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Abstract— Dynamical systems that are contracting on a
subspace are said to be semicontracting. Semicontraction
theory is a useful tool in the study of consensus algorithms
and dynamical flow systems such as Markov chains.

To develop a comprehensive theory of semicontracting
systems, we investigate seminorms on vector spaces and
define two canonical notions: projection and distance semi-
norms. We show that the well-known ℓp ergodic coefficients
are induced matrix seminorms and play a central role in
stability problems. In particular, we formulate a duality the-
orem that explains why the Markov-Dobrushin coefficient
is the rate of contraction for both averaging and conser-
vation flows in discrete time. Moreover, we obtain parallel
results for induced matrix logarithmic seminorms. Finally,
we propose comprehensive theorems for strong semicon-
tractivity of linear and non-linear time-varying dynamical
systems with invariance and conservation properties both
in discrete and continuous time.

Index Terms— Semicontraction theory, ergodic coeffi-
cients, induced matrix seminorm, logarithmic norm, duality.

I. INTRODUCTION

Problem description and motivation
Before Stefan Banach proved his famous contraction prin-

ciple in 1922 [1], Andrey Markov started in 1906 [2] the
study of stochastic processes. As documented by Eugene
Seneta [3], Markov established a key contraction inequality
and a corresponding contraction factor now known with the
name of ergodic coefficient of a Markov chain. This paper
aims to provide a modern semicontraction theory approach to
explain and generalize ergodic coefficients.

To be concrete, let the matrix A be row-stochastic and
consider the discrete-time dynamical systems

x(k + 1) = Ax(k), (1a)

π(k + 1) = ATπ(k). (1b)

These systems, and the continuous time counterpart defined
by the Laplacian matrix, are perhaps the simplest exam-
ples of general averaging-based dynamics (e.g., robotic co-
ordination and distributed optimization) and dynamical flow
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systems (e.g., compartmental and traffic systems). Important
generalizations include systems that satisfy invariance proper-
ties (generalizing row-stochasticity) or conservation properties
(generalizing column-stochasticity); in all these (linear and
nonlinear) cases, the system is at most marginally stable.
Markov and later scientists essentially showed that, under a
certain connectivity assumption, maps of the form π 7→ ATπ
are contraction maps with respect to the total variation distance
on the simplex. To be specific, define the total variation
distance on the simplex by dTV(π, σ) =

1
2

∑
i |πi −σi|. Then

any two solutions π(k), σ(k) to (1b) satisfy

dTV

(
π(k)− σ(k)

)
≤ τ1(A)

kdTV

(
π(0)− σ(0)

)
, (2)

where τ1(A) is the so-called Markov-Dobrushin ergodic co-
efficient defined by

τ1(A) := max
∥z∥1=1, zT1n=0

∥ATz∥1. (3)

In short, when τ1(A) < 1, existence, uniqueness and global
exponential stability of an equilibrium π∗ in the simplex for
system (1b) are ensured.

Now comes a remarkable similarity. If one defines the semi-
norm |||x|||dist,∞ = 1

2 (maxi{xi} −minj{xj}), the following
fact is also known [4, Theorem 1.1] about averaging systems
of the form (1a):

|||x(k)|||dist,∞ ≤ τ1(A)
k |||x(0)|||dist,∞ . (4)

Despite the extensive research in this field, numerous known
related facts remain somehow mysterious and numerous re-
lated mathematical questions remain open. For example, why
is the same ergodic coefficient τ1 relevant for the contraction
properties of both dynamical flow systems and averaging
systems? How does one generalize the bounds (2) and (4)
to ergodic coefficients τp defined with respect to arbitrary ℓp
norms (instead of the ℓ1 norm)? What are the canonical Lya-
punov functions for both systems (1a)-(1b), whose discrete-
time variation along the flow is described by τp(A)? How does
one define ergodic coefficients for continuous-time systems?
Is there a unifying contraction theoretic framework that ap-
plies to time-varying and nonlinear systems with generalized
invariance or conservation properties?

The interest in non-Euclidean norms (e.g., ℓ1, ℓ∞ and
polyhedral norms) is motivated by classes of network systems,
such as biological transcriptional systems [5], Hopfield neural
networks [6], chemical reaction networks [7], traffic net-
works [8], vehicle platoons [9], and coupled oscillators [10].
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Contributions

This paper provides a comprehensive answer to all the open
research questions outlined above.

In order to define Lyapunov functions for averaging, flow
systems and their generalizations to nonlinear dynamical sys-
tems with invariant subspaces, we study seminorms, induced
matrix seminorms for discrete time systems and logarithmic
seminorms for continuous-time systems. A key contribution
of this paper is to explain precisely in what sense ergodic
coefficients are induced matrix seminorms and, when less
than unity, contraction factors for discrete-time systems. This
equality is the fundamental reason why ergodic coefficients
play a critical role in robust stability theory for discrete-time
dynamical systems with invariance properties. It is surprising
that induced norms are widely studied in the matrix theory
literature, but induced seminorms much less (e.g., see [11]).

After characterizing various seminorms’ properties, we
define two canonical sets of seminorms, namely, distance
and projection seminorms, and establish remarkable duality
properties between the two. Our first result generalizes and
strengthens the so called Markov contraction inequality as
a duality result between the aforementioned seminorms. Our
duality result precisely explains why the induced matrix semi-
norms for both A and AT are identical, when computed with
respect to dual seminorms. Particular emphasis is given to
the case of consensus seminorms, that is, seminorms whose
kernel is the consensus space (i.e., seminorms that are positive
definite about the consensus space). Consensus seminorms
appear naturally in averaging algorithms and surprisingly in
systems with conservation property (such as Markov chains
and dynamical flow systems).

It is an elementary algebraic observation that the total
variation distance on the simplex arises from the restriction
of the ℓ1 projection consensus seminorm.

We then leverage all these notions to provide a general
nonlinear semicontraction theory, grounded in two key theo-
rems both for continuous and discrete time varying dynamical
systems. The semicontraction theory we develop is tailored
to systems with invariance or conservation properties. More
in detail, when either the system’s Jacobian leaves invariant
the seminorm kernel (invariance property) or its orthogonal
complement (conservation property), there is a well defined
notion of perpendicular dynamics which is strictly contracting.
For both systems, in the linear time varying case, we show
how canonical Lyapunov functions (some of which partly
known in the literature) naturally arise from seminorms. For
the non-linear case, our first key theorem establishes condi-
tions and features of strong semicontracting continuous time,
time varying systems that enjoy the invariance property. The
theorem extends Theorem 13 in [12] through the formulation
of a cascade decomposition and by establishing a strong
contractivity property on the orthogonal complement to the
seminorm kernel. The second key theorem is entirely novel
and pertains semincontraction conditions for continuous time,
time varying, dynamical systems that enjoy the conservation
property. A discrete time version of these two theorems is also
provided.

Literature review

Interest in contractivity of dynamical systems via matrix
measures can be traced back to Demidovič [13] and Krasovskiı̆
[14]. Logarithmic norms have been exploited in control theory
later on by Desoer and Vidyasagar in [15] and applied in
the study of contraction theory for dynamical systems for the
first time by Lohmiller and Slotine [16]. In the context of
control theory, this literature inspired many generalizations of
contraction theory such as partial contraction [17], weak- and
semi-contraction [12], horizontal contraction on Riemannian
and Finsler manifolds [18], [19], etc.

In particular, partial contraction refers to convergence of
systems trajectories to a specific behavior, or a manifold
[20], see also [21] for a survey on this theory. While partial
contraction establishes convergence to a manifold, semicon-
traction ensures contractivity on the subspace perpendicular to
the kernel of the seminorm. For a characterization of partial
contraction in the ℓ2-norm for the study of synchronization in
networked systems, see [17]. The notion of partial contraction
is closely related to the one of semicontraction and weak
contraction proposed and investigated in [12]. Semicontraction
theory relies on a relaxed concept of matrix measure, known
as matrix semimeasure. For this reason, contractivity of a
dynamical system is only ensured on a certain subspace and
the distance between trajectories is allowed to increase along
certain directions.

A relevant behavior, to which semicontraction theory ap-
plies, is the one of consensus for dynamical systems. Strictly
related to consensus, when it comes to stochastic systems, is
the concept of (weak) ergodicity [22]. The concept of weak
ergodicity was first formalized in 1931 by Kolmogorov [23],
who stated that a sequence of stochastic matrices is weakly
ergodic if the rows of the matrix product tend to become
identical as the number of factors increases. The study of
ergodicity coefficients is traced back to the pioneering work of
Markov [2], in 1906, in which a first expression of ergodicity
coefficients was provided in the context of the Weak Law
of Large Numbers. Subsequent works from Doeblin [24] and
Dobrushin [25] provided conditions for weak ergodicity. The
key results in this research area were extended and then
reviewed by Seneta in the 80’s, see, e.g., [26]. A survey of
ergodicity coefficients is given by Ipsen and Selee [27]. a
historical discussion is given by Hartfiel [4, Chapter 1], and
a recent treatment on their connection with spectral graph
theory is given by Marsli and Hall [28]. A characterization
of “convergability” [29], namely the convergence of a product
of an infinite number of stochastic matrices, is studied by Liu
et. al in [29], where a different approach, based on optimally
deflated matrices, is proposed. Despite the evident relation be-
tween ergodicity coefficients, contraction factors and induced
matrix seminorms, especially in the context of stochastic and
averaging systems [30], to the best of our knowledge none in
the past has shed full light on their connections (see [31] for
some preliminary work in this direction). This manuscript aims
to bridge the existing gap in the scientific literature between
semicontraction and ergodicity of dynamical systems.
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Paper organization

Section II presents notation and preliminary results. Section
III introduces the projection and distance seminorms and
establishes their duality relationship. Section IV pertains with
induced matrix seminorms and induced matrix logarithmic-
seminorms. In Section V semicontraction theory is applied
to dynamical systems. Finally, Section VII concludes the
manuscript.

All theorems in this manuscript are new. Lemmas and
Corollaries are either new or simple derivations from known
results. Due to page constraints some proofs are omitted and
reported in the extended technical report [32].

II. NOTATION AND PRELIMINARIES

A. Notation

The set R≥0 is the set of nonnegative real numbers. Let
In ∈ Rn×n denote the identity matrix of size n. Let 1n and
0n denote the n dimensional column vectors whose entries are
all equal to 1 and 0, respectively. Let ei denote the i-th vector
of the canonical basis in Rn. For a matrix A ∈ Rn×n, let
AT denote its transpose, [A]i,j its (i, j)th entry. The matrix
A is nonnegative if all its entries are nonnegative, it is row
stochastic if it is nonnegative and A1n = 1n, it is column
stochastic if AT is row stochastic.

Given A ∈ Rn×n, a vector subspace K ⊆ Rn is A-invariant
if AK ⊆ K. The symbol ⟨·, ·⟩ : Rn × Rn → R denotes the
standard inner product on Rn. We let Π⊥ denote the orthogo-
nal projection matrix onto K⊥, where the symbol K⊥ denotes
the orthogonal complement of K. Note that Π⊥ = ΠT

⊥, and
if K = span{1n}, then Π⊥ = In − 1n1T

n/n =: Πn. Given
x ∈ Rn, the perpendicular and parallel components of x to K
are denoted by x⊥ = Π⊥x and x∥ = (In−Π⊥)x, respectively.
Define the n-simplex as ∆n = {v ∈ Rn

≥0 | 1T
nv = 1} and

the sign function, sign : R → {−1, 0, 1}, as sign(x) = x
|x| if

x ̸= 0, and sign(0) = 0. Let ⌈·⌉ and ⌊·⌋ denote the ceiling and
floor functions, respectively. Given two matrices A,B ∈ Rn×n

we use the notation A ⪯ B to indicate that A−B is a negative
semidefinite matrix.

A directed, weighted graph is a triple [33], G = (V, E ,A),
where V = {1, . . . , n} is the set of vertices, E ⊆ V × V is
the set of arcs and A is the adjacency matrix. An arc (i, j)
belongs to G if and only if [A]ij ̸= 0. Two nodes i, j ∈ V are
weakly adjacent if either (i, j) ∈ E or (j, i) ∈ E .

Given a real vector space V , the dual space V ⋆ is the vector
space of linear maps from V into R. If V = Rn, then V ⋆ is
the vector space of row vectors in Rn. In this case, it is typical
to make a slight abuse of notation and assume V ⋆ = Rn.

B. Basic concepts

We start with some basic useful concepts. For x ∈ Rn and
p ∈ N, the ℓp-norm of x is

∥x∥p ≜
( n∑

i=1

|xi|p
) 1

p

,

while the ℓ∞-norm is

∥x∥∞ = lim
p→∞

( n∑
i=1

|xi|p
) 1

p

= max
i

|xi|.

For A ∈ Rn×m and p ∈ N, the ℓp-induced norm of A is

∥A∥p = max
x∈Rm

∥x∥p≤1

∥Ax∥p.

Definition 1 (Seminorms). A function |||·||| : Rn → R≥0 is a
seminorm on Rn if it satisfies the following properties for all
x, y ∈ Rn and a ∈ R:

(homogeneity): |||ax||| = |a| |||x||| , and

(subadditivity): |||x+ y||| ≤ |||x|||+ |||y||| .
The kernel of a seminorm is the vector space

K ≜ ker(|||·|||) = {x ∈ Rn : |||x||| = 0} .
Note that, |||x||| = 0 does not imply x = 0n.
From now onward, for a seminorm |||·||| on Rn with kernel

K we will use the symbol |||·|||K.

Lemma 2 (Seminorms of orthogonal projections). Let |||·|||K
be a seminorm on Rn with kernel K, and let Π⊥ be the
orthogonal projection matrix onto K⊥. For all x ∈ Rn,
|||x|||K = |||Π⊥x|||K.

Proof. The result is a direct consequence of the reverse tri-
angle inequality and the sub additivity property of seminorms
applied to the orthogonal decomposition x = x⊥ + x∥, with
x∥ ∈ K.

Definition 3. (Induced seminorm [12]) Given a seminorm
|||·|||K : Rn → R≥0 with kernel K, the induced seminorm
on Rn×n is

|||A|||K ≜ max
|||x|||K≤1
x⊥K

|||Ax|||K .

Definition 4 (Matrix logarithmic seminorms [34]). Given a
seminorm |||·|||K : Rn → R≥0 with kernel K, the induced
matrix logarithmic seminorm on Rn×n is

µK(A) ≜ lim
h→0+

|||In + hA|||K − 1

h
.

Definition 5 (Generalized ℓp ergodicity coefficient [35]).
Given p ∈ [1,∞] and a vector subspace K ⊂ Rm, the
generalized ℓp ergodicity coefficient τp : K × Rm×n → R≥0

is defined by

τp(K, A) := max
∥z∥p=1
z⊥K

∥ATz∥p. (5)

Remark 6 (Markov-Dobrushin ergodic coefficient). For the
case p = 1, K = span{1}, the coefficient in (5) is known [27],
[28], [36] as the Markov-Dobrushin ergodic coefficient and
simply denoted by τ1(A).

The ergodicity coefficient (5) can be interpreted as the
induced norm of the operator defined on the real (normed)
linear space K⊥ by x→ ATx [37].

Lemma 7 (ℓ2-Norm LMI characterization [34]). Given any
A ∈ Rn×n,

||A||2 = min{b ∈ R≥0 | ATA ⪯ b2In}.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3302788

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



4 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

III. SEMINORMS AND DUALITY

A. Projection and Distance Seminorms

In the following we provide the definition of projection and
distance seminorms. These two seminorms serve as Lyapunov
functions for certain classes of systems and will play a
fundamental role in the duality result.

Definition 8 (Projection and distance seminorms). Let K ⊂
Rn be a vector space and Π⊥ ∈ Rn×n be the orthogonal
projection matrix onto K⊥. For each p ∈ [1,∞], define the
ℓp-projection seminorm with respect to K by

|||x|||Kproj,p ≜ ∥Π⊥x∥p (6)

and the ℓp-distance seminorm with respect to K by

|||x|||Kdist,p ≜ distp(x,K) = min
u∈K

∥x− u∥p. (7)

Note that the optimization problem (7) is well posed since
the norm function is convex.

Lemma 9 (Basic properties). For each p ∈ [1,∞],

(i) ker(|||·|||Kproj,p) = ker(|||·|||Kdist,p) = K,
(ii) |||x|||Kdist,p ≤ min{∥x∥p, |||x|||Kproj,p} for all x ∈ Rn.

Proof. Statement (i) is obvious from (6) and (7). Next, we
compute

min
u∈K

∥x− u∥p ≤ ∥x− 0n∥p = ∥x∥p,

min
u∈K

∥x− u∥p ≤ ∥x− (In −Π⊥)x∥p = |||x|||Kproj,p .

This completes the proof of statement (ii).

It is not true in general that |||x|||Kproj,p ≤ ∥x∥p.

Example 10 (Seminorms for consensus and stationary distri-
bution). When K = span{1n} and p ∈ {1, 2,∞}, explicit
formulas for the ℓp-projection and distance seminorms are
either easily derivable or available in the literature [29], [34],
[38]. For each x ∈ Rn, with the shorthand xavg = 1

n1T
nx,

|||x|||Kproj,1 =

n∑
i=1

|xi − xavg| ,

|||x|||Kproj,2 =
( 1

n

∑
i,j
(xi − xj)

2
)1/2

,

|||x|||Kproj,∞ = max
i

|xi − xavg| .

Next, sort the entries of x according to x(1) ≥ x(2) ≥ · · · ≥
x(n). With this shorthand,

|||x|||Kdist,1 =

⌊n
2 ⌋∑

i=1

x(i) −
n∑

i=⌈n
2 ⌉+1

x(i),

|||x|||Kdist,2 =
( 1

n

∑
i,j
(xi − xj)

2
)1/2

,

|||x|||Kdist,∞ =
1

2

(
x(1) − x(n)

)
=

1

2

(
max

i
{xi} −min

j
{xj}

)
.

Figure 1 illustrates the unit disks for these seminorms on R3.

Example 11 (Total variation distance). The total variation [39,
Section 4.1] is a metric on the simplex ∆n defined by

dTV(x, y) ≜
1

2

n∑
i=1

|xi − yi|.

Given any two vectors x, y ∈ ∆n, a simple derivation shows

dTV(x, y) =
1

2
|||x− y|||Kproj,1 ,

where |||·|||Kproj,1 is the ℓ1-projection seminorm with respect to
the kernel K = span{1n}.

B. Duality
In this section we establish a useful duality relationship

between projection and distance seminorms. We start with the
notion of dual seminorm.

Definition 12 (Dual seminorm). Let |||·|||K be a seminorm on
a real vector space V ⊆ Rn with kernel K ⊂ V . The dual
seminorm is the function |||·|||K⋆ : V ⋆ → R defined by

|||x|||K⋆ ≜ max
|||y|||K≤1
y⊥K

⟨x, y⟩.

We omit the proof of the following natural result.

Lemma 13 (Well-posedness of dual seminorms). Let |||·|||K be
a seminorm on a real vector space V with kernel K. Then the
dual seminorm |||·|||K⋆ is a seminorm on V ⋆.

When V = Rn, we make the usual identification (Rn)⋆ =
Rn. In this case, the kernel of the dual seminorm is identical
to the kernel of the primal seminorm.

Next, we present an important generalization to arbitrary
ℓp/ℓq norms of the Markov contraction inequality from [38,
Lemma 2.3].

Lemma 14 (Markov contraction inequality). Let p, q ∈ [1,∞]
satisfy p−1 + q−1 = 1 (with the convention 1/∞ = 0) and
consider a vector space K ⊂ Rn. For all x, y ∈ Rn,

xTΠ⊥y ≤ |||x|||Kproj,p |||y|||
K
dist,q .

Proof. For each u ∈ K satisfying |||y|||Kdist,q = ∥y − u∥q ,

xTΠ⊥y = xTΠ⊥(y − u)
(Hölder’s ineq)

≤ ∥Π⊥x∥p∥y − u∥q.

The result follows from minimizing with respect to u.

Remark 15 (Markov contraction and Hölder’s inequalities).
For the inner product of vectors perpendicular to a subspace,
the Markov contraction inequality provides a tighter bound
than the Hölder’s inequality xTy ≤ ∥x∥p∥y∥q . In fact, as a
consequence of Lemma 9(ii),

xTΠ⊥y ≤ |||x|||Kproj,p |||y|||
K
dist,q ≤ |||x|||Kproj,p |||y|||

K
proj,q .

Next, we recall that, for unconstrained vectors, the Hölder’s
inequality provides a tight bound in the sense that, for all
x ∈ Rn, there exists y ∈ Rn such that xTy = ∥x∥p∥y∥q ,
with p and q as in Lemma 14. We now show this tightness
result also for the Markov contraction inequality, thereby
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Fig. 1: Two-dimensional sections of three-dimensional unit disks of projection (solid contours) and distance (dashed contours)
consensus seminorms. We plot the section corresponding to (x1, x2, x3 = 0) for p = 1 (left), p = 2 (center), and p = ∞
(right).

establishing the duality relationship between projection and
the distance seminorms.

Theorem 16 (Duality of distance and projection seminorms).
Let p, q ∈ [1,∞] satisfy that p−1+ q−1 = 1 (with the conven-
tion 1/∞ = 0) and let K ⊂ Rn be a vector subspace. Then
|||·|||Kdist,p and |||·|||Kproj,q , with kernel K, are dual seminorms:

|||·|||Kdist,p =
(
|||·|||Kproj,q

)
⋆

(8)

|||·|||Kproj,q =
(
|||·|||Kdist,p

)
⋆
. (9)

Proof. To prove (8), consider two cases. First, if x ∈ K, then
|||x|||Kdist,p = 0. On the other hand, y ∈ K⊥ implies yTx = 0.
So, both sides of (8) are zero. Second, if x ̸∈ K, by Lemma 37
in Appendix I, there exists ψp(x) ∈ K⊥ with |||ψp(x)|||Kproj,q =
1 such that

|||x|||Kdist,p = ψp(x)
Tx ≤ max

|||y|||Kproj,q≤1

y∈K⊥

yTx =
(
|||·|||Kproj,q

)
⋆
.

To prove the opposite inequality, choose any y ∈ Rn such that
|||y|||Kproj,q ≤ 1 and y ∈ K⊥. Then ||y||q = |||y|||Kproj,q ≤ 1, so
by Lemma 14,

yTx ≤ ||y||q |||x|||Kdist,p ≤ |||x|||Kdist,p

To prove equality (9) we notice, as in the previous first case,
that if x ∈ K, then |||x|||Kproj,q = 0, while y ∈ K⊥ implies
that yTx = 0, so both sides of (9) are zero. Otherwise, in the
second case, if x ̸∈ K, by Lemma 38, there exists ζq(x) ∈ K⊥

with |||ζq(x)|||Kdist,p ≤ 1 such that

|||x|||Kproj,q = ζq(x)
Tx ≤ max

|||y|||Kdist,p≤1

y∈K⊥

yTx =
(
|||·|||Kdist,p

)
⋆
.

To prove the opposite inequality, choose any y ∈ Rn such that
|||y|||Kdist,p ≤ 1 and y ∈ K⊥. Lemma 14 implies

xTy = xTΠ⊥y ≤ |||x|||Kproj,q |||y|||
K
dist,q ≤ |||x|||Kproj,q .

This concludes the proof.

IV. INDUCED MATRIX SEMINORMS AND LOGARITHMIC
SEMINORMS

A. Induced Matrix Seminorms
In the following we list some basic properties related to

induced matrix seminorms.

Lemma 17 (Properties of induced matrix seminorms). Let
|||·|||K be a seminorm on Rn with kernel K. For any A,B ∈
Rn×n,

(i) |||Ax|||K ≤ |||A|||K |||x|||K for all x ∈ K⊥.
If AK ⊆ K, then
(ii) |||A|||K = max|||x|||K≤1 |||Ax|||

K,
(iii) |||Ax|||K ≤ |||A|||K |||x|||K, and
(iv) |||AB|||K ≤ |||A|||K |||B|||K.

Proof. Property (i) was proven in [40]. To prove property (ii),
decompose any vector x ∈ Rn as x = x⊥+x∥, with x⊥ ∈ K⊥

and x∥ ∈ K, and notice that

max
|||x|||K≤1

|||Ax|||K = max
|||x|||K≤1

∣∣∣∣∣∣A(x⊥ + x∥)
∣∣∣∣∣∣K

= max
|||x⊥|||K≤1

|||Ax⊥|||K = max
|||y|||K≤1
y⊥K

|||Ay|||K = |||A|||K ,

where the second equality is based on Lemma 2 and exploits
the fact that AK ⊆ K. To prove property (iii) we notice that,
by adopting the same decomposition as before

|||Ax|||K = |||Ax⊥|||K =
∣∣∣∣∣∣∣∣∣A(x⊥/ |||x⊥|||K)∣∣∣∣∣∣∣∣∣K |||x⊥|||K

≤ |||A|||K |||x⊥|||K = |||A|||K |||x|||K

where the first equality is based on Lemma 2 and exploits the
fact that AK ⊆ K, while the inequality derives from Definition
3. Property (iv) can be found in [40].

Based on Theorem 16 we are now in the position to provide
one of the main results of this manuscript.

For a matrix A ∈ Rk×n, and for p, q ∈ [1,∞], with p−1 +
q−1 = 1 it holds that

∥A∥p = ∥AT∥q, (10)

where ∥·∥p : Rn → R≥0 and ∥·∥q : Rn → R≥0 are dual
norms.
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The following theorem represents a generalization of the
duality relationship between induced matrix norms (10) to
seminorms.

Theorem 18 (Duality of induced matrix seminorms). Let
p, q ∈ [1,∞] such that p−1 + q−1 = 1. For any matrix
A ∈ Rn×n, and any vector space K ⊆ Rn,

∣∣∣∣∣∣AT
∣∣∣∣∣∣K

proj,q
= |||A|||Kdist,p . (11)

Additionally, if AK ⊆ K, then

τq(K, A) =
∣∣∣∣∣∣AT

∣∣∣∣∣∣K
proj,q

= |||A|||Kdist,p . (12)

Proof. Eqn. (11) is a direct consequence of Theorem 16:

∣∣∣∣∣∣AT
∣∣∣∣∣∣K

proj,q
= max

|||x|||Kproj,q≤1

x⊥K

∣∣∣∣∣∣ATx
∣∣∣∣∣∣K

proj,q

(9)
= max

|||x|||Kproj,q≤1

x⊥K

max
|||y|||Kdist,p≤1

y⊥K

yTATx

= max
|||y|||Kdist,p≤1

y⊥K

max
|||x|||Kproj,q≤1

x⊥K

xTAy

(8)
= max

|||y|||Kdist,p≤1

y⊥K

|||Ay|||Kdist,p = |||A|||Kdist,p .

To prove (12) note that

∣∣∣∣∣∣AT
∣∣∣∣∣∣K

proj,q
= max

|||x|||Kproj,q≤1

x⊥K

∣∣∣∣∣∣ATx
∣∣∣∣∣∣K

proj,q

= max
∥Π⊥x∥q≤1

x⊥K

∥Π⊥A
Tx∥q = max

∥x∥q≤1
x⊥K

∥ATx∥q = τq(K, A)

where the second-last equality follows from the fact that
ATK⊥ ⊆ K⊥ and, since x ∈ K⊥, x = Π⊥x.

In the following we provide some explicit expressions for
the distance seminorm of row-stochastic matrices for the
case in which the kernel of the seminorms is the consensus
subspace. The explicit expressions can be derived by the
ones available in the literature for ergodicity coefficients [27],
[41]. The expression for the projection seminorm of column
stochastic matrices can be easily derived by the duality result
from Theorem 18 and hence omitted.

Corollary 19 (Formulas for induced matrix seminorms).
Consider the consensus distance seminorm. Let A ∈ Rn×n.
Assume that the entries of each column j ∈ {1, 2, . . . , n} are
sorted so that a(1),j ≥ a(2),j ≥ · · · ≥ a(n), j.

If A is row-stochastic, then

|||A|||Kdist,1 = max
j

{ ⌊n
2 ⌋∑

i=1

a(i),j −
n∑

i=⌈n
2 ⌉+1

a(i),j

}
, (13)

|||A|||Kdist,2 = ||ΠnA||2 = min
{
b ≥ 0 : ATΠnA ⪯ b2Πn

}
,

(14)

|||A|||Kdist,∞ =
1

2
max
i ̸=j

n∑
k=1

|aik − ajk|

= 1−min
i ̸=j

n∑
k=1

min{aik, ajk}. (15)

Proof. The formulas (13),(15) and the first equality in (14)
follow from the equivalence |||A|||Kdist,p = τq(1n, A) in Theo-
rem 18 and by applying the explicit expressions for τq(1n, A)
provided in Theorem 3.7, Corollary 3.9, Theorem 4.2, and
Theorem 6.19 from [27].

The second equality in (14) follows from Lemma 7, since

||ΠnA||2 = min
b∈R

{
(ΠnA)

T(ΠnA) ⪯ b2In
}

= min
b∈R

{
ATΠnA ⪯ b2In

}
.

Since b2Πn ⪯ b2In, it is clear that ATΠnA ⪯ b2Πn implies
ATΠnA ⪯ b2In. Conversely, assume ATΠnA ⪯ b2In, so that
vTATΠnAv ≤ b2vTv for all v ∈ Rn. Then for any u ∈ Rn,
we can decompose u = u⊥ + u∥, with u⊥ ∈ span{1n}⊥ and
u∥ ∈ span{1n}. Since A is row stochastic,

uTATΠnAu = uT⊥A
TΠnAu⊥ ≤ b2uT⊥u⊥ = b2uTΠnu

and thus ATΠnA ⪯ b2Πn. This way we have proved that
ATΠnA ⪯ b2In if and only if ATΠnA ⪯ b2Πn. In turn, this
implies

||ΠnA||2 = min
b∈R

{
ATΠnA ⪯ b2Πn

}
.

B. Induced Matrix Logarithmic Seminorms

We now present a duality result for induced matrix loga-
rithmic seminorms which is parallel to the one in Theorem
18.

Theorem 20 (Dual logarithmic seminorms). Let p, q ∈ [1,∞]
be such that p−1 + q−1 = 1. For any matrix M ∈ Rn×n, and
any kernel K,

µK
dist,p(M) = µK

proj,q(M
T).

Proof. The equality directly follows from the duality of dis-
tance and projection induced matrix seminorms.

We derive now explicit formulas for ℓp-distance logarithmic
seminorm of (minus) Laplacian matrices, for p ∈ {1, 2,∞}.

Theorem 21 (Explicit formulas for distance logarithmic semi-
norms). Consider the consensus distance and projection semi-
norms. Let L ∈ Rn×n be the Laplacian matrix corresponding
to an adjacency matrix A ∈ Rn×n without self-loops, and let
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dout = A1n. For each i ∈ {1, 2, . . . , n}, sort the off-diagonal
entries of Aej according to

a(1),j ≥ a(2),j ≥ · · · ≥ a(n−1),j .

Then

µK
dist,1(−L) = −min

j

{
[dout]j−

⌊n
2 ⌋−1∑
i=1

a(i),j+

n−1∑
i=⌈n

2 ⌉

a(i),j

}
,

µK
dist,2(−L) = min

b∈R

{
b : ΠnL+ LTΠn ⪰ −2bΠn

}
,

µK
dist,∞(−L) = −min

i ̸=j

{
aij+aji+

∑
k ̸=i,j

min{aik, ajk}

}
.

Proof. Given h > 0, set Sh = In − hL. Observe that Sh is
row-stochastic for every h > 0, and its entries are

[Sh]ij =

{
1− h[dout]i, i = j,

haij , i ̸= j.

Also, µK(−L) = limh→0+ h
−1

(
|||Sh|||K − 1

)
for any semi-

norm |||·|||K.
Case |||·|||Kdist,1: For each j ∈ {1, 2, . . . , n}, sort the entries
of Shej as

(Sh)(1),j ≥ (Sh)(2),j ≥ · · · ≥ (Sh)(n),j .

Assume h is so small that (Sh)(1),j = (Sh)j,j . Then by (13),

|||Sh|||Kdist,1 = max
j

{ ⌊n
2 ⌋∑

i=1

s(i),j −
n∑

i=⌈n
2 ⌉+1

s(i),j

}

= 1 + hmax
j

{
− [dout]j +

⌊n
2 ⌋∑

i=2

a(i),j −
n∑

i=⌈n
2 ⌉+1

a(i),j

}
.

Substituting into (4) yields the formula for µK
dist,1(−L), since

the order of the off-diagonal elements of Aej is identical to
the order of the off-diagonal elements of Shej for all h > 0.
Case |||·|||Kdist,2: By (14),

|||Sh|||Kdist,2 = min
b≥0

{
b : ST

hΠnSh ⪯ b2Πn

}
= min

{
b ≥ 0 : (In − hL)TΠn(In − hL) ⪯ b2Πn

}
= min

{
b ≥ 0 : h2LTΠnL− hΠnL− hLTΠn ⪯ (b2 − 1)Πn

}
.

Therefore
|||Sh|||Kdist,2−1

h is equal to

min{ b−1
h : b ≥ 0, h2LTΠnL−hΠnL−hLTΠn ⪯ (b2−1)Πn}.

Let b̄ = h−1(b− 1), so that b ≥ 0 if and only if b̄ ≥ −h−1,
and (b2−1) = hb̄(2+hb̄). Performing this change of variables,

µK
dist,2(L) = lim

h→0+

|||Sh|||Kdist,2 − 1

h

= lim
h→0+

min{b̄ ≥ −h−1 : hLTΠnL−ΠnL−LTΠn ⪯ b̄(2+hb̄)Πn}

= min
{
b̄ ≥ 0 : −ΠnL− LTΠn ⪯ 2b̄Πn

}
,

which is equivalent to the formula for µK
dist,2(−L).

Case |||·|||Kdist,∞: Assume h is sufficiently small that 1 −
h[dout]i > haji for all i, j. Applying (15),

|||Sh|||Kdist,∞ = 1−min
i ̸=j

{min{1− h[dout]i, haji}

+min{1− h[dout]i, haij}+ h
∑
k ̸=i,j

min{aik, ajk}}

= 1− hmin
i̸=j

aij + aji +
∑
k ̸=i,j

min{aik, ajk}

 .

Substituting into (4) yields the formula for µK
dist,∞(−L).

We also notice that, when L = LT, one can also show that
µK
dist,2(−L) = −λ2(L), that is, minus the second smallest

eigenvalue of L (e.g., see [33, Exercise 6.3]). Explicit expres-
sions for the ℓp-projection logarithmic seminorm of Laplacian
matrices, for p ∈ {1, 2,∞}, are derived by duality and hence
omitted.

V. SEMICONTRACTING DYNAMICAL SYSTEMS

We exploit now the duality result of induced matrix semi-
norms and induced matrix logarithmic seminorms for the study
of strong semicontractivity of dynamical systems. We also pro-
vide some theoretical results that formalize semicontractivity
conditions for linear and nonlinear dynamical systems both in
discrete and continuous time.

Given a vector subspace K ⊂ Rn and a vector field
f : Rn → Rn, the perpendicular vector field f⊥ : Rn → K⊥

and the parallel vector field f∥ : Rn → K are denoted for all
x ∈ Rn by f⊥(x) = Π⊥f(x) and f∥(x) = (In − Π⊥)f(x),
respectively. Given a seminorm |||·|||K : Rn → R≥0, with
kernel K, the domain restriction of |||·|||K to K⊥, will be
denoted by ∥·∥⊥ : K⊥ → R≥0.

Definition 22 (Invariant sets). Let f : Rn → Rn. A subspace
V ⊂ Rn is f -invariant on a domain C ⊆ Rn if f(x + v) −
f(x) ∈ V for all x ∈ C and v ∈ V .

Lemma 23 (Differential characterization of invariance). Given
a continuously differentiable map f : C ⊆ Rn → Rn, let
Df(x) denote its Jacobian. A subspace V ⊂ Rn is f -invariant
if and only if Df(x)V ⊆ V for all x ∈ C.

Proof. If V is f -invariant, then f(x+hv)− f(x) ∈ V for all
x ∈ C, v ∈ V , and h ∈ R, which implies that

Df(x)v = lim
h→0

f(x+ hv)− f(x)

h
∈ V

thus Df(x)V ⊆ V for all x ∈ C. To prove the converse,
assume Df(x)V ⊆ V ; then for all v ∈ V ,

f(x+ v)− f(x) =

∫ 1

0

Df(x+ αv)v dα ∈ V.
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A. Discrete Time Semicontraction
Let us consider the discrete time, time varying, nonlinear

dynamics
x(k + 1) = f(k, x(k)) (16)

with k ∈ Z≥0, x ∈ Rn. We assume f to be continuously
differentiable in the second argument. In the following we give
a generalized definition of strongly semicontracting discrete
time system with respect to the one in [12]. The generalization
applies to systems with arbitrary contraction step.

Definition 24 (Semicontracting discrete time systems). Let
|||·|||K be a seminorm on Rn with kernel K. If there exists
m ∈ N>0, ρ < 1 and a domain C ⊆ Rn for which the time-
varying vector field f : Z≥0 × Rn → Rn is such that 1

|||D(fm(k, x))|||K ≤ ρ (17)

for all k ∈ Z≥0 and x ∈ C, then the vector field is strongly
semicontracting on C with rate m

√
ρ.

The next Lemma provides sufficient conditions for two
important classes of discrete-time systems to be strongly
semicontracting.

Lemma 25 (Strong semicontractivity of discrete-time affine
systems). Given a subspace K ⊂ Rn and p, q ∈ [1,∞]
with p−1 + q−1 = 1, consider a sequence of matrices
{A(k)}k∈Z≥0

⊂ Rn×n satisfying:

A(k)K ⊆ K for all k ∈ Z≥0, (invariance)

ρ ≜ sup
k∈Z≥0

τp(K, A(k)) < 1. (semicontractivity)

Then,
(i) the system

x(k + 1) = A(k)x(k) + b(k), b(k) ∈ Rn, (18)

is strongly semicontracting with rate ρ in the distance ℓq
seminorm with kernel K. Moreover

|||x(k)− y(k)|||Kdist,q ≤ ρk |||x(0)− y(0)|||Kdist,q .

(ii) The system

x(k + 1) = AT(k)x(k) + b(k), b(k) ∈ Rn, (19)

is strongly semicontracting with rate ρ in the projection
ℓp seminorm with kernel K. Moreover, for any x(0), y(0)
satisfying x(0)− y(0) ∈ K⊥,

|||x(k)− y(k)|||Kproj,p ≤ ρk |||x(0)− y(0)|||Kproj,p .

Proof. The proof of part (i) follows from equation (12)
in Theorem 18, and from the conditional sub-multiplicative
property iii) Lemma 17:

|||x(k + 1)− y(k + 1)|||Kdist,q
≤ |||A(k)|||Kdist,q |||x(k)− y(k)|||Kdist,q

= τp(K, A(k)) |||x(k)− y(k)|||Kdist,q . (20)

1fm is the m-the iterate of f defined recursively by fm(k, x) =
f(fm−1(k, x)), with f0 the identity operator.

The proof of part (ii) follows from Lemma 17 part (i) since
x(k) − y(k) ∈ K⊥, ∀k ∈ Z≥0, as a consequence of the
invariance assumption (invariance) and therefore

|||x(k + 1)− y(k + 1)|||Kproj,p
≤

∣∣∣∣∣∣AT(k)
∣∣∣∣∣∣K

proj,p
|||x(k)− y(k)|||Kproj,p

= τp(K, A(k)) |||x(k)− y(k)|||Kproj,p . (21)

Remark 26 (Averaging and flow systems). When the subspace
K is the consensus subspace, the matrices {A(k)}∞k=0 are row-
stochastic and the term b(k) ≡ 0n ∀k ∈ Z≥0, the systems (18)
and (19) are the standard averaging (1a) and flow systems (1b)
in the Introduction and the bounds (20) and (21) are precisely
the bounds (2) and (4) stated in the Introduction.

The following theorem focuses on strong semicontractivity
of discrete-time dynamical systems that enjoy the invariance
property of the kernel of the seminorm.

Theorem 27 (Discrete time semicontracting dynamics with
invariance property). Consider a system as in (16). Let K ⊂
Rn be an f -invariant subspace, and suppose that f is strongly
semicontracting with rate ρ < 1, with respect to a seminorm
|||·|||K on Rn with kernel K. Then,

(i) the system admits the cascade decomposition

x∥(k + 1) = f∥(k, x∥(k) + x⊥(k)), (22)
x⊥(k + 1) = f⊥(k, x⊥(k)); (23)

(ii) the perpendicular dynamics (23) are strongly contracting
on K⊥ with rate ρ, with respect to ∥·∥⊥ : K⊥ → R≥0;
and

(iii) for any two trajectories x(k), y(k) of (16),

|||x(k)− y(k)|||K ≤ ρk |||x(0)− y(0)|||K

for all k ∈ Z≥0.

Proof. Regarding part (i), the cascade decomposition (22)-(23)
follows from the observation that

x⊥(k + 1) = Π⊥f(k, x∥(k) + x⊥(k))

= Π⊥f(k, x⊥(k)) = f⊥(k, x⊥(k))

where the second equality is due to the f -invariance of K. Part
(ii) follows from

max
y⊥K
k≥0

|||Df⊥(k, y)|||K = max
y⊥K
k≥0

|||Π⊥Df(k, y)|||K

= max
y⊥K
k≥0

|||Df(k, y)|||K ≤ max
x∈Rn

k≥0

|||Df(k, x)|||K ≤ ρ

where the second equality follows from the fact that for a
generic matrix A, |||A|||K = |||Π⊥A|||K. Part (iii) is a direct
consequence of (ii).

The following theorem focuses on strong semicontractivity
of discrete-time dynamical systems that enjoy the invariance
property of the orthogonal complement of the kernel of the
seminorm.
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Theorem 28 (Discrete time semicontracting dynamics with
conservation property). Consider a system as in (16). Let K ⊂
Rn such that K⊥ is an f -invariant subspace. Let f : Z≥0 ×
Rn → Rn be strongly semicontracting with rate ρ < 1 with
respect to a seminorm |||·|||K on Rn with kernel K. Then,

(i) the system admits the cascade decomposition

x∥(k + 1) = f∥(k, x∥(k)), (24)
x⊥(k + 1) = f⊥(k, x∥(k) + x⊥(k)); (25)

(ii) for each x∥ ∈ K, the vector field x⊥ 7→ f⊥(k, x∥ + x⊥)
is strongly contracting with rate ρ, with respect to ∥·∥⊥ :
K⊥ → R≥0;

(iii) if the map x∥ 7→ f⊥(k, x∥ + x⊥) is Lipschitz2 with
constant ℓ ∈ R with respect to some metric dK on K,
then for any two trajectories x(k), y(k) of (16), satisfying
x(0)− y(0) ∈ K⊥

|||x(k + 1)− y(k + 1)|||K

≤ ρ |||x(k)− y(k)|||K + ℓdK(x∥(k), y∥(k))

for all k ∈ Z≥0.

Proof. Regarding part (i), the cascade decomposition (24)–
(25) follows from the observation that

x∥(k + 1) = (In −Π⊥)f(k, x∥(k) + x⊥(k))

= (In −Π⊥)f(k, x∥(k)) = f∥(k, x∥(k))

where the second equality is due to the f -invariance of K⊥.
To prove (ii), fix x∥ ∈ K, and pick any x⊥, y⊥ ∈ K⊥. Then

∥f⊥(k, x∥ + x⊥(k))− f⊥(k, x∥ + y⊥(k))∥⊥
=

∣∣∣∣∣∣f⊥(k, x∥ + x⊥(k))− f⊥(k, x∥ + y⊥(k))
∣∣∣∣∣∣K

≤ ρ |||x⊥(k)− y⊥(k)|||K = ρ∥x⊥(k)− y⊥(k)∥⊥

To prove (iii), let x∥, y∥ ∈ K and x⊥, y⊥ ∈ K⊥. Then∣∣∣∣∣∣f(k, x∥(k) + x⊥(k))− f(k, y∥(k) + y⊥(k))
∣∣∣∣∣∣K

≤
∣∣∣∣∣∣f(k, x∥(k) + x⊥(k))− f(k, y∥(k) + x⊥(k))

∣∣∣∣∣∣K
+
∣∣∣∣∣∣f(k, y∥(k) + x⊥(k))− f(k, y∥(k) + y⊥(k))

∣∣∣∣∣∣K
≤ ℓdK(x∥(k), y∥(k)) + ρ |||x(k)− y(k)|||K

where the first inequality is due to the subadditivity property
and the second one follows from point (ii) and the invariance
of K⊥.

B. Continuous Time Semicontraction
Let us consider the continuous time, time varying, nonlinear

dynamics
ẋ(t) = f(t, x(t)) (26)

with t ∈ R≥0, x ∈ Rn. We assume f to be continuously
differentiable in the second argument.

Definition 29 (Semicontracting continuous time systems). Let
|||·|||K be a seminorm on Rn with kernel K. The time-varying

2That is, for all x∥, y∥ ∈ K, z⊥ ∈ K⊥, and k ∈ Z≥0, we have
||f⊥(k, x∥+z⊥)−f⊥(k, y∥+z⊥)||⊥ ≤ ℓdK(x∥, y∥) (see [34, Definition
1.5]).

vector field f : R≥0 × Rn → Rn is strongly infinitesimally
semicontracting with rate c > 0 on a domain C ⊆ Rn if
∀t ∈ R≥0 and x ∈ C,

µK(Df(t, x)) ≤ −c.

Lemma 30 provides sufficient conditions for two funda-
mental continuous time dynamical systems to be strongly
infinitesimally semicontracting.

Lemma 30 (Strong semicontractivity of continuous-time affine
systems). Given a subspace K ⊂ Rn and p, q ∈ [1,∞]
with p−1 + q−1 = 1, consider a sequence of matrices
{A(t)}t∈R≥0

⊂ Rn×n satisfying:

A(t)K ⊆ K for all t ∈ R≥0, (invariance)

c ≜ − sup
t∈R≥0

µK
dist,p(A(t)) > 0. (semicontractivity)

Then,
(i) the system

ẋ(t) = A(t)x(t) + b(t), b(t) ∈ Rn,

is strongly infinitesimally semicontracting with rate c in
the distance ℓp seminorm with kernel K, moreover

|||x(t)− y(t)|||Kdist,p ≤ e−ct |||x(0)− y(0)|||Kdist,p , ∀t

(ii) the system

ẋ(t) = AT(t)x(t) + b(t), b(t) ∈ Rn, (27)

is strongly infinitesimally semicontracting with rate c in
the projection ℓq seminorm with kernel K, moreover, for
any x(0), y(0) satisfying x(0)− y(0) ∈ K⊥,

|||x(t)− y(t)|||Kproj,q ≤ e−ct |||x(0)− y(0)|||Kproj,q , ∀t.
(28)

Proof. The proof of part (i) follows from Theorem 13, part
i) in [12]. To prove part (ii) we follow a similar reasoning as
in Theorem 11 from [12]. In fact, for all x(0), y(0) such that
x(0) − y(0) ∈ K⊥, since the solutions t 7→ x(t) of (27) are
differentiable, by defining z(t) ≜ x(t)−y(t), for small h, one
can write

z(t+ h) = z(t) + h(AT(t)(z(t))) + o(h) = Π⊥(z(t+ h))

since z(t) ∈ K⊥ and ATK⊥ ⊆ K⊥ by hypothesis. Therefore,
by Lemma 2 and Lemma 17 part (i)

|||z(t+ h)|||K − |||z(t)|||K

h
≤∣∣∣∣∣∣In + hAT(t)

∣∣∣∣∣∣K − 1

h
|||z(t)|||K +

o(h)

h
.

Taking the limit as h → 0+, one gets d
dt |||z(t)|||

K ≤
µK(AT(t)) |||z(t)|||K. Finally, from the Grönwall comparison
inequality (e.g., see [34, Exercise 2.1])

|||x(t)− y(t)|||K ≤

exp
(∫ t

0

µK(AT(τ))dτ
)
|||x(0)− y(0)|||K .
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Eq. (28) follows from the fact that µK
dist,p(A(t)) =

µK
proj,q(A

T(t)) ≤ −c for all t.

The following theorem focuses on strong infinitesimal
semicontractivity of continuous-time dynamical systems that
enjoy the invariance property of the kernel of the seminorm.
This theorem extends Theorem 13 from [12] through the
formulation of a cascade decomposition and by establishing
a strong contractivity property on the orthogonal complement
to the seminorm kernel.

Theorem 31 (Continuous time semicontracting dynamics with
invariance property, partially from [12]). Consider a system as
in (26). Let K ⊂ Rn be an f -invariant subspace and suppose
that f is strongly infinitesimally semicontracting with rate c >
0, with respect to a seminorm |||·|||K in Rn with kernel K. Then,

(i) the system admits the cascade decomposition

ẋ∥(t) = f∥(t, x∥(t) + x⊥(t)), (29)
ẋ⊥(t) = f⊥(t, x⊥(t)); (30)

(ii) the perpendicular dynamics (30) are strongly infinites-
imally contracting on K⊥ with rate c, with respect to
∥·∥⊥ : K⊥ → R≥0;

(iii) for any two trajectories x(t), y(t) of (26),

|||x(t)− y(t)|||K ≤ e−ct |||x(0)− y(0)|||K

for all t ∈ R≥0.

Proof. Regarding part (i), the cascade decomposition is ob-
tained by following the same reasoning as in Theorem 27.
Part (ii) follows from

µK(Df⊥(t, y)) = µK(Π⊥Df(t, y))

≤ µK(Df(t, x)) ≤ −c

where the first equality follows from the fact that for a
generic matrix A, µK(A) = µK(Π⊥A). Part (iii) is a direct
consequence of part (ii).

The following theorem focuses on strong semicontractivity
of continuous-time dynamical systems that enjoy the invari-
ance property of the orthogonal complement of the kernel of
the seminorm.

Theorem 32 (Continuous time semicontracting dynamics with
conservation property). Consider a system as in (26). Let K ⊂
Rn be such that K⊥ is an f -invariant subspace. Let f : R≥0×
Rn → Rn be strongly infinitesimally semicontracting with rate
c > 0 with respect to a seminorm |||·|||K on Rn with kernel K.
Then,

(i) the system admits the cascade decomposition

ẋ∥(t) = f∥(t, x∥(t)), (31)
ẋ⊥(t) = f⊥(t, x∥(t) + x⊥(t)); (32)

(ii) for each x∥ ∈ K, the vector field x⊥ 7→ f⊥(t, x∥ + x⊥)
is strongly infinitesimally contracting with rate c, with
respect to ∥·∥⊥ : K⊥ → R≥0;

(iii) if the map x∥ 7→ f⊥(t, x∥ +x⊥) is Lipschitz3 continuous
with constant ℓ ∈ R with respect to some metric dK on K,
then for any two trajectories x(t), y(t) of (26), satisfying
x(0)− y(0) ∈ K⊥

D+ |||x(t)− y(t)|||K

≤ −c |||x(t)− y(t)|||K + ℓdK(x∥(t), y∥(t))

for all t ∈ R≥0, where D+(·) indicates the upper right
Dini derivative [34, Section 2.1].

Proof. The proof follows the same arguments as Theorem 28
for discrete time systems.

Remark 33 (Seminorms as Lyapunov functions). Lemma 25,
Theorem 27, Theorem 28, Lemma 30, Theorem 31, and Theo-
rem 32 all show that the seminorm of the difference between
any two trajectories serves as an (incremental) Lyapunov
function to prove incremental stability for linear systems, and
practical stability and input-to-state stabilty for non-linear
systems both in continuous and discrete time.

VI. GRAPH THEORETICAL CONDITIONS FOR
SEMICONTRACTIVITY

We now provide graph theoretical conditions for the sys-
tems (1) and their continuous time counterpart to be semicon-
tracting with respect to ℓp distance and projection seminorms,
for p ∈ {1, 2,∞}. For the discrete time case, the following
conditions are topological abstractions of algebraic conditions
in [27], [29]. Lemma 35 is novel.

Lemma 34 (Topological conditions for discrete-time averag-
ing systems). The averaging system (1a) x(k + 1) = Ax(k)
with A row stochastic is strongly semicontracting in the

(i) ℓ1 distance consensus seminorm if A is doubly stochastic
and G(A) is strongly connected and aperiodic;

(ii) ℓ2 distance consensus seminorm if A is doubly stochastic
and G(A) is weakly connected with self loops at each
node;

(iii) ℓ∞ distance consensus seminorm if G(A) has self loops
at each node and a globally reachable node.

Proof. Condition (i) ensures, in particular, that there exists
m ∈ N such that Am has at least ⌊n

2 ⌋ + 1 nonzero entries
in each column so the expression in (13) takes value less
than one. Consequently, the system is strongly semicontracting
according to condition (17) in Definition 24.

Condition (ii) directly follows from Lemma 40 and The-
orem 8 in [29]. Finally, according to Corollary 4.5 in [33],
condition (iii) ensures that there exists m ∈ N such that
Am (has a column with all nonzero entries and hence) is
scrambling. Consequently, according to Corollary 3.9 in [27]
and condition (17) in Definition 24 the system is strongly
semicontracting.

Strong semicontractivity of Markov chains in the ℓp projec-
tion seminorms, p ∈ {1, 2,∞}, can be derived by duality.

3That is, for all x∥, y∥ ∈ K, z⊥ ∈ K⊥, and t ∈ R≥0, we have ||f⊥(t, x∥+
z⊥)−f⊥(t, y∥+z⊥)||⊥ ≤ ℓdK(x∥, y∥).
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Lemma 35 (Topological conditions for continuous-time aver-
aging). The averaging system ẋ = −Lx with L the Laplacian
of a graph with adjacency matrix A and without self-loops, is
strongly infinitesimally semicontracting in the

(i) ℓ1 distance consensus seminorm if A is doubly stochastic
and every node has at least ⌊n

2 ⌋ in-neighbors,
(ii) ℓ2 distance consensus seminorm if A is doubly stochastic

and G(A) is weakly connected,
(iii) ℓ∞ distance consensus seminorm if every two nodes are

either (weakly) adjacent or have a common out-neighbor.

Proof. To prove (i), note that µK
dist,1(−L) < 0 if and only if

⌊n
2 ⌋−1∑
i=1

a(i),j −
n−1∑

j=⌈n
2 ⌉

a(i),j < 1, ∀i

that for A doubly stochastic is fulfilled if and only if each
node has at least ⌊n

2 ⌋ in-neighbors.
To prove (ii) note that for A doubly stochastic LΠn = ΠnL

and hence the formula for µK
dist,2(−L) in Theorem 21 reads

as

µK
dist,2(−L) = min

b

{
b :

L+ LT

2
+ bIn ⪰ 0 on K⊥

}
.

The minimum is obtained for b = −λ2
(

L+LT

2

)
so that, for

G(A) weakly connected, µK
dist,2(−L) < 0.

To prove (iii) note that µK
dist,∞(−L) < 0 if and only if

aij + aji +
∑

k ̸=i,j
min{aik, ajk} > 0 ∀i ̸= j

that for nonnegative adjacency matrices is true if and only if:
(i, j) is an edge or, (j, i) is an edge or (i, k) and (j, k) are an
edge for some third node k.

VII. CONCLUSIONS

We have studied seminorms on vector spaces and induced
matrix seminorms for discrete- and continuous-time dynam-
ical systems. We have shown how the natural distance and
projection seminorms are dual and how the long-studied ℓp
ergodic coefficients of a row-stochastic matrix are precisely
induced matrix seminorms. We have provided a comprehensive
treatment of semicontraction for discrete- and continuous-time
systems with invariance or conservation properties. Future
research directions include the application of semicontraction
theory to systems with symmetries, such as robotic vehicles
(SE(3) symmetry) and coupled oscillators (torus symmetry),
as well as systems with invariance properties, such as popu-
lation games and evolutionary dynamics (whose state space is
the simplex). See some recent progress in [42]. A long-term
elusive task is the definition of an ergodic coefficient that is
strictly less than unity for row-stochastic matrices satisfying
weak connectivity properties.

APPENDIX I
SEMINORM COEFFICIENTS

Here we recall some useful properties of standard p-norms.
In the following, for a differentiable function f : Rn → R, we
denote by ∇(f) its gradient.

Lemma 36 (Properties of differentiable p-norms [43]). Let p
and q ∈ (1,∞), with p−1 + q−1 = 1, then || · ||p has the
following properties:

(i) ||x||p is differentiable on Rn;
(ii) ||x||p = xT∇(∥x∥p) for all x ∈ Rn;

(iii) ||∇(∥x∥p)||q = 1 for all x ̸= 0n.

Proof. See the final remark and Equation (18) from [43].

Based on Lemma 36, we establish a novel and useful
characterization of the distance and projection seminorms.

Lemma 37 (Coefficients for distance seminorms). Let p, q ∈
[1,∞] be such that p−1 + q−1 = 1 and let K ⊂ Rn be a
vector subspace. There exists a distance coefficient map ψp :
Rn → K⊥ such that, for all x ∈ Rn,

(i) ψp(x) = 0n if x ∈ K and |||ψp(x)|||Kproj,q = 1 otherwise,
and

(ii) |||x|||Kdist,p = ψp(x)
Tx.

Proof. Let V ∈ Rn×k be a a matrix whose columns are a
basis for K, so that we can write

|||x|||Kdist,p = min
α∈Rk

∥x− V α∥p

At the optimum α∗, 0k is a subgradient of ||x− V α∗||p:

0n ∈ ∂||x− V α∗||p = −V TGp(x− V α∗)

where Gp is the subdifferential Gp = ∂|| · ||p ⊂ Rn.
Consequently, there exists a vector ψp(x) ∈ Gp(x − V α∗)

such that ψp(x) ∈ ker(V T) = K⊥. Note that |||ψp(x)|||Kproj,q =

∥ψp(x)∥q , that ψp(x)
Tx = ψp(x)

T(x − V α∗), and that
|||x|||Kdist,p = ∥x − V α∗∥p, so we need only to show for each
p ∈ [1,∞] that ∥ψp(x)∥q = 1 and that ψp(x)

T(x − V α∗) =
∥x− V α∗∥p.

Case p = 1: Using the standard formula for the subgradi-
ent of the absolute value function [44], ψ1(x) ∈ G1(x−V α∗)
implies that

(ψ1(x))i =

{
sgn((x− V α∗)i) (x− V α∗)i ̸= 0

−1 or + 1, (x− V α∗)i = 0
, ∀i

If x /∈ K, then x−V α∗ ̸= 0n, so ∥ψ1(x)∥∞ = 1. Furthermore,

(x− V α∗)Tψ1(x) =
∑

i:(x−V α∗)i ̸=0

(x− V α∗)i(ψ1(x))i

=
∑

i:(x−V α∗)i ̸=0

(x− V α∗)i sgn ((x− V α∗)i)

= ∥x− V α∗∥.

Case p ∈ (1,∞): If p ∈ (1,∞), then ∥·∥p is differentiable,
so Gp(z) = ∇∥z∥p for all z ∈ Rn, and thus ψp(x) = ∇||x−
V α∗||p (where the gradient is taken with respect to x−V α∗).
If x /∈ K⊥, then x − V α∗ ̸= 0n, so ||ψp(x)||q = 1 due to
Lemma 36. A further consequence of this lemma is that

(x− V α∗)Tψp(x) = ||x− V α∗||p = |||x|||Kdist,p
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Case p = ∞: Let I ⊆ {1, 2, . . . , n} be the set of indices
such that ∥x−V α∗∥∞ = |x−V α∗|i. Using a standard formula
for the subdifferential of a pointwise maximum [44], ψ∞(x) ∈
G∞(x− V α∗) implies that

ψ∞(x) ∈ conv
⋃
i∈I

∂|x− V α∗|i

where conv denotes the convex hull, and the subdifferential of
each absolute value is with respect to its argument. Therefore,
there exist gi ∈ ∂|x−V α∗|i for each i ∈ I, as well as convex
weights λi, such that

ψ∞(x) =
∑
i∈I

λigi

For each gi, we have [gi]j = 0 for j ̸= i, since |z|i only
depends on zi for any z ∈ Rn. Furthermore, if x /∈ K, then
x−V α∗ ̸= 0n, so |x−V α∗|i > 0 for all i ∈ I, which implies
that [gi]i = sgn(x− V α∗)i. Together, these two observations
imply that

∥ψ∞(x)∥1 =
∑
i∈I

λi∥gi∥1 =
∑
i∈I

λi = 1

Finally,

(x− V α∗)Tψ∞(x) =
∑
i∈I

(x− V α∗)i
∑
j∈I

λj [gj ]i

=
∑
i∈I

λi(x− V α∗)i sgn(x− V α∗)i = ∥x− V α∗∥∞

Lemma 38 (Coefficients for projection seminorms). Let p, q ∈
[1,∞] be such that p−1 + q−1 = 1 and K ⊂ Rn be a vector
subspace. There exists a projection coefficient map ζp : Rn →
K⊥ such that, for all x ∈ Rn,

(i) ζp(x) = 0n if x ∈ K and |||ζp(x)|||Kdist,q ≤ 1 otherwise,
and

(ii) |||x|||Kproj,p = ζp(x)
Tx.

Proof. Let x ∈ Rn and define x⊥ = Π⊥x.
Case p = 1: Let ζ1(x) = Π⊥ sgn(x⊥). By Lemmas 2 and

9 (ii),

|||ζ1(x)|||Kdist,∞ = |||sgn(x⊥)|||Kdist,∞ ≤ ∥sgn(x⊥)∥∞ ≤ 1,

where x ∈ K implies that sgn(x⊥) = 0n. Furthermore,

ζ1(x)
Tx = sgn(x⊥)

TΠ⊥x = ∥x⊥∥1 = |||x|||Kproj,1 .

Case p ∈ (1,∞): Let ζp(x) = Π⊥∇(∥x⊥∥p). By Lemmas
2, 9 (ii), and 36 (iii), if x /∈ K, then

|||ζp(x)|||Kdist,q = |||∇(∥x⊥∥p)|||Kdist,q ≤ ∥∇(∥x⊥∥p)∥q = 1.

But if x ∈ K, then x⊥ = 0n, so ζp(x) = 0n. Furthermore, as
a consequence of Lemma 36 (ii),

ζp(x)
Tx = (∇(∥x⊥∥p))TΠ⊥x = ∥x⊥∥p = |||x|||Kproj,p .

Case p = ∞: Let i ∈ {1, 2, . . . , n} be such that ∥x⊥∥∞ =
|x⊥|i, and let ζ∞(x) = sgn(x⊥)iΠ⊥ei. By Lemmas 2 and 9
(ii),

|||ζ∞(x)|||Kdist,1= |||sgn(x⊥)iei|||Kdist,1 ≤ ∥sgn(x⊥)iei∥1 ≤ 1

where x ∈ K implies that sgn(x⊥) = 0n. Furthermore,

ζ∞(x)Tx = sgn(x⊥)ie
T
i x⊥ = ∥x⊥∥∞ = |||x|||Kproj,∞ .

APPENDIX II
OPTIMAL DEFLATION

We present here a comparative analysis between induced
seminorms and the notion of optimal deflation given in [29].

Definition 39 (p-optimal deflation [29]). For each p ∈ [1,∞],
the p-optimal deflation of a matrix A ∈ Rk×n is

|A|p ≜ min
v∈Rn

||A− 1nv
T||p. (33)

Lemma 40 (Bounds on matrix seminorms). Given a row-
stochastic matrix A ∈ Rn×n, for each p ∈ [1,∞]

|||A|||Kdist,p ≤ |A|p ≤ ||A||p.

Proof. We first establish that |A|p ≥ |||A|||Kdist,p. By the max-
min inequality [44, Section 5.4.1],

|A|p = min
v∈Rn

max
||w||p≤1

∣∣∣∣(A− 1nv
T
)
w
∣∣∣∣
p

≥ max
||w||p≤1

min
v∈Rn

∣∣∣∣(Aw)− (vTw)1n

∣∣∣∣
p

≥ max
||w||p≤1

|||Aw|||Kdist,p .

Let w ∈ Rn satisfy |||w|||Kdist,p ≤ 1 so that ||w−α1n||p ≤ 1 for
some α ∈ R. Let u = w − α1n, and observe that ||u||p ≤ 1,
and that |||Au|||Kdist,p = |||Aw|||Kdist,p, since A is row-stochastic
and |||·|||Kdist,p is invariant with respect to perturbations in
span{1n}. Therefore

max
||w||p≤1

|||Aw|||Kdist,p ≥ max
|||w|||Kdist,p≤1

|||Aw|||Kdist,p

≥ max
|||w|||Kdist,p≤1

1T
nw=0

|||Aw|||Kdist,p = |||A|||Kdist,p .

The inequality |A|p ≤ ||A||p is obtained at v = 0n in (33).

Here a conjecture on the equivalence between ℓp distance
seminorm and p-optimal deflation as in Definition 39 is
proposed.

Conjecture 41 (Optimal deflation and distance seminorm).
For each p ∈ [1,∞] and row-stochastic matrix A ∈ Rn×n,

|A|p = |||A|||Kdist,p .

Here are some reasons in support of this conjecture.
(i) Expressions given in [45] for p ∈ {1, 2,∞} of x ∈

Rn and of A ∈ Rn×n row stochastic, of |x|p and
|A|p coincide with the ones of |||x|||Kdist,p and |||A|||Kdist,p,
respectively.
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(ii) If the envelope theorem [46, Theorem 1.F.1] could be
applied4 to the projection seminorm, with kernel K =
span{1n}, it would lead to the orthogonality constraint
with respect to K and consequently to the equivalence
between |A|p and

∣∣∣∣∣∣AT
∣∣∣∣∣∣K

proj,q
.
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