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Synchronization of Spin-Torque Oscillators via
Continuation Method

Denis Nikitin, Carlos Canudas-de-Wit, Paolo Frasca and Ursula Ebels

Abstract—In this paper we study synchronization phenom-
ena for spin-torque oscillators coupled on a ring. Spin-torque
oscillators are nanoelectronic devices which promise efficient
microwave generation provided they are synchronized in large
arrays. Due to their nonlinear and non-isochronous nature,
their synchronization is difficult to analyse explicitly. We employ
a recently developed continuation method that transforms the
network of coupled oscillators (each described by an ordinary
differential equation) into a single nonlinear partial differential
equation (PDE). We then analyse the synchronization of this
PDE in two cases: when all the oscillators are identical and
when there are two different types of oscillators. In the case of
identical oscillators we reconstruct all possible synchronous so-
lutions in the system and provide explicit conditions for stability.
For non-identical oscillators we derive and solve a differential
synchronization condition which allows us to reconstruct the
shape of the equilibrium profiles. All the presented results, which
are derived for the PDE, are validated by numerical simulations
of the original network of ODEs.

Index Terms—Synchronization of Large-Scale Networks, Spin-
Torque Oscillators, Non-Isochronous Oscillators, Kuramoto

I. INTRODUCTION

SYNCHRONIZATION is an astonishing phenomenon that
can occur in large systems with many interacting nonlinear

agents. Manifestations of this effect are usually associated with
a significant increase in the energy efficiency of the system
because many agents behave as a whole, oscillating at a single
common frequency. In the control community, the Kuramoto
model was mainly investigated as a prototypical example of
synchronization. It is used to express a behaviour of a network
of coupled oscillators whose dynamics are described using
phase angles. The Kuramoto model and its second-order gen-
eralization can be applied to study various applications such
as chemical oscillators [1], synchronization of smart grids [2],
power networks [3] and even crowd synchrony on London’s
Millennium Bridge [4]. The issue of synchronization in the
Kuramoto model depending on different network topologies
and different parameters is extensively studied, see [5] for the
review and [2], [6] for recent comprehensive synchronization
conditions.

The Kuramoto model describes only the phase dynamics of
oscillators, assuming that the oscillation amplitude is constant
for each oscillator. In many practical applications, however,
the relationship between amplitude and phase dynamics cannot
be neglected. The class of oscillators in which the oscillation
frequency can vary with amplitude is called non-isochronous.

D. Nikitin, C. Canudas-de-Wit and P. Frasca are with Univ. Grenoble Alpes,
CNRS, Inria, Grenoble INP, GIPSA-lab, 38000 Grenoble, France. U. Ebels
is with Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, Spintec, 38000
Grenoble, France.

Many well-known models, such as van der Pol oscillator [7]
or FitzHugh-Nagumo neuron model [8] have this property.

This class of non-isochronous oscillators includes spin-
torque oscillators (STO), nanoelectronic devices that are based
on the spin-transfer torque effect discovered by [9] and [10].
It appears that an electric direct current which passes through
a magnetized layer can become spin-polarized, and moreover
this spin-polarized current can further transfer angular mo-
mentum to another magnetized layer. This transfer induces
torque on the magnetization of the second layer, which can
lead to switching of the magnetization direction. A steady state
magnetization precession can be induced under appropriate
conditions of external field and for current densities larger than
a critical value. Due to the fast precession of magnetization in a
ferromagnetic layer, STOs produce microwave output voltage
signals. Thus large arrays of STOs can theoretically serve as
very efficient microwave generators. This is why the question
of synchronization of STOs is very important: synchronous
oscillations of many oscillators amplify each other due to
constructive interference, while asynchronous oscillations ex-
hibit destructive interference and thus produce less power.
Different magnetic configurations facilitating synchronization
were studied in [11], [12], while the impact of different device
properties were investigated in [13], [14]. However, analytic
studies were mostly limited to investigating properties of
amplitude-frequency coupling, synchronization to an external
oscillating force and phase-locking effects, as in [15], [16].

In this paper we study the synchronization of a large array of
STOs with a ring interaction topology. In order to completely
describe synchronization on a ring, we are going to reconstruct
different synchronization profiles possible in the system and
to derive particular conditions on the system parameters which
can be checked to ensure that these synchronized solutions are
stable. One could then use these conditions as a guidance for
realization and deployment of large arrays of synchronously
operating STOs. We approach this problem by utilizing a
recently developed continuation method, which transforms a
network of coupled ODEs into a single PDE. The general
continuation method was introduced by the authors in [17]
and was applied in [18] to derive an urban traffic PDE
model and in [19] to stabilize a Stuart-Landau laser chain.
To demonstrate applicability of the method to the problem
of network synchronization, in Section II we start with a toy
example of analysis of the Kuramoto model synchronization
on a ring.

We then proceed to introduce the STO model and its
continuation in Sections III and IV, respectively. Next, the
analysis of STO synchronization is split into two cases. In the
first case we assume that all oscillators are the same, i.e. the



2

system parameters do not change along the ring. In the second
case, we extend our analysis to the case when there are several
different types of oscillators in the system. This setup allows
us to investigate how the synchronization properties change
due to possible parameter variations that may arise because of
fabrication inaccuracies among other reasons.

In the case of identical oscillators in Section V, our main
results provide a characterization of all synchronized solutions
and the explicit conditions on the system parameters which
can be checked to ensure that a chosen synchronized solution
is stable. Due to the complexity of STOs, these conditions
depend on all of the system’s parameters, but we found that
the coupling phase between oscillators is one of the most
important ones. We validated our results using numerical
simulations and found that the derived conditions are able to
reconstruct the behavior of the original system.

The analysis of the system with non-identical oscillators is
much more challenging. In Section VI we assume that the
system consists of two different types of oscillators (e.g. they
were produced in two batches). We then derive a differential
equation serving as a condition for synchronization and then
solve it to obtain an implicit function describing synchronous
solution’s profile. Thus we are successfully able to analytically
reconstruct solutions arising in the inhomogeneous system,
which we demonstrate using numerical simulations.

II. TOY EXAMPLE: RING OF KURAMOTO OSCILLATORS

To illustrate how a PDE approximation of an oscillator
network derived via the continuation method can be used, in
this section we focus our attention on a network of Kuramoto
oscillators with local interactions, namely coupled on a 1D
ring. Deriving PDE representation of Kuramoto system, we
show that this model can be more appropriate for analysis (in
the same way as continuous dynamical systems can be more
tractable than the discrete ones). As a toy example, here we
present one possible application of this representation, namely
we analytically find a synchronization threshold for a 1D ring
topology. Problem of computation of a general synchronization
threshold for different topologies and frequency distributions
was recently solved by [2] and [6] with the help of graph
theory. However, the method presented in these papers is
sophisticated and not straightforward to extend to other types
of oscillators. Contrary, the idea based on continuation which
is presented in this section helps to find a synchronization
condition in a very natural way. Moreover, this method will
be extended in the next sections to a more general class of
non-isochronous oscillators in complex domain. Apart from
deriving synchronization threshold we demonstrate that the
continuation method produces an accurate representation of
the Kuramoto network by performing numerical simulations
comparing the original ODE system with the obtained PDE.

A. Continuum description of the Kuramoto model

We start by analysing a system of Kuramoto oscillators

φ̇i = ωi +F (sin(φi+1−φi)− sin(φi−φi−1)) , (1)

where φi is a phase angle of i-th oscillator, ωi is its natural
frequency and F > 0 is a coupling strength. Each oscillator
is coupled with its two neighbours, forming a closed ring.
We assume that there are n oscillators and that each oscillator
has a position on a ring defined by xi ∈ [0,2π), with xi+1−
xi = ∆x and x1− xn + 2π = ∆x, meaning that the oscillators
are spaced equally on the ring. Using these positions, we can
further define a natural frequency function ω(xi) =ωi and then
a state function φ(xi) = φi.

The main idea now is to use a PDE approximation of the
original ODE system (1). A general description of our method
to derive PDE approximations for nonlinear systems of ODEs
is given in [17]. Here we propose a self-contained example
application of this method to obtain a Kuramoto PDE. Since
we assume continuity of an underlying space on a ring, let us
define a function s(x) by the rule

s(xi−1/2) = sin(φ(xi)−φ(xi−1)), (2)

which leads to the system

φ̇(xi) = ω(xi)+F
(
s(xi+1/2)− s(xi−1/2)

)
.

Now we can calculate the Taylor expansion of the function
φ(xi) at the point xi−1/2:

φ(xi) = φ(xi−1/2)+
∆x
2

∂φ

∂x

(
xi−1/2

)
+

∆x2

8
∂ 2φ

∂x2

(
xi−1/2

)
+ ...

The same expansion can be used for φ(xi−1). Thus the
argument of sine in (2) is

φ(xi)−φ(xi−1) = ∆x
∂φ

∂x

(
xi−1/2

)
+O(∆x3).

In general these series are infinite, but we want to obtain a
low-order approximation, therefore we assume that

φ(xi)−φ(xi−1) = ∆x
∂φ

∂x

(
xi−1/2

)
.

Note that this coincides with the usual second-order finite
difference method for the discretization of first-order spatial
derivatives in PDEs. As a result, we finally obtain that

s(x) = sin
(

∆x
∂φ

∂x
(x)
)
. (3)

Moreover, using the same procedure applied to the function
s(x), we can write

∂φ

∂ t
= ω(x)+F∆x

∂ s
∂x

,

and using the approximation of s(x) in (3), the obtained PDE
approximation is

∂φ

∂ t
= ω(x)+F∆x

∂

∂x
sin
(

∆x
∂φ

∂x

)
. (4)

We validate this PDE approximation by the simulation of an
ODE system with n = 50 oscillators, placed on a ring. Having
freedom to choose any nontrivial natural frequency function,
we take ω(x) = 1+ xsin(2x) for x ∈ [0,2π) (in general any
function can be used, but for the future analysis we choose
an integrable one). The coupling strength is set to F = 4. We
numerically simulate the approximated PDE (4) on a grid with
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Figure 1. Comparison between simulations of a Kuramoto ODE network (1)
with n = 50 oscillators and its PDE approximation (4). Left: Snapshot of
profiles of both systems at time T = 500. Right: Evolution of a mean-square
absolute divergence between solutions.

500 points. The results of simulation are shown in Fig. 1.
It is clear that while the solution to the ODE system splits
into several clusters, solution to the PDE model continuously
connects these clusters (Fig. 1, left), remaining rather accurate
at the positions of the oscillators of the original ODE system
(Fig. 1, right).

B. Synchronization threshold for Kuramoto oscillators
The main advantage of describing the system in terms of

partial derivatives is that now the space becomes a continuum,
thus integrals can be taken (and in general integrals are much
more tractable than series). We will show how the obtained
PDE (4) can be used to find the parameter F∗ for which phase
transition from the complete synchronization to the emergence
of clusters occurs. Namely, let us try to find an equilibrium
solution φ ∗ of (4) in case of complete synchronization. It is
clear that then there exists ω̄ = 1

2π

∫ 2π

0 ω(x)dx such that all
oscillators share the same frequency:

∂φ ∗

∂ t
= ω̄.

Therefore the equilibrium solution should satisfy

F∆x
∂

∂x
sin
(

∆x
∂φ ∗

∂x

)
= ω̄−ω(x). (5)

Let us integrate this equation from x0 to x1, where both are
chosen arbitrary:

sin
(

∆x
∂φ ∗

∂x
(x1)

)
− sin

(
∆x

∂φ ∗

∂x
(x0)

)
=

=
1

F∆x
(Ω(x1)−Ω(x0)) ,

(6)

where Ω(x) is some primitive function of ω̄−ω(x). Rearrang-
ing terms, we obtain

sin
(

∆x
∂φ ∗

∂x
(x1)

)
− 1

F∆x
Ω(x1) =

= sin
(

∆x
∂φ ∗

∂x
(x0)

)
− 1

F∆x
Ω(x0) =: C,

(7)

where C is therefore some constant independent of the choice
of x0 and x1. We obtained that the existence of an equilibrium
solution is equivalent to the existence of the primitive function
Ω(x) written in the form

1
F∆x

Ω(x) = sin
(

∆x
∂φ ∗

∂x
(x)
)
+C. (8)

If such Ω(x) exists, φ ∗ can be recovered by taking arcsine and
then integrating. Therefore, a complete synchronization for a
given F is possible if and only if there exists Ω(x) such that
(8) is possible, in a sense that the sine value lies in the interval
[−1,1]. Essentially this means that

Ω(x) ∈ [−F∆x+C,F∆x+C] ∀x ∈ [0,2π],

with C being some constant. Recalling that Ω(x) is a primitive
function of ω̄−ω(x) and that in general it is defined up to a
constant, this is equivalent to the condition

max
x∈[0,2π]

Ω(x)− min
x∈[0,2π]

Ω(x)6 2F∆x

for any Ω(x). To recover synchronization threshold F∗ it
requires only to replace inequality with equality sign:

F∗ =
1

2∆x

(
max

x∈[0,2π]
Ω(x)− min

x∈[0,2π]
Ω(x)

)
. (9)

Synchronization threshold (9) provides a condition on the
existence of equilibrium solutions. It is possible to prove that
for all F > F∗ there will exist a stable equilibrium solution.

Theorem 1. For all F > F∗, there exists an equilibrium
solution φ ∗, satisfying (8), which is locally asymptotically
stable.

Proof. Without loss of generality we assume that C = 0
(because the primitive function Ω(x) is defined up to a con-
stant). Note that Ω(x) ∈ [−F∗∆x,F∗∆x]. Then the equilibrium
solution can be recovered from (8) (up to a constant) as

φ
∗(x) =

1
∆x

x∫
0

arcsin
(

1
F∆x

Ω(x)
)

dx. (10)

Now let us assume that the equilibrium solution is slightly
perturbed: φ = φ ∗+ φ̃ . Then, by (4),

∂ φ̃

∂ t
= ω(x)− ω̄ +F∆x

∂

∂x
sin
(

∆x
∂φ ∗

∂x
+∆x

∂ φ̃

∂x

)
. (11)

Rewriting sine, we get

sin
(

∆x
∂φ∗

∂x
+∆x

∂ φ̃

∂x

)
≈ sin

(
∆x

∂φ∗

∂x

)
+ cos

(
∆x

∂φ∗

∂x

)
∆x

∂ φ̃

∂x
,

where the fact that φ̃ is a small perturbation was used. Now
(5) cancels the natural frequencies, therefore we arrive at

∂ φ̃

∂ t
= F∆x2 ∂

∂x

[
cos
(

∆x
∂φ ∗

∂x

)
∂ φ̃

∂x

]
. (12)

This is a standard linear diffusion equation with the diffusion
coefficient cos

(
∆x ∂φ∗

∂x

)
. For stability it remains to prove that

this coefficient is always positive. Indeed,

cos
(

∆x
∂φ ∗

∂x

)
= cos

(
arcsin

(
1

F∆x
Ω(x)

))
=

=

√
1−
(

Ω(x)
F∆x

)2

>

√
1−
(

Ω(x)
F∗∆x

)2

> 0,

(13)

and the linearised system is locally asymptotically stable.

To validate this analysis we use the same parameters of the
simulation as for Fig. 1: the length of the ring is L = 2π ,
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Figure 2. Desynchronization frequency ω̃ depending on the coupling strength
F . Other parameters as in Fig. 1. Left: F ∈ [0,20]. Right: zoom in, F ∈
[18,20].

the number of ODE nodes n = 50, and the natural frequency
ω(x) = 1+xsin(2x) (which is an integrable function, thus can
be analytically treated). By definition of the positions of nodes,
∆x = L/n = 2π/50. Further,

x∫
0

ω(s)ds = x− 1
2

xcos(2x)+
1
4

sin(2x),

thus ω̄ = 1/2. Primitive function Ω(x) can be taken as

Ω(x) =
x∫

0

(ω̄−ω(s))ds =
1
2

xcos(2x)− 1
4

sin(2x)− 1
2

x,

with maxΩ(x) = Ω(3.06) = 0.0203 and minΩ(x) =
Ω(4.765) = −4.726. Substituting these values in (9)
gives

F∗ ≈ 18.88. (14)

The value (14) is the smallest F for which the equilibrium
solution exists. To verify the result (14) for the original system
(1), we simulated it for F ∈ [0,20] and calculated ω̃ =max φ̇i−
min φ̇i, which we call desynchronization frequency. In case of
complete synchronization ω̃ should be zero. Indeed, Fig. 2
shows that ω̃ is zero for F > 18.9, and it increases when F
becomes smaller, thus behaving in accordance with the derived
value of F∗ in (14).

III. MODEL FOR THE RING OF SPIN-TORQUE OSCILLATORS

It was shown in the previous section that synchronization
analysis can be easily performed for Kuramoto oscillators
using PDE representation. The same synchronization condi-
tions were already derived for ODE representation by [2]
and [6], however these results were based on an extensive
use of nontrivial graph theory and linear algebra. We can
further show that PDE-based models allow for a more natural
analysis of systems by applying the continuation method to
a more complex class of oscillators, namely non-isochronous
oscillators. As a particular example of this class of oscillators
we focus on spin-torque oscillators (STO).

A typical spin-torque oscillator consists of two ferromag-
netic layers, a thick one called ”fixed” and a thin one called
”free”, see the left panel of Fig. 3. The ”fixed” layer will
spin polarize an electrical current that passes through it. This
polarized current, when traversing the second ”free” layer, will
transfer a spin angular momentum, that manifests itself as

effective magnetic field H

electron
flow current I

contact

contact

insulator insulatorspacer

P

M

Figure 3. Schematic representation of a possible geometry of spin-torque
oscillator. Red blocks represent ferromagnetic layers with their magnetization
directions denoted by black arrows. Electrons flow from bottom to top, first
passing through the ”fixed” magnetic layer which induces spin polarization
coinciding with its magnetization direction P . The magnetization M of the
”free” magnetic layer then oscillates under the effect of polarized current and
the effective magnetic field H .

damping

precession

spin transfer

magnetization M

effective
magnetic field H

Figure 4. Close view on the dynamics of the magnetization M of the
”free” layer, governed by equation (15). Damping and current-induced spin-
transfer torque compensate each other, stabilizing steady oscillations caused
by precession around the magnetic field H .

a torque acting on the free layer magnetization. This effect
creates precession, depicted in the right panel of Fig. 3. Denote
the magnetization of the ”free” magnetic layer by vector M ,
the magnetization of the ”fixed” magnetic layer by vector
P and the effective magnetic field by vector H . Then the
dynamics of the ”free” layer magnetization is governed by the
Landau-Lifshitz-Gilbert equation:

∂M

∂ t
=−γ (M ×H )︸ ︷︷ ︸

precession

+
α

|M |

(
M × ∂M

∂ t

)
︸ ︷︷ ︸

damping

+

+
σ I
|M |

(M × (M ×P))︸ ︷︷ ︸
spin transfer

,

(15)

where parameters γ , α and σ depend on the system’s geometry
and materials, and I is a current density which is applied to
the system. For a review of the spin-transfer torque effect and
STOs see [16], [20], [15].

Equation (15) can be simplified for analysis. Magnetization
vector M oscillates around the effective magnetic field vector
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H . Let us project M on a plane orthogonal to H and denote
the resulting projection via a complex variable c. Then, with
some additional transformations (see [16] for details) it is
possible to show that the magnetization dynamics (15) of an
STO can be modelled through:

ċ = i(ω +N p)c−ΓG(1+Qp)c+σ I(1− p)c, (16)

where p = |c|2 represents a squared amplitude of oscillations,
ω is a linear frequency, N is a nonlinear frequency coefficient,
ΓG is a linear damping, Q is a nonlinear damping coefficient,
and I and σ are the same as in (15). Model (16) is nonlinear
since the oscillations’ frequency depends on the amplitude
through the frequency gain N. In case of spin-torque oscillators
this amplitude-related frequency shift happens to be very
strong, thus these oscillations cannot be described by simpler
linear models.

If σ I 6 ΓG, the origin c = 0 is a stable equilibrium point.
Oscillations will occur if σ I > ΓG. Assuming it is true, define
a linear part of sum of dissipative terms Γ = σ I − ΓG > 0
and further a nonlinear gain of sum of dissipative terms S =
ΓGQ+σ I, thus the system (16) can be written as

ċ = i(ω +N p)c+(Γ−Sp)c. (17)

System (17) will oscillate with amplitude
√

p =
√

Γ/S and
with frequency φ̇ = ω + NΓ/S, where φ is a phase of an
oscillator. For the amplitude of oscillations to be well defined,
we also require S > 0.

In physical systems a phase of an oscillator usually changes
much faster than its amplitude. Therefore the model (17) is
often studied in amplitude-phase representation c =

√
peiφ ,

where
√

p is an amplitude of oscillations and φ is a phase of an
oscillator. Instead of writing two separate equations for them,
we will write model (17) in logarithmic representation. Define
z = lnc. Then the real part of z will represent the amplitude,
namely exp{2Rez}= p. Let us denote r := Rez = 1

2 ln p. The
imaginary part of z is a phase of an oscillator, φ := Imz, thus
such transformation allows to track phase information directly.
Since dc = c ·dz, the model (17) now becomes

ż = Γ+ iω− (S− iN)e2Rez. (18)

Now let us move to a system of coupled oscillators. We
assume the oscillators are placed on a ring, and each oscillator
is coupled with its two neighbours. As in the previous section,
let n denote the number of oscillators and let xi ∈ [0,2π)
be a position on a ring of the i-th oscillator. The distance
between oscillators is xi+1− xi = ∆x and x1− xn + 2π = ∆x,
meaning that the oscillators are spaced equally on the ring.
Coupling between oscillators means that each oscillator has
its neighbors’ states as an external force:

ċi = i(ωi +Ni pi)ci +(Γi−Si pi)ci +Fi(ci−1 + ci+1). (19)

Here Fi is a (possibly complex) coupling constant, with an
amplitude representing coupling strength and a phase repre-
senting coupling phase.

Using logarithmic representation, the model (19) reads as

żi = Γi + iωi− (Si− iNi)e2Rezi +Fi
(
ezi−1−zi + ezi+1−zi

)
. (20)

IV. CONTINUATION AND SYNCHRONIZATION CONDITION

It is now possible to perform continuation for the coupled
system in the same way it was done for Kuramoto oscillators
in the previous section. According to [17], the continuation of
(20) is performed in several steps:

1) zi−1− zi → −∆x ∂ z/∂xi−1/2

2) zi+1− zi → ∆x ∂ z/∂xi+1/2

3) e−∆x ∂ z/∂xi−1/2 → e−∆x ∂ z/∂xi −∆x 1
2

∂

∂x e−∆x ∂ z/∂xi

4) e∆x ∂ z/∂xi+1/2 → e∆x ∂ z/∂xi +∆x 1
2

∂

∂x e∆x ∂ z/∂xi

Using these continuations, we finally get

ezi−1−zi + ezi+1−zi →
(

e∆x ∂ z
∂x + e−∆x ∂ z

∂x

)
+∆x

∂

∂x

(
e∆x ∂ z

∂x − e−∆x ∂ z
∂x

2

)
,

or simply

ezi−1−zi + ezi+1−zi → 2cosh
(

∆x
∂ z
∂x

)
+∆x

∂

∂x
sinh

(
∆x

∂ z
∂x

)
.

Thus, system (20) can be written using PDE model as

∂ z
∂ t

= Γ+ iω− (S− iN)e2Rez +

+F
[

2cosh
(

∆x
∂ z
∂x

)
+∆x

∂

∂x
sinh

(
∆x

∂ z
∂x

)]
,

(21)

where parameters Γ, ω , S, N and F are (possibly) varying
functions of space, determined by approximating sampled
values Γi, ωi, Si, Ni and Fi at points xi.

Separating (21) into a system of two equations for r = Rez
and φ = Imz, one gets

∂ r
∂ t

=Γ−Se2r +

+ReF

[
2cosh

(
∆x

∂ r
∂x

)
cos
(

∆x
∂φ

∂x

)
+

+∆x
∂

∂x

(
sinh

(
∆x

∂ r
∂x

)
cos
(

∆x
∂φ

∂x

))]
−

− ImF

[
2sinh

(
∆x

∂ r
∂x

)
sin
(

∆x
∂φ

∂x

)
+

+∆x
∂

∂x

(
cosh

(
∆x

∂ r
∂x

)
sin
(

∆x
∂φ

∂x

))]
,

∂φ

∂ t
=ω +Ne2r +

+ReF

[
2sinh

(
∆x

∂ r
∂x

)
sin
(

∆x
∂φ

∂x

)
+

+∆x
∂

∂x

(
cosh

(
∆x

∂ r
∂x

)
sin
(

∆x
∂φ

∂x

))]
+

+ ImF

[
2cosh

(
∆x

∂ r
∂x

)
cos
(

∆x
∂φ

∂x

)
+

+∆x
∂

∂x

(
sinh

(
∆x

∂ r
∂x

)
cos
(

∆x
∂φ

∂x

))]
.

(22)

It is interesting to note that (22) includes a standard Kuramoto
PDE derived in Section II-A as a particular case. Indeed,
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assuming r = r0 = const both in space and time and assuming
F ∈ R, one gets an equation for φ as

∂φ

∂ t
= ω +Ne2r0 +F∆x

∂

∂x
sin
(

∆x
∂φ

∂x

)
, (23)

which exactly coincides with (4) by replacing ω with ω +
Ne2r0 .

Similar to Section II-B, we are interested in possible syn-
chronized solutions of (21) and conditions for their existence
and stability. A synchronized solution is a solution to (21) such
that ∂ z/∂ t = iω̄ , where ω̄ is a synchronization frequency. Thus
we are interested in the question when such a solution z= z(x)
exists for some ω̄ . Then the condition for synchronization is

0 =Γ+ i(ω− ω̄)− (S− iN)e2Rez +

+F
[

2cosh
(

∆x
∂ z
∂x

)
+∆x

∂

∂x
sinh

(
∆x

∂ z
∂x

)]
,

(24)

or in terms of r(x) and φ(x)

0 =Re
(
F−1 [

Γ+ i(ω− ω̄)− (S− iN)e2r])+
+

[
2cosh

(
∆x

∂ r
∂x

)
cos
(

∆x
∂φ

∂x

)
+

+∆x
∂

∂x

(
sinh

(
∆x

∂ r
∂x

)
cos
(

∆x
∂φ

∂x

))]
,

0 = Im
(
F−1 [

Γ+ i(ω− ω̄)− (S− iN)e2r])+
+

[
2sinh

(
∆x

∂ r
∂x

)
sin
(

∆x
∂φ

∂x

)
+

+∆x
∂

∂x

(
cosh

(
∆x

∂ r
∂x

)
sin
(

∆x
∂φ

∂x

))]
.

(25)

Note that we divided the equation by F before splitting real
and imaginary parts such that the hyperbolic functions take
the simplest form.

The exponential term e2r in (25) can be removed by
combining two equations together. Using amplitude-phase
notation we can introduce f = |F |, β = argF , G = |S+ iN|
and γ = arg(S+ iN). With this notation

Re
(
F−1(S− iN)

)
=

G
f

cos(γ +β ),

Im
(
F−1(S− iN)

)
=−G

f
sin(γ +β ),

therefore defining A = tan(γ +β ), multiplying the first equa-
tion in (25) by A and summing it with the second one we
obtain

A∆x
∂

∂x

[
cos
(

∆x
∂φ

∂x

)
sinh

(
∆x

∂ r
∂x

)]
+

+∆x
∂

∂x

[
sin
(

∆x
∂φ

∂x

)
cosh

(
∆x

∂ r
∂x

)]
+

+2

[
Acos

(
∆x

∂φ

∂x

)
cosh

(
∆x

∂ r
∂x

)
+

+ sin
(

∆x
∂φ

∂x

)
sinh

(
∆x

∂ r
∂x

)]
+B = 0,

(26)

where

B =
1

f cos(γ +β )
[cosγ (ω− ω̄)+ sinγ Γ] . (27)

Therefore, the synchronization condition is equivalent to
(26) combined with one of the equations in (25) to determine
connection between r and φ . Equilibrium solutions to (26)
represent synchronized states of the original PDE (21). In
the following sections we will characterize these solutions for
different configurations and provide stability conditions.

V. IDENTICAL OSCILLATORS CASE

In this section we will focus on the case when the ring
consists of oscillators having identical parameters. Intuitively
it is clear that in this case there exists a solution where all
oscillators share the same amplitude r and the same phase φ .
However it appears that depending on the number of oscillators
and their parameters there can be more solutions, and that their
stability properties are not trivial.

For the search of equilibrium solutions let us assume that
in the synchronized state the amplitudes of oscillators r are
slowly varying in space, namely ∂ r/∂x ≈ 0. We will further
show that in the identical oscillators case the amplitude is
indeed constant in space. Due to the assumption ∂ r/∂x ≈ 0,
we can use sinh(∆x ∂ r/∂x)≈ 0 and cosh(∆x ∂ r/∂x)≈ 1. With
these simplifications the equation (26) depends only on φ(x)
and thus can be solved independently:

∆x
∂

∂x
sin
(

∆x
∂φ

∂x

)
+2Acos

(
∆x

∂φ

∂x

)
+B = 0. (28)

If the parameters of oscillators would be non-identical, the
equation (28) would be very difficult to solve analytically since
A and B are varying functions of space (it can be equivalently
converted to the Abel equation of the second kind which has no
closed-form solution). Therefore in this section we assume A
and B being constant. A more general scenario of a piecewise
constant functions A and B will be covered in the next section.

For constant A and B equation (28) is separable. We can
notice that it depends only on the derivative of φ(x), not on
the phase itself. Define θ = ∆x ∂φ/∂x. A physical meaning of
θ is a difference in phases between two consecutive oscillators.
With this definition, (28) becomes

cosθ

−B−2Acosθ
dθ =

1
∆x

dx. (29)

The general solution to the equation (29) is described in
Section VI. For now let us note that by the structure of (29) any
non-constant continuous solution θ(x) would be monotonic.
Further, apart from being a solution to (28), synchronization
means that the solution φ(x) is a continuous angle, thus
φ(x + 2π)− φ(x) = 2πk for some k ∈ Z. This implies two
conditions which θ should satisfy:

1). θ(x) = θ(x+2π) ∀x ∈ R,

2).
2π∫
0

θ(x) dx = 2π∆xk for some k ∈ Z.
(30)

In the case of identical oscillators with constant A and B it
appears that the only possible solution to (28) is a constant
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one. Indeed, non-constant solutions should be monotone with
respect to coordinate, however the first condition in (30)
requires θ to be periodic, which is not possible if θ is not
constant. Thus looking at the equation (28) we see that for
constant A and B there is a simple solution cosθ =−B/(2A),
which means that all possible synchronized solutions for (28)
are given by

θ = arccos
(
− B

2A

)
. (31)

A. Equilibrium points

Recall that θ = ∆x ∂φ

∂x . Since φ(x) is a phase, it is defined
up to a constant. Assuming φ(x) = 0 at x = 0, using (31) and
the definitions of A and B, the solution for φ(x) is a linear
function

φ(x) =
x

∆x
arccos

(
−cosγ (ω− ω̄)+ sinγ Γ

2 f sin(β + γ)

)
. (32)

Note that ω̄ is a synchronization frequency and is still un-
known in this equation.

Position x is itself defined on a ring, thus x ∈ [0,2π).
Moreover, since the equilibrium solution is a periodic function,
φ(2π) should also be a multiple of 2π . We can define k ∈ Z+

such that φ(2π) = 2πk. Since k determines the number of
phase turns along the ring, we call it the winding number.
Therefore, the solution can exist for any ω̄ such that

k =
1

∆x
arccos

(
−cosγ (ω− ω̄)+ sinγ Γ

2 f sin(β + γ)

)
, k ∈ Z+.

The case k = 0 corresponds to an in-phase synchronized
system, meaning phases of all oscillators coincide, while the
case k = 1 corresponds to the state where the phases of the
oscillators do a round turn along the ring. It is clear that in
general the phase difference between neighbours is

θ
∗ = k∆x.

Note also that the system is symmetric for simultaneous
substitution k→−k and x→−x, thus phases can turn both
clockwise and counter-clockwise along the ring.

The principal branch of arccos has a range of values [0,π],
therefore k should satisfy |k|6 π/∆x (other solutions will just
copy the ones included in this range due to periodicity). Since
∆x is defined as the distance between two oscillators and is
assumed to be constant, ∆x = 2π/n, where n is the number
of oscillators in the system. Thus |k| 6 n/2, with |k| = n/2
corresponding to the case when two neighbor oscillators are
in anti-phase.

The synchronization frequency is thus given by

ω̄ = ω + tanγ Γ+2 f
sin(β + γ)

cosγ
cos(k∆x) (33)

for k ∈ {0, ...,n/2}. In particular, depending on the sign of
2 f · sin(β + γ)/cosγ , the in-phase synchronized state is either
the fastest or the slowest one.

B. Stability analysis

Assume the equilibrium solution is given by (32) with the
frequency (33) for k∈{0, ...,n/2}. We want to study for which
of these k the solution is stable.

Define z∗(x, t) = r∗ + iφ ∗(x) + iω̄t to be an equilibrium
solution for (21). Thus φ ∗(x) is defined by (32) for a chosen k,
ω̄ is a frequency of synchronized solution (33), and a constant
r∗ can be found from (24) by taking its real part:

e2r∗ =
Γ+2ReF cos(k∆x)

S
. (34)

Note that exponential should be positive to be well defined,
therefore we require

Γ+2 f cosβ cos(k∆x)> 0.

Now let us define a deviation from the equilibrium solution
z̃(x, t) = z(x, t)− z∗(x, t). It is governed by a difference of (21)
for z(x, t) and for z∗(x, t), taking into account (24). Assuming
z̃(x, t) is small, linearization of (21) around z∗(x, t) is given by

∂ z̃
∂ t

=−2(S− iN)e2r∗ Re z̃+2F sinh
(

∆x
∂ z∗

∂x

)
∆x

∂ z̃
∂x

+

+F∆x
∂

∂x

[
cosh

(
∆x

∂ z∗

∂x

)
∆x

∂ z̃
∂x

]
.

(35)

Using

∆x
∂ z∗

∂x
= i∆x

∂φ ∗

∂x
= iθ ∗ = ik∆x,

we get

cosh
(

∆x
∂ z∗

∂x

)
= cos(k∆x), sinh

(
∆x

∂ z∗

∂x

)
= isin(k∆x),

which can be substituted in (35), resulting in

∂ z̃
∂ t

=−2(S− iN)e2r∗ Re z̃+2iF∆xsin(k∆x)
∂ z̃
∂x

+

+F∆x2 cos(k∆x)
∂ 2z̃
∂x2 .

(36)

Separating (36) into real and imaginary parts z̃ = r̃+ iφ̃ and
using F = f eiβ :

∂ r̃
∂ t

=−2Se2r∗ r̃−2 f ∆xsinβ sin(k∆x)
∂ r̃
∂x
−

−2 f ∆xcosβ sin(k∆x)
∂ φ̃

∂x
+

+ f ∆x2 cosβ cos(k∆x)
∂ 2r̃
∂x2 −

− f ∆x2 sinβ cos(k∆x)
∂ 2φ̃

∂x2 ,

∂ φ̃

∂ t
= 2Ne2r∗ r̃+2 f ∆xcosβ sin(k∆x)

∂ r̃
∂x
−

−2 f ∆xsinβ sin(k∆x)
∂ φ̃

∂x
+

+ f ∆x2 sinβ cos(k∆x)
∂ 2r̃
∂x2 +

+ f ∆x2 cosβ cos(k∆x)
∂ 2φ̃

∂x2 .

(37)

System (37) is a system of linear equations, thus the method of
separation of variables can be applied to solve it. Moreover, it
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is homogeneous, thus the basis functions should be exponen-
tial. Therefore stability of (37) can be checked by substituting
exponential basis functions

r̃ = r0eλ teimx, φ̃ = φ0eλ teimx (38)

for some λ ∈ C and m ∈ Z, since basis should be periodic in
x along the ring. For asymptotic stability there should exist no
solution of (37) with Reλ > 0. Substituting (38) in (37) one
gets

λ r0 =−2Se2r∗r0−
−2 f ∆xsinβ sin(k∆x)imr0−2 f ∆xcosβ sin(k∆x)imφ0−
− f ∆x2 cosβ cos(k∆x)m2r0 + f ∆x2 sinβ cos(k∆x)m2

φ0,

λφ0 = 2Ne2r∗r0 +

+2 f ∆xcosβ sin(k∆x)imr0−2 f ∆xsinβ sin(k∆x)imφ0−
− f ∆x2 sinβ cos(k∆x)m2r0− f ∆x2 cosβ cos(k∆x)m2

φ0.
(39)

Define

P = f ∆x2 cosβ cos(k∆x)m2 +2i f ∆xsinβ sin(k∆x)m,

Q =− f ∆x2 sinβ cos(k∆x)m2 +2i f ∆xcosβ sin(k∆x)m.

Note that as m → ∞, first terms become dominating. With
the help of these functions and with S̄ = 2Se2r∗ > 0 and N̄ =
2Ne2r∗ , (39) becomes

λ

(
r0
φ0

)
=

(
−P− S̄ −Q
N̄ +Q −P

)(
r0
φ0

)
, (40)

thus we are interested in the eigenvalues of the matrix in (40).
It is trivial to show that they are given by

λ =
1
2

(
−2P− S̄±

√
(2P+ S̄)2−4P(P+ S̄)−4Q(Q+ N̄)

)
.

(41)
Taking m = 0, one of the eigenvalues becomes zero, corre-
sponding to the fact that the phase is defined up to a constant,
and the other eigenvalue is −S̄.

Further assume m 6= 0 and thus P,Q 6= 0. Condition for
stability Reλ < 0 translates as

Re(2P+ S̄)> Re
√

(2P+ S̄)2−4P(P+ S̄)−4Q(Q+ N̄).
(42)

In particular, as m→ ∞, ReP should be positive. Now for
simplicity define

H = (2P+ S̄)2, D = 4P(P+ S̄)+4Q(Q+ N̄).

Using complex relation for any c ∈ C

2(Rec)2 = Re
(
c2)+ |c|2 (43)

and taking square of inequality (42), it becomes

|H|+ReD > |H−D|, (44)

in particular ReD >−|H|. Taking square once more we get

(ImD)2−2ImH ImD−2|H|(cosυ +1)ReD < 0, (45)

where υ = argH. By (43) |H|(cosυ + 1) = 2(Re
√

H)2, and
thus (45) means that

(ImD)2−2ImH ImD < 4ReD(Re
√

H)2. (46)

Defining sequences hm, dm for m ∈ Z\{0} as

hm = f ∆x2 cos(k∆x)m2 and dm = 2 f ∆xsin(k∆x)m, (47)

we can express P, Q, D and H as

P =hm cosβ + idm sinβ , Q =−hm sinβ + idm cosβ ,

D =4(h2
m−d2

m + S̄hm cosβ − N̄hm sinβ )+

+4i(S̄dm sinβ + N̄dm cosβ ),

H =(4h2
m cos2

β −4d2
m sin2

β + S̄2 +4hmS̄cosβ )+

+4i(S̄dm sinβ +2hmdm sinβ cosβ ),

which then being inserted in (46) results in

(S̄dm sinβ + N̄dm cosβ ) ·
· (N̄dm cosβ − S̄dm sinβ −4hmdm sinβ cosβ )<

< (S̄+2hm cosβ )2(h2
m−d2

m + S̄hm cosβ − N̄hm sinβ ).

(48)

Finally, defining Ḡ = 2e2r∗G and using S̄ = Ḡcosγ and N̄ =
Ḡsinγ , we get

d2
mḠsin(γ +β )(Ḡsin(γ−β )−4hm sinβ cosβ )<

< (Ḡcosγ +2hm cosβ )2(h2
m−d2

m + Ḡhm cos(γ +β )).
(49)

Recall that by (42) ReP > 0, and substituting P and hm from
(47) we imply also that cos(k∆x)cosβ > 0. Thus we just
proved a theorem, which can be seen as the main result of
this paper:

Theorem 2. Necessary and sufficient condition for stability
of the synchronized solution (32) with the frequency (33) for
k ∈ {0, ...,n/2} for the system (21) with constant parameters
is given by the inequality (49) for m ∈ Z \ {0} together with
the requirement cos(k∆x)cosβ > 0.

Due to the dependence of (49) on m it is difficult to
check this condition explicitly. Therefore we will state several
corollaries for particular values of the winding number k,
providing explicit inequalities to check. These corollaries can
be then directly used for particular systems establishing a
guaranteed stability of synchronized solutions.

Corollary 1. Necessary and sufficient conditions for in-phase
synchronization are given by

cosβ > 0, cos(γ +β )>− f ∆x2

2e2r∗G
.

Proof. Indeed, in-phase equilibrium solution satisfies k = 0,
thus by (47) dm = 0 and hm = f ∆x2m2 > 0. From the second
condition of Theorem 2 we recover cosβ > 0. Finally, (49)
with dm = 0 requires right-hand terms to be greater than zero,
which is just hm(hm + Ḡcos(γ +β ))> 0. Since this is always
true as hm → ∞ with m→ ±∞, it is enough to satisfy this
inequality for m =±1, leading to cos(γ +β )>− f ∆x2/Ḡ.

Notice that conditions required in Corollary 1 as well as in
all other corollaries below immediately ensure the existence
of exponential representation of the amplitude of oscillations
defined in (34).
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Corollary 2. Necessary and sufficient conditions for anti-
phase synchronization are

cosβ < 0, cos(γ +β )<
f ∆x2

2e2r∗G
.

Proof. The proof follows the same steps as the previous one,
switching the sign of hm.

Corollary 3. Sufficient conditions for synchronization with
sin(k∆x) 6= 0 are given by

cos(k∆x)cosβ > 0 (50)

together with

ϒ <
∆x2

4
cot(k∆x)2 +

Ge2r∗ cos(γ +β )

2 f
cos(k∆x)
sin(k∆x)2 −1,

where ϒ =


0, cos2

β 6 cos2
γ,

cos2 β

cos2 γ
−1, cos2

β > cos2
γ.

(51)

Condition (50) is also a necessary condition for stability.

Proof. First, condition (50) repeats the second condition of
Theorem 2. Further, since sin(k∆x) 6= 0, dm is non-zero. Divide
(49) by d2

m and by (Ḡcosγ +2hm cosβ )2, obtaining

Ḡsin(γ +β )(Ḡsin(γ−β )−4hm sinβ cosβ )

(Ḡcosγ +2hm cosβ )2 <

<
h2

m−d2
m + Ḡhm cos(γ +β )

d2
m

.

(52)

Inserting the definitions of hm and dm from (47) we see that
right-hand side of (52) is strictly increasing with m2, therefore
it can be simplified by setting m2 = 1 as in the worst-case, thus
obtaining right-hand side of (51).

Now, to find sufficient conditions for satisfaction of (52),
let us bound the left-hand side from above. For this we will
use the following Lemma:

Lemma 1. Function f (x), defined as

f (x) =
V +µx
(U + x)2 (53)

with U > 0 and x > 0 is bounded from above by

f (x)6


0, V 6 0 and µ 6 0,

V/U2, V > 0 and Uµ 6 2V,

µ2

4µU−4V
, µ > 0 and Uµ > 2V.

(54)

The proof of this lemma can be found in Appendix A. We
apply this lemma to the left-hand side of (52), with U =
Ḡcosγ > 0, x = 2hm cosβ > 0, V = Ḡ2 sin(γ + β )sin(γ − β )
and µ =−2Ḡsin(γ +β )sinβ , obtaining (51). Note that due to
the trigonometric properties the conditions U > 0, µ > 0 and
Uµ > 2V are contradicting by definitions of variables, thus
only the first two cases of (54) are present in (51). Further,
V 6 0 and U > 0 implies µ 6 0, while V > 0 and U > 0 implies
Uµ < 2V , thus it is sufficient to check only V in (54).

Assume cosβ > 0 such that the in-phase solution is sta-
ble. Then the second condition of Theorem 2 requires that

k = 0, in-phase
stable

k = 1, stable k = 2, stable

k = 3, unstable k = 4, unstable k = 5, anti-phase
unstable

Figure 5. Six possible equilibrium solutions (32) for the ring of 10 spin-torque
oscillators. Assuming cosβ > 0, the first three are stable and the second three
are unstable.

(a) (b)

(c) (d)

Figure 6. Synchronized solutions for system of n = 50 coupled identical
spin-torque oscillators. Top row: analytic results for PDE (21). (a): diagram
of possible regimes by Corollaries 1 and 3. Color code denotes the highest
guaranteed existing regime, chaotic means that no stable solution exists. (b):
Synchronization frequency ω̄ by (33) for different k depending on β for f =
0.75. Bottom row: numerical simulation of (19). (c): diagram of numerically
estabilshed regimes. (d): numerically measured synchronization frequency.

cos(k∆x)> 0. Thus for the stability k∆x should be smaller than
π/2. This means k < n/4, where n is the number of oscillators.
In particular, the phase difference between two neighbouring
oscillators should be smaller than π/2. Also this means that
to observe a state with k = 1 one needs at least 5 coupled
oscillators, and to observe higher-order states one needs at
least 9 oscillators. As an example, all possible states in the
system with 10 oscillators are shown in Fig. 5.
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C. Numerical simulation

To compare predictions from the previous section we per-
formed a numerical simulation of system of n = 50 coupled
spin-torque oscillators. Simulation parameters were chosen ac-
cording to [15], namely, we set ω = 6.55 ·2π , N =−3.82 ·2π ,
ΓG = 0.375 · 2π (all those measured in radians per nanosec-
ond), Q =−0.24 and σ = 5.48 ·10−13 ·2π rad/nanosec/A∗m2

for (16). In this case the critical current density which is
required to start oscillations is Ic = ΓG/σ = 684.3 ·109 A/m2.
In our experiments we use a larger current density I = 1.5Ic to
observe steady state oscillations. With this setup the parame-
ters of oscillator (17) are Γ = 1.1781 and S = 2.9688. Further,
using definitions G = |S + iN| and γ = arg(S + iN), we get
G = 24.1847 and γ =−82.95◦.

Due to large negative γ conditions in Corollaries 1 and 3 are
not easy to satisfy. We can check which stable synchronized
solutions are admitted by the coupled system depending on
different coupling parameter F . Comparison between analytic
predictions and numerical simulation results is shown in Fig. 6.
We take different couplings F = f eiβ with f changing from
0 to 10 and β changing from −0.2 to 0.2 radians. For
each set of parameters we check the highest k for which
conditions in Corollaries 1 and 3 are satisfied. These results
are depicted in the diagram Fig. 6a. Further, we compare
them with experimental results by simulating the original ODE
system (19). We initialize all oscillators in this system using
an amplitude

√
pi =

√
Γ/S and a phase φi = ik∆x for the

i-th oscillator, such that the phase makes k turns along the
ring. Finally a small gaussian noise with a standard deviation
of 0.05 is added to phases. The system is simulated for
5000 nanoseconds (corresponding roughly to 15000 periods
of oscillation for f = 0.75). When simulation ends, we check
if the system remained stable or it diverged from the corre-
sponding equilibrium solution. The obtained highest possible
stable regimes are depicted in the diagram Fig. 6c. Comparing
it with the diagram Fig. 6a, we see that the analytic prediction
almost perfectly reconstructs the experimental diagram, with
deviations probably being attributed to the inaccuracies in
numerical stability check.

Finally we compare synchronization frequency ω̄ predicted
by (33) with the one measured in simulation. To measure
synchronization frequency in simulation we first notice that for
every agent oscillating with constant amplitude its immediate
frequency can be found as ω ≈ Im(ċ/c). Then we average this
frequency over all agents and over last 1000 nanoseconds.
The measured synchronization frequency for f = 0.75 and
for β ∈ [−0.1,0.2] is depicted in Fig. 6d. It is clear that for
the higher regimes for k = 1 and k = 2 stable solutions exist
only for sufficiently high values of β . Comparing measured
frequency with analytically predicted by (33) in Fig. 6b one
can see that the trends and relative frequency differences
between different regimes are reproduced correctly and that
the measured frequency is about 0.1 rad/nanosec higher than
the predicted one. This effect vanishes for higher values of f .
This mismatch can originate from the fact that the analytic
prediction was found for the PDE model (21), while the
simulation was performed for the original ODE system (19).

θ =−π/4 θ =−π/2

Figure 7. Function g(θ ,J) defined in (56) with respect to J for different
values of θ . Colors denote different branches in (56).

VI. NON-IDENTICAL OSCILLATORS

In the previous section we assumed that all oscillators are
identical and that the solutions’ magnitude is constant in space.
In this section we relax a requirement on homogeneity but
keep the assumption that ∂ r/∂x ≈ 0. Instead of analysing
systems with constant parameters A and B along the ring we
assume that these parameters are piecewise constant.

It was shown in Section V that in the small magnitude
variation case the synchronization condition is equivalent to
the equation (28), and for constant parameters A and B it
is represented by a separable equation (29). Let us define
J = B/A. Performing integration of (29) it is trivial to show
that all solutions to (29) are given in a form

A
x

∆x
+C = g(θ ,J), (55)

where C is an integration constant, and g(θ ,J) is a special
function parametrized by J which is given by

g(θ ,J) =



J

2
√

4− J2
ln

∣∣∣∣∣∣∣∣
1+
(

2−J√
4−J2

tan θ

2

)
1−
(

2−J√
4−J2

tan θ

2

)
∣∣∣∣∣∣∣∣−

1
2

θ , |J|< 2,

J√
J2−4

arctan
(

J−2√
J2−4

tan
θ

2

)
− 1

2
θ , |J|> 2,

1
2

tan
θ

2
− 1

2
θ , J = 2,

− 1
2

cot
θ

2
− 1

2
θ , J =−2.

(56)
It is interesting to note that there is a complex relation between
arctangent and logarithm functions

arctans =− i
2

ln
(

1+ is
1− is

)
, (57)

which means that the first two cases in (56) are essentially
the same. In fact, the definition (56) defines a piecewise
continuous function with at most two singularities with respect
to J, see Fig. 7. In particular (55) means that the constant
solution (31) is captured by the singularity approaching J =−2
from the left. Note further that g(θ ,J) is an odd function with
respect to θ .

Using the solution (55) it becomes possible to analyse
systems with several different types of oscillators. Here for
simplicity we will focus on the case of two types of oscillators.
The first type of oscillators has a set of parameters ω1, N1, Γ1,
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K = 1 K = 4

Figure 8. Examples of schematic representations of a ring with n = 20
oscillators with two different oscillator types placed periodically. K is a
number of periods.

S1 and F1, and similarly the second type has a corresponding
set of its own parameters. We further assume that oscillators’
types are repeated K times along the ring, and that every
continuous chunk of a particular oscillators’ type consists of
a fixed number of oscillators depending on its type (evidently
this implies K is a divisor of the number of oscillators n). This
means that the type of oscillators is a periodic function on
the ring with period 2π/K. For example if K = 1 this setup
corresponds to one large set of oscillators of the first type
followed by only one large set of oscillators of the second
type, while if K = n/2 the types of oscillators alternate. We
can define a set of switching points as y j for j∈{0, ...,2K−1},
with y0 = 0 and y j = j/2 ·2π/K for even j. Finally, for odd j
we require y j− y j−1 = const, thus the proportion of types is
preserved. Oscillators placed in [0,y1)∪ [y2,y3)∪ ... are of the
first type, and oscillators placed in [y1,y2)∪ [y3,y4)∪ ... are of
the second type. In particular this means that oscillators of the
first type occupy proportion y1/y2 of the whole ring. Some
possible examples of such distributions are schematically
presented in Fig. 8.

Since oscillators are of different types, aggregated param-
eters A and B will have different values A1, A2, B1 and
B2, leading to two different decision parameters J1 and J2.
However an unknown synchronization frequency ω̄ should be
common for both types, therefore by definition of B in (27)
we can write J1 = J̄1 + τ1ω̄ and J2 = J̄2 + τ2ω̄ , where

J̄1 =
cosγ1 ω1 + sinγ1 Γ1

f1 sin(γ1 +β1)
, τ1 =−

cosγ1

f1 sin(γ1 +β1)
, (58)

with J̄2 and τ2 being defined in a similar way.
We are now interested in particular solutions θ(x) to (28).

By (30) θ should be periodic. Since intervals of types of
oscillators are equal, symmetry leads to the fact that θ should
be periodic with period being equal to two intervals of different
types of oscillators, namely θ(y0) = θ(y2) = θ(y4) = ... =
θ(y2K−2). Further, one could expect to obtain continuous
solutions, however performing numerical simulations of such
systems we made an observation regarding possible synchro-
nized solutions:

Observation 1. Solution θ(x) behaves continuously and
monotonically in the first type domain and is constant with
discontinuity in the interior in the second type domain. More-

over, solution endpoints are symmetric about zero, namely
θ(y0) =−θ(y1).

The set of all possible solutions is not covered only by
those proposed by Observation 1, however each particular
class of solutions heavily depends on the properties of the
function (56) and thus requires special treatment. Further in
this section we will stick to the class of solutions in agreement
with Observation 1.

Defining θ ∗ = θ(0) and assuming θ(y1) =−θ ∗ by Obser-
vation 1, we can compute (55) in points x = y0 = 0 and x = y1
for the first type of oscillators and subtract one from another,
obtaining

A1
y1

∆x
= 2g(θ ∗,J1),

where we used the fact that the function g(θ ,J) is odd with
respect to θ . Substituting J1 as in (58), we get a condition
which should be satisfied for the first type of oscillators

2g(θ ∗, J̄1 + τ1ω̄)−A1
y1

∆x
= 0, (59)

which have two unknowns: θ ∗ and ω̄ . The second condition
comes from the assumption that for the second type domain
the solution is constant and thus it is determined by (31). Using
it for the second type domain we get

θ
∗ = arccos

(
−J2

2

)
. (60)

Note that both θ ∗ and −θ ∗ are solutions to (31), which is
consistent with Observation 1. Now, substituting J2 by (58)
in (60) and then substituting the result in (59) we obtain an
equation with a single unknown ω̄:

2g
(

arccos
(
− J̄2 + τ2ω̄

2

)
, J̄1 + τ1ω̄

)
−A1

y1

∆x
= 0. (61)

This equation can be solved for ω̄ using numerical methods
such as Newton method for example. Once ω̄ is known, we
can find J1 and J2 by (58) and then compute θ ∗ by (60). The
full solution on the first domain is then reconstructed by (55).

To determine the shape of solution θ(x) it remains only
to find an exact position denoted by y∗ ∈ (y1,y2) where a
discontinuous jump from θ ∗ to −θ ∗ happens in the second
type domain. This position can be obtained if one recalls that
θ = ∆x ∂φ/∂x and thus integral of θ should have fixed value
by (30) for some k ∈Z. In particular due to the periodic nature
of the problem with K periods we have

y2∫
0

θ(x)dx =
2π∆x

K
k. (62)

Since on the first type domain θ(x) is symmetric, its contribu-
tion to the integral is zero. Further, θ(x) = θ ∗ on x ∈ [y1,y∗)
and θ(x) =−θ ∗ on x ∈ (y∗,y2], therefore (62) is just

(2y∗− y1− y2)θ
∗ =

2π∆x
K

k,

which leads to
y∗ =

π∆x
Kθ ∗

k+
y1 + y2

2
. (63)

Thus the solution’s shape θ(x) is fully reconstructed.
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(a) (b)

Figure 9. Comparison of numerical and analytical synchronized solutions of
systems with n = 500 oscillators separated into two classes. Horizontal axis:
index of oscillator. Vertical axis: phase difference between two consecutive
oscillators in degrees. Yellow line denotes solution obtained by numerical
simulation of (19), black line denotes analytic solution by (60)-(63). Param-
eters: (a): K = 1, y1/y2 = 0.2, Γ2 = 1.05 ·Γ1, k = 3. (b): K = 4, y1/y2 = 0.6,
N2 = 1.03 ·N1, k =−2.

Remark 1. Observation 1 assumes the first part of the solution
behaves continuously and the second part is piecewise con-
stant. In real system these parts can be interchanged, which
depends on the obtained values of J1 and J2: for the continuous
part |J|> 2, while for the piecewise constant part |J|< 2 (while
they are both usually negative and close to -2).
Remark 2. Other types of solutions except those presented in
Observation 1 are also possible if parameter variations are very
high. In this case there is no piecewise constant domain and
all solution’s parts behave according to (55). It is then possible
to formulate a system of nonlinear equations with several
unknown variables which should be solved numerically. How-
ever we found that solutions to this system lie very close to
singularities of g(θ ,J), thus they cannot be found reliably by
numerical methods without additional problem reformulation.

A. Numerical simulation

To demonstrate how solutions to the synchronization con-
dition (28) found by (60)-(63) approximate synchronized so-
lutions of the original system (19) we performed numerical
simulations of (19) with n = 500 oscillators being split into
two types as it was described earlier in this section. Parameters
of the first type of oscillators were taken the same as in
Section V-C, and for the second type slight deviations in
parameters were added. Oscillators were placed periodically
on the ring with K periods, thus there were 2K groups of
oscillators as it was shown in Fig. 8. Each group of oscillators
of the first type occupies y1/y2 proportion of the period of the
length y2, and each group of oscillators of the second type
occupies (y2− y1)/y2 proportion. Numerical simulation was
initialized in the same way as in Section V-C with k denoting
initial shift in phases of consecutive oscillators such that the
phase makes k turns along the ring.

We performed two simulations:
1) In the first simulation we altered damping parameter Γ

for the second type of oscillators such that Γ2 =Γ1 ·1.05.
We used only two types of oscillators, thus K = 1. The
first type occupies only 20% of the whole ring, thus
y1/y2 = 0.2. Finally, oscillators were initialized such that
the phase makes k = 3 turns along the ring.

2) In the second simulation we changed frequency gain
parameter N for the second type of oscillators such that
N2 = N1 ·1.03. We used eight groups of oscillators, four
of each type, thus K = 4. The first type occupies 60% of
every period, thus y1/y2 = 0.6. In this simulation oscil-
lators were initialized such that the phase makes k =−2
turns along the ring, rotating in opposite direction.

Results of the simulation are presented in Fig. 9. Simulation
was performed for 2000 nanoseconds and then phase differ-
ences between consecutive oscillators were computed. The
result was then compared with analytic predictions by (60)-
(63). It is clear that the shape of solutions is reconstructed
almost perfectly even though our analysis was based on
the continualized PDE model of the network and a small
magnitude variation assumption. Also, numerical simulations
have shown that synchronized solutions are very fragile in a
sense that small deviations in parameters result in very large
differences in phases between consecutive oscillators, although
the system still remains stable and the predictions are still
correct.

VII. CONCLUSION

Analysis of synchronization of spin-torque oscillators has
a big practical importance since synchronous oscillations
produce much more energy, therefore it is very important
to realize when synchronized solutions do exist and what
deviations in fabrication (which result in deviations in param-
eters) they do tolerate. In this paper we have shown how the
continuation method can help in the analysis of this problem
and then we derived some results which could be useful
in practical applications. In particular we completely treated
the case of identical oscillators, providing explicit formulas
for equilibrium solutions and their stability conditions. For
non-identical oscillators we analysed one particular class of
possible equilibrium solutions, showing that its shape can be
analytically reconstructed and thus opening new possibilities
for more efficient modeling and future analysis of the system.
Still, there are many questions that could be investigated in
details regarding the system (19), its PDE approximation (21)
and the synchronization condition (24). First, Corollary 3
for the general winding number k in the case of identical
oscillators gives only sufficient conditions on stability and
probably more rigorous statements could be made based on
Theorem 2. Second, a practically more important case of
non-identical oscillators, discussed in Section VI, covers only
a search for specific equilibrium solutions. Therefore more
general equilibrium analysis and investigation of stability con-
ditions could be performed. Finally, this work in general and
the model (19) in particular were devoted to the analysis of the
ring topology of oscillators. Study of more general topologies,
especially 2-dimensional, would be of a great importance for
practical applications.

APPENDIX A
PROOF OF THE LEMMA 1

The function f (x) is defined for x ∈ [0,+∞), thus its
supremum is achieved either at x = 0, x =+∞ or at f ′(x) = 0.
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If V 6 0 and µ 6 0, then the function is nonpositive with
asymptotic value f (+∞) = 0, thus we use 0 as a bound in this
case. Let us now find its extremum:

f ′(x) =
(

V +µx
(U + x)2

)′
=

µ(U− x)−2V
(U + x)3 = 0, (64)

thus it is achieved at xextr =U−2V/µ . Substituting it back in
(64) we obtain

f (xextr) =
µ2

4µU−4V
. (65)

Finally we notice that the extremum (64) is indeed maximum
only if µ > 0 and if xextr > 0, otherwise the maximum is
achieved at zero, f (0) = V/U2. Therefore, combining the
bounds together we get

f (x)6


0, V 6 0 and µ 6 0,

V/U2, V > 0 and Uµ 6 2V,

µ2

4µU−4V
, µ > 0 and Uµ > 2V.

(66)
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