
1

Computing Robust Forward Invariant Sets of
Multidimensional Non-linear Systems via

Geometric Deformation of Polytopes
Taha Ameen, Shayok Mukhopadhyay, and Nasser Qaddoumi

Abstract—This paper develops and implements an algorithm to
compute sequences of polytopic Robust Forward Invariant Sets
(RFIS) that can parametrically vary in size between the maximal
and minimal RFIS of a nonlinear dynamical system. This is
done through a novel computational approach that geometrically
deforms a polytope into an invariant set using a sequence of
homeomorphishms, based on an invariance condition that only
needs to be satisfied at a finite set of test points. For achieving
this, a fast computational test is developed to establish if a given
polytopic set is an RFIS. The geometric nature of the proposed
approach makes it applicable for arbitrary Lipschitz continuous
nonlinear systems in the presence of bounded additive distur-
bances. The versatility of the proposed approach is presented
through simulation results on a variety of nonlinear dynamical
systems in two and three dimensions, for which, sequences of
invariant sets are computed.

Index Terms—Invariant Sets, Robust Forward Invariance,
Nonlinear dynamical systems, Computational Topology.

I. INTRODUCTION

AForward Invariant Set (FIS) for a dynamical system is
a subset of the state space, from which state vector

trajectories never escape as time runs forward. Invariant sets
are fundamental objects in dynamical systems, and find ap-
plications in reachability analysis, as well as characterization
of system stability and robustness. The latter is particularly
useful in applications with strict performance and safety
requirements, as the FIS provides bounds on system states.
This is more valuable when such bounds can be guaranteed in
the presence of disturbances through finding Robust Forward
Invariant Sets (RFIS) for the system. Because any system
trajectory that begins in an FIS stays in it, finding an invariant
set that is disjoint from an unsafe set of states can ensure that
system trajectories never reach an undesirable subset of the
state space, if the initial conditions are picked to start within
such a computed FIS. Further, an RFIS of the appropriate size
can guarantee safety and robustness without imposing over-
conservative or over-aggressive bounds on system trajectories.
Thus motivated, this work focuses on computing RFISs in
an n-dimensional setting. The two extremes, which are useful
for performance analysis and controller synthesis [1], are the
minimal RFIS, Rs and the maximal RFIS Rm.

Invariant sets also find application in Model Predictive
Control (MPC), where they are used as target sets, and
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can be used to provide domains of attraction for MPC-
based controllers [2]. Of special interest are polytopic FIS,
which guarantee stability without compromising any loss of
performance [3], [4]. It is therefore no surprise that the
characterization and computation of robust forward invariant
sets for various systems is an active area of research, as seen
in the following review of literature.

Traditional approaches for computing estimates of the in-
variant set include Carleman Linearizations [5] and PDE-based
approaches such as Zubov’s method [6]. However, advances in
computational processing have shifted the paradigm towards
polytopic invariant sets, which are non-conservative but lead
to computationally intensive algorithms [7]. Subsequently, the
vast majority of recent approaches involve optimization of
objective functions that are derived from invariance conditions,
over polytopic constraint sets. These invariance conditions
are usually algebraic constraints that candidate sets must
satisfy for being invariant, and have various characterizations
depending on the linearity of the system dynamics, as well as
whether they are continuous or discrete in time [7].

Invariant sets for linear systems have been extensively stud-
ied. For instance, theoretical considerations for their existence
are outlined in [8]. Existing approaches for calculation of in-
variant polytopes for linear systems include constraint tighten-
ing [9], finite-time Aumann integrals [10], MPC schemes [11],
state prediction trees [12] and semi-definite programs [13] to
name a few. Despite this progress, invariant set computation
for linear systems continues to be an active field of research,
with recent works focusing on robust invariance [14] and set
invariance in the presence of a control action (control invari-
ance) [15]–[19]. Among linear systems, the class of discrete
time systems has received considerable attention, following
the work in [20]. Approaches include geometric construction
using zonotopic bounds [21], Linear Matrix Inequality (LMI)-
based algorithms [3], [22], Minkowski partial sums-based ap-
proximations [23], [24], linear programming [25], and control
invariance using convex optimization [26]. Some of these
approaches have also been extended to piecewise affine sys-
tems, such as the works in [27]–[30]. Finally, computation of
invariant sets for Linear Parameter-Varying (LPV) systems has
also been studied, for instance in [31]–[33]. Recently, viability
theoretic approaches [34] to modeling disturbances in systems
have gained attraction. For example, the authors in [35] model
discrete time systems with disturbances as convex difference
inclusions and derive invariance conditions. Another example
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is [36], where the authors use differential inclusions to derive
control invariant polytopic sets. Similar approaches are used
in [37], [38] to model additive state disturbances for computing
the minimal RFIS of linear systems.

In contrast, the body of literature on nonlinear systems
is relatively limited, where most of the work focuses on
discrete-time systems or is restricted to certain classes of
nonlinear systems. Examples include [39], where the authors
study robust invariance in discrete-time nonlinear systems by
lifting the feedback operation to the space of sets, and [40],
[41], where the authors compute control invariant sets for such
systems using differences of convex functions. For continuous-
time nonlinear systems, the focus has primarily been on
polynomial dynamics. For example, the authors in [42] use
sum of squares relaxations to solve an optimization problem
that estimates the region of attraction (ROA) of polynomial
systems. Similarly, the authors in [43], [44] formulate this
ROA estimation problem as an infinite-dimensional linear
program. Yet another approach involves Lyapunov type meth-
ods such as the work in [45], and the work in [46], where
parameter independent Lyapunov functions are used to char-
acterize invariant sets of polynomial systems with bounded
disturbances. Of particular relevance to our work is the work
in [47], [48], where a test for invariance is developed based
on the sub-tangentiality condition, which compares the angle
between the system dynamics and the tangent cone at the
boundary of a candidate invariant set [7]. However, due to
the computational infeasibility of testing for the condition at
infinitely many points, the authors limit the scope of their
work to dynamical systems with polynomial vector fields, for
which the problem of testing the sub-tangentiality condition is
overcome using optimization-based approaches.

All these works use algebraic rather than geometric for-
mulations. This is motivated by the algebraic nature of set
invariance conditions, and the concise representation of poly-
topes as LMIs, which provide convenient formulations for
optimization-based approaches. However, no general algebraic
framework exists for computing invariant sets for arbitrary
nonlinear systems. Subsequently, geometric and computa-
tional approaches have attracted some attention. Even so, the
majority of computational approaches deal with linear and
polynomial systems. Examples can be found in [49]–[51],
where polytopic FIS are constructed between ellipsoidal sets,
and [52], where geometric methods are used to search for a
convex FIS. Other approaches include [53], where the authors
determine symmetrical polytopic invariant sets with state,
input and rate constraints for systems without disturbances,
and [54], where authors derive the maximal robust positively
invariant set for linear systems with additive disturbances.
Finally, a recent line of computational approaches use data-
driven techniques, such as [55], where the authors sample state
trajectories starting from a variety of initial conditions to infer
invariant sets for discrete time linear systems, and [56], where
the authors use machine learning methods for systems whose
dynamics are not explicitly modeled with equations.

The most significant advantage of geometric approaches is
their ability to generalize to wide classes of systems due to

their non-reliance on the explicit algebraic representation of
system dynamics. This is evident from some recent works such
as [57]–[59], where closed polytopes are constructed using
path planning algorithms on radial graphs for arbitrary nonlin-
ear systems in continuous time, but limited to systems in R2.
Another illustration of this can be found in [60], [61], where
simplex-based approaches are used for arbitrary nonlinear sys-
tems. Besides these limited works, few computation-oriented
results are available for generic nonlinear systems [36].

This work focuses on Lipschitz continuous nonlinear sys-
tems in continuous time, and computes sequences of polytopic
robust forward invariant sets in the presence of bounded
additive disturbances. We adopt a geometric approach, using
concepts from viability theory [34] and computational topol-
ogy [62]. Doing so allows us to develop a framework that
does not impose any restrictions on the system dynamics,
besides the usual conditions for existence and uniqueness
of solutions [63]. Further, no additional assumptions on the
nature of disturbances are made besides their being bounded
and additive. Thus, our approach is valid for a large class of
nonlinear systems. To the best of our knowledge, this is the
first work that develops an implementable computer algorithm
for computing an RFIS of continuous-time nonlinear systems
in the presence of disturbances without any further restrictions
on state vector dimensions and trajectories. Our strategy is
to geometrically deform a polytope into an RFIS using a
sequence of homeomorphisms that are guided by an invariance
condition. In contrast to previous work, we propose an explicit
set of test points and prove that the satisfaction of an invariance
condition at these test points is sufficient to conclude that a
polytopic set is an RFIS for the system. Thus, the contribution
of our work is two-fold:

• We propose a test for invariance of a polytopic RFIS by
explicitly identifying test points on the boundary of the
polytope.

• We invoke this invariance test to develop an algorithm
that is easily implementable, and can generate sequences
of invariant sets that vary in size between the maximal
and minimal invariant sets. for n-dimensional Lipschitz
continuous nonlinear systems with bounded additive dis-
turbances.

The rest of this paper is organized as follows. Section II
reviews the necessary mathematical background, and Sec-
tion III formulates the problem and outlines the approach. In
Section IV, an algorithmic test for invariance is developed. It
is used as a tool in Section V to develop a computational
algorithm for generating sequences of RFISs. Section VI
presents the results of implementing this algorithm on a variety
of nonlinear systems, and Section VII draws conclusions.

II. MATHEMATICAL BACKGROUND

This section reviews mathematical background used in the
rest of the work. Section II-A introduces set-valued maps and
Hausdorff distance, which are useful in modeling nonlinear
systems with disturbances. Next, it reviews polyhedral sets,
simplices and simplicial complexes - which allow modeling of
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SimplexSimplexSimplexSimplex

Figure 1. Examples of Simplices

the boundary of a candidate polytopic RFIS. Finally, it presents
vertex maps and their induced homeomorphisms on simplicial
complexes, which allow structure-preserving deformations of
polytopes. Section II-B formalizes the notion of set invariance.

A. Computational Topology

Definition II.1 (Set-Valued Map). Let X and Y be topological
spaces. F (·) is said to be a set-valued map from X to Y if
F (x) ⊂ Y ∀x ∈ X .

Set-valued maps are used in defining differential inclu-
sions [64], which are of the form

ẋ(t) ∈ F (x(t)), (1)

where F (·) is a set-valued map. This work uses differential
inclusions to model nonlinear system dynamics in the presence
of disturbances, in Section III. Since such sets are fundamental
objects for our purposes, it is convenient to review some
relevant definitions. We begin with the Hausdorff metric,
which is a measure of set-to-set distance.

Definition II.2 (Hausdorff Distance). The Hausdorff distance
between two sets X and Y is denoted dH(X,Y ) and calcu-
lated as

dH(X,Y ) = max

(
sup
x∈X

inf
y∈Y
‖x−y‖, sup

y∈Y
inf
x∈X
‖x−y‖

)
. (2)

Next, we review basics about polyhedra, simplices, simpli-
cial complexes and triangulation using simplices.

Definition II.3 (Polyhedron). A polyhedron P ⊂ Rn is defined
as the intersection of finitely many half-spaces. Thus,

P = {x ∈ Rn | Ax ≤ b}, (3)

where A ∈ Rm×n, b ∈ Rm and ≤ denotes componentwise
inequality.

Bounded polyhedra are called polytopes. A polytope which
is also a convex set is said to be a convex polytope. This
definition is standard in literature, and convenient for convex
optimization based approaches. A convex polytope can be
equivalently defined as the convex hull of its vertices [65]:

P = Conv({v1, · · · , vm}), (4)

where Conv(·) represents the convex hull of the set of points
v1, · · · , vm ∈ Rn.

(a) P . (b) T(∂P). (c) StK(v) ⊂ T(∂P).

Figure 2. Example of Triangulating the Boundary of a Convex Polytope.

Simplices are generalization of triangles to higher dimen-
sions, and are fundamental objects in algebraic topology,
where they are used as building blocks for creating topological
manifolds [62].

Definition II.4 (Simplex). A simplex, ∆ ⊂ Rn of dimension k
(also called a k-simplex), with 0 ≤ k ≤ n is the convex hull of
a set of (k+1) vertex vectors, Vert(∆) = {v0, · · · , vk} ⊂ Rn,
such that the matrix

B∆ =
[
(v1 − v0), · · · , (vk − v0)

]
∈ Rn×k (5)

has linearly independent columns.

Since the vertices uniquely define a simplex, we identify ∆
with a matrix, L∆ ∈ R(k+1)×n, where row i of L∆ is vTi+1:

L∆ =
[
v0, v1, · · · , vk

]T
(6)

Each face of ∆ is defined as the convex hull of a proper
subset of Vert(∆). Note that an n-simplex, ∆, itself contains
k-simplices where k < n. We refer to each of these “sub-
simplices” as k-faces of ∆. Figure 1 shows some examples.

We will be interested in (n − 1)-simplices embedded in
Rn, and will construct invariant sets with boundaries made up
of these simplices. A simplex can have one of two possible
orientations, as determined by the ordering of its vertices. For
an (n − 1)-simplex, ∆ ⊂ Rn, this orientation is equivalently
characterized by the direction of the normal vector to ∆,

(N∆)i = (−1)n+i det(B\i), (7)

where (N∆)i is the i-th component of the normal vector, and
B\i ∈ R(n−1)×(n−1) is the matrix obtained by deleting the i-th
row of B∆. Further, an n-simplex, ∆ ⊂ Rn has a volume,

Vol(∆) =

∣∣∣∣ 1

n!
det(B∆)

∣∣∣∣ . (8)

Definition II.5 (Simplicial Complex). A geometric simplicial
complex K is a set of simplices such that

1) If ∆ ∈ K, then for any face ∆′ of ∆, we have ∆′ ∈ K.
2) If ∆1, ∆2 ∈ K, then ∆1 ∩∆2 is either the empty set or

a face of both ∆1 and ∆2.

A simplicial k-complex is a simplicial complex with the
additional property that the largest dimension of any simplex
in K equals k. Finally, a homogeneous simplicial k-complex
is a simplicial complex where every simplex of dimension
less than k is a face of a k-simplex [62]. In the remainder
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(b) L.

Figure 3. Example of an induced homeomorphism from K to L.

of this work, we will take a simplicial complex to mean
a homogeneous simplicial (n − 1)-complex in Rn. These
simplicial complexes are particularly relevant to our work
because they triangulate convex polytopes, which will serve
as a starting point for our algorithm. The triangulation of
the boundary of a polytope P , denoted T(∂P), is a set
of simplices that partition ∂P , such that their union is the
boundary of the polytope and the intersection of the interiors
of any two simplices in T(∂P) is empty. This is illustrated
for a dodecahedron in Fig. 2. Figure 2(a) shows the polytope
P , whereas Fig. 2(b) shows the polytope with triangulated
boundary. Each triangle on the boundary is a simplex, and
the set of all simplices that form the boundary is a simplicial
complex, K = T(∂P). The set of all 0-faces of K is then given
by Vert(K) =

⋃
∆∈KVert(∆). Given a vertex v ∈ Vert(K),

we denote the closed star of v as StK(v), which is the set of all
simplices in K that contain v as a 0-face. For a homogeneous
simplicial (n − 1)-complex embedded in Rn, this is easily
visualized, as shown in Fig. 2(c). Observe that StK(v) is itself
a simplicial complex.

We also remark that a convex polytope P , being a convex
compact subset of Rn forms a topological n-manifold with
boundary [66]. Therefore, ∂P forms an (n−1)-manifold [67].
Following standard notation, we denote the geometric realiza-
tion of K by |K|, which is the topological space obtained
by gluing all the simplices together, as determined by their
faces. Since T(∂P) and K are the same set, it follows that ∂P
and |K| are homeomorphic topological manifolds [62]. Recall
that two topological manifolds X and Y are homeomorphic
if ∃ g : X → Y such that g is invertible, and both g and g−1

are continuous.

In order to deform polytopes, it is convenient to study
homeomorphisms between them. Homeomorphisms will be
used in our work to deform polytopes into robust forward
invariant sets. These homeomorphisms are induced from sim-
plicial maps with the help of barycentric coordinates as
explained in what follows. Simplicial maps are mappings
between simplicial complexes that are the natural equivalent
of continuous maps between topological spaces. A vertex map
between two simplicial complexes K and L is a function
φ : Vert(K) → Vert(L) such that the vertices of every
simplex in K map to the vertices of a simplex in L. φ can

be extended to a continuous map g : |K| → |L|, as

g(x) =

N∑
i=0

bi(x)φ(vi), (9)

where bi(x) are the barycentric coordinates of x, defined in the
next paragraph. The continuous map g is called the “induced
map” due to φ, and is unique for a given vertex map. Further,
if φ is bijective, and φ−1 : Vert(L)→ Vert(K) is also a vertex
map, then g is a homeomorphism between |K| and |L| [62].
An example is illustrated in Fig. 3, where K triangulates a
cube with vertices (±1,±1,±1) as shown in Fig. 3(a). The
vertex map φ : Vert(K) → Vert(L) maps v0 = (−1, 1, 1) to
φ(v0) = (−0.7, 0.5, 0.7) and all other vertices to themselves.
The resulting simplicial complex, L is shown in Fig. 3(b).

The barycentric coordinates of a point x may be
found as follows. Let K be a simplicial complex with
Vert(K) = {v0, v1, · · · , vN}. Let the set of indices A =
{α0, α1, · · · , αn−1} ⊂ {0, 1, · · · , N}, so that a given simplex,
∆ ∈ K has Vert(∆) = {vα0

, · · · , vαn−1
}. Thus, any point

x ∈ ∆ can be written as x =
∑
i∈A λivi, with

∑
i∈A λi = 1

and λi ≥ 0 ∀i. The barycentric coordinates of a point
x ∈ ∆ are obtained by setting bi(x) = λi ∀i ∈ A and
bi(x) = 0 ∀i /∈ A . Note that a point in a homogeneous
simplicial (n−1)-complex can be identified by its barycentric
coordinates, as bi(x) is unique even if the point lies in the
intersection of multiple simplices of the complex.

Another concept from computational topology that we will
use is simplex subdivisioning. A simplex subdivision of ∆,
denoted S(∆) is a simplicial complex obtained by introducing
new vertices in the interior of the simplex, int(∆), and
constructing a triangulation of ∆. We overload notation and
use S(K) to represent the simplicial complex obtained as

S(K) =
⋃

∆∈K
S(∆). (10)

There are two key properties: First, the vertices of the sim-
plices in S(∆) can be ordered so that the normal direction for
each s ∈ S(∆) is the same as that of ∆. Second, the geometric
realization of the subdivision is the same as that of the original
complex, i.e. |S(K)| = |K| [62]. Thus, subdivisioning does not
change the normal directions or the geometric realization.

There are several ways to introduce new vertices in the
interior of the simplex for subdivisioning. Examples include
centrodial and barycentric subdivisions, which are illustrated
in Fig. 4. We will denote the resulting simplicial complexes
with SC(·) and SB(·) respectively. Given a k-simplex, ∆,
we can construct SC(∆) and SB(∆) knowing only Vert(∆).
In particular, SC(∆) subdivides a k-simplex into three k-
simplices by introducing a new vertex at the centroid of
∆, (the coordinate of which can easily be calculated as
vb = 1

k+1

∑k
i=0 vi), and connecting each vb to vi ∀i. Similarly,

SB(∆) introduces new coordinates at the barycentre of all
faces of ∆. The vertices of ∆ are connected to the new vertices
iteratively (see [62] for procedure).



5

(a) ∆. (b) SC(∆). (c) SB(∆).

Figure 4. Subdivisioning a Simplex.

B. Robust Forward Set Invariance

The performance and robustness of a dynamical system
can be characterized by forward invariance. A subset of the
system’s state space is said to be a forward invariant set (FIS)
if no system trajectory that begins in the set leaves it at any
future time. Further, the set is said to be a Robust FIS (RFIS)
if it is an FIS in the presence of disturbances.

Definition II.6 (Robust Forward Invariant Set). Let S ⊂ Rn
represent the state space of a given dynamical system, ẋ(t) =
f(x(t), ω(t)), where ω(t) : [0,∞) → Ω is a bounded distur-
bance function that takes values in Ω. Further, let X represent
the set of solutions for this system. A set R ⊂ S is said to be
an RFIS if ∀x ∈ X , x(t0) ∈ R =⇒ x(t) ∈ R ∀t ≥ t0.

The minimal RFIS is a set Rs such that no proper subset of
Rs is an RFIS for the system. Conversely, the maximal RFIS,
Rm is not a proper subset of any RFIS.

III. PROBLEM FORMULATION

Consider a non-linear system with bounded additive distur-
bances modeled by a differential inclusion ẋ(t) ∈ F (x(t)),
where F (·) is a set-valued map. Specifically,

ẋ(t) ∈ F (x(t)) (11a)

F (x(t))=
{
f(x(t))+ω(t) | ω(t) ∈ Ω ∀t ∈ [0,∞)

}
. (11b)

Here, f : S → Rn models the dynamical system with state
space S ⊂ Rn, and ω : [0,∞) → Ω is the disturbance func-
tion, where Ω ⊂ Rn is the bounded noise space. If Ω = {0},
the dynamics reduce to the usual ẋ(t) = f(x(t)). The standard
conditions for existence and uniqueness of solutions [63] are
assumed to be met. Thus, F (·) is assumed to be Lipschitz
continuous in the Hausdorff metric, so that

dH(F (x), F (y)) ≤ `‖x− y‖ ∀x, y ∈ X , (12)

where ` is the Lipschitz constant for the system. Starting with a
polytope P ⊂ X and a simplicial complex K that triangulates
∂P , the objective is to find families of polytopic RFISs for
the system in (11).

The proposed strategy begins with a simplicial complex K
such that |K| = ∂P , where P is a convex polytope. Since P
is a topological manifold that can be identified uniquely by its
boundary, we apply a sequence of homeomorphisms on |K| to
geometrically deform P so that it sequentially approximates
either Rs or Rm. These deformations are vertex maps on

0-faces in K and its subdivisions, such that all simplices
satisfy a Boundary Condition. We first develop this condition
and show that if all simplices in K satisfy the Boundary
Condition, then |K| is the boundary of an RFIS. This serves
as a computational invariance test that decides whether a
deformation is to be kept or discarded. The proposed algorithm
can be easily implemented knowing only the system dynamics
and the coordinates of the 0-faces in K.

IV. INVARIANCE TEST

Let K be a simplicial complex that triangulates the boundary
of a polytope P ⊂ Rn, and ∆ be a simplex in K. An example
is the dodecahedron in Fig. 2. Let x ∈ ∆ be any point on the
simplex. Note that |K| = ∂P , and x ∈ ∆ =⇒ x ∈ ∂P .
In this section, we develop a computational tool to decide
whether K triangulates the boundary of an RFIS, for a system
with dynamics given in (11).

Let set A ⊂ Rn and vector b ∈ Rn. Let 〈A, b〉 denote
supa∈A〈a, b〉, where 〈·, ·〉 is the standard inner product.

Definition IV.1 (Invariance Condition). A point x ∈ ∆ ∈ K
is said to satisfy the Invariance Condition if

〈F (x), N∆〉 ≤ 0, (13)

where N∆ is the outward unit normal vector to ∆.

Note that the Invariance Condition is related to the sub-
tangentiality condition [7]. It is a condition on the angle
between the extreme ray of the tangent cone to the dynamics
F given in (11), and the normal vector to the simplex ∆, at
x. This is illustrated in Fig. 5 where two boundary points are
shown. Here, x(t0) does not satisfy the Invariance Condition,
but x(t1) does. If a system trajectory finds itself at x(t0), then
it may escape the set through the boundary point x(t0), i.e.
for some disturbance ω, ∃ ε such that x(t0 − ε) ∈ P but
x(t0 + ε) /∈ P . However, no disturbance ω ∈ Ω can result
in a system trajectory escaping the set through x(t1). Similar
boundary conditions have been used in works such as [48],
[58]–[61] for arbitrary sets, but the novelty of this work is
in the development of an implementable invariance test and
its invocation to perform geometric deformations. The above
intuition that the Invariance Condition being satisfied at each
point on the set implies that system trajectories cannot escape
the set is proved in the result below.

Theorem IV.2. If x0 ∈ ∆ ∈ K satisfies the Invariance
Condition, then no system trajectory can escape the set P
through x0.

Proof. We prove the contrapositive of this statement, i.e. If
a system trajectory escapes the set P through x(t0) ∈ ∆,
then 〈F (x(t0)), N∆〉 > 0. Let ω(t) : [0,∞) → Ω be the
disturbance function that resulted in this trajectory, so that
ẋ(t) = f(x(t)) + ω(t), and let x(t0) ∈ ∂P . Since the system
trajectory escapes P through x(t0), ∃ δ > 0 such that x(t0 +
δ) /∈ P . However,

x(t0 + δ) = x(t0) + δ × ẋ(t0) +O(δ2) (14)

= x(t0) + δ × (f(x(t0)) + ω(t0)) +O(δ2). (15)
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Figure 5. Angle between normal vector and extreme ray of system dynamics

As δ → 0,

x(t0 + δ)− x(t0)→ δ × (f(x(t0)) + ω(t0)) . (16)

Let y(δ) = x(t0 + δ) − x(t0) for convenience, Since N∆ is
normal to the simplex by definition, it follows that the angle
between N∆ and y(δ) < π

2 , whenever δ > 0. This is because
y(δ) is simply the vector from the point on ∂P to the point
on the trajectory at time t0 + δ, which lies outside P . It then
follows from (16) that

α0 = cos−1

(
〈δ × (f(x(t0)) + ω(t0)) , N∆〉

‖δ × (f(x(t0)) + ω(t0)) ‖ × ‖N∆‖

)
<
π

2
.

(17)

Cancelling δ, and taking the cosine of both sides due to it
being monotone decreasing over [0, π2 ), it follows that

〈f(x(t0)) + ω(t0), N∆〉 > 0 (18)
=⇒ sup

ν(t0)∈Ω

〈f(x(t0)) + ν(t0), N∆〉 > 0 (19)

=⇒ 〈F (x(t0)), N∆〉 > 0, (20)

which proves the desired statement.

Corollary IV.2.1. If every point x ∈ ∆ satisfies the In-
variance Condition, then no system trajectory can escape
P through ∆ ∈ T(∂P). We call such a ∆ as an “invariant
simplex”.

Corollary IV.2.2. If every ∆ ∈ K is an invariant simplex,
then P is an RFIS.

Proof. x ∈ ∂P =⇒ x ∈
⋃

∆∈K∆. But, no system trajectory
can escape P through any such ∆ (by Corollary IV.2.1). Thus,
all system trajectories stay in P , making it an RFIS.

Note that if x ∈ ∆1 ∩ ∆2, it must satisfy the In-
variance Condition with respect to both simplices. Hence,
Theorem IV.2 is a test for invariance, as the inner product
between the normal vector and the system dynamics can
be easily computed. The only caveat is that for a given
polytope P to be invariant, every point on ∂P must satisfy the
Invariance Condition, and it is computationally impossible to
test infinitely many points. However, when F (·) is Lipschitz
continuous, this constraint can be overcome as follows.

Theorem IV.3. Let F be `-Lipschitz with respect to the
Hausdorff metric. Let x0 ∈ ∆, where ∆ is a simplex with

0

0.2

0.4

0

0.6

0.8

1

0.5

11 0.80.60.40.20

l

Figure 6. Standard Simplex with Coordinate System

normal vector, N∆. If ∃ ε > 0 such that 〈F (x0), N∆〉 ≤ −ε,
then 〈F (x), N∆〉 ≤ 0 ∀x such that ‖x− x0‖ ≤ ε

` .

Proof. This follows from Proposition 3 in [60].

Based on Theorems IV.2 and IV.3, we develop an algorithm
to check if ∆ is invariant by testing for a variant of the
Invariance Condition at finitely many points. We call this
variant the Boundary Condition, which requires the inner
product to not just be negative but sufficiently negative to
ensure that points in an appropriate neighborhood of these
test points satisfy the Invariance Condition.

A. Test Point Generation

We present an implementable method to generate a finite set
of test points, Tm ⊂ ∆, and show how a simple calculation at
these points can decide whether ∆ is an invariant simplex. To
the best of our knowledge, no explicit set of test points has
been proposed in previous work - we prove that testing for a
variant of the Invariance Condition at these test points can
circumvent the problem of testing at infinitely many points.
The set, Tm is a lattice, generated a priori on a reference
simplex and then mapped to ∆ using a linear transformation.
Although lattices on simplices are used in other applications
like the study of mixtures [68], the method proposed here
generates the lattice using only Vert(∆).

1) Generating Lattice on Reference Simplex: Let Λ be the
standard simplex in Rn, defined as

Λ = {λ ∈ Rn |
n∑
i=1

λi = 1, λi ≥ 0}. (21)

To control the coarseness of the lattice, a parameter δm ∈ (0, 1]
is introduced. Here, m is the iteration number in the algorithm
to test for invariance. Since we would like the lattice to get
exponentially finer, we set

δm = 2−m, m = 0, 1, · · · ,mmax, (22)
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where mmax is the maximum allowed iteration number for the
algorithm. In order to identify test points on the simplex, we
introduce a new coordinate system for each value of m and
introduce a condition that guarantees that a given point in this
coordinate system lies on the simplex. The change of basis
allows us to easily identify the test points.

Lemma IV.4. For a fixed m such that 0 ≤ m ≤ mmax,
consider a coordinate system with v0 as the origin, and (n−1)
basis vectors given by

b
(m)
j = v0 + δm (vj − v0) , j = 1, · · · , n− 1. (23)

In this coordinate system, a point a = (a1, · · · , an−1) is in Λ
if and only if

∑n−1
i=1 ai ∈ [0, δ−1

m ].

Proof. Writing out (a1, · · · an−1) using the basis vectors gives

n−1∑
i=1

aib
(m)
i =

n−1∑
i=1

ai (v0 + δm(vi − v0)) (24)

=

(
n−1∑
i=1

δmaivi

)
+ (1− δm)vo

n−1∑
i=1

ai (25)

Let a0 =
1−δm

∑n−1
i=1 ai

δm
, so that the point a can be written

as
∑n−1
i=0 δmaivi with respect to the standard basis. Further,∑n−1

i=0 δmai = 1 and 0 ≤ δmai ≤ 1 ∀i, whenever ai ∈
[0, δ−1

m ]. Hence, the point is written as a convex combination
of the vertices of the simplex, and therefore lies in it.

Next, we define a lattice of test points on the standard
simplex as follows. This lattice will later be mapped to the
test simplex through a linear transformation.

Definition IV.5 (Lattice Test Point). a = (a1, · · · , an−1) is a
lattice test point if a ∈ ∆ and ai ∈ N0 = {0, 1, 2, · · · } ∀1 ≤
i ≤ n− 1.

For instance, the 2-simplex Λ in R3 with vertices v0, v1 and
v2 is shown in Fig. 6 for m = 2, along with the basis vectors
b
(2)
1 and b

(2)
2 , and the test point (a1, a2) = (1, 1). Note that

the vertices of Λ are always included in the lattice for all m.

Thus, all lattice points can be computed a priori in this coor-
dinate system and then represented in the standard coordinate
system for all values of 0 ≤ m ≤ mmax. It follows from
the construction that the number of test points generated in
iteration m for an (n− 1)-simplex in Rn with parameter δm
is

lm =

(
δ−1
m + n− 1

δ−1
m

)
=

(δ−1
m + n− 1)!

δ−1
m !× (n− 1)!

. (26)

2) Mapping test points to a simplex in the simplicial com-
plex that triangulates the boundary of a polytope: The lm
coordinates generated on the standard simplex as described
above are stored as rows of a matrix, Mm ∈ Rlm×n. Note
that this representation is in the standard basis. We use the m
subscript to emphasize the dependence on δm, and note that
Mm can be computed a priori for different m. To obtain the

(a) T1 (b) T2

Figure 7. Lattice of Test Points for a 3-Simplex

lattice points on the simplex of interest, ∆, we perform the
following linear transformation, T : Mm → Rlm×n given as

T (Mm) = MmL∆. (27)

Let

Tm = {x ∈ Rn | x is a row of T (Mm)}, (28)

be the set of all proposed test points on ∆. For instance, Fig. 7
shows T1 and T2 for a 3-simplex. Note that a set of 3-simplices
would triangulate the boundary of a 4-dimensional RFIS.

We now prove that the generated test lattice is indeed on the
simplex, and that it is sufficient to check for a variant of the
Boundary Condition at only these lattice points to guarantee
that the simplex is invariant.

Lemma IV.6. Tm ⊂ ∆.

Proof. See Appendix A.

Thus, all test points calculated on Λ map to the desired
simplex, ∆ under the transformation T (·). These test points
can be used to determine whether or not a given simplex is
invariant, using the following theorem.

Theorem IV.7. Let ∆ be a given simplex with Vert(∆) =
{v0, · · · vn−1}, r = maxi,j ‖vi − vj‖, and Tm be the set of
test points on ∆ for a given δm. Suppose that

〈F (x), N∆〉 ≤ −rδm`, ∀x ∈ Tm (29)

where ` is the Lipschitz constant for the system dynamics given
by F . Then, ∆ is an invariant simplex.

Proof. See Appendix B.

A test point that satisfies (29) is said to satisfy the Boundary
Condition. Theorem IV.7 is a tool to test whether ∆ is an
invariant simplex. This process of testing whether a given
simplex is invariant is summarized in Algorithm 1. The
algorithm is named BCD_Test since it generates the set of
test points on the simplex and checks whether they satisfy the
Boundary Condition. It takes as input the simplex, which it
identifies by its vertices. Additionally, the system dynamics F ,
Lipschitz constant `, and the maximum number of iterations
to run the algorithm mmax are also input to the algorithm.
Further, the algorithm also has access to the constants δm,
Mm, lm which are computed a priori and stored in memory.
The algorithm computes the ratio of test points for which the
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Boundary Condition is not satisfied to the total number of
test points when δm = 2−mmax , denoted N . Note that ∆ is
invariant if N = 0.

Line 1 of Algorithm 1 computes the matrix L∆, and line 2
computes r = maxi,j ‖vi − vj‖, which is the length of the
longest 1-face of the simplex. Line 3 computes the normal
vector to the simplex using (7). The invariance condition is
then checked on the test points that successively get finer in
each iteration m. Observe from (29) that as m increases - so
do the number of points that must satisfy the Boundary Con-
dition, but the condition on how negative the inner product
〈F (x), N∆〉 must be is progressively relaxed. Thus, iteration
m of the for loop in line 4 begins by initializing Nm = 0,
where Nm counts the number of test points that violate
the Boundary Condition. Note that checking the Boundary
Condition at finitely many points is equivalent to matrix-
vector multiplication. Since each row of the matrix T (Mm)
computed in line 6 is a test point, we denote by F (T (Mm))
the matrix whose corresponding row is the result of evaluating
F (·) at these test points. Since the normal vector is the same
for all these test points, the inner product can be computed as
in line 7. The result is a vector IP containing the values of the
inner product at each test point. If all entries are sufficiently
negative for any m as determined by Theorem IV.7, then we
are guaranteed that the simplex is invariant. Thus, the foreach
loop in line 8 counts the number of test points that violate
the Boundary Condition. If this number is 0 for any m,
then the algorithm returns N = 0 and declares the simplex to
be invariant. If not, then it increments m until the maximum
allowed iteration mmax is reached, and outputs N (∆) as the
ratio of test points that violate the Boundary Condition to the
total number of test points lm when m = mmax, as computed
in line 18. Here, 0 ≤ N (∆) ≤ 1 is a measure of how close
∆ is to being invariant.

The next section invokes this simplex invariance test to
perform geometric deformations that attempt to transform
convex polytopes to robust forward invariant sets.

V. RFIS COMPUTATION ALGORITHM

In this section, we use Algorithm 1 as a tool in developing
a polytopic RFIS computation algorithm.

A. Proposed Vertex Map

We are interested in systems with a non-trivial minimal
RFIS, Rs and maximal RFIS, Rm. Thus, Rs is not just a
point, andRm does not enclose infinite volume. We begin with
a convex polytope P , such that Rs ⊂ P , and triangulate P by
a simplicial complex K, such that Vert(K) = {v0, · · · , vN}.

Consider a point c ∈ int(Rs). Note that although Rs is not
known, c may easily be chosen. If the RFIS is due to a known
equilibrium point, then c can be chosen as this point. Else, if
it is due to a known limit cycle, c can be chosen as any point
in the interior of the cycle. We consider deformations where

Algorithm 1: BCD_Test (Boundary Condition Test)
Inputs : Vert(∆), F , `, mmax

Constants: δm, Mm, lm ∀ 1 ≤ m ≤ mmax

Outputs : N (∆)
1 Compute L∆ from Vert(∆) using (6)
2 Compute r = max ‖vi − vj‖, where vi, vj ∈ Vert(∆)
3 Compute N∆ using (7) // Normal vector

4 for m ∈ {0, 1, · · · ,mmax} do
5 Set Nm = 0
6 Compute T (Mm) using (27)
7 Compute IP = F (T (Mm))N∆ // Vector of

//inner products at all test points

8 foreach component x of IP do
9 if x > −rδm` then

10 Nm = Nm + 1
11 end
12 end
13 if Nm == 0 then
14 return N (∆) = 0
15 end program
16 end
17 end
18 return N (∆) = Nm

lm
// 0 ≤ N (∆) ≤ 1

1

c

v0
φ0(v0)

B0(c)

(a) α < 1.

1

c

v0

φ0(v0)

B0(c)

(b) α > 1.

Figure 8. Vertex map φ0 when α < 1 and α > 1.

all vertices but one are mapped to themselves. Specifically,
φj : Vert(K)→ Vert(L) is defined as

φj(vi) =

{
vi, i 6= j

(1− α)c+ αvi, i = j
, (30)

where α > 0 is a growth/decay parameter. Hence, the vertex
map φi only perturbs the vertex vi by moving it along a ray
Bi(c) emanating from c and containing vi:

Bi(c) = {c+ λ(vi − c) | λ > 0}. (31)

An illustration is provided for the case where a simplicial
complex of 1-simplices triangulates the boundary of a 2-
dimensional polytope (a pentagon) in Fig. 8. The vertex v0

is mapped to φ0(v0) which is constrained on the ray B0(c).
Observe that only the points in the closed star of the

perturbed vertex are changed due to the vertex map. It follows
that gj(x) = x if x /∈ StK(vj), where gj : |K| → |L| is the
induced map due to φj , as defined in (9). We now show that the
deformed polytope is homeomorphic to the initial polytope.
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Theorem V.1. Let gj be the induced map due to φj as defined
in (30). If α > 0, then gj is a homeomorphism ∀j.

Proof. A vertex map induces a homeomorphism if and only
if it has an inverse that is also a vertex map. Clearly, the map
defined by

φ−1
j (vi) =

{
vi, i 6= j

(1− α−1)c+ α−1vi, i = j
, (32)

is the inverse map if φj(vi) 6= φj(vk) ∀j and ∀i 6= k. Since
α > 0, it follows that φj(vi) ∈ Bi(c). Since c ∈ int(P), and
since the simplicial complex triangulates the boundary of the
convex polytope P , no two of its vertices lie on the same ray.
Thus, Bi(c)∩Bk(c) is the empty set, and no two vertices are
ever mapped to the same point, making φj a bijective vertex
map. Hence, its induced map, gj is a homeomorphism.

Corollary V.1.1. Let φ : Vert(K)→ Vert(L) be defined as

φ(vi) = φjk ◦ · · · ◦ φj1(vi), (33)

where φjl are vertex maps as defined in (30). Then, the
geometric realization |L| is homeomorphic to the geometric
realization |K|.

Proof. First, note that the vertex map φ(vi) in (33) entails
the application of φj1 followed by φj2 . If vi ∈ Bi(c), then
φj1(vi) ∈ Bi(c) by definition. Since Bi(c)∩Bk(c) is the empty
set, φj2 is also a bijective vertex map and induces a homeomor-
phism. Since the composition of two homeomorphisms is also
a homeomorphism, and since any finite sequence of the vertex
maps in (30) restricts the image of vi to Bi(c), it follows by
induction that φjk ◦ · · · ◦ φj1 also induces a homeomorphism.
Thus, |K| and |L| are homeomorphic.

The vertex map in (33) deforms the polytope into a mani-
fold that is homeomorphic to it. Therefore, the deformations
preserve the topological structure of the polytope, so that
the simplicial complex obtained by the sequence of defor-
mations triangulates the boundary of a new polytope. This
new polytope need not be convex, since homeomorphisms
do not preserve convexity in general. However, it is not
self-intersecting since φ(vi) ∈ Bi(c) ∀i. A vertex map is
either kept or discarded depending on whether or not it
serves the objective of approximating an RFIS. For this, we
require a measure of how “close” a given simplex ∆ is to
being invariant. One such measure is N (∆), the ratio of test
points on ∆ that violate the Boundary Condition, to the
total number of test points on ∆. We propose that a vertex
perturbation φ : Vert(K)→ Vert(L) be kept if(∑

∆∈L
N (∆) <

∑
∆∈K
N (∆)

)
or

∑
∆∈L
N (∆) = 0, (34)

and discarded otherwise.

B. Polytopic RFIS Computation Algorithm

This section presents an algorithm to compute RFISs of
different sizes for a given non-linear `-Lipschitz dynamical
system with bounded additive disturbances. The essence of
the algorithm is to repeatedly perturb vertices in the simplicial
triangulation through vertex maps so that each test point in all
the simplices satisfies the Boundary Condition. A particularly
interesting application of this is when P itself is an RFIS for
the system obtained through any other method. Each defor-
mation would result in a smaller or larger RFIS depending on
whether α < 1 or α > 1, thereby creating an RFIS family.
The appropriate RFIS may be considered for the application
in concern. Once a stage is reached where no vertex can be
perturbed further (all perturbations would violate (34)), the
simplices in the simplicial complex L are subdivided. Since the
geometric realizations before and after the subdivision are the
same, i.e. |S(L)| = |L|, it follows that the application of vertex
maps of the form in (33) preserves homeomorphicity. On the
other hand, since StS(K)(v) ⊂ StK(v), the deformations are
finer, allowing the new polytope to better approximate the
shape of the RFIS. This allows for a family of algorithms,
each with different types and sequences of simplicial defor-
mations and subdivisions. One such algorithm is presented in
Algorithm 2, where the polytope is deformed by perturbing
a single vertex and checking whether or not to discard the
deformation immediately after. The next paragraph details the
steps.

Algorithm 2 takes as its input the simplicial complex K
that triangulates the boundary of the initial convex polytope,
the decay parameter α which controls the rate with which the
volume of the set is increased or decreased while searching for
the RFIS, and the maximum number of permissible subdivi-
sions tmax. Since each iteration involves simplex subdivision-
ing, tmax bounds the maximum number of simplices in the
simplicial complex that triangulates the boundary of the final
polytopic set. The algorithm returns as output an ordered list of
sets I, for which the j-th entry I[j] is the simplicial complex
that triangulates the boundary of the deformed polytope after
j iterations of the algorithm. Line 1 of the algorithm initializes
the values of the output set I[0].

The idea behind Algorithm 2 is to repeatedly perturb the
vertices in a sequence until no vertex can be perturbed further,
i.e. every vertex perturbation violates (34). Since this entails
possibly perturbing a vertex more than once, we introduce an
indicator Boolean variable IND[j] ∈ {0, 1} that is 0 if the
perturbation φj(vj) in the previous iteration was discarded
due to violating (34), and 1 otherwise. Since all vertices
are initially candidates for being perturbed, line 3 initializes
IND[j] = 1 ∀j. Consequently, each vertex is perturbed at
least once through the vertex map φj as outlined in line 6.
Whether or not a perturbation is successful in deforming
the polytope is determined by computing (34). Since φj(vj)
induces a homeomorphism that only affects points in StK(vj),
it is sufficient to check for (34) over only the simplices in
the closed star of the perturbed vertex. Therefore, lines 7-
8 invoke Algorithm 1 to compute N (∆) - the ratio of test
points that violate the Boundary Condition to the total
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number of test points, for all the simplices in the closed
stars of a vertex in K (before perturbation) and in L (after
perturbation). Based on this, line 10 checks if (34) is true
and lines 11-15 accordingly update the simplicial complex
that triangulates the boundary of the polytope as follows:
If a vertex deformation φj satisfies (34), then it is kept as
shown in line 11, and the variable IND[j] is set to 1 in
line (12), indicating that further perturbation of vertices may
be possible. If the vertex deformation must be discarded due
to not satisfying (34), then the variable IND[j] is set to 0 as
shown in line (14). Note that the stop condition for the while
loop is that IND[j] = 0 ∀j (line 4), and that all vertices are
perturbed even if IND[j] = 1 for only some j. This tends to
avoid local minima, since perturbation of a vertex affects its
entire closed star, and thus neighboring vertices that previously
did not satisfy (34) may do so now upon perturbation. If (34)
is still not satisfied, then the vertex deformation is discarded.
This process is iterated until a stage is reached where all
further perturbations violate (34), which causes the algorithm
to exit the while loop. The resulting simplicial complex which
triangulates the boundary of the deformed polytope is stored
as I[t] for iteration t in line 18. Next, all simplices in the
simplicial complex undergo barycentric subdivision as shown
in line 19, and the vertex set of the simplicial complex is
accordingly updated. This application of a sequence of vertex
perturbations followed by a simplex subdivision is considered
one iteration of the algorithm. The algorithm terminates when
tmax iterations are completed. Since any polytopic RFIS
satisfies N (∆) = 0 ∀∆ ∈ K, where K triangulates the
boundary of the polytopic RFIS, the algorithm checks whether
the last simplicial complex I[t− 1] triangulates the boundary
of a polytopic RFIS in line 21.

In order to confirm that the generated polytopes are RFISs
of different size, we can easily compute and track the volume
enclosed by the polytope as the algorithm progresses, using
only the simplicial complex that triangulates its boundary.
This is also useful in proving that the algorithm terminates
(Theorem V.2) and for benchmarking our results with existing
work (Section VI). Although equation (8) only presents the
formula to compute the volume of a simplex, it can be invoked
to compute the volume of the polytope as follows. Since I[k]
triangulates the boundary of a polytope for all k, we construct
a triangulation for the polytope itself as follows: If ∆ ∈ I[k],
then the set

I ′[k]=
{

∆′ | Vert(∆′) = {c} ∪Vert(∆), ∀∆ ∈ I[k]
}
, (35)

with c ∈ Rs triangulates the polytope. Thus, the volume en-
closed by the polytope can be computed from the triangulation
of its boundary, I[k], as

Vol(I[k]) =
∑

∆′∈I′[k]

Vol(∆′), (36)

where Vol(∆′) is computed using (8).

Theorem V.2. Let K be a simplicial complex that triangulates
the boundary of a convex polytope containing Rs for a
nonlinear `-Lipschitz continuous dynamical system F . Then,
starting with I[0] = K and parameter α ∈ (0,∞), algorithm 2

Algorithm 2: RFIS Computation Algorithm
Inputs : K, α, F , `, mmax, tmax

Outputs: I
1 Set I[0] = K
2 for t = 1, · · · , tmax do
3 Initialize IND[j] = 1 ∀j ∈ {1, · · · , N} // N is

//the cardinality of Vert(K)

4 while IND[j] 6= 0 ∀j do
5 foreach j ∈ {1, · · · , N} do
6 Apply φj : Vert(K)→ Vert(L) on vj

// use (30)
7 foreach ∆ ∈ StK(vj) ∪ StL(vj) do
8 Compute N (∆) =

BCD_Test(Vert(∆),F ,`,mmax)
9 end

10 if (34) is true then
11 K = L
12 Set IND[j] = 1
13 else
14 Set IND[j] = 0
15 end
16 end
17 end
18 Store I[t] = K
19 Set K = SB(K) // Barycentric subdivision

20 end
21 if

∑
∆∈I[tmax]N (∆) 6= 0 then

22 display “RFIS Not Found”
23 end
24 return I = {I[0], · · · , I[tmax]}

terminates. Further, if I[k] is an RFIS for any iteration k, then
the sequence (I[l])l≥k is a sequence of RFISs that successively
reduce in volume if α < 1, and increase in volume if α > 1.

Proof. We show that the while loop (lines 4-17) terminates,
i.e. the halting criterion IND[j] = 0 ∀j is achieved in
a finite number of iterations. Assume to the contrary that
∀N ∈ N,∃ k > N such that IND[j] = 1 for some j, in
the k-th iteration of the while loop. Equivalently, (34) is true
atleast once in every iteration. Because N (∆) ≥ 0 ∀∆ ∈ K,
and because every strictly decreasing sequence of elements in
a finite set converges to its least element, it follows that ∃N
such that N (∆) = 0 ∀∆ ∈ K and ∀k > N . In other words,
K triangulates the boundary of an RFIS for all k > N . Since
the while loop continues indefinitely, there is atleast one j for
which IND[j] = 1 infinitely often.

However, since vj ∈ Bj(c) ∀j by definition, and since

‖φj(vj)− c‖

{
< ‖vj − c‖, α < 1

> ‖vj − c‖, α > 1
, (37)

where c was chosen to be in the interior of Rs, it follows that
φj maps vj in the limit as k →∞ to either c or to ∞ along
Bj(c), depending on whether α < 1 or α > 1 repsectively.
But, vj ∈ Vert(K) and K triangulates the boundary of an
RFIS ∀k > N . This contradicts c ∈ int(Rs) if α < 1, and
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Vol(Rm) < ∞ if α > 1. We conclude that the while loop
terminates in finitely many iterations.

Next, we show that the sequence of sets generated due to
the perturbations either increase or decrease monotonically in
volume depending on the value of α. Let φj : Vert(K) →
Vert(L), where K and L triangulate the boundaries of poly-
topes PK and PL respectively. We show that

Vol(PL)

{
< Vol(PK), α < 1

> Vol(PK), α > 1
. (38)

The polytopes PK and PL are themselves triangulated by
simplicial complexes K′ and L′ respectively, where these
complexes are defined similar to (36). Then,

Vol(PK) =
∑

∆∈K′

1

n!
det(B∆) (39)

=
∑

∆∈StK′ (vj)

1

n!
det(B∆) +

∑
∆/∈StK′ (vj)

1

n!
det(B∆) (40)

The second term in (40) is not affected by application of φj .
However, for each simplex ∆ ∈ StK′(vj), the volume after
the perturbation is α times the volume before perturbation, as
explained in what follows. Let Vert(∆) = {v0, · · · , vn−1, c},
so that

Vol(∆) =
1

n!

∣∣det
[
v1−v0, · · · , vn−1−v0, c−v0

]∣∣ (41)

=
1

n!

∣∣∣∣det

[
v0 v1 · · · vn−1 c
1 1 · · · 1 1

]∣∣∣∣ (42)

Without loss of generality, consider the vertex map φ0 :
Vert(K) → Vert(L), and denote by ∆0 the simplex after
perturbation that corresponds to ∆. By definition of φ0, it
follows that

Vol(∆1)=
1

n!

∣∣∣∣det

[
αv0+(1−α)c · · · vn−1 c

1 · · · 1 1

]∣∣∣∣ . (43)

But the matrix in (43) can be obtained using elementary col-
umn transformations on the matrix in (42). Since multiplying
a column by α multiplies the determinant by the same factor,
it follows that Vol(∆0) = αVol(∆) ∀∆ ∈ StK′(vj) ∀j.
Thus, each vertex map on the simplicial complex increases or
decreases the volume of the polytope it triangulates, depending
on whether α > 1 or α < 1 respectively.

Corollary V.2.1. If the initial set I[0] is an RFIS, then I[k]
is an RFIS for all k.

Theorem V.2 suggests that if tmax is sufficiently large, the
sequence (I[k]) will converge either toRs orRm respectively,
depending on whether α < 1 or α > 1. However, the
algorithm is greedy and may get stuck at a local minima
if the deformations do not significantly change the volume
enclosed by I[k]. We simulate this for systems with known
Rs in two and three dimensions, and observe that when α < 1,
a good choice of initial polytope results in fast convergence
to a polytopic approximation of Rs, with tmax as less as 6.

It is worth mentioning that the entire algorithm can be
implemented knowing only Vert(∆) ∀∆ ∈ K. The quantities
N∆, Vol(∆) and Tm are directly computed using the vertex

coordinates, and each vertex map replaces a row of L∆ for
each ∆ that shares the vertex. Further, simplex subdivisioning
simply replaces a given L∆ with multiple such matrices, where
the rows (vertices) are computed as outlined in [62].

VI. SIMULATIONS

This section presents the results of applying Algorithm 2 to
various nonlinear dynamical systems. In all the figures, blue
arrows and red curves represent the vector field and system tra-
jectories respectively. The computation time for each iteration
of the algorithm, and the volume enclosed by the resulting
simplicial complex is presented in Table I. Section VI-A
presents the simulation results for two-dimensional systems,
and considers systems with and without additive disturbances.
Further, Section VI-B presents the simulation results for three-
dimensional systems. The algorithm terminates in an RFIS for
each presented case, so that N (∆) = 0 for all the simplices in
the covering of the final polytope boundary. All computations
were performed on a Dell Workstation with an Intel Xeon
processor @ 3.30 GHz and 16 GB of RAM.

A. Two-State systems

1) Van der Pol Oscillator: The Van der Pol (VdP) oscillator
is modeled by the system of equations:

ẋ1 = x2, (44)

ẋ2 = µ(1− x2
1)x2 − x1, (45)

where x1, x2 : [0,∞) → R are the states and the parameter
µ indicates the strength of damping. The VdP oscillator has a
stable limit cycle, which is also its minimal RFIS. Starting with
a conservative initial polytopic invariant set with 6 vertices,
I[0], and c as the origin, the results of Algorithm 2 with µ =
1, tmax = 6 are shown in Figs. 9 and 10 for α < 1 and
α > 1 respectively. Clearly, α > 1 corresponds to increasing
the enclosed volume of the RFIS in every iteration. The more
interesting application is when α < 1, since the algorithm
attempts to approximate the minimal RFIS, Rs, and the result
can be compared with the limit cycle of the VdP oscillator. The
time taken for each iteration, along with the volume enclosed
by I[k] ∀ 0 ≤ k ≤ 6 is shown in Table I. Note that I[k] is an
RFIS ∀k.

2) Fitzhugh-Nagumo Neuron Model: The Fitzhugh-
Nagumo system models the activity of an excitable system
such as a neuron. For comparison, we use the same choice of
parameters as [47], for which the system is modeled as:

ẋ1 = x1 −
1

3
x3

1 − x2 +
7

8
, (46)

ẋ2 = 0.08(x1 + 0.7− 0.8x2). (47)

We begin with an initial polytopic set (a convex quadrilateral)
that is a conservative RFIS for the system. Setting α = 0.95,
tmax = 7 and c = [0 1]T , it can be observed that Algorithm 2
converges to a polytopic approximation of Rs, and there is no
change in volume over the last iteration. Figure 11 shows a
subset of the sequence of RFISs obtained using the algorithm.
These polytopic approximations are much tighter than previous
works such as Fig. 1 in [48] and Fig. 4 in [47].
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Table I
COMPUTATION TIME AND ENCLOSED VOLUME AFTER EACH ITERATION FOR VARIOUS SYSTEMS

Iteration Van der Pol (VdP) Fitzhugh-Nagumo Curve Tracking Reversed VdP Phytoplankton Growth Thomas’ Attractor
Time [s] Volume Time [s] Volume Time [s] Volume Time [s] Volume Time [s] Volume Time [s] Volume

0 59.051 33 0.0431 0.3717 0.5827 8000
1 0.152 54.851 0.121 11.811 0.627 0.0431 6.55 0.1579 1.81 0.0028 1.404 371.22
2 0.281 31.104 0.122 10.051 0.679 0.0278 12.6 0.0681 8.65 0.0014 6.661 303.4
3 0.787 25.102 0.341 7.4795 1.319 0.0228 27.9 0.0373 271 0.0009 204.5 163.04
4 2.752 17.738 1.051 7.1519 3.725 0.0205 65.9 0.0347
5 10.37 16.961 3.739 6.3052 12.07 0.0199 174 0.0347
6 41.62 16.771 14.18 6.1651 42.67 0.0198
7 56.02 6.1651 160.99 0.0198
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Figure 9. Van der Pol Oscillator, α = 0.98.
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Figure 10. Van der Pol Oscillator, α = 1.02.

3) Curve Tracking Problem: The curve tracking problem
[69] is considered in the presence of disturbances, with ω =
[ω1 ω2]T : [0,∞) → Ω, with the noise space Ω = {0} ×
[−1.5, 1.5] ⊂ R2. The dynamics are modeled as:

ẋ1 = − sin(x2) + ω1, (48)
ẋ2 = (x1 − ρ) cos(x2)− µ sin(x2) + ω2. (49)

-4 -3 -2 -1 0 1 2 3 4
-2

-1

0

1

2

3

Figure 11. Fitzhugh-Nagumo Neuron Model

The results in Fig. 12 show the set valued map F with
the extreme rays obtained by using ω2(t) = ±0.15. The
blue cones in the figure represent the set of all directions
in which the trajectory may move due to the disturbance.
Some trajectories starting at the boundary of the obtained RFIS
are also displayed, for a disturbance function of the form
ω1(t) = 0, ω2(t) = 0.15 sin(t), with ρ = 1 and µ = 6.42.
For comparison, the noise function and system parameters
are chosen to be the same as [57]–[59], where the minimal
RFIS is computed using a different method. The agreement
between the results confirms the validity of Algorithm 2, which
converges in 6 iterations as evident from Table I.

4) Reversed Van der Pol Oscillator: The reversed Van der
Pol oscillator is modeled by:

ẋ1 = −x2 + ω1, (50)

ẋ2 = x1 − x2 + x3
2 + ω2. (51)

We consider a polytopic noise space Ω = [−0.03, 0.03] ×
[−0.03, 0.03]. Figure 13 shows the set valued map F at
different points in the state space, with the blue cones rep-
resenting the set of directions that the trajectory may move
depending on the disturbance. The values of ẋ obtained by
using the vertices of Ω, (±0.03,±0.03) are shown as vectors,
in addition to three sets of system trajectories at a fixed
set of initial points on the boundary of the RFIS obtained
through the system. The first two sets of system trajectories
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Figure 12. Curve Tracking Problem
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Figure 13. Reversed Van der Pol Oscillator

use constant disturbances [ω1(t) ω2(t)]T = [0.03 − 0.03]T

and [−0.03 0.03]T respectively, while the third set uses
ω1(t) = 0.01 sin(2t) + 0.005 sin(πt) + 0.015 sin(6.53t), and
ω2(t) = −0.01 cos(0.2t) + 0.02 sin(5πt). Using c = [0 0]T

and α = 0.99, Algorithm 2 converges in 4 iterations as evident
from Table I.

B. Three-state systems

1) Phytoplankton Growth Model: Phytoplankton growth is
modeled by the dynamical system:

ẋ1 = 1− x1 −
1

4
x1x2, (52)

ẋ2 = (2x3 − 1)x2, (53)

ẋ3 =
x1

4
− 2x2

3. (54)

The authors in [47] use optimization methods to obtain a
conservative polytopic FIS for this model (see Fig. 5 in [47]).

Starting with an approximate recreation of this polytopic RFIS
as I[0], and setting c = [0.9969 0.01 0.3571]T , α = 0.9, we
obtain a much tighter approximation of Rs for the system. In
just 3 iterations of Algorithm 2, the polytope is deformed into
a new polytopic RFIS, I[3] that is a much smaller RFIS than
previous work, and encloses just 0.15% of the volume that
I[0] did. Figure 14 shows the invariant sets I[0] and I[3],
and Fig. 14(c) shows some system trajectories starting at the
surface of the obtained RFIS. As expected, the trajectories
move inward and never escape the RFIS.

2) Thomas’ Cyclically Symmetric Attractor: Thomas’ At-
tractor is described by the dynamical system:

ẋ1 = sin(x2)− bx1, (55)
ẋ2 = sin(x3)− bx2, (56)
ẋ3 = sin(x1)− bx3. (57)

Here, b is a constant and acts as a bifurcation parameter.
We consider b = 0.3, for which the system has two stable
attractive limit cycles. Setting I[0] as a triangulation of the
boundary of the cube with vertices (±10,±10,±10), the
algorithm converges to an FIS in three iterations. The sets
I[0] and I[3] are shown in Fig. 15, with Fig. 15(c) showing
some system trajectories. Finally, when b is reduced to below
≈ 0.202816, the limit cycle undergoes a period doubling
cascade and becomes chaotic. We apply Algorithm 2 on the
attractor when b = 0.14, and summarize the results in Fig. 16,
where I[0], I[4] and some system trajectories are shown.

VII. FUTURE WORK AND CONCLUSION

A. Future Work

Our proposed approach opens new avenues for future re-
search. In particular, a comprehensive study of vertex maps
and the effect of their induced homeomorphisms on faster con-
vergence of the algorithm would be interesting. For instance,
vertex maps that map multiple vertices to different points, and
adaptive adjustment of the parameters such as α and c, based
on the behavior of the vector field at the boundary of the
polytope is expected to speed up the algorithm. Further, if the
homeomorphism is represented as a sequence of vertex maps
as in our work, the algorithm may be further optimized by
studying the ideal sequence in which to apply the maps, since
homeomorphisms in general do not commute. The effect of
simplex subdivisioning and the interplay between perturbing
a vertex (through simplicial maps) and creating a vertex
(through simplex subdivisioning) is another way to optimize
the algorithm. Other measures of how close a simplex is
to being invariant, besides N (∆), may also help aid this
process. Thus, our algorithm can in fact be extended to a
family of computational algorithms that search for an RFIS
using (possibly variants of) the Boundary Condition. All such
algorithms may be used on any Lipschitz continuous nonlinear
dynamical system with bounded additive disturbances. Similar
approaches may also be extended to compute control invariant
sets for nonlinear systems.
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Figure 14. Phytoplankton Growth Model.
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Figure 15. Thomas’ Cyclically Symmetric Attractor, b = 0.3.

B. Conclusion

This paper developed an algorithm to generate a sequence
of Robust Forward Invariant Sets of different sizes. First, we
showed that if a nonlinear system’s dynamics are Lipschitz
continuous, then testing for invariance of a given (polytopic)
set can be easily done by checking for a Boundary Con-
dition on finitely many points, amounting to matrix-vector
multiplication. Based on this, we developed an algorithm
to deform a polytope into an RFIS, through a sequence of
homeomorphisms induced by vertex maps on a simplicial
complex that triangulates the boundary of the polytope. The
geometric nature of the approach allows the algorithm to be
used on any Lipschitz continuous nonlinear dynamical system
in the presence of additive bounded disturbances. Application
of the algorithm to a variety of nonlinear systems showed fast
convergence and resulted in a sequence of RFIS of different
sizes, that converged to approximate the minimal RFIS of the
system.

APPENDIX

A. Proof of Lemma IV.6

We show that the linear transformation T (Mm) from the
standard simplex Λ to the simplex of interest ∆ ensures that
the reference test points on Λ map to points on ∆. Consider

T (Mm) = MmL∆, and let x ∈ Tm, so that x is a row of
T (Mm) and thus a row combination of Mm and L∆. But the
rows of L∆ are just vertex coordinates of ∆, and each row
of Mm is a lattice test point on Λ by construction. Further,
y ∈ Λ =⇒

∑n
i=1 yi = 1. The matrix multiplication can be

carried out as follows.

MmL∆ =


M1,1 M1,2 · · · M1,n

M2,1 M2,2 · · · M2,n

...
...

. . .
...

Mlm,1 Mlm,2 · · · Mlm,n



vT0
vT1
...

vTn−1

 (58)

=


∑n
j=1M1,jv

T
j−1∑n

j=1M2,jv
T
j−1

...∑n
j=1Mlm,jv

T
j−1

 (59)

Since x is a row of this matrix, and since 0 ≤Mi,j ≤ 1 ∀i, j,
and

∑n
j=1Mi,j = 1 ∀i, it follows that x is a convex

combination of the vertices of ∆, and hence, x ∈ ∆. Since
this is true for all x ∈ Tm, we conclude that Tm ⊂ ∆.

B. Proof of Thereom IV.7

We now prove Theorem IV.7, which essentially says that
testing for the Boundary Condition at a subset of test points
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Figure 16. Thomas’ Cyclically Symmetric Attractor, b = 0.14.
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Figure 17. Simplex Proof Illustration.

is sufficient to check the invariance of the simplex. To establish
this, we introduce the notion of adjacent lattice points.

Definition B.1 (Adjacent Lattice Point). Let w1 ∈ Tm ⊂ ∆
be a lattice test point. Another lattice point w2 ∈ Tm is said
to be adjacent to w1 if w2 = w1 ± δm(vi − vj), for any vi,
vj ∈ Vert(∆), where δm is defined in (22). If w is a lattice
point, then A(w) denotes the set consisting of w and all its
adjacent points.

Adjacent points are easily visualized from Fig. 17(a), where
the points in A(w1) are colored blue. The convex hull of
A(w1) is shaded and denoted by Conv(A(w1)). Next, we
show that these test points are appropriately spaced apart from
each other. Specifically, there is a bound on the maximum
distance a test point can be from all other test points.

Lemma B.2. Let r = maxi,j ‖vi − vj‖, where vi, vj ∈
Vert(∆). Further, let wi ∈ Tm be any lattice test point. Then,
wj ∈ A(wi) =⇒ ‖wi − wj‖ ≤ rδm.

Proof. Let wi ∈ Tm be a lattice test point on ∆. Let wj ∈
A(wi) so that wj = wi ± δm(vi − vj) by definition. Further,
it follows for all wj that

‖wi − wj‖ = δm‖vi − vj‖ (60)
≤ δm max

i,j
‖vi − vj‖ (61)

≤ rδm, (62)

as desired.

Lemma B.2 shows that a ball of radius rδm around a given
lattice test point always contains all adjacent lattice test points.
This property of the test points allows us to propose the
invariance test in Theorem IV.7, repeated here as Theorem B.3
for convenience.

Theorem B.3. Let ∆ be a given simplex with Vert(∆) =
{v0, · · · vn−1}, r = maxi,j ‖vi − vj‖, and Tm be the set of
test points on ∆ for a given δm. Suppose that

〈F (x), N∆〉 ≤ −rδm`, ∀x ∈ Tm (63)

where ` is the Lipschitz constant for the system dynamics given
by F . Then, ∆ is an invariant simplex.

Proof. Let Bk(z) represent the ball of radius k centered at z.
We prove that if (63) is satisfied for all lattice test points, then
every point on ∆ satisfies the Boundary Condition.

From Lemma B.2, we know that Brδm(x) contains all adja-
cent lattice points. Thus, A(x) ⊂ Brδm(x), and since Brδm(x)
is a convex set, we also have Conv(A(x)) ⊂ Brδm(x).

Taking the union over all lattice test points, we have⋃
x∈Tm

Conv(A(x)) ⊂
⋃
x∈Tm

Brδm(x) (64)

Since the vertices of the simplex are always lattice test points
by construction, it follows that the left hand side of (64) is
the simplex, ∆ itself. Further, from Theorem IV.3, we know
that the Boundary Condition is satisfied at all points in each
of the balls, and therefore on all subsets of their union. Since
∆ is one such subset, we conclude that ∆ is an invariant
simplex.

A visualization of this proof is provided in Fig. 17(b). The
right hand side of (64) is the union of the balls on the simplex
which contains the simplex itself.
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