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Distributed Optimal Control with Recovered Robustness for

Uncertain Network Systems: A Complementary Design

Approach
Zhongkui Li, Junjie Jiao, and Xiang Chen

Abstract—This paper considers the distributed robust suboptimal

consensus control problem of linear multi-agent systems, with both H2

and H∞ performance requirements. A novel two-step complementary

design approach is proposed. In the first step, a distributed control
law is designed for the nominal multi-agent system to achieve consensus

with a prescribed H2 performance. In the second step, an extra control

input, depending on some carefully chosen residual signals indicating
the modeling mismatch, is designed to complement the H2 performance

by providing robustness guarantee in terms of H∞ requirement with

respect to disturbances or uncertainties. The proposed complementary

design approach provides an additional degree of freedom for design,
having two separate controls to deal with the H2 performance and

the robustness of consensus, respectively. Thereby, it does not need to

make much trade-off, and can be expected to be much less conservative

than the trade-off design such as the mixed H2/H∞ control method.
Besides, this complementary approach will recover the achievable H2

performance when external disturbances or uncertainties do not exist.

The effectiveness of the theoretical results and the advantages of the
complementary approach are validated via numerical simulations.

Index Terms—Robust control, cooperative control, consensus, dis-
tributed control, optimal control, H∞ control, H2 control.

I. INTRODUCTION

Optimality and robustness are two main issues and missions in the

feedback control theory [1]. The optimality requires an optimal or

suboptimal controller to ensure that the closed-loop system satisfies

certain predefined performance criteria, with the linear quadratic reg-

ulator (LQR) and the linear quadratic Gaussian (LQG)/H2 problems

as typical examples. The robustness, on the other hand, characterizes

the property that a system still works well in the presence of external

disturbances and model uncertainties, which can be addressed in the

framework of H∞ control and µ synthesis. For multi-agent network

systems, the optimality and robustness problems encounter new

inherent challenges, since the control laws need to be distributed in

the sense that only local information between neighboring agents can

be utilized and meanwhile the control laws are subject to structural

constraints imposed by the network topology [2].

In the last decades, many advances have been reported on the

optimality and robustness issues of network systems. Distributed

optimal and suboptimal LQR problems of multi-agent systems were

addressed in [3], [4], [5], [6], [7]. The coherence and centrality of

multi-agent networks were formulated and discussed in [8], [9], [10],

[11], [12], [13], through studying the H2 norms of the networks from

the white noises to the performance variables. The H2 consensus

problems of multi-agent systems were investigated in [14], [15],
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where distributed state and output feedback consensus protocols were

designed to satisfy prescribed H2 performance indices. Disturbance

attenuation problems of linear consensus networks were studied from

the H∞ control perspective in [16], [17], [14], [18], [19]. For multi-

agent systems, both the agent dynamics and the interactions among

neighboring agents could be perturbed by uncertainties. The robust

synchronization and consensus problems of multi-agent systems

whose agent dynamics are subject to multiplicative and coprime

factor uncertainties were investigated in [20], [21], [22]. The authors

in [23], [24], [25], [26] considered the robustness of multi-agent

consensus in the sense of mean square and almost sure stabilities

for the cases where the communication channels among agents are

subject to multiplicative stochastic uncertainties. Robust consensus

over deterministic uncertain network graphs was studied in [27], [28].

In this paper, we will address the distributed robust optimal con-

sensus problems for linear multi-agent systems, taking into account

both the optimality and robustness at the same time. It is well-known

that there is an intrinsic conflict between optimality and robustness

in the standard feedback framework [1], [29]. Therefore, in the case

of multi-objective design, e.g., the mixed H2/H∞ control [30] and

the H∞ Guassian control [31], a trade-off has to be made between

the achievable optimal performance and robustness [29]. These trade-

off design approaches suffer from a fundamental drawback of severe

conservativeness, because a single controller is developed to address

the conflicting requirements simultaneously. For example, the mixed

H2/H∞ control is generally worse than the H∞ control in terms

of the robustness and worse than the LQG control in terms of the

optimality [31].

The objective of this paper is to present a novel non-trade-

off design approach to the robust optimal consensus problems for

linear multi-agent systems. Motivated by the structure in [29], a

new design paradigm is proposed in [32], consisting of an LQG

control designed for the nominal plant and an operator Q as a

separate degree of freedom. The operator Q provides an extra control

action to recover the robustness performance for the closed-loop

system. This new paradigm is shown to be able to avoid trade-off

and to reduce the conflict between the robustness and achievable

suboptimality/optimality. It should be noted that the design paradigms

in [29], [32] are applicable to only single-agent systems. Novel non-

trade-off design schemes for multi-agent systems have not witnessed

significant progress so far, due to the severe difficulties caused by

the requirement of distributed control and structural uncertainties and

constraints imposed by the network graphs.

In this paper, motivated by [29], [32], we propose a complementary

design approach to the H2 and H∞ consensus problem of linear

multi-agent systems. This complementary approach consists of two

steps. In the first step, we design a distributed control law for the

nominal multi-agent system, without considering the disturbances

or uncertainties, to ensure that consensus is achieved with a pre-

scribed H2 performance. In the second step, a separate control input,

activated by some carefully chosen residual signals indicating the

modeling mismatch, will be designed to ensure robustness in terms
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of the H∞ requirement. Two cases are considered, namely, the case

that relative outputs or absolute outputs of neighboring agents are

available. Suitable residual signals are chosen for both cases. For

the first case with relative outputs, the residual signal is defined as

the stacked error between the actual relative outputs of neighboring

agents and their observed ones given by a distributed observer. For

the second case with absolute outputs, the residual signal quantifies

the differences between the actual agent dynamics and the ideal agent

dynamics. A distinct feature of this complementary approach is that

the design of H2 consensus control in this first step is independent

of the second step and the extra control action in the second step will

complement the H2 performance by providing a robustness guarantee

with respect to disturbances or uncertainties.

Compared to the trade-off approach, e.g., the mixed H2/H∞

control design, the proposed complementary design approach has at

least two main advantages. Firstly, since the extra control provides an

additional degree of freedom for design, the complementary approach

has two separate controls to deal with the H2 performance and

the robustness of consensus, respectively. Thereby, this approach

does not need to make much trade-off, and can be expected to

be much less conservative than the trade-off approach where one

control tackles two conflicting performances. Secondly, the control

action of the second step is proportional to the residual signal which

quantifies the modeling mismatch level, thereby having some online

“adaptivity” with respect to modeling errors. This complementary

approach will yield the same achievable H2 performance when

modeling mismatches do not exist. By contrast, the trade-off approach

always considers the a priori worst case and still yield the same

conservative performance even when disturbances or uncertainties do

not exist.

The remainder of this paper is organized as follows. Some

mathematical preliminaries including graph theory and results on

H2 and H∞ performances are summarized in Section II. The H2

and H∞ consensus problem is formulated in Section III. A two-

step complementary design approach is proposed for the H2 and

H∞ consensus problem in Section IV. A simulation example that

illustrates the proposed theoretical results are presented in Section

V. Finally, conclusions are given in Section VI.

II. MATHEMATICAL PRELIMINARIES

A. Notations

The notations used in this paper is standard. Rn×m denotes the set

of n×m real matrices, I represents the identity matrix of appropriate

dimension, and 1 denotes a column vector with all entries equal to

1. The matrix inequality A > B means that A and B are symmetric

matrices and A − B is positive definite. For a square matrix A,

tr(A) represents its trace. A ⊗ B represents the Kronecker product

of matrices A and B. The expectation operator is denoted by E{·}.

B. Graph Theory

The information flow among the agents can be conveniently

modeled by a graph. An undirected graph is defined by G = (V, E),
where V = {1, · · · , N} is the set of nodes (each node represents an

agent) and E ⊆ V × V denotes the set of unordered pairs of nodes,

called edges. An undirected graph is connected, if there exists a path

between every two distinct nodes. For an undirected graph G, its

adjacency matrix, denoted by A = [aij ] ∈ R
N×N , is defined such

that aii = 0, aij = aji = 1 if (i, j) ∈ E and aij = 0 otherwise. The

Laplacian matrix L = [Lij ] ∈ R
N×N associated with G is defined

as Lii =
∑N

j=1
aij and Lij = −aij , i 6= j.

Lemma 1 ([2]). For an undirected graph G, zero is an eigenvalue of

L with 1 as an eigenvector and all nonzero eigenvalues are positive.

Moreover, zero is a simple eigenvalue of L if and only if G is

connected.

C. Results on H2 and H∞ performances

In this subsection, we summarize some results on H2 and H∞

performances of linear systems. Consider the linear system

ẋ = Ax+Bw,

y = Cx,
(1)

where x ∈ R
n is the state, y ∈ R

m is the measured output, and

w ∈ R
q is the external disturbance.

Let G(s) = C(sI−A)−1B be the transfer function matrix of (1).

The H2 norm of G is defined to be

‖G‖22 =
1

2π

∫

∞

−∞

tr(G∗(jω)G(jω))dω.

We then review the following well-known result on the H2 perfor-

mance [1].

Lemma 2. Let γ2 > 0. The following statements are equivalent:

i) A is stable and ‖G‖2 < γ2.

ii) There exists X > 0 such that

AX +XAT +BBT < 0, tr(CXCT ) < γ2

2 .

iii) There exist P > 0 and Q > 0 such that
[

ATP + PA PB

BTP −I

]

< 0,

[

P CT

C Q

]

> 0, tr(Q) < γ2

2 .

Next, we review the H∞ performance of (1). If A is stable, the

H∞ norm of (1) is then defined to be

‖G‖∞ = supω∈R
σ(G(jω)),

where σ(G(jω)) is the maximum singular value of G(jω).
The following lemma presents a well-known result on the H∞

performance [1], [33].

Lemma 3. Let γ∞ > 0. The following statements are equivalent:

i) A is stable and ‖G‖∞ < γ∞.

ii) There exists X > 0 such that

ATX +XA+
1

γ2
∞

XBBTX + CTC < 0.

In the next section, we will formulate the problem to be addressed

in this paper.

III. FORMULATION OF H2 AND H∞ CONSENSUS PROBLEM

Consider a network of N identical linear agents subject to different

noises and external disturbances. The dynamics of the i-th agent are

described by

ẋi = Axi +B0w0i +B1wi +B2ui,

yi = C2xi +D0w0i +D1wi, i = 1, · · · , N,
(2)

where xi ∈ R
n is the state, ui ∈ R

p is the control input, and

yi ∈ R
m1 is the measurement output of the i-th agent, respectively.

In (2), wi ∈ R
q1 denotes the external disturbance signal, representing

the modeling uncertainty and/or unmodeled dynamics of the i-th
agent, w0i ∈ R

q2 is a white noise signal with E{w0i(t)} = 0 and

E{w0i(t)w0i(τ )
T } = δ(t− τ )I . The matrices A, B0, B1, B2, C2,

D0 and D1 are of suitable dimensions. The pair (A,B2) is assumed

to be stabilizable and the pair (C2, A) is assumed to be detectable.
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The communication graph among the N agents is represented by an

undirected graph G.

The agents in (2) are said to achieve consensus if there exist control

laws ui such that, given w0i = 0 and wi = 0, xi − xj → 0 as

t → ∞ for all i, j = 1, . . . , N . In this paper, output variables zi,
i = 1, · · · , N , as defined in (3) (see [14], [16], [2] also), are adopted

to quantify the consensus performance,

zi =
1

N

N
∑

j=1

C1(xi − xj), i = 1, · · · , N, (3)

where zi ∈ R
m2 , and C1 ∈ R

m2×n is a given constant weighting

matrix. Note that other candidate performance variables could also

be applied, for example, those depending on the specific network

topology G as in [15], [34].

Let x = [xT
1 , · · · , x

T
N ]T , w0 = [wT

01, · · · , w
T
0N ]T , w =

[wT
1 , · · · , w

T
N ]T , u = [uT

1 , · · · , u
T
N ]T , y = [yT

1 , · · · , y
T
N ]T , and

z = [zT1 , · · · , z
T
N ]T . Let Twz(s) and Tw0z(s) denote the closed-loop

transfer function matrices from w to z and from w0 to z, respectively,

under feedback control laws ui. The following main problem to be

addressed in this paper can then be formulated:

Main Problem: For the multi-agent system in (2) and (3), given

constants γ2 > 0 and γ∞ > 0, find feedback control laws ui

such that ‖Tw0z(s)‖2 < γ2 and ‖Twz(s)‖∞ < γ∞ and the

agents in (2) achieve consensus, that is, xi−xj → 0 as t → ∞
for all i, j = 1, . . . , N if both w0i = 0 and wi = 0.

We shall call this formulation ‘H2 and H∞ Consensus Problem’,

referring to ‖Tw0z‖2 < γ2 as H2 consensus and ‖Twz‖∞ < γ∞ as

H∞ consensus, respectively.

It is well-known that H2 and H∞ performance are inherently

conflicting [1]. To the best of our knowledge so far, there has been no

effective solution to the consensus problem for multi-agent systems

that could guarantee non-compromised H2 and H∞ performance. In

the present paper, we will propose a novel non-trade-off complemen-

tary design for obtaining distributed control laws that address the

said H2 and H∞ consensus problem. The proposed design contains

two steps. In the first step, a distributed control law is proposed,

which achieves H2 consensus for the controlled multi-agent system.

In the second step, an extra distributed control law is designed which

achieves H∞ consensus for the overall network. In particular, we will

provide two design methods for obtaining such distributed control

laws that solve the H2 and H∞ consensus problem, based on relative

output feedback and absolute output feedback, respectively.

Remark 1. One method to solve the H2 and H∞ consensus problem

is the standard trade-off mixed H2/H∞ design [35], [36], i.e.,

using one single control law such that both performance criteria are

satisfied. However, it is well understood that there is an intrinsic

conflict between the H2 performance and H∞ robustness in the

mixed H2/H∞ design [1], [29].

Note that the complementary design can be expected to be much

less conservative than the trade-off approach, as it has two separate

controls to deal with the H2 performance and the H∞ robustness of

consensus, respectively.

IV. A TWO-STEP COMPLEMENTARY APPROACH TO THE

DISTRIBUTED H2 AND H∞ CONTROL PROBLEM

In this section, we will provide two design methods for obtaining

distributed control laws that solve the H2 and H∞ consensus problem

with the proposed non-trade-off complementary approach, based on

relative output feedback and absolute output feedback, respectively.

A. Relative Output Feedback Case

In this subsection, we consider the case where only the relative

output information of the neighboring agents is accessible to each

agent. In this case, the structure of the proposed complementary

design is depicted in Fig. 1.

!
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Fig. 1. The controller structure of the complementary design based on relative
outputs. In this structure, v = [vT

1
, · · · , vTN ]T , u2 = [uT

21
, · · · , uT

2N ]T ,

u∞ = [uT
∞1

, · · · , uT
∞N

]T , P (s) denotes the agent dynamics in (2), DO(s)
represents the distributed observer for each agent, with vi as the protocol state,
f = [fT

1
, · · · , fT

N
]T is the residual signal, and Q(s) is the extra controller

to compensate for w. The rest variables are defined as in Section III.

1) Step One: In the first step, we consider the H2 consensus

problem for the case with nominal agent dynamics, i.e., we consider

only the noise w0i (without considering external disturbances wi).

Relying on the relative output information of neighboring agents, we

employ the following distributed observer-based protocol [20], [2]:

v̇i = (A−GC2)vi +
N
∑

j=1

aij

(

B2F (vi − vj) +G(yi − yj)
)

,

(4a)

u2i = Fvi, i = 1, · · · , N, (4b)

where vi ∈ R
n is the protocol state, u2i is the input of the i-th agent

in this step, F and G are the feedback gain matrices to be designed.

The coefficient aij is the ij-th entry of the adjacency matrix of the

communication graph among the agents.

Since in the this step, we only take care of the influence of the

noise w0i on the performance outputs zi, we consider only the outer

loop in Fig. 1. The control input ui of agent i in this case is equal

to u2i, with u∞i = 0. Define the error variables

ei , vi −

N
∑

j=1

aij(xi − xj), i = 1, · · · , N. (5)

We then have

ėi = (A−GC2)ei + (GD0 −B0)
N
∑

j=1

aij(w0i − w0j). (6)

Therefore, if G is chosen such that A − GC2 is Hurwitz, vi in (4)

is actually an estimate of
∑N

j=1
aij(xi − xj) for agent i. That is,

DO(s) in Fig. 1 is in fact represented by the distributed observer in

(4a).

Denote v = [vT1 , · · · , v
T
N ]T and ξ =

[

xT vT
]T

. By substituting

(4) into (2), the closed-loop network dynamics can then be written

in compact form as

ξ̇ = A ξ + B0w0,

z = C1ξ,
(7)

where

A =

[

I ⊗ A I ⊗B2F
L ⊗GC2 I ⊗ (A−GC2) + L ⊗B2F

]

,

B0 =

[

I ⊗B0

L ⊗GD0

]

,C1 = M⊗
[

C1 0
]

,M , I −
1

N
11

T .

(8)
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The following theorem provides a necessary and sufficient condi-

tion for the H2 suboptimal consensus problem.

Theorem 1. Assume that the graph G is connected. Let γ2 > 0.

Then, the distributed protocol (4) achieves H2 consensus for the

network (7) if and only if the following N − 1 subsystems

˙̃ξi =

[

A λiB2F
GC2 A−GC2 + λiB2F

]

ξ̃i +

[

B0

GD0

]

w̃0i,

z̃i =
[

C1 0
]

ξ̃i, i = 2, · · · , N,

(9)

are internally stable and
∑N

j=2
‖T̃w̃0i z̃i‖

2

2 < γ2

2 , where T̃w̃0i z̃i

denotes the transfer function matrix of (9) from w̃0i to z̃i.

Proof. The result can be proved by following similar lines in [2],

[15]. The key steps are sketched here for clarity. First, we apply the

unitary transformation U ⊗ I onto the dynamics of the consensus

error (M ⊗ I)ξ, where U is a unitary matrix such that UTLU =
diag(0, λ2, · · · , λN ). Note that UTMU = diag(0, 1, · · · , 1), see

e.g., [2]. Next, by observing that the H2 norm is invariant under

unitary transformations, we can get that the H2 suboptimal consensus

problem is solved if and only if the following N − 1 subsystems

˙̄ξi =

[

A B2F
λiGC2 A−GC2 + λiB2F

]

ξ̄i +

[

B0

λiGD0

]

w̃0i,

z̃i =
[

C1 0
]

ξ̄i, i = 2, · · · , N,

(10)

are internally stable and
∑N

j=2
‖T̃w̃0i z̃i‖

2

2 < γ2

2 . Now, by letting

ξ̃i =
[

I 0

0
1

λi
I

]

ξ̄i, evidently the subsystems in (10) are equivalent to

those in (9).

Before moving forwards, we need to make the following assump-

tion and introduce a lemma.

Assumption 1. The system matrices in (2) satisfy that D0B
T
0 = 0

and D0D
T
0 = I .

Lemma 4 ([15], [37]). Suppose Assumption 1 holds. Consider the i-
th subsystem in (9) with λi = 1. Let P > 0 and Q > 0, respectively,

satisfy the following inequalities:

(A+B2F )TP + P (A+B2F ) +CT
1 C1 < 0, (11)

AQ+QAT −QCT
2 C2Q+B0B

T
0 < 0. (12)

If the inequality

tr(C2QPQCT
2 ) + tr(C1QCT

1 ) < γ2

holds, then T̃w̃0i z̃i , with G = QCT
2 and λi = 1, satisfies that

‖T̃w̃0i z̃i‖2 < γ.

The following theorem provides a design method for obtaining

distributed protocols (4) that achieves H2 suboptimal consensus.

Theorem 2. Assume that Assumption 1 holds and the graph G is

connected. Let γ2 > 0. Let Q > 0 be a solution to (12). Let P >
0,W > 0, τ > 0 be solutions to the following LMIs:

[

P̄AT + AP̄ − τB2B
T
2 P̄CT

1

C1P̄ −I

]

< 0, (13)

[

P̄ C2Q

QCT
2 W

]

> 0, (14)

tr(W ) + tr(C1QCT
1 ) <

γ2

2

N − 1
. (15)

Then, the protocol (4) with G = QCT
2 , F = −cBT

2 P̄
−1 and c ≥ τ

2λ2

achieves H2 consensus.

Proof. In light of Theorem 1, the network (7) achieves H2 consensus

if the N−1 subsystems in (9) are internally stable and ‖T̃w̃0i z̃i‖
2

2 <
γ2

2

N−1
. According to Lemma 4, the i-th subsystem in (9) is internally

stable and ‖T̃w̃0i z̃i‖
2

2 <
γ2

2

N−1
, if there exist Q > 0 satisfying (12)

and P > 0 such that

(A+ λiB2F )TP + P (A+ λiB2F ) +CT
1 C1 < 0, (16)

and

tr(C2QPQCT
2 ) + tr(C1QCT

1 ) <
γ2

2

N − 1
. (17)

Let P̄ = P−1. Multiplying on both sides of (16) by P̄ and in light of

Schur Complement Lemma [38], we obtain that (16) and (17) hold

if and only if
[

P̄ (A+ λiB2F )T + (A+ λiB2F )P̄ P̄CT
1

C1P̄ −I

]

< 0, (18)

and the inequalities (14) and (15) hold at the same time. Evidently,

if we choose F = −cBT
2 P̄

−1 and c ≥ τ
2λ2

, then (13) implies (18)

and thereby (16).

Remark 2. The separation property of observed-based controllers

shown in [15], [37] is employed in this theorem. The observer gain

matrix G and the feedback gain F are designed in a decoupled way.

Moreover, the feasibility of (13) is equivalent to that of (18). Note

that by letting FP̄ = V and λi = 1, we know that (18) holds, then

P̄A+ AT P̄ +B2V + V TBT
2 + P̄CT

1 C1P̄ < 0,

which, in light of Finsler’s Lemma [39], [2], is equivalent to that

there exist P̄ > 0 and τ > 0 such that (13) holds. Therefore, (18)

implies (13). The converse was shown in the proof.

2) Step Two: In the second step, we design an additional regulating

control input u∞i to deal with the external disturbances wi and to

guarantee the H∞ robustness while not significantly compromising

the H2 performance. Since the noise w0i has been taken care of and

filtered out in the first step, we only consider the effect of wi in the

second step.

Under the H2 consensus protocol (4) in the first step, the aug-

mented agent dynamics are described by

ẋi = Axi +B2ui +B1wi,

v̇i = (A−GC2)vi +
N
∑

j=1

aij

(

B2F (vi − vj)

+GC2(xi − xj) +GD1(wi − wj)
)

,

ui = u2i + u∞i,

u2i = Fvi, i = 1, · · · , N,

(19)

where the gain matrices F and G are designed in the first step.

The residual signal f = [fT
1 , · · · , fT

N ]T in Fig. 1 is used in the

second step to activate the inner loop. It builds on the protocol (4)

and is given by

fi , C2vi −
N
∑

j=1

aij(yi − yj)

= C2ei −D1

N
∑

j=1

aij(wi − wj), i = 1, · · · , N,

(20)

where ei is defined as in (5).

In this step, we consider a distributed protocol of the form

ṅi = Acni +Bcfi,

u∞i = Ccni +Dcfi,
(21)
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where ni ∈ R
n is the state of the protocol, and Ac, Bc, Cc, Dc are

protocol matrices to be designed. In this case, Q(s) =

[

Ac Bc

Cc Dc

]

in Fig. 1. It should be mentioned that here we assume that u∞i is a

general dynamic controller with fi as its input. Special forms such

as observer-based ones in [20], [21] can be also considered.

Note that the error ei in the current case satisfies

ėi = (A−GC2)ei + (GD1 −B1)

N
∑

j=1

aij(wi − wj). (22)

Evidently, if external disturbances wi are equal to zero, then ei and

thereby fi will asymptotically converge to zero. In other words, the

inner loop will be activated as fi are bounded signals and u∞i will

be implemented to recover robustness.

Denote e = [eT1 , · · · , e
T
N ]T , n = [nT

1 , · · · , n
T
N ]T and ζ =

[

xT eT
]T

. Using (19) and (21), we obtain the closed-loop network

dynamics in compact form as
[

ζ̇
ṅ

]

=

[

Ā + B2DcC2 B2Cc

BcC2 Ac

] [

ζ
n

]

+

[

B1 − B2DcD1

−BcD1

]

w,

z =
[

C1 0
]

[

ζ
n

]

,

(23)

where C1 is defined in (8), and

Ā =

[

I ⊗ A+ L ⊗B2F I ⊗B2F
0 I ⊗ (A−GC2)

]

,

B2 =

[

I ⊗B2

0

]

, B1 =

[

I ⊗B1

L ⊗ (GD1 −B1)

]

,

C2 = I ⊗
[

0 C2

]

, D1 = L ⊗D1, Ac = I ⊗ Ac,

Bc = I ⊗Bc, Cc = I ⊗ Cc, Dc = I ⊗Dc.

(24)

By following similar steps in deriving Theorem 1, it is not difficult

to obtain the following result.

Theorem 3. Assume that graph G is connected. Let γ∞ > 0. Then,

the network (23) achieves H∞ consensus if and only if the following

N − 1 subsystems:
[

˙̃ζi
˙̃ni

]

= (Ai +B2KC2)

[

ζ̃i
ñi

]

+ (B1i +B2KD1i)w̃i,

z̃i = C1

[

ξ̃i
ñi

]

, i = 2, · · · , N,

(25)

are internally stable and the associated transfer functions satisfy

‖T̃w̃i z̃i‖∞ < γ∞, where

Ai =





A+ λiB2F B2F 0
0 A−GC2 0
0 0 0



 , B2 =





0 B2

0 0
I 0



 ,

K =

[

Ac Bc

Cc Dc

]

, C2 =

[

0 0 I
0 C2 0

]

, C
T
1 =





CT
1

0
0



 ,

B1i =





B1

λi(GD1 −B1)
0



 , D1i =

[

0
−λiD1

]

.

The following theorem provides a design method for obtaining the

distributed control law (21).

Theorem 4. Assume that G is connected and that B2 is of full

column rank. Let γ∞ > 0. Then the network (23) achieves H∞

consensus if there exist positive definite matrices S11 and S22, and

a matrix Q1 such that

S =

[

S11 0
0 S22

]

, V =

[

V1

0

]

(26)

satisfying the following LMI’s
[

Υ1i SB̄1i + VD1i

(SB̄1i + VD1i)
T −γ2

∞I

]

< 0, (27)

for i = 2, N , where

Υ1i = Ā
T
i S + SĀi + C̄

T
2 V

T + V C̄2 + C̄
T
1 C̄1,

Āi = TAiT
−1, B̄1i = TB1i, C̄2 = C2T

−1, C̄1 = C1T
−1,

and T is a nonsingular matrix such that TB2 =

[

I
0

]

. Then, the

system matrix K of (21) is given by

K = S−1

11 V1. (28)

Proof. In virtue of Theorem 3 and Lemma 3, it follows that the N−1
subsystems in (25) are internally stable and ‖T̃w̃i z̃i‖∞ < γ∞ if and

only if there exist matrices Si > 0 such that

(Ai +B2KC2)
TSi + Si(Ai +B2KC2)

+
1

γ2
∞

Si(B1i +B2KD1i)(B1i +B2KD1i)
TSi

+ C
T
1 C1 < 0, i = 2, · · · , N.

(29)

Following the steps in [40, Theorem 2], by using a Schur comple-

ment, the above inequalities (29) are equivalent to
[

Φ1i Φ2i

ΦT
2i −γ2

∞I

]

< 0, i = 2, · · · , N (30)

with

Φ1i = (Ai +B2KC2)
TSi + Si(Ai +B2KC2) + C

T
1 C1,

Φ2i = Si(B1i +B2KD1i).

Since the matrix B2 is of full column rank, there exists a matrix T
such that

TB2 =

[

I
0

]

.

By pre-multiplying T̄ =

[

T−T 0
0 I

]

and post-multiplying T̄ T on

(30), it follows that (30) holds if and only if
[

Φ̄1i Φ̄2i

Φ̄T
2i −γ2

∞I

]

< 0, i = 2, . . . , N, (31)

where

Φ̄1i = Ā
T
i S̄i + S̄iĀi + S̄iB̄2KC̄2 + (S̄iB̄2KC̄2)

T + C̄
T
1 C̄1,

Φ̄2i = S̄iB̄1i + S̄iB̄2KD1i, S̄i = T−TSiT
−1,

B̄2 = TB2 =
[

I 0
]T

.

Now, let S = S̄i and S̄iB̄2K = V . Recall that (26), then (31)

holds if (27) holds for i = 2, . . . , N . In this case, due to
[

S11 0
0 S22

] [

I
0

]

K =

[

V1

0

]

,

the system matrix is given by (28).

Finally, note that the inequalities in (27) are linear matrix inequal-

ities with respect to the unknown variables, we need to check only

the two LMIs in (27) for i = 2 and N , and the other N − 3 LMIs

in (27) corresponding to i = 3, · · · , N − 1, also hold, with their

variables chosen to be some convex combinations of those satisfying

the two LMIs in (27) for i = 2, N . This completes the proof.

Remark 3. In the novel control structure in Fig. 1, the design of H2

consensus control of the outer loop is independent of the control Q(s)
in (21) of the inner loop. The extra control Q(s) relies on the residual
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signal f , which is the stacked error between the actual relative outputs

of neighboring agents
∑N

j=1
aij(yi − yj) and their observed ones

C2vi given by the distributed observer (4a). The extra control action

of the inner loop, activated by residual signal f in the presence of

external disturbances or uncertainties wi, will complement the H2

performance by providing H∞ robustness guarantee with respect to

wi. This is the reason why this approach is called a complementary

design approach.

Remark 4. The two-step complementary approach proposed in this

section, compared to the trade-off approach, has at least two main

advantages:

i) The extra control Q(s) in (21) provides an additional degree

of freedom for design. Therefore, the current complementary

approach has two separate control inputs to deal with the H2

performance and the H∞ robustness of consensus, respectively,

thereby does not need to make much trade-off, and can be

expected to be much less conservative,while the trade-off design

has only one control to tackle two conflicting performances

simultaneously. Although Theorems 2 and 4 in this section

are conservative, however, it should be pointed out that the

conservatism of these results is not caused by the complementary

approach. On the contrary, it in fact highlights the difficulty of

distributed control.

ii) The control action of the inner loop is proportional to the

residual signal which quantifies the modeling mismatch level,

thereby having some online “adaptivity” with respect to mod-

eling errors. This complementary approach will yield the same

achievable H2 performance when modeling mismatches do not

exist, because in this case the inner loop will be de-activated.

By contrast, the trade-off approach always considers the a priori

worst case and produce the same conservative performance even

when disturbances or uncertainties disappear.

Remark 5. It should be mentioned that the order of the overall

control law designed by the complementary approach is higher than

the trade-off approach, since both distributed protocols (4a) and

(21) are required in the former approach while only one dynamic

controller is needed in the latter. This is the price to provide more

degree of design freedom and it is actually not a big issue considering

the abundance of cheep storage and computing resources. Besides, the

extra control action of the inner loop, providing robustness guarantee,

will inject some white noises into the closed-loop network dynamics,

and thereby will make certain compromise of the H2 performance.

B. Absolute Output Feedback Case

In this subsection, we consider the case where absolute output

information of each agent is available. In this case, we adopt local

observers for the agents, instead of the distributed observers as in

the previous subsection. The structure of the complementary design

approach in this case is depicted in Fig. 2.

1) Step One: Based on the absolute output yi, we propose for

each agent the following Luenberger observer:

˙̆vi = Av̆i +Bui + Ğ(yi − C2v̆i), (32)

where Ğ is the observer gain to be designed. In the first step,

we consider only the outer loop, therefore, ui = u2i. For the H2

consensus problem, we design the following protocol:

u2i = F̆

N
∑

j=1

aij(v̆i − v̆j), (33)

where F̆ is the feedback gain to be designed. Denote v̆i =

[v̆T1 , · · · , v̆
T
N ]T and ξ̆ =

[

xT v̆T
]T

. The closed-loop network

Fig. 2. The controller structure of the complementary approach based on
absolute outputs, where LO(s) represents the local observer for each agent,

f̃ is the residual signal, and Q̃(s) is the additional controller based on f̃ , and
the rest of variables are defined as in Fig. 1.

dynamics in this case can be written in compact form as

˙̆
ξ =

[

I ⊗ A L ⊗B2F̆

I ⊗ ĞC2 I ⊗ (A− ĞC2) + L ⊗B2F̆

]

ξ̆ +

[

I ⊗B0

I ⊗ ĞD0

]

w0,

z = M⊗
[

C1 0
]

ξ̆.
(34)

It is easy to verify that the H2 consensus problem of (34) can be

reduced to the same condition as in Theorem 1. Then, Theorem 2

can also be used to design the protocol (33).

2) Step Two: In the second step, we define the residual signals f̃i
as follows:

f̃i , C2v̆i − yi, i = 1, · · · , N, (35)

which is actually the local estimated output error. Therefore, f̃i
quantifies the difference between the actual plant and the ideal plant,

and we can see that f̃i = 0, if there exist no disturbances or

uncertainties.

Since
∑N

j=1
aij(xi − xj) is the consensus error and v̆i is the

estimate of xi for agent i, we can see that
∑N

j=1
aij(f̃i − f̃j)

denotes the estimated output error of the consensus error. Therefore,

in this case we design the control input u∞i for the inner loop based

on
∑N

j=1
aij(f̃i − f̃j), instead of f̃i as in the previous subsection.

Specifically, we consider a distributed protocol of the form

ṅi = Ăcni + B̆c

N
∑

j=1

aij(f̃i − f̃j),

u∞i = C̆cni + D̆c

N
∑

j=1

aij(f̃i − f̃j),

(36)

where ni ∈ R
n is the state of the protocol, and Ăc, B̆c, C̆c, D̆c are

protocol matrices to be designed. In this case, Q(s) =

[

Ăc B̆c

C̆c D̆c

]

in Fig. 2.

Let ĕi = v̆i − xi. Denote ĕ = [ĕT1 , · · · , ĕ
T
N ]T , ζ̆ =

[

xT ĕTi
]T

and n̆ = [n̆T
1 , · · · , n̆

T
N ]T . Then, it follows from (2), (33) and (36)

that the closed-loop network dynamics are given by

[

˙̆
ζ
˙̆n

]

=

[

Ă + B2D̆cC2 B2C̆c

B̆cC2 Ăc

] [

ζ̆
n̆

]

+

[

B̆1 − B2D̆cD̆1

−B̆cD̆1

]

w,

z =
[

C1 0
]

[

ζ̆
n̆

]

,

(37)
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Fig. 3. The communication graph among the six agents.
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Fig. 4. Complementary H2 and H∞ design by output feedback: plots
of the agent state vector x1 = (x1,1, . . . , x6,1) (upper plot) and x2 =
(x1,2, . . . , x6,2) (lower plot).

where C1, C2, and B2 are defined in (8), and

Ă =

[

I ⊗ A+ L ⊗B2F̆ L ⊗B2F̆

0 I ⊗ (A− ĞC2)

]

,

B̆1 =

[

I ⊗B1

L ⊗ (ĞD1 −B1)

]

, D̆1 = I ⊗D1, Ăc = I ⊗ Ăc,

B̆c = I ⊗ B̆c, C̆c = I ⊗ C̆c, D̆c = I ⊗ D̆c.

Similarly as in Theorems 3 and 4, the control law (36) can be

constructed to achieve H∞ consensus with prescribed index. The

details are omitted here for conciseness.

V. SIMULATION EXAMPLE

In this section we will use a simulation example to illustrate the

proposed complementary H2 and H∞ design by dynamic output

feedback, as in Theorems 2 and 4 in Subsection IV-A, for obtaining

distributed protocols.

Consider a multi-agent system that consists of six agents. The

dynamics of each agent is given by (2), where

A =

[

−2 2
−1 1

]

, B0 =

[

0 0
0.5 0

]

, B1 =

[

1
0.6

]

, B2 =

[

1
−2

]

,

C1 =
[

1 0
]

, C2 =
[

1 0.8
]

, D1 = 0.1, D0 =
[

0 1
]

.

The communication graph among the agents is shown in Fig. 3, which

is a connected undirected graph with the Laplacian matrix L. The

smallest nonzero and the largest eigenvalues of L are λ2 = 1.3820
and λN = 5.3028.

In the first step of the complementary design, following Theorem

2, we obtain a distributed control law that takes care of the H2
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Fig. 5. Complementary H2 and H∞ design by output feedback: plots of
the protocol state vector v1 = (v1,1, . . . , v6,1) (upper left plot), v2 =
(v1,2, . . . , v6,2) (lower left plot), n1 = (n1,1, . . . , n6,1) (upper right plot)
and n2 = (n1,2, . . . , n6,2) (lower right plot).
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Fig. 6. Complementary H2 and H∞ design by output feedback: plots of the
agent output vector z1 = (z1, . . . , z6).

performance. We choose γ2 = 2 and compute the control gains

F =
[

−0.1627 0.7430
]

and G =
[

0.5685 0.7966
]T

. Next in the

second step, following Theorem 4, we obtain a distributed control law

that deals with the H∞ consensus. We compute the protocol gains

to be Ac =

[

−0.5031 0
0 −0.5031

]

, Bc =

[

0
0

]

, Cc =
[

0 0
]

and

Dc = −0.4045.

The associated computed upper bound for the H∞ robustness is

γ∞,min = 1.5808. In Fig. 4, we have plotted the state trajectories

of the agents, and in Fig. 5 we have plotted the state trajectories of

the two proposed distributed protocols. It can be seen that indeed

the proposed distributed protocols together achieve consensus for the

multi-agent system.

As a comparison, we will next compare, in presence of the external

noise and disturbance, the output performance of the proposed

complementary approach with that of the distributed H2 control.

In particular, we choose the external noise w0i to be a uniformly

distributed signal, generated by Matlab command 30*rand(). We

choose the disturbance wi to be w1 = w3 = 3 sin(110t), w2 =
w4 = 3 sin(30t), w5 = w6 = 3 sin(60t). The plots of the trajectories

of the performance outputs zi are given in Fig. 6. It can be seen

that, in the presence of noises and disturbances, indeed the proposed

complementary approach guarantees a better performance than the
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distributed H2 control.

VI. CONCLUSIONS

In this paper, we have presented a novel complementary approach

to the distributed H2 and H∞ consensus problem of multi-agent

systems. Through introducing an extra control input that depends on

some carefully chosen residual signals, which indicates the modeling

mismatch, the complementary approach provides an additional degree

of freedom for control design and complements the H2 performance

of consensus by providing the H∞ robustness guarantee. This com-

plementary approach does not involves much trade-off, and can be

expected to be much less conservative than the trade-off design.

Future works include extending the proposed complementary ap-

proach to other robust optimal cooperative control problems with

different optimal performances under different types of uncertainties.
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