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Risk Assessment of Stealthy Attacks on Uncertain Control Systems
Sribalaji C. Anand, André M. H. Teixeira, and Anders Ahlén

Abstract— In this article, we address the problem of risk assess-
ment of stealthy attacks on uncertain control systems. Considering
data injection attacks that aim at maximizing impact while remain-
ing undetected, we use the recently proposed output-to-output
gain to characterize the risk associated with the impact of attacks
under a limited system knowledge attacker. The risk is formulated
using a well-established risk metric, namely the maximum ex-
pected loss. Under this setups, the risk assessment problem corre-
sponds to an untractable infinite non-convex optimization problem.
To address this limitation, we adopt the framework of scenario-
based optimization to approximate the infinite non-convex opti-
mization problem by a sampled non-convex optimization problem.
Then, based on the framework of dissipative system theory and
S-procedure, the sampled non-convex risk assessment problem
is formulated as an equivalent convex semi-definite program. Ad-
ditionally, we derive the necessary and sufficient conditions for
the risk to be bounded. Finally, we illustrate the results through
numerical simulation of a hydro-turbine power system.

Index Terms— Security, Uncertainty, Risk analysis, Opti-
mization.

I. INTRODUCTION

Research in the security of industrial control systems has received
considerable attention [1] due to increased number of cyber-attacks
such as the one on Ukrainian power grid [2], Kemuri water company
[3], etc. One of the common recommendations for improving the
security of control systems is to follow the risk management cycle:
Risk assessment, risk response, and risk monitoring [4]. This article
focuses on risk assessment, the formal definition of which will be
introduced later as a function of the attack impact.

Risk is often a combination of attack impact and/or likelihood.
For instance, the risk is characterized in terms of average impact
in [5] for different types of attacks. The consequences of data
injection attacks are quantified using the conditional value-at-risk in
[6]. The calculated risk can later be used to compute optimal defense-
allocation strategies [7] and/or design robust controllers/detectors.
Risk assessment of combined data integrity and availability attacks
against the power system state estimation is conducted in [8]. From
this brief discussion, it can be realized that characterizing risk in
terms of attack impact and likelihood is critical for the efficient
allocation of protection resources. In the literature, the problem of
risk assessment of stealthy attacks on uncertain control control has
not been addressed. To the best of the authors knowledge, the works
that are closely related to this problem are [9], [10] and [11].

Firstly, [9] designs a stealthy attack against an uncertain system
using disclosure resources. Secondly, [10] focuses on attack detection
based on plant and model mismatch for the adversary. The results
of both the above works cannot facilitate the optimal allocation of
protection resources.
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Thirdly, [11] proposes an impact metric by computing a bound
on the reachable set of states by an attacker for a perturbed system
dynamics. It also proposes a second metric by computing the distance
between the reachable set of states for the adversary and the set of
critical states. However it considers a deterministic system.

The advantage of our study is multi-fold. Firstly, we consider a
generic modeling framework similar to [12]. Secondly, unlike many
previous works, we consider a system description with parametric
uncertainty. Thirdly, similar to [13], we consider an adversarial setup
where the system knowledge of the adversary is limited. Finally, we
consider a recently proposed impact metric: Output-to-Output Gain
(OOG) [14]. The main advantage of using this impact metric, as
opposed to the classical H∞ and H metrics is, the OOG metric
based design problem focuses on improving detectability only when
the impact of the attack is sufficiently high at the same frequency
[15]. In other words, the OOG metric is more amenable to risk-
optimal system design for increased security. Under the described
setup, we present the following contributions.

1) Using OOG as impact metric, and the maximum expected loss
as a risk metric, we formulate the risk assessment problem.
We observe that the risk assessment problem corresponds to
an untractable infinite non-convex robust optimization problem
which is NP-hard in general.

2) We propose a convex SDP which solves the risk assessment
problem approximately by sampling the uncertainty set. Ad-
ditionally, we provide probabilistic guarantees on the original
robust optimization problem.

3) We derive the necessary and sufficient conditions for the risk
metric to be bounded.

The remainder of the article is organized as follows. The uncertain
system and the adversary is described in Section II. The problem
is formulated in Section III, to which an approximate solution is
presented in Section IV. The efficacy of the proposed optimization
problem is illustrated through a numerical example in Section V. We
conclude the article in Section VI.

Notation: Throughout this article, R,C,Z and Z+ represent the set
of real numbers, complex numbers, integers and non-negative integers
respectively. A positive (semi-)definite matrix A is denoted by A �
0(A � 0). Let x : Z → Rn be a discrete-time signal with x[k] as
the value of the signal x at the time step k. Let the time horizon
be [0, N ] = {k ∈ Z+| 0 ≤ k ≤ N}. The `2-norm of x over the
horizon [0, N ] is represented as ||x||2`2,[0,N ] ,

∑N
k=0 x[k]T x[k]. Let

the space of square summable signals be defined as `2 , {x : Z+ →
Rn| ||x||2`2,[0,∞] <∞} and the extended signal space be defined as
`2e , {x : Z+ → Rn| ||x||2[0,N ] < ∞, ∀N ∈ Z+}. For the sake
of simplicity, we represent ||x||2`2,[0,∞] as ||x||2`2 . For x ∈ R, dxe
represents x rounded to the nearest integer greater than or equal to x.
Let (Ω,Da,P) represent a probability space with sample space Ω ⊂
Rv , σ−algebra Da, and probability measure P. Let (Ωw,Dwa ,Pw)
represent the w-times Cartesian product of Ω with the σ−algebra Dwa
and the probability measure Pw = P×· · ·×P. A point drawn from
(Ωw,Dwa ,Pw) is thus (δ1, δ2, . . . δw), i.e., w independent elements
in Rv drawn independently from Ω according to the same probability
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Fig. 1: Control system under data injection attack

P.1. The relative importance of various uncertainty outcomes of an
arbitrary function f(δ), δ ,

[
δ1 . . . δm

]T ∈ Ω, is represented
by PΩ(f(δ)). An empty set is denoted by ∅. For any a, b ∈ R and
a ≥ b,

(a
b

)
= a!

b!(a−b)! . The non-zero elements of a vector s ∈ Rn

is denoted by supp(s). The cardinality of the non-zero elements in
a vector s ∈ Rn is denoted by ||s||0 , |supp(s)|, where |supp(s)|
represents the cardinality of the set supp(s).

II. PROBLEM BACKGROUND

In this section, we describe the control system structure and the
goal of the adversary. Consider the general description of a closed-
loop DT LTI system with a process (P), feedback controller (C) and
an anomaly detector (D) as shown in Fig. 1 and represented by

P :


xp[k + 1] = A∆xp[k] +B∆ũ[k]

y[k] = C∆xp[k]
yp[k] = CJxp[k] +DJ ũ[k]

(1)

C :

{
z[k + 1] = Acz[k] +Bcỹ[k]
u[k] = Ccz[k] +Dcỹ[k]

(2)

D :

{
s[k + 1] = Aes[k] +Beu[k] +Keỹ[k]
yr[k] = Ces[k] +Deu[k] + Eeỹ[k]

(3)

where A∆ , A + ∆A(δ) with A representing the nominal system
matrix and δ ∈ Ω. Additionally we assume Ω to be closed, bounded
and to include the zero uncertainty yielding ∆A(0) = 0. The
other matrices are similarly expressed. The state of the process is
represented by xp[k] ∈ Rnx , z[k] ∈ Rnz is the state of the controller,
s[k] ∈ Rns is the state of the observer, ũ[k] ∈ Rnu is the control
signal received by the process, u[k] ∈ Rnu is the control signal
generated by the controller, y[k] ∈ Rnm is the measurement output
produced by the process, ỹ[k] ∈ Rnm is the measurement signal
received by the controller and the detector, yp[k] ∈ Rnp is the virtual
performance output, and yr[k] ∈ Rnr is the residue generated by
the detector. In general, the system is considered to have a good
performance when the energy of the performance output ||yp||2`2 is
small and an anomaly is considered to be detected when the detector
output energy ||yr||2`2 is greater than a predefined threshold, say εr .
We explain the reason to adopt such a logic in Appendix A.1. Without
loss of generality (w.l.o.g.), we assume εr = 1 in the sequel.

A. Data injection attack scenario

In the system described in (1)-(3), we consider an adversary
injecting false data into the sensors or actuators of the plant but not
both. Next, we discuss the resources the adversary has access to.

1In this article, the Cartesian product is considered over the same probability
space (∆). But this can be generalized to arbitrary probability spaces.

1) Disruption and disclosure resources: The adversary can
access (eavesdrop) the control or sensor channels and can inject data.
This is represented by[
ũ[k]
ỹ[k]

]
=

[
u[k]
y[k]

]
+

[
Ba
Da

]
a[k],

[
BTa DTa

]
,

[
ETa 0

0T FTa

]
where a[k] ∈ Rna is the attack signal injected by the adversary. The
matrix Ea(Fa) is a diagonal matrix with Ea(i, i) = 1 (Fa(i, i) = 1),
if the actuator (sensor) channel i is under attack and 0 otherwise.

2) System knowledge: In general, the system operator knows
about the parameters of the controller and detector as s/he is the one
who design it. However, it is not known to the adversary. To this
end, we consider a realistic adversary whose system knowledge is
bounded. We defined this adversary as bounded-rational. Henceforth,
we refer to the bounded-rational adversary as a rational adversary.

Definition 2.1 (Rational adversary): An adversary is defined to be
rational if it knows all the matrices of (1)-(3) but with bounded
uncertainty. /

That is, in contrary to the operator, a rational adversary has
uncertainty also in the system matrices of the detector and the con-
troller (A,B,C,CJ , DJ , Ac, Bc, Cc, Dc, Ae, Be,Ke, Ce, De, and
Ee). Defining x[k] , [xp[k]T z[k]T s[k]T ]T , the closed-loop system
under attack with the performance output and detection output as
system outputs becomes

x[k + 1] = A∆
clx[k] +B∆

cla[k]

yp[k] = C∆
p x[k] +D∆

p a[k]

yr[k] = C∆
r x[k] +D∆

r a[k],

(4)

where the nominal matrices are given by
[
Acl Bcl

]
, A+BDcC BCc 0

BcC Ac 0
(BeDc +Ke)C BeCc Ae

BBa +BDcDa
BcDa

(BeDc +Ke)Da


Cp ,

[
CJ +DJDcC DJCc 0

]
, Dp , DJ (DcDa +Ba),

Cr ,
[
(DeDc + Ee)C DeCc Ce

]
, Dr , (DeDc + Ee)Da.

Although the uncertainty is present in the adversarial system
knowledge, the bounds of the uncertainty is chosen by the defender
based on the his/her belief of the adversaries resources. Next, we
assume the following for clarity.

Assumption 2.1: The closed-loop system (4) is stable ∀ δ ∈ Ω. /
Assumption 2.2: The input matrix has full column rank i.e., @ s ∈

Rna 6= 0 such that B∆
cl s = 0. /

3) Attack goals and constraints.: Given the resources the ad-
versary has access to, the adversary aims at disrupting the system’s
behavior while staying stealthy. The system disruption is evaluated
by the increase in energy of the performance output whereas, the
adversary is stealthy if the energy of the detection output is below a
predefined threshold εr = 1.

Definition 2.2 (Stealthy attack): An attack vector a is said to be
stealthy if it satisfies ||yr||2`2 ≤ 1. /
We discuss the attack policy for a deterministic system next.

B. Optimal attack policy for the nominal system
From the previous discussions, it can be understood that the goal

of the adversary is to maximize the performance cost while staying
undetected. When the system (4) is deterministic, i.e., Ω = ∅, [14]
formulates the attack policy of the adversary as the following non-
convex optimization problem

||Σ||2`2e,yp←yr , sup
a∈`2e

||yp||2`2

s.t. ||yr||2`2 ≤ 1, x[0] = 0, x[∞] = 0,

(5)
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where ||Σ||2`2e,yp←yr represents the OOG that characterizes the
disruption caused by the attack signal a. In (5), the constraint
x[0] = 0 is introduced because the system is assumed to be at
equilibrium before the attack.

Assumption 2.3: The closed-loop system (4) is at equilibrium
x[0] = 0 before the attack commences. /

We assume that the adversary has finite energy (similar to H∞/H
approaches) and thus attacks the system for a sufficiently long but
finite amount of time, say T . Although this time T is unknown a
priori, it can be ensured that a[∞] , limk→∞ a[k] = 0 by setting
x[∞] , limk→∞ x[k] = 0.

Lemma 2.1: If x[∞] = 0, then it holds that a[∞] = 0.
Proof: If x[∞] = 0, it follows that

lim
k→∞

‖x[k+1]−Aclx[k]‖ = 0 = lim
k→∞

‖Bcla[k]‖ = ‖Bcla[∞]‖.

From Assumption 2.2, we known that Bcla[∞] = 0 holds only when
a[∞] = 0. This concludes the proof.

For the above discussed reason, the constraint x[∞] = 0 is
introduced in the optimization problem (5). In this article, we focus
on attacks which satisfy the constraint x[∞] = 0, and define them
as state-vanishing attacks.

Definition 2.3 (State-vanishing attack): An attack vector a is de-
fined to be state-vanishing if applying a to (4) generates the state
vector x which satisfies limk→∞ x[k] = 0. /

In the literature, such characterization of impact of stealthy attacks
(5) has only been studied for deterministic systems. The remainder of
this article is focused on discussing methods to quantify the impact
in terms of risk on the uncertain system (4).

The concept of risk is conventionally adopted to address decision-
making in an uncertain environment [16, Chapter 14]. Since we also
focus on decision-making (impact assessment) under uncertainty, it
is useful to adopt tools from the risk management framework. Thus,
before introducing the problem formulation, a brief introduction to
risk management and risk metrics is provided as it helps in the
problem formulation.

III. PROBLEM FORMULATION

The framework of risk management can help the system operator
answer the following (but not limited) questions: (i) Which com-
ponents of the system are critical to the operation of the system?
(ii) What disruption can be expected from attacks and (iii) Which
resources should be protected and how? Thus, to use the risk man-
agement framework for the benefit of the system operator (to estimate
system disruption (ii)), we will focus on risk and its consequences.
To quantify the risks of data injection attacks on an uncertain system,
we start by defining an impact random variable a function of the
system uncertainty and the attack vector.

Definition 3.1 (Impact random variable): Let the random variable
XA(·) be defined as

XA(a, δ) , ‖yp(δ)‖2`2 × I
(
‖yr(δ)‖2`2 ≤ 1, x(δ)[∞] = 0

)
(6)

where XA(·) is the impact caused on the system (4) with uncertainty
δ ∈ Ω by the attack vector a ∈ `2e, I is the indicator function,
yp(δ), yr(δ) and x(δ) are the performance, residue output and state
of the system with the isolated uncertainty δ. Here, the signals
yp(δ), yr(δ) and x(δ) are also functions of the attack vector a. /

With the random variable defined in Definition 3.1, we next
formulate the risk assessment problem in for a rational adversary.
Consider the data injection attack scenario where only the bounds of
the parametric uncertainty set Ω is known to the adversary. Although,
the adversary can determine the attack vector which maximizes the

expected loss over the entire uncertainty set Ω i.e., the adversary
maximizes the function

||Σ̄(δ)||2`2e,yp←yr , EΩ

{
XA(a, δ)

}
.

This setup is common in game-theoretic approaches [17] where the
players do not know the strategy of the other players and thus play
by maximizing its expected return over all the strategies of the other
players. Similarly, since the adversary has limited system knowledge,
s/he chooses an attack policy which maximizes the expected loss of
the system operator over the set Ω whilst remaining stealthy. This
strategy of maximum expected loss can be defined as follows.

Definition 3.2 (Maximum Expected Loss): The maximum
expected loss (EL) associated with the impact-random variable
XA(·), defined in (6), is defined as

EL[XA] , sup
a∈`2e

EΩ

{
XA(δ, a)

}
,

where XA(δ, a) is the loss on scenario δ and EΩ represents the
expectation operator over the set Ω. /

Thus by determining the attack vector that solves for maximal
expected loss, one can ensure that the attack vector is stealthy with
respect to all uncertainties whilst maximizing the performance loss.
Using Definition 3.2, the risk associated with the impact caused by
a bounded-Rational Adversary can be characterized as

γRA , sup
a∈`2e

EΩ(XA(a, δ)). (7)

Since the operator E in (7) operate over the continuous space Ω,
(7) is computationally intensive or in general NP-hard [18, Section
3]. Besides, the problem is also non-convex. In the remainder of
this article, we discuss methods to solve the optimization problem
approximately and efficiently.

IV. RISK ASSESSMENT FOR A BOUNDED-RATIONAL
ADVERSARY

In this section, we focus on describing a scenario-based approach
to the optimization problem (7).

A. Approximating the uncertainty set

To recall, we are interested in determining the maximum expected
loss associated with the impact caused by a rational adversary.
Unfortunately, this problem is computationally intensive or in general
NP-hard. Thus, as a first step toward solving (7), we approximate the
objective function in Lemma 4.1.

Lemma 4.1: Let δi be sampled uncertainties from Ω. Let us define

ÊΩN2
(XA(a, δ)) ,

1

N2

N2∑
i=1

XA(ai, δi).

Then, it holds that limN2→∞ ÊΩN2
(XA(ai, δi)) = EΩ(XA(a, δ)).

Proof: The proof follows from applying [19, Theorem 7.2] to
approximate the expectation operator in (7).

Lemma 4.1 states that the continuous set Ω can be approximated
by a discrete set ΩN2

of cardinality N2. The approximation becomes
more accurate as N2 → ∞. This approximation introduces a curse
of dimensionality since, to obtain a good estimate of the risk and to
obtain a well feasible attack vector, the required number of samples is
too large for practical implementation. To circumvent this practical
issue, we next show that an attack vector obtained by solving (7)
with a discrete uncertainty set as mentioned in Lemma 4.1 is partially
feasible to the original optimization problem (7) with a continuous
uncertainty set.
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It might not be immediately apparent that the notion of feasibility
applies to (7) since there are no external constraints present. Thus,
we begin by simplifying the optimization problem (7).

Lemma 4.2: The optimization problem (7) is equivalent to the
optimization problem

sup
a∈`2e,β∈[0, 1]

EΩ

{
||yp(δ)||2`2 |

(
||yr(δ)||2`2 ≤ 1

x(δ)[∞] = 0

)}
(1− β)

s.t. PΩ

(
||yr(δ)||2`2 ≤ 1

x(δ)[∞] = 0

)
≥ 1− β.

(8)

Proof: Consider the function XA(a, δ) in (6). By expanding
its indicator function, we can write EΩ(XA(a, δ)) as

EΩ

{
||yp(δ)||2`2 |

(
||yr(δ)||2`2 ≤ 1

x(δ)[∞] = 0

)}
PΩ

(
||yr(δ)||2`2 ≤ 1

x(δ)[∞] = 0

)
Using the above definition in (7), we obtain γRA as

sup
a∈`2e

EΩ

{
||yp(δ)||2`2 |

(
||yr(δ)||2`2 ≤ 1

x(δ)[∞] = 0

)}
PΩ

(
||yr(δ)||2`2 ≤ 1

x(δ)[∞] = 0

)
which can be rewritten as (8). This concludes the proof.

Lemma 4.2 uncovers the constraints present in the optimization
problem (7). We can now discuss the notion of feasibility in regards
to the optimization problem (8). So, we continue by simplifying (8)
as follows. In reality, β represents the fraction of the uncertainty set
with respect to which the adversary is not stealthy. Let us assume that
the adversary is injecting a maximally robust attack, i.e., the attack
vector is stealthy w.r.t. all uncertainties. Thus we could set β = 0.
Motivated by the above argument, we rewrite (8) as

sup
a∈`2e

EΩ

{
||yp(δ)||2`2 |

(
||yr(δ)||2`2 ≤ 1

x(δ)[∞] = 0

)}
s.t.

(
||yr(δ)||2`2 ≤ 1

x(δ)[∞] = 0

)
∀δ ∈ Ω

(9)

Recalling the approximation result in Lemma 4.1, assume that Ω
is replaced with a discrete uncertainty set ΩN , so that (9) is
approximated by

γRA(N2) = sup
a∈`2e

ÊΩN2

{
||yp(δ)||2`2 |

(
||yr(δ)||2`2 ≤ 1

x(δ)[∞] = 0

)}
s.t.
(
||yr(δ)||2`2 ≤ 1

x(δ)[∞] = 0

)
∀δ ∈ ΩN2

.

(10)

Let the resulting optimal attack vector be denoted by a∗N2
. Then

the following theorem provides a posteriori results on the feasibility
of the attack vector a∗N2

to (9).
Theorem 4.3: Let the number of samples N2 and the confidence

level λ ∈ (0, 1) be predefined constants. Define ε(·) such that

ε(N2) = 1 ,

N2−1∑
k=0

(
N2

k

)
(1− ε(k))N2−k = λ. (11)

Let s∗N2
represent the cardinality of the support subsample for

(δ1, . . . , δN2
) (see [20, Definition 2]). Then it holds that

PN2{PΩ{δ ∈ Ω | a∗N2
/∈ Θ} > ε(s∗N2

)} ≤ λ,

where a∗N2
is the argument of the optimization problem (10) and Θ

is defined as

Θ ,
⋂
δ∈Ω

Θδ,where Θδ ,

{
a ∈ `2e|

(
||yr(δ)||2`2 ≤ 1

x(δ)[∞] = 0

)}
(12)

Proof: See Appendix A.2.
In words, Theorem 4.3 states that the attack vector obtained by

solving (10) is stealthy and state-vanishing for all the closed-loop

TABLE I: Dimension of matrices, nc , nx + nz + ns

Matrix Dimension Matrix Dimension
Ā ncN2 × ncN2 B̄ ncN2 × na
C̄p npN2×ncN2 D̄p npN2 × na
C̄r nrN2 × ncN2 D̄r nrN2 × na

system of the form (4) with uncertainties belonging to the set Ω
except for the fraction ε(s∗N2

) of Ω. It also states that the accuracy
(ε(·)) and confidence (λ) of the solution are independent of the
distribution. This result is a direct consequence of [20, Theorem 1].

In conclusion, it follows that (9) can be solved approximately with
a discrete set ΩN2

of arbitrary but bounded cardinality. Thus, the
next section will focus on solving the optimization problem (10).

B. Risk assessment

The optimization problem (10) has two main disadvantages namely
(i) it is a non-convex optimization problem, and (ii) its constraints
lie in the infinite-dimensional attack space. To resolve these disad-
vantages, we adopt S-procedure and dissipative system theory and
revisit the optimization problem (10) in the theorem below. To begin
with, given a sampled uncertainty δi ∈ Ω, we define Σ̃p,i ,
(Acl,i, Bcl,i, Cp,i, Dp,i) and Σ̃r,i , (Acl,i, Bcl,i, Cr,i, Dr,i) with
yp(δi) = ypi, yr(δi) = yri and x(δi) = xi as the outputs and states
of Σ̃p,i and Σ̃r,i correspondingly. Now we are ready to present the
main theorem of this section.

Theorem 4.4: Let N2 be a predefined constant. The maximum
expected loss (10) associated with the impact caused by a rational
adversary injecting a maximally robust attack vector on (4) can be
obtained by solving the convex SDP 2

min
γ≥0,P=PT

1T
[
γ1 . . . γN2

]T
s.t.

[
ĀTPĀ− P ĀTPB̄

B̄TPĀ B̄TPB̄

]
+ Ψ(γ) � 0,

(13)

where Ψ(γ) , 1
N2

[
C̄Tp
D̄Tp

] [
C̄p D̄p

]
−
[
C̄Tr
D̄Tr

]
Γ(γ)

[
C̄r D̄r

]
,

 Ā B̄

C̄p D̄p

C̄r D̄r

 =



Acl,1 . . . 0
...

. . .
...

0 . . . Acl,N2

Bcl,1
...

Bcl,N2

Cp,1 . . . 0
...

. . .
...

0 . . . Cp,N2

DTp,1
...

DTp,N2

Cr,1 . . . 0
...

. . .
...

0 . . . Cr,N2

DTr,1
...

DTr,N2



,

and Γ(γ) = Inr
⊗

diag(γ1, . . . .γN2
). The dimension of each matrix

is given in TABLE I.
Proof: See Appendix A.3.

The optimization problem (10) is the primal problem with its
optimizer being the attack vector a. This optimization problem is
non-convex. With the help of S-procedure and dissipative system
theory, (10) is converted to its equivalent dual SDP form (13) with
its optimizer γ, P , which is convex. This equivalency also helps us

2With an abuse of notation, we denote that every element of the vector γ
is non-negative by γ ≥ 0
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to conclude that the duality gap is zero. The necessary and sufficient
conditions for the value of (13) to be finite is given Lemma 4.5.

Lemma 4.5 (Boundedness): Consider N2 i.i.d. realizations of the
closed-loop system (4), each with an uncertainty δi. The optimal
value of (13) with the above mentioned system realizations is
bounded if and only if the system with Σ̄p = (Ā, B̄, C̄p, D̄p) and
Σ̄r = (Ā, B̄, C̄r, D̄r) satisfy one of the following:

1) The system Σ̄r has no zeros on the unit circle.
2) The zeros on the unit circle of the system Σ̄r (including

multiplicity and input direction) are also zeros of Σ̄p.
Proof: See Appendix A.4.

Let the outputs of Σ̄p and Σ̄r be represented by ȳr and ȳp respec-
tively. Then, in words, Lemma 4.5 states that the maximum expected
loss (10) is bounded if either, there does not exist an attack vector
which makes the output ȳr identically zero, or for all attack vectors
which yields ȳr identically 0, it also yield ȳp identically zero.

It is important to study the conditions for unbounded risk because,
if the conditions of the lemma do not hold, it means that there exists
an attack vector that can cause a very huge impact whose upper-
bounded cannot be determined and remain stealthy. However, as the
conditions of the lemma are necessary and sufficient, the operator can
alter the system matrices so that the conditions hold and consequently
reduce the vulnerability of the system to such attacks. In the next
section, we illustrate the results with a numerical example.

V. NUMERICAL EXAMPLE

Consider a power generating system [9, Section 4] as shown in
Fig. 2 and represented byη̇1

η̇2

η̇3

 =


−1
Tlm

Klm
Tlm

−2Klm
Tlm

0 −2
Th

6
Th−1

TgR
0 −1

Tg


η1

η2

η3


︸ ︷︷ ︸
η

+

 0
0
1
Tg

 ũ (14)

y =
[
1 0 0

]︸ ︷︷ ︸
C

η1

η2

η3

 , yp =

[
1 0 0
0 1 0

]
︸ ︷︷ ︸

Cp

η1

η2

η3

 . (15)

Here η , [df ; dp + 2dx; dx], df is the frequency deviation in Hz,
dp is the change in the generator output per unit (p.u.), and dx is
the change in the valve position p.u.. The parameters of the plant
are listed in TABLE II. The constants Tlm, Th, and Tg represent the
time constants of load and machine, hydro turbine, and governor,
respectively, and R(Hz/p.u.) is the speed regulation due to the
governor action. The constant Klm represents the steady state gain of
the load and machine. The DT system matrices (A∆, B∆, C∆, D∆)
are obtained by discretizing the plant (14)-(15) using zero-order
hold with a sampling time Ts. The plant is stabilized with an
output feedback controller of the form (2) with Dc = 19. The
detector is an observer-based residue generator of the form (3) with
matrices Ae = (Ad − KeCd), Be = Bd, Ce = Cd where Ke =[
0.17 −2.83 −7.43

]T . In this particular setup, the adversary is
considered to attack only the actuator, i.e., Ba = 1 and Da = 0. The
other unspecified matrices are zero. Only the matrix A∆ is a function
of the variable Th and thus is uncertain. Next, considering (14)-(15)
where Th is uncertain and is uniformly distributed, we discuss the
risk associated with the impact caused by a stealthy adversary.

In view of Lemma 4.1, we choose N2 = 21 to approximate the
set Ω. With this approximation, by solving the convex SDP (13),
we obtain γRA(N2) = 617.267. To recall, γRA represents the
maximum expected performance loss of the system operator. In this
implementation, the value of risk was obtained for β = 0 since we
considered a maximally robust adversary.

Governor Hydro-turbine Load & Machine

Droop Characteristics

Fig. 2: Power generating system with a hydro turbine.

TABLE II: System Parameters

Klm 1 Tlm 6 Tg 0.2
Th [4 6] Ts 0.1 R 0.05

Next, we discuss the validity of the approximation ΩN2
. For

varying values of N2, the number of non-zero γis obtained while
solving (13) is shown in the first two columns of TABLE III. In
view of Theorem 4.3, if we solve the problem (13) with an arbitrary
N2, we can provide guarantees on the optimization problem (7) as
shown in column 3 of TABLE III. Here, the function ε(·) is evaluated
according to [20, (7)] where λ = 10−2 and s∗N2

= |supp(γ)|3. And
ε(·) should be interpreted as follows: The attack vector obtained by
solving (13) with N2 samples, with probability 1−λ, will be at-most
feasible for the fraction (1− ε(·))Ω of the set Ω.

Since ε(·) represents the fraction of the uncertainty set to which
the attack vector is infeasible, it is intuitive to expect this value to
be close to zero. Numerically we have observed from TABLE III
that supp(γ) is always one. So, assuming again that s∗N2

= 1, the
number of samples required to guarantee that the attack vector, with
a probability 1−λ, is feasible for 1− ε(·) of the uncertainty set can
be obtained by picking N2 such that (16) holds [20, (7)]

N2−1

√
λ

N2
2

= 1− ε(·). (16)

Thus (16) gives an idea of how N2 increases as ε(·) decreases. And
consequently gives an idea of the scalability of the proposed approach
as the dimension of the matrix inequality (13) depends on N2. We
also depict the computation complexity by providing the time taken
to solve (13) in the last column of TABLE III.

VI. CONCLUSION AND FUTURE WORK

In this article, we study the problem of risk assessment on uncertain
control systems under a bounded-rational adversary. Using the OOG
as an impact metric, we formulated the risk assessment problem
and observe that it corresponds to non-convex robust optimization
problem. A scenario-based approach was used to relax the robust
optimization problem to their sampled counterpart. Using dissipative
system theory, the non-convex sampled problem in signal space
were converted to their convex dual problems in matrix inequalities.
Detailed proof on the zero-duality gap was provided using the S-
procedure. We additionally provide necessary and sufficient condi-
tions for risks to be bounded which highlights the important role

3The confidence is denoted by λ here whereas it is denoted by β in [20]

TABLE III: Rational adversary - a posteriori Guarantees

N2 |supp(γ)| ε(s∗N2
) γRA(N2) Time (seconds)

8 1 0.7141 638.04 17
15 1 0.5112 628.60 116
21 1 0.4142 617.26 578
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of uncertainty and how it is incorporated in attack scenarios. The
results are depicted with numerical examples. Future work includes
investigating the risk assessment problem where the uncertainty set
can be approximated as a polytopic set.

APPENDIX

A.1. EXPLAINING THE PERFORMANCE CRITERION

Consider an LTI system which was described in (1) without attack.
Let us consider that, the operator is evaluating the performance of
the system by a linear-quadratic (LQ) cost with cost matrix Q � 0
on the states and cost matrix R � 0 on the control input. Here, with
a slight loss of generality, we consider that the cost on the cross-term
is zero. Next, let us define

yp[k] =

[√
Q
0

]
︸ ︷︷ ︸
CJ

x[k] +

[
0√
R

]
︸ ︷︷ ︸
DJ

u[k] =

[√
Q 0

0
√
R

] [
x[k]
u[k]

]

Here, since the matrix Q and R are positive definite and positive
semi-definite, their square root exists. Then, evaluating this LQ cost
is equivalent to evaluating the `2 norm of yp[k]. That is

||yp||2`2 ,
N∑
k=0

[
x[k]T u[k]T

] [√Q 0

0
√
R

] [√
Q 0

0
√
R

] [
x[k]
u[k]

]
Thus we depict (i) how to choose the nominal matrices CJ , and DJ ,
and (ii) the reason to evaluate the attack impact in terms of ||yp||2`2 .
Similarly, we assume that faults which have a very low effect on
the detection output can occur rarely (say faults which change the
energy of the detection output to εr). Thus an attack is considered
to be detected when ||yp||2`2 > 1.

A.2. PROOF OF Theorem 4.3

Before presenting the proof, an introduction to scenario-based
constraint satisfaction is provided.

Scenario-based constraint satisfaction [20]

Consider the constrained non-convex optimization problem
infθ∈Θ f(θ, δ), where δ ∈ ∆ is the uncertainty and θ is the infinite
dimensional decision parameter which lies in the set Θ ,

⋂
δ∈∆ Θδ ,

where Θδ is the constraint set which includes all the admissible
parameters for the isolated uncertainty δ.

Definition A.2.1 (Violation probability): Let us define the viola-
tion probability as V(θ) , P∆{δ ∈ ∆ | θ /∈ Θ}. /

Definition A.2.2 (ε-level solution): Let ε ∈ (0, 1). Then, θ ∈ Θ is
an ε level solution if V(θ) ≤ ε. /

Definition A.2.3 (Confidence level : λ): Let λ ∈ (0, 1). Then, the
confidence level λ represents the probability that θ is not an ε level
solution. i.e., λ , P{V(θ) > ε}. /

Proof: [Proof of Theorem 4.3] The optimization problem (9) can
be reformulated as

− inf
a∈`2e

{
EΩ{−||yp(δ)||2`2} |

(
||yr(δ)||2`2 ≤ 1

x(δ)[∞] = 0

)
∀δ ∈ Ω

}
(17)

In view of [20, Theorem 1], let us define the objective function as
f(a, δ) , EΩ{−||yp(δ)||2`2}, where yp(δ) is also a function of the
attack vector a. Let us define the set Θ as in (12). Let us define a
confidence level λ ∈ (0, 1), a constant N2 and ε(·) such that (11)
holds. Then applying [20, Theorem 1], we obtain that

PN2{PΩ{δ ∈ Ω | a∗N2
/∈ Θ} > ε(s∗N2

)} ≤ λ,

Thus, with a probability level 1 − λ, the solution a∗N2
is ε(s∗N2

)
feasible to the optimization problem (17). In our problem setting,
a∗N2

is the optimal argument of the optimization problem

−arg inf
a∈`2e

−1

N2

N2∑
i=1

{||yp,i||2`2 |
(
||yr,i||2`2 ≤ 1

xi[∞] = 0

)
}


s.t.

(
||yr,i||2`2 ≤ 1

xi[∞] = 0

)
, ∀i ∈ {1, . . . , N2},

which can be rewritten as (10). This concludes the proof.

A.3. PROOF OF Theorem 4.4

Before presenting the proof, an introduction to S-system and S-
procedure is provided as it helps formulating the proof.

S-system [21, Definition 4.3.1]

Let L be a real Hilbert space with a well defined inner product de-
noted by 〈·, ·〉. Let G0(·), . . . ,Gk(·) be quadratic functionals mapping
L → R. Let ω be a discrete time signal.

Definition A.3.1 (S-system): [21, Definition 4.3.1] The quadratic
functionals G0(·),G1(·), . . . ,Gk(·) form an S-system if there exist a
bounded linear operator Ti : L → L, i = 1, 2, . . . , such that

1) 〈Tiω1, ω2〉 → 0 as i→∞, ∀ ω1, ω2 ∈ L.
2) If ω ∈ M, then Tiω ∈ M, ∀i = 1, 2, . . . , where M is a

linear subspace of L.
3) Gj(Tiω)→ Gj(ω) as i→∞, ∀ω ∈ L and j = 0, 1, . . . , k./

We next present a theorem which helps in proving Theorem 4.4.
Theorem A.3.1: Let us define a stable discrete time linear time-

invariant system of the form

η[k + 1] = Φη[k] + Λµ[k] (18)

σ[k] = Πη[k] + Υµ[k] η[0] = η0, η[∞] = 0.

Let us define the set L as

L ,

{
ω =

[
σ
µ

]
|
[

σ, µ are related by (18)
µ ∈ `2e, η[0] = η0, η[∞] = 0.

]}
(19)

Let us also define the functionals G0(ω) ,
∑∞
k=0 ω[k]TM0ω[k] +

ζ0, . . . ,Gk(ω) ,
∑∞
k=0 ω[k]TMkω[k] + ζk. where M0, . . . ,Mk

are given matrices and ζ0, . . . , ζk are given constants. Then, the
functionals −G0(·), . . . ,Gk(·) form an S-system.

Proof: [Proof of Theorem A.3.1] In view of Definition A.3.1, let
us define the operator Ti as

Tiω[k] =

{
0, if 0 ≤ k ≤ i
ω[k − i], if k > i

.

For any ω1, ω2 ∈ L, 〈Tiω1, ω2〉 = |
∑∞
k=0〈Tiω1[k], ω2[k]〉|2 =

|
∞∑
k=i

〈ω1[k − i], ω2[k]〉|2 ≤1

∞∑
k=i

||ω1[k − i]||2
∞∑
k=i

||ω2[k]||2

where the inequality 1 holds due to the Cauchy Schwartz inequality.
Since the theorem states that limk→∞ η[k] = 0, it holds from Lemma
2.1 that limk→∞ µ[k] = 0. Following which, it immediately holds
that limk→∞ σ[k] = 0 which implies that limk→∞ ω[k] = 0. Due
to the above reasoning, it holds that limi→∞

∑∞
k=i ||ω2[k]||2 →

0 ∀ω ∈ L . Thus condition 1) of Definition A.3.1 holds.
Let us consider a set M = L|η0=0. Then, if ω ∈ M, due to

the time-invariant property of (18), Tiω ∈ M. This proves that
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∃ M ⊂ L which is invariant under the operator Ti. Thus condition
2) of Definition A.3.1 holds. Let us consider G0(Tiω) =

∞∑
k=0

(Tiω[k])TM0Tiω[k] + ζ0 =

∞∑
k=i

ω[k − i]TM0ω[k − i] + ζ0

= G0(ω). Similarly, it can be observed that Gj(Tiω) = Gj(ω) ∀j =
{0, . . . , k}. Thus condition 3) of Definition A.3.1 holds. Since we
have shown that the functionals −G0(ω(·)),G1(ω(·)), . . . ,Gk(ω(·))
satisfy conditions 1), 2) and 3) of Definition A.3.1, they form an
S-system. This concludes the proof.
Now we are ready to present the proof of Theorem 4.4.

Proof:
Step 1: [Problem reformulation] Using the hypograph formula-

tion, (10) can be rewritten as

sup
υ,a∈`2e

υ
∣∣∣∣∣

1

N2

N2∑
i=1

||yp,i||2`2 ≥ υ

||yr,i||2`2 ≤ 1, xi[∞] = 0, ∀i ∈ {1, . . . , N2}

 (20)

From now, in the next two steps of the proof, we focus on the
optimization problem (20) without the state constraints

sup
υ,a∈`2e

υ
∣∣∣∣∣

1

N2

N2∑
i=1

||yp,i||2`2 ≥ υ

||yr,i||2`2 ≤ 1, ∀i ∈ {1, . . . , N2}

 (21)

The reason to focus on (21) rather than (20) is that S-procedure
becomes convenient to apply when there are no equality constraints.
Thus, we drop the state constraints now and introduce them back at
the end of Step 3. Equivalently (21) be reformulated as

inf
υ

υ
∣∣∣∣∣
a ∈ `2e

∣∣∣ 1

N2

N2∑
i=1

||yp,i||2`2 − υ > 0

1− ||yr,i||2`2 ≥ 0, ∀i

 = ∅

 (22)

Step 2: Recall that the system matrices for the system with the
isolated uncertainty δi, with attack vector as input and performance
and detection outputs as outputs are Σ̃p,i , (Acl,i, Bcl,i, Cp,i, Dp,i)

and Σ̃r,i , (Acl, Bcl,i, Cr,i, Dr,i). Let us consider a linear time-
invariant system of the form (18) with the attack vector a as input
µ(·) and the vector

[
yp,1 yr,1, . . . , ypN2

yr,N2

]T as output σ(·).
This system will be stable due to Assumption 2.1 and the system
matrices of (18) would read

[
Φ Λ

Π Υ

]
=



Acl,1 0 0
. . .

0 0 Acl,N2

Bcl,1
...

Bcl,N2

Cp,1 0 0
Cr,1 0 0

. . .
0 0 Cp,N2

0 0 Cr,N2

Dp,1
Dr,1

...
Dp,N2

Dr,N2


,

For this system, let us define the set L as in (19) where ω =[
aT σ

]T ∈ Rna+N2(np+nr). In view of (22), let us also define
the functionals G0(ω) ,

1

N2

N2∑
i=1

||yp,i||2`2 − υ =

∞∑
k=0

ω[k]TM0ω[k] + ζ0 (23)

where M0 ∈ R(na+N2(np+nr))×(na+N2(np+nr)), ζ0 = −υ and
M0(i, j) = 1, if i = j, na + i is odd and 0 elsewhere. Similarly let

us define

Gk(ω) , −||yr,k||2`2 + 1 =

∞∑
k=0

ω[k]TMkω[k] + ζk, (24)

∀k = {1, 2, . . . , N2}, where ζk = −1 and Mk(i, j) = −1, if i =
j, i = na + 2k − 1 and 0 elsewhere. Here, Mk has same dimension
as M0 ∀k = {1, 2, . . . , N2}. Therefore, we have shown that the
constraints of (22) can be rewritten as functionals of the set L.
We can now see that the functionals −G0(·),G1(·), . . . ,Gk(·) along
with Lemma 2.1 satisfy the conditions under which Theorem A.3.1
holds. Thus, by applying Theorem A.3.1, if follow that the functionals
−G0(·),G1(·), . . . ,Gk(·) form an S-system. Let this be argument 1.

In the case the adversary chooses not to attack the system, i.e.,
a = 0 ∈ `2e, it follows that ||yr,i||2`2 ≈ 0 ∀δi. The residual energy
||yr,i||2`2 is not strictly zero since there might be residual outputs due
to difference in initial condition between the system and the detector.
The threshold (εr = 1) is chosen in such a way that ||yr,i||2`2 �
1 ∀δi when a = 0. Thus, it holds that ∃ ω0 = [a, ω] = [0, 0+]
s.t. −||yr,k||2`2 + 1 = Gk(ω0) > 0 ∀k = {1, . . . , N2}. Here 0+

represents a real number close to zero. Let this be argument 2. And
from (22), we know that the system G0(ω) > 0,Gi(ω) ≥ 0 i =
{1, . . . , k} is not solvable. Let this be argument 3. Using the above
arguments (1-3) and [21, Theorem 4.3.1], we can conclude that when
we consider the functionals defined in (23) and (24), ∃ γ1 ≥ 0, γ1 ≥
0, . . . , γN2

≥ 0 such that the following inequality holds

G0(ω) +

N2∑
i=1

γiGi(ω) ≤ 0, ∀ ω ∈ L. (25)

To conclude, in this step we have shown that the constraint of (22)
holds only if (25) is true. And the converse is generally true.

Step 3: We have shown that the constraint of (22) holds iff (25)
is true. Then, we reformulate (22) as

inf
υ,γ1≥0,...,γN2

≥0

υ ∣∣∣ G0(ω) +

N2∑
i=1

γiGi(ω) ≤ 0, ∀ ω(·) ∈ L

 .

Substituting the definition of G0(ω), we obtain

inf
γ≥0

inf
υ

υ∣∣∣
N2∑
i=1

{
1

N2
||yp,i||2`2 + γiGi(ω)

}
≤ υ,∀ω


 (26)

where γ = [γ1, . . . , γN2
]T . The inner optimization problem of (26)

resembles an epigraph formulation which can be rewritten as

inf
γ≥0

sup
ω


N2∑
i=1

{
1

N2
||yp,i||2`2 + γiGi(ω)

}
 .

Substituting the definition of Gi(ω), ∀i = {1, . . . , N2}, we obtain

inf
γ≥0

sup
ω


N2∑
i=1

{
1

N2
||yp,i||2`2 − γi||yr,i||

2
`2

}
+

N2∑
i=1

γi

︸ ︷︷ ︸
κ

(27)

Observe that κ is a maximization problem with a quadratic term in
its objective. Thus, it holds that

κ =

{
1T γ, if

∑N2
i=1

{
1
N2
||yp,i||2`2 − γi||yr,i||

2
`2

}
≤ 0

+∞, otherwise
.

Using the above result in (27), we obtain

inf
γ≥0

1T γ

∣∣∣∣∣
N2∑
i=1

1

N2
||yp,i||2`2 − γi||yr,i||

2
`2
≤ 0, ∀a ∈ `2e


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where ω is replaced by a since it is only the control variable. Finally,
we add the state constraints that were removed while formulating the
optimization problem (21)

inf
γ≥0

1T γ

∣∣∣∣∣
N2∑
i=1

1

N2
||yp,i||2`2 − γi||yr,i||

2
`2
≤ 0, ∀a ∈ `2e

xi[∞] = 0 ∀i ∈ {1, . . . , N2}

 (28)

Thus in this step, we have shown using S-procedure that the opti-
mization problem (20) and (28) are equivalent.

Step 4: Define x̄[∞] =
[
x1[∞]T . . . xN2

[∞]T
]T
, x̄[0] =[

x1[0]T . . . xN2
[0]T

]T
,

ȳp =
[
yTp1 . . . yTpN2

]T
, and ȳr =

[
yTr1 . . . yTrN2

]T
. Using

these definitions, the constraint of (28) can be rewritten as

− 1

N2
||ȳp||2`2 + ||

√
Γ(γ)ȳr||2`2 ≥ 0, ∀a ∈ `2e, x̄[∞] = 0 (29)

where Γ(γ) is defined in the theorem statement. Additionally due
to Assumption 2.3, we have x̄[0] = 0. Next let us define y1 =√

Γ(γ)ȳr, y2 = 1√
N2
ȳp and the supply rate s(·) , ||y1||22−||y2||22.

Then, we have shown from (29) that [22, Proposition 2, 2)] holds.
Equivalently, using [22, Proposition 2, 3)], we replace (29) by
the constraint of (13) where Σ̄p = (Ā, B̄, C̄p, D̄p) and Σ̄r =
(Ā, B̄, C̄r, D̄r) represent the system with the attack as input and
ȳp and ȳr as system outputs respectively. Constructing these system
matrices, as we did in Step 2 of this proof concludes the proof.

A.4. PROOF OF Lemma 4.5
Proof: To recall, the optimization problem (13) was formulated

using [22, Proposition 2, 3)] where y1 =
√

Γ(γ)ȳr and y2 =
1√
N2
ȳp. Here ȳp and ȳr represents the outputs of Σ̄p and Σ̄r respec-

tively. Due to the equivalency between 3) and 4) of [22, Proposition
2, 3)], the FDI [22, Proposition 2, 4)] should hold ∀ |z| = 1. Since
we know that y1 =

√
Γ(γ)ȳr and y2 = ȳp, we can deduce that

G1(z) corresponds to
√

Γ(γ)Ḡr(z) and G2(z) to 1
N2
Ḡr(z) in [22,

Proposition 2, 4)], where Ḡr(z) = C̄r(z1I − Ā)−1B̄ + D̄r and
Ḡp(z) , C̄p(z1I − Ā)−1B̄ + D̄p. Thus, (13) can be rewritten as

inf
{

1T γ
∣∣∣Ḡr(z̄)TΓ(γ)Ḡr(z)− ḠTp (z̄)Ḡp(z) � 0, ∀|z| = 1

}
(30)

Let us define the following sets such that Cna = Zpr∪Z∪Zr∪Zp.

Zpr , {x ∈ Cna | Ḡr(z)x = 0, Ḡp(z)x = 0},
Z , {x ∈ Cna | Ḡr(z)x 6= 0, Ḡp(z)x 6= 0},
Zr , {x ∈ Cna | Ḡr(z)x = 0, Ḡp(z)x 6= 0},
Zp , {x ∈ Cna | Ḡr(z)x 6= 0, Ḡp(z)x = 0}.

Sufficiency: For any given z such that |z| = 1 , if x ∈ Zp or x ∈
Zpr , choosing Γ(γ) = 0 satisfies the constraint of (30). Similarly,
if x ∈ Z , let us pick Γ(γ) = cInr where c is a constant. Then,
the value of (30) is bounded if there exists a bounded c that makes

Ξ , sup|z|=1,x∈Z
xH
{
ḠT

r (z̄)Ḡr(z)
}
x

xH
{
ḠT

p (z̄)Γ(γ)Ḡp,i(z)
}
x

bounded. Ξ is bounded

since the denominator cannot become zero (since x ∈ Z and Γ(γ)
is full rank), and we have assumed that the Ḡr(z) and Ḡp(z) are
stable (Assumption 2.1). Next we prove sufficiency when x ∈ Zr .

When condition 1) of the lemma statement holds, by definition
of a zero ∀|z| = 1, @s 6= 0 ∈ Cna such that Ḡr(z)s = 0. Thus
it follows that Zr = Zpr = ∅. When condition 2) of the lemma
statement holds, by definition of a zero ∀|z| = 1, @s 6= 0 such that
Ḡr(z)s = 0 and Ḡp(z)s 6= 0. Thus it follows that Zr = ∅.
Necessity: Assume that there exists a bounded Γ(γ) that solves (30).

We also assume that there exists a complex number z1 on the unit
circle which is a zero of the system Σ̄r (including multiplicity and
input direction) but are not zeros of Σ̄p. By definition of a zero, it
holds that ∃s 6= 0 such that Ḡr(z1)s = 0 and Ḡp(z1)s 6= 0. Under
these assumptions, when z = z1 and x = s, the constraint of (30)
can be rewritten as −sHḠTp (z̄1)Ḡp,i(z1)s ≥ 0 which cannot hold
since Ḡp(z1)s 6= 0. That is, the feasibility set of (30) is empty which
contradicts our assumption. This concludes the proof.
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