smoothed function fδ(θ) has Lipschitz gradient
with the Lipschitz constant L1,δ =

√
dL0

δ . Therefore, using the
inequality (6) in [24], we obtain that

⟨∇Jδ(θk), θk+1 − θk⟩ ≤ Jδ(θk+1)− Jδ(θk)+

L1,δ

2
∥θk+1 − θk∥2. (13)

Without loss of generality, we assume that each agent’s local
policy function πi is parameterized with θi ∈ Rdi and di =

d
N

for all i. Then, the update (7) can be written in the compact
form

θk+1 = θk +
α

δ
diag

(
[µk

1(Nc)− µk−1
1 (Nc),

. . . , µk
N (Nc)− µk−1

N (Nc)]
)
⊗ Idiuk

= θk +
α

δ
diag

(
µ⃗k − µ⃗k−1

)
⊗ Idi

uk (14)

where ⊗ represents the kronecker product and Idi
is an identity

matrix with dimension di. To simplify the notation, we use µk
i

or µ⃗k to denote µk
i (Nc) and µ⃗k(Nc), respectively. Then, we

equivalently rewrite equality (14) as

θk+1 = θk +
α

δ
diag

(
µ⃗k − µ̄k1+ J(θk + δuk, ξk)1

− µ⃗k−1 + µ̄k−11− J(θk−1 + δuk−1, ξk−1)1)
)
⊗ Idiuk,

because µ̄k = 1
N 1T µ⃗k = J(θk + δuk, ξk) as in the proof of

Lemma 3.1. Rearranging terms in above equality, we have that

θk+1 − θk = α
J(θk + δuk, ξk)− J(θk−1 + δuk−1, ξk−1)

δ
uk

+
α

δ
diag(µ⃗k − µ̄k1)⊗ Idi

uk

− α

δ
diag(µ⃗k−1 − µ̄k−11)⊗ Idi

uk, (15)

Substituting (15) into the bound in (13) and rearranging terms,
we get that

α⟨∇Jδ(θk), gδ(θk)⟩

≤ Jδ(θk+1)− Jδ(θk)−
α

δ
⟨∇Jδ(θk), diag(µ⃗

k − µ̄k1)⊗ Idiuk⟩

+
L1,δ

2
α2∥gδ(θk) +

1

δ
diag(µ⃗k − µ̄k1)⊗ Idi

uk

− 1

δ
diag(µk−1 − µ̄k−11)⊗ Idiuk∥2

+
α

δ
⟨∇Jδ(θk), diag(µ

k−1 − µ̄k−11)⊗ Idiuk⟩, (16)
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where gδ(θk) =
J(θk+δuk,ξk)−J(θk−1+δuk−1,ξk−1)

δ uk. Dividing
both sides of (16) by α and taking the expectation of both
sides with respect to uk and ξk conditioned on the filtration
Fk−1 = σ(ut, ξt|t ≤ k − 1), we have that

E[∥∇Jδ(θk)∥2|Fk−1] ≤
E[Jδ(θk+1)− Jδ(θk)|Fk−1]

α

− 1

δ
E[⟨∇Jδ(θk), diag(µ⃗

k − µ̄k1)⊗ Idi
uk⟩|Fk−1]

+
L1,δ

2
αE[∥gδ(θk) +

1

δ
diag(µ⃗k − µ̄k1)⊗ Idi

uk

− 1

δ
diag(µk−1 − µ̄k−11)⊗ Idi

uk∥2|Fk−1]. (17)

Note that all the expectation in the rest of this proof shall
be conditional on the filtration Fk−1. To simplify notation,
in what follows we omit conditioning on the filtration. This
is because E[gδ(θk)] = ∇Jδ(θk), ∇Jδ(θk) and diag(µk−1 −
µ̄k−11) are fixed when conditioned on the filtration Fk−1,
and E[uk] = 0. Next, we provide bounds on the second and
third terms in the right hand side (RHS) of (17). Specif-
ically, because −⟨∇Jδ(θk),

1
δdiag(µ⃗

k − µ̄k1) ⊗ Idi
uk⟩ ≤

1
2∥∇Jδ(θk)∥2+ 1

2δ2 ∥diag(µ⃗
k− µ̄k1)⊗Idiuk∥2, we have that

− 1

δ
E[⟨∇Jδ(θk), diag(µ⃗

k − µ̄k1)⊗ Idi
uk⟩]

≤ 1

2
E[∥∇Jδ(θk)∥2] +

1

2δ2
E[∥diag(µ⃗k − µ̄k1)⊗ Idi

uk∥2]

≤ 1

2
E[∥∇Jδ(θk)∥2] +

di
2δ2

E[∥µ⃗k − µ̄k1∥2∥uk∥2], (18)

where the third inequality is due to the fact that
∥diag(v1)v2∥2 ≤ ∥v1∥2∥v2∥2 for all v1, v2 ∈ Rd. Further-
more, we have that

E[∥gδ(θk) +
1

δ
diag(µ⃗k − µ̄k1)⊗ Idi

uk

− 1

δ
diag(µk−1 − µ̄k−11)⊗ Idiuk∥2]

≤ 2E[∥gδ(θk)∥2] +
2

δ2
E[∥diag(µ⃗k − µ̄k1)⊗ Idiuk

− diag(µk−1 − µ̄k−11)⊗ Idiuk∥2]

≤ 2E[∥gδ(θk)∥2] +
4

δ2
E[∥diag(µ⃗k − µ̄k1)⊗ Idi

uk∥2]

+
4

δ2
E[∥diag(µk−1 − µ̄k−11)⊗ Idi

uk∥2]

≤ 2E[∥gδ(θk)∥2] +
4di
δ2

E[∥µ⃗k − µ̄k1∥2∥uk∥2]

+
4ddi
δ2

E[∥µk−1 − µ̄k−11∥2], (19)

where the first two inequalities are due to the fact that
∥v1 + v2∥2 ≤ 2∥v1∥2 + 2∥v2∥2 and the third inequality is
due to the fact that E[∥diag(µk−1 − µ̄k−11) ⊗ Idi

uk∥2] ≤
diE[∥diag(µk−1 − µ̄k−11)∥2∥uk∥2], the fact that µk−1 −
µ̄k−11 is independent of uk and the fact that E[∥uk∥2] = d.
Substituting the bounds in (18) and (19) into the bound in (17)

and rearranging the terms, we get that

E[∥∇Jδ(θk)∥2]

≤ 2

α
(E[Jδ(θk+1)− Jδ(θk)]) + 2

√
dL0

α

δ
E[∥gδ(θk)∥2]

+ 4
√
ddiL0

α

δ3
E[∥µ⃗k − µ̄k1∥2∥uk∥2]

+ 4d1.5diL0
α

δ3
E[∥µk−1 − µ̄k−11∥2]

+
di
δ2

E[∥µ⃗k − µ̄k1∥2∥uk∥2]. (20)

The proof is complete.
Next, we present a lemma bounding the second moment of
the gradient estimate gδ(θk).

Lemma 1.3: Let Assumptions 2.2 and 3.1 hold. Then, for
all k ≥ 1, we have that

E[∥gδ(θk)∥2] ≤ 8dL2
0

α2

δ2
E[∥gδ(θk−1)∥2]

+ 16ddiL
2
0

α2

δ4
E[∥µk−1 − µ̄k−11∥2∥uk−1∥2] (21)

+ 16d2diL
2
0

α2

δ4
E[∥µk−2 − µ̄k−21∥2] + 16(d+ 4)2L2

0 +
8dσ2

δ2
.

Proof: Recalling that gδ(θk) =
J(θk+δuk,ξk)−J(θk−1+δuk−1,ξk−1)

δ uk, we have that

E[∥gδ(θk)∥2] (22)

=
1

δ2
E[|J(θk + δuk, ξk)− J(θk−1 + δuk−1, ξk−1)|2∥uk∥2].

In addition, using the inequality (a + b)2 ≤ 2a2 + 2b2, we
have that

|J(θk + δuk, ξk)− J(θk−1 + δuk−1, ξk−1)|2

= |J(θk + δuk, ξk)− J(θk−1 + δuk−1, ξk)

+ J(θk−1 + δuk−1, ξk)− J(θk−1 + δuk−1, ξk−1)|
≤ 2(J(θk + δuk, ξk)− J(θk−1 + δuk−1, ξk))

2

+ 2(J(θk−1 + δuk−1, ξk)− J(θk−1 + δuk−1, ξk−1))
2.

Then, by adding and subtracting the term J(θk−1 + δuk, ξk)
within the term (J(θk + δuk, ξk)− J(θk−1 + δuk−1, ξk))

2 in
above inequality and applying the bound (a+b)2 ≤ 2a2+2b2

similarly as above, we get that

|J(θk + δuk, ξk)− J(θk−1 + δuk−1, ξk−1)|2

≤ 4
(
J(θk + δuk, ξk)− J(θk−1 + δuk, ξk)

)2
(23)

+ 4
(
J(θk−1 + δuk, ξk)− J(θk−1 + δuk−1, ξk)

)2
+ 2

(
J(θk−1 + δuk−1, ξk)− J(θk−1 + δuk−1, ξk−1)

)2
.

According to Assumption 2.2, we have that
(
J(θk+δuk, ξk)−

J(θk−1 + δuk, ξk)
)2 ≤ L2

0∥θk − θk−1∥2 and
(
J(θk−1 +

δuk, ξk) − J(θk−1 + δuk−1, ξk)
)2 ≤ L2

0δ
2∥uk − uk−1∥2.

Furthermore, according to Assumption 3.1, we have that(
J(θk−1 + δuk−1, ξk) − J(θk−1 + δuk−1, ξk−1)

)2 ≤ 4σ2.
Applying the above bounds to the RHS of (23), we get that

|J(θk + δuk, ξk)− J(θk−1 + δuk−1, ξk−1)|2

≤ 4L2
0∥θk − θk−1∥2 + 4L2

0δ
2∥uk − uk−1∥2 + 8σ2. (24)
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Substituting the bound (24) into (22), we have that

E[∥gδ(θk)∥2] ≤
4L2

0

δ2
E[∥θk − θk−1∥2∥uk∥2]

+ 4L2
0E[∥uk − uk−1∥2∥uk∥2] +

8σ2

δ2
E[∥uk∥2]

≤ 4dL2
0

δ2
E[∥θk − θk−1∥2] + 16(d+ 4)2L2

0 +
8dσ2

δ2
. (25)

The second inequality is due to the fact that ∥θk − θk−1∥2
is independent of uk, E[∥uk − uk−1∥2∥uk∥2] ≤ 4(d + 4)2

and E[∥uk∥2] = d. Specifically, we have that E[∥uk −
uk−1∥2∥uk∥2] ≤ 4(d+4)2 because ∥uk−uk−1∥2 ≤ 2∥uk∥2+
2∥uk−1∥2 and that E[∥uk∥4] ≤ (d + 4)2 according to [24].
Substituting the expression for θk−θk−1 in (15) into (25) and
applying the bound in (19), we obtain that

E[∥gδ(θk)∥2] ≤ 8dL2
0

α2

δ2
E[∥gδ(θk−1)∥2]

+ 16ddiL
2
0

α2

δ4
E[∥µk−1 − µ̄k−11∥2∥uk−1∥2]

+ 16d2diL
2
0

α2

δ4
E[∥µk−2 − µ̄k−21∥2] + 16(d+ 4)2L2

0 +
8dσ2

δ2
.

The proof is complete.
Now, we are ready to present the proof for Theorem 3.2.

Theorem 3.2. (Learning Rate of Algorithm 1 with-
out Value Tracking) Let Assumptions 2.2, 3.1, 3.2 and
3.3 hold and define δ = ϵJ√

dL0
, α =

ϵ1.5J

4d1.5L2
0

√
K

, and

Nc ≥ log(
√
ϵϵJ√

2d1.5L0(Ju−Jl))
)/ log(ρW ). Then, running Al-

gorithm 1 with DoTracking = False, we have that
1
K

∑K−1
k=0 E[∥∇Jδ(θk)∥2] ≤ O(d1.5ϵ−1.5

J K−0.5) + ϵ
2 .

Proof: According to Lemma 3.1, and using
Assumptions 3.2 and 3.3, we select Nc ≥
log(

√
ϵϵJ√

2d1.5L0(Ju−Jl))
)/ log(ρW ) so that ∥µ⃗k − µ̄k1∥ =

∥µ⃗k−J(θk+δuk, ξk)1∥ ≤ Eµ regardless of uk for all k ≥ 0,
where Eµ is a small constant such that E2

µ = ϵδ2

2ddi
. Therefore,

the bound in (12) can be simplified as

E[∥∇Jδ(θk)∥2|Fk−1] ≤
2

α
(E[Jδ(θk+1)− Jδ(θk)|Fk−1])

(26)

+ 2
√
dL0

α

δ
E[∥gδ(θk)∥2|Fk−1] + 8d1.5diL0

α

δ3
E2

µ +
ddi
δ2

E2
µ.

Applying the tower rule of the conditional expectation and
telescoping the above inequality from k = 0 to K− 1, we get
that
K−1∑
k=0

E[∥∇Jδ(θk)∥2] ≤
2

α
(E[Jδ(θK)− Jδ(θ0)]) (27)

+ 2
√
dL0

α

δ

K−1∑
k=0

E[∥gδ(θk)∥2] + 8d1.5diL0
α

δ3
E2

µK +
ddi
δ2

E2
µK,

where the expectation is taken over the trajectory of ran-
dom samples of uk and ξk. Next, we bound the term∑K−1

k=0 E[∥gδ(θk)∥2] on the RHS of (27). Specifically, since
Nc is selected so that ∥µ⃗k−µ̄k1∥ = ∥µ⃗k−J(θk+δuk, ξk)1∥ ≤
Eµ regardless of uk for all k ≥ 0, the bound in (21) can be

simplified as

E[∥gδ(θk)∥2|Fk−1] ≤ 8dL2
0

α2

δ2
E[∥gδ(θk−1)∥2|Fk−1]

+32d2diL
2
0

α2

δ4
E2

µ + 16(d+ 4)2L2
0 +

8dσ2

δ2
. (28)

Applying the tower rule of conditional expectation and tele-
scoping the above inequality from k = 1 to K − 1, adding
E[∥gδ(θ0)∥2] on both sides, adding 8dL2

0
α2

δ2 E[∥gδ(θK−1)∥2]
on the RHS, and rearranging the terms, we have that
K−1∑
k=0

E[∥gδ(θk)∥2] ≤
1

1− αg
E[∥gδ(θ0)∥2] +

32d2diL
2
0

1− αg

α2

δ4
E2

µK

+
16(d+ 4)2L2

0

1− αg
K +

8dσ2

(1− αg)δ2
K, (29)

where αg = 8dL2
0
α2

δ2 . When δ = ϵJ√
dL0

and α =
ϵ1.5J

4d1.5L2
0

√
K

,

we have that αg = ϵJ
2dK ≤ 1

2 when ϵJ ≤ d and K ≥ 1.
Substituting the bound on αg into (29), we obtain that

K−1∑
k=0

E[∥gδ(θk)∥2] ≤ 2E[∥gδ(θ0)∥2] + 64d2diL
2
0

α2

δ4
E2

µK

+ 32(d+ 4)2L2
0K +

16dσ2

δ2
K. (30)

Moreover, substituting the bound in (30) into the bound in
(27), we get that

K−1∑
k=0

E[∥∇Jδ(θk)∥2] ≤
2

α
(E[Jδ(θK)− Jδ(θ0)])

+ 4
√
dL0

α

δ
E[∥gδ(θ0)∥2] + 64(d+ 4)2.5L3

0

α

δ
K

+ 32d1.5L0σ
2 α

δ3
K + 128d2.5diL

3
0

α3

δ5
E2

µK

+ 8d1.5diL0
α

δ3
E2

µK +
ddi
δ2

E2
µK. (31)

Recalling that E2
µ = ϵδ2

2ddi
and substituting the selected values

for δ = ϵJ√
dL0

and α =
ϵ1.5J

4d1.5L2
0

√
K

into (31), we obtain that

K−1∑
k=0

E[∥∇Jδ(θk)∥2] ≤
8d1.5L2

0

ϵ1.5J

E[J∗
δ − Jδ(θ0)]

√
K

+
ϵ0.5J√
dK

E[∥gδ(θ0)∥2] +
ϵϵ1.5J

d1.5
√
K

+ 16
(d+ 4)2

d
L2
0ϵ

0.5
J

√
K

+
8d1.5L2

0σ
2

ϵ1.5J

√
K +

ϵϵ0.5J√
d

√
K +

ϵ

2
K, (32)

where J∗
δ ≥ Jδ(θ) for all θ ∈ Rd. The upper bound on Jδ(θ)

exists due to Assumption 3.3. Dividing both sides of (32) by
K, we achieve the bound in Theorem 3.2.

Lemma 3.3. Let Assumption 3.2 hold. Then, running Al-
gorithm 1 with DoTracking = True, we have that µ̄k(m) =
J(θk + δuk, ξk) = 1

N

∑N
i=1 Ji(θk + δuk, ξk), for all m =

1, 2, . . . , Nc and all k. Proof: According to (8), we have
that

µ̄k(m) =
1

N
1T µ⃗k(m) =

1

N
1T µ⃗k(m− 1) = . . .

=
1

N
1T µ⃗k(0), for all m, k ≥ 0. (33)
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Next, we show that µ̄k(Nc) = µ̄k(0) = 1
N

∑N
i=1 Ji(θk +

δuk, ξk) for all k. We use mathematical induction to construct
the proof. Specifically, suppose that µ̄k−1(Nc) = µ̄k−1(0) =
1
N

∑N
i=1 Ji(θk−1+δuk−1, ξk−1) holds. Then, according to line

9 in Algorithm 1, we have that

1

N
1T µ⃗k(Nc) =

1

N
1T µ⃗k(0)

=
1

N
1T

(
µk−1(Nc) + J⃗(θk + δuk, ξk)

− J⃗(θk−1 + δuk−1, ξk−1)
)

=
1

N

N∑
i=1

Ji(θk−1 + δuk−1, ξk−1) +
1

N

N∑
i=1

Ji(θk + δuk, ξk)

− 1

N

N∑
i=1

Ji(θk−1 + δuk−1, ξk−1)

=
1

N

N∑
i=1

Ji(θk + δuk, ξk),

where J⃗(θk + δuk, ξk) = [. . . , Ji(θk + δuk, ξk), . . . ]
T . The

second equality above is due to the induction hypothesis. We
have that the induction hypothesis is satisfied for µ̄0(Nc),
according to line 7 in Algorithm 1. Therefore, we have shown
that 1

N 1T µ⃗k(0) = 1
N

∑N
i=1 Ji(θk + δuk, ξk) for all k. And

due to (33), we have shown that µ̄k(m) = J(θk + δuk, ξk) =
1
N

∑N
i=1 Ji(θk + δuk, ξk), for all m = 1, 2, . . . , Nc and all k.

The proof is complete.

Lemma 3.4. Let Assumptions 2.2, 3.1, 3.2 hold and define
Ek

µ = ∥µ⃗k(Nc)− µ̄k(Nc)1∥. Then, running Algorithm 1 with
DoTracking = True, we have that

E
[
(Ek

µ)
2
]
≤
(
2E

[
(Ek−1

µ )2
]
+ 32dL2

0

α2

δ2
E
[
(Ek−1

µ )2∥uk−1∥2
]

+ 32d2L2
0

α2

δ2
E
[
(Ek−2

µ )2
])

ρ2Nc

W

+ 16NL2
0α

2E
[
∥∇̃J(θk−1)∥2

]
ρ2Nc

W

+ 32NdL2
0δ

2ρ2Nc

W + 16Nσ2ρ2Nc

W . (34)

Proof: To simplify notations, in what follows, we denote
µ⃗k(Nc) and µ̄k(Nc) by µ⃗k and µ̄k respectively. According to
lines 9 and 12 in Algorithm 1, we have that

E
[
(Ek

µ)
2
]
= E[∥(I − 1

N
11T )µ⃗k∥2]

= E[∥(I − 1

N
11T )WNc

(
µk−1 + J⃗(θk + δuk, ξk)

− J⃗(θk−1 + δuk−1, ξk−1)
)
∥2]

= E[∥(WNc − 1

N
11T )

(
µk−1 + J⃗(θk + δuk, ξk)

− J⃗(θk−1 + δuk−1, ξk−1)
)
∥2].

Since (WNc − 1
N 11T )µ̄k−11 = 0, we obtain that

E
[
(Ek

µ)
2
]
= E[∥(WNc − 1

N
11T )

(
µk−1 − µ̄k−11

+ J⃗(θk + δuk, ξk)− J⃗(θk−1 + δuk−1, ξk−1)
)
∥2]

≤ 2E[∥WNc − 1

N
11T ∥2(Ek−1

µ )2] + 2E[∥WNc (35)

− 1

N
11T ∥2∥J⃗(θk + δuk, ξk)− J⃗(θk−1 + δuk−1, ξk−1)∥2].

Moreover, since (W − 1
N 11T )2 = W 2 − 1

N 11T , we get that
(W− 1

N 11T )3 = (W 2− 1
N 11T )(W− 1

N 11T = W 3− 1
N 11T ).

This is because W 2 is also doubly stochastic, which can
be shown using the definition. Through induction, we obtain
that (W − 1

N 11T )Nc = WNc − 1
N 11T . Therefore, we have

that ∥WNc − 1
N 11T ∥2 = ∥(W − 1

N 11T )Nc∥2 ≤ ∥W −
1
N 11T ∥2Nc = ρ2Nc

W . Applying this bound in (35), we get that

E
[
(Ek

µ)
2
]
≤ 2ρ2Nc

W E[(Ek−1
µ )2] (36)

+ 2ρ2Nc

W E[∥J⃗(θk + δuk, ξk)− J⃗(θk−1 + δuk−1, ξk−1)∥2].

Following the same procedure used to derive the bound in (24),
we get that |Ji(θk + δuk, ξk) − Ji(θk−1 + δuk−1, ξk−1)|2 ≤
4L2

0∥θk − θk−1∥2 + 4L2
0δ

2∥uk − uk−1∥2 + 8σ2, for all i =
1, 2, . . . , N . Applying this bound to the RHS in (36), we obtain
that

E
[
(Ek

µ)
2
]
≤ 2ρ2Nc

W E[(Ek−1
µ )2] + 8NL2

0ρ
2Nc

W E[∥θk − θk−1∥2]
+ 8NL2

0δ
2ρ2Nc

W E[∥uk − uk−1∥2] + 16Nσ2ρ2Nc

W . (37)

Moreover, we have that E[∥uk − uk−1∥2] ≤ E[2∥uk∥2 +
2∥uk−1∥2] ≤ 4d. Substituting the expression of θk − θk−1

for (15) into (37) and applying the bound in (19), we obtain
that

E
[
(Ek

µ)
2
]
≤ 2ρ2Nc

W E[(Ek−1
µ )2] + 16NL2

0ρ
2Nc

W α2E[∥gδ(θk−1)∥2]
+ 32dNL2

0δ
2ρ2Nc

W + 16Nσ2ρ2Nc

W

+ 32dL2
0ρ

2Nc

W

α2

δ2
E[(Ek−1

µ )2∥uk−1∥2]

+ 32d2L2
0ρ

2Nc

W

α2

δ2
E[(Ek−2

µ )2].

The proof is complete.
First, we present a lemma characterizing the bound on

E[(Ek
µ)

2∥uk∥2].
Lemma 1.4: Let Assumptions 2.2, 3.1, 3.2 hold. Then, for

all k ≥ 1, we have that

E
[
(Ek

µ)
2∥uk∥2

]
≤ 2dρ2Nc

W E[(Ek−1
µ )2] + 16dNL2

0ρ
2Nc

W α2E[∥gδ(θk−1)∥2]

+ 32d2L2
0ρ

2Nc

W

α2

δ2
E[(Ek−1

µ )2∥uk−1∥2]

+ 32d3L2
0ρ

2Nc

W

α2

δ2
E[(Ek−2

µ )2]

+ 32(d+ 4)2NL2
0δ

2ρ2Nc

W + 16dNσ2ρ2Nc

W .
Proof: According to the bound on (Ek

µ)
2 derived in (35),

we have that

E
[
(Ek

µ)
2∥uk∥2

]
≤ 2ρ2Nc

W E[(Ek−1
µ )2∥uk∥2] (38)

+ 2ρ2Nc

W E[∥J⃗(θk + δuk, ξk)− J⃗(θk−1 + δuk−1, ξk−1)∥2∥uk∥2].
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Since Ek−1
µ is independent of uk, we have that

E
[
(Ek−1

µ )2∥uk∥2
]
= E[(Ek−1

µ )2]E[∥uk∥2] = dE[(Ek−1
µ )2].

Following the same procedure used to derive the bound in (24),
we get that |Ji(θk + δuk, ξk) − Ji(θk−1 + δuk−1, ξk−1)|2 ≤
4L2

0∥θk − θk−1∥2 + 4L2
0δ

2∥uk − uk−1∥2 + 8σ2, for all
i = 1, 2, . . . , N . Applying this bound to the RHS in (38), we
obtain that

E
[
(Ek

µ)
2∥uk∥2

]
≤ 2dρ2Nc

W E[(Ek−1
µ )2] (39)

+ 8NL2
0ρ

2Nc

W E[∥θk − θk−1∥2∥uk∥2]
+ 8NL2

0δ
2ρ2Nc

W E[∥uk − uk−1∥2∥uk∥2] + 16dNσ2ρ2Nc

W .

Moreover, we have that E[∥uk−uk−1∥2∥uk∥2] ≤ E[2∥uk∥4+
2∥uk−1∥2∥uk∥2] ≤ 4(d + 4)2. Substituting the expression of
θk − θk−1 in (15) into (39) and applying the bound (19), we
obtain that

E
[
(Ek

µ)
2∥uk∥2

]
≤ 2dρ2Nc

W E[(Ek−1
µ )2] + 16dNL2

0ρ
2Nc

W α2E[∥gδ(θk−1)∥2]

+ 32d2L2
0ρ

2Nc

W

α2

δ2
E[(Ek−1

µ )2∥uk−1∥2]

+ 32d3L2
0ρ

2Nc

W

α2

δ2
E[(Ek−2

µ )2]

+ 32(d+ 4)2NL2
0δ

2ρ2Nc

W + 16dNσ2ρ2Nc

W (40)

The proof is complete.
Now, we are ready to present the proof for Theorem 3.5.
Theorem 3.5. (Learning Rate of Algorithm 1 with Value

Tracking) Let Assumptions 2.2,3.1, 3.2 hold and define δ =
ϵJ√
dL0

, α =
ϵ1.5J

4d1.5L2
0

√
K

, and Nc ≥ max
(
log( 1

2
√
2
)/ log(ρW ),

Nc ≥ log(
√

ϵ

4
(
G2ϵJ+32(d+4)2dL2

0+16d3L2
0σ

2/ϵ2J

) )/ log(ρW )
)

where G2 = max

(
E
[
∥∇̃J(θ0)∥2

]
, 2ϵJϵ

dK + 32L2
0(d +

4)2 +16d2L2
0
σ2

ϵ2J

)
. Then, running Algorithm 1

with DoTracking = True, we have that
1
K

∑K−1
k=0 E[∥∇Jδ(θk)∥2] ≤ O(d1.5ϵ−1.5

J K−0.5) + ϵ
2 .

Proof: First, we show that for all k ≥ 0, we
have that E[∥gδ(θk)∥2] ≤ G2, E[(Ek

µ)
2] ≤ E2

µ and
E[(Ek

µ)
2∥uk∥2] ≤ dE2

µ when we let δ = ϵJ√
dL0

,

α =
ϵ1.5J

4d1.5L2
0

√
K

, and Nc ≥ max
(
log( 1

2
√
2
)/ log(ρW ),

log(
√

ϵ
2G2ϵJ+64(d+4)2dL2

0+32d3L2
0σ

2/ϵ2J
)/ log(ρW )

)
, where

E2
µ = ϵδ2

2ddi
. To prove this, we use mathematical induction.

Specifically, suppose we have that E[(Ek−1
µ )2] ≤ E2

µ,
E[(Ek−2

µ )2] ≤ E2
µ, E[(Ek−1

µ )2∥uk−1∥2] ≤ dE2
µ and

E[∥gδ(θk−1)∥2] ≤ G2. Then, according to Lemma 1.3, we
have that

E[∥gδ(θk)∥2] ≤ 8dL2
0

α2

δ2
G2 + 32d2diL

2
0

α2

δ4
E2

µ

+ 16(d+ 4)2L2
0 +

8dσ2

δ2
. (41)

Substituting the selected values for δ, α and the constant E2
µ

in (41), we get that

E[∥gδ(θk)∥2] ≤
ϵJ
2dK

G2 +
ϵϵJ
dK

+ 16L2
0(d+ 4)2 + 8d2L2

0

σ2

ϵ2J
,

≤ G2 (42)

where the second inequality holds because ϵJ
2dKG2 ≤ 1

2G
2

when ϵJ
dK ≤ 1. In addition, we have that ϵϵJ

dK +16L2
0(d+4)2+

8d2L2
0
σ2

ϵ2J
≤ 1

2G
2 due to the choice of G2 in Theorem 3.5.

Furthermore, according to Lemma 3.4, we have that

E
[
(Ek

µ)
2
]
≤

(
2 + 64d2L2

0

α2

δ2
)
ρ2Nc

W E2
µ + 16NL2

0G
2α2ρ2Nc

W

+ 32NdL2
0δ

2ρ2Nc

W + 16Nσ2ρ2Nc

W . (43)

Substituting the selected values for δ, α and E2
µ into (43), we

get that

E
[
(Ek

µ)
2
]

≤ (2 + 4
ϵJ
K

)ρ2Nc

W E2
µ + (

NG2ϵ3J
d3L2

0K
+ 32Nϵ2J + 16Nσ2)ρ2NC

W

≤ E2
µ. (44)

The second inequality is because when ϵJ/K ≤ 1
2

and Nc ≥ log( 1
2
√
2
)/ log(ρW ), we have that

(2 + 4 ϵJ
K )ρ2Nc

W E2
µ ≤ 1

2E
2
µ. In addition, when

Nc ≥ log(
√

ϵ

4
(
G2ϵJ+32(d+4)2dL2

0+16d3L2
0σ

2/ϵ2J

) )/ log(ρW ),

we get that (NG2ϵ3J
d3L2

0K
+ 32Nϵ2J + 16Nσ2)ρ2NC

W ≤ 1
2E

2
µ.

Next, according to Lemma 1.4, we have that

E
[
(Ek

µ)
2∥uk∥2

]
≤

(
2 + 64d2L2

0

α2

δ2
)
ρ2Nc

W dE2
µ (45)

+ 16dNL2
0G

2α2ρ2Nc

W + 32N(d+ 4)2L2
0δ

2ρ2Nc

W + 16dNσ2ρ2Nc

W .

Substituting the selected values for δ, α and E2
µ into (45), we

get that E
[
(Ek

µ)
2∥uk∥2

]
≤ (2 + 4 ϵJ

K )ρ2Nc

W dE2
µ + (

NG2ϵ3J
d2L2

0K
+

32N (d+4)2

d ϵ2J +16dNσ2)ρ2NC

W ≤ dE2
µ. The second inequality

holds for similar reasons as those used to obtain (44). To
complete the induction argument, we simply need to verify
the induction hypothesis when k = 1. It is straightforward to
see that E[∥gδ(θ0)∥2] ≤ G2 due to the definition of G2. In
addition, due to the initialization step µ−1(Nc) = 0 in line
1 in Algorithm 1, we have that E[(E−1

µ )2] ≤ E2
µ. To satisfy

the conditions E[(E0
µ)

2] ≤ E2
µ and E[(E0

µ)
2∥u0∥2] ≤ dE2

µ,
it is sufficient to run many enough consensus steps only at
the first iteration of Algorithm 1, according to Lemma 3.1.
To summarize, the induction hypothesis is satisfied at the
first iteration of Algorithm 1 and we have shown that for all
k ≥ 0, we have that E[∥gδ(θk)∥2] ≤ G2, E[(Ek

µ)
2] ≤ E2

µ

and E[(Ek
µ)

2∥uk∥2] ≤ dE2
µ under the choice of parameters

specified in Theorem 3.5.
Finally, using the uniform bounds E[(Ek

µ)
2] ≤ E2

µ and
E[(Ek

µ)
2∥uk∥2] ≤ dE2

µ, we can follow the same procedure
as in the proof of Theorem 3.2 and obtain the following
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optimality bound
K−1∑
k=0

E[∥∇Jδ(θk)∥2] ≤
8d1.5L2

0

ϵ1.5J

E[J∗
δ − Jδ(θ0)]

√
K

+
ϵ0.5J√
dK

E[∥gδ(θ0)∥2] +
ϵϵ1.5J

d1.5
√
K

+ 16
(d+ 4)2

d
L2
0ϵ

0.5
J

√
K

+
8d1.5L2

0σ
2

ϵ1.5J

√
K +

ϵϵ0.5J√
d

√
K +

ϵ

2
K. (46)

Dividing both sides by K completes the proof.
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