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Flocking control against the malicious agent
Chencheng Zhang, Hao Yang, Senior member, IEEE , Bin Jiang, Fellow, IEEE , and Ming Cao, Fellow, IEEE

Abstract— This paper investigates the flocking control of a
swarm with a malicious agent that falsifies its controller parame-
ters to cause collision, division, and escape of agents in the swarm.
A novel geometric flocking condition is established by designing
the configuration of the malicious agent and its neighbors, under
which we propose a hierarchical geometric configuration based
flocking control method. To help detect the malicious agent, a
parameter estimate mechanism is also provided. The proposed
method can achieve the flocking control goal and meanwhile con-
tain the malicious agent in the swarm without removing it. Experi-
mental result shows the effectiveness of the theoretical result.

Index Terms— Flocking control; malicious agent; geo-
metric configuration; swarm

I. INTRODUCTION

FLOCKING is a form of collective behavior of plenty of inter-
acting agents with a common group objective under limited en-

vironmental information and simple rules. Since Reynolds proposed
three heuristic rules: separation, alignment, and cohesion for flocking
model in [1], more and more researchers have put effort into the
flocking control problem with its applications in multi-agent systems,
mobile agents or networks [2], [3]. The main idea of flocking control
is to make all agents tend to the same velocity and approach a fixed
geometric configuration while preserving the swarm connectivity and
avoiding collisions by utilizing artificial intelligence techniques or
potential function approaches with local information exchange. In
[4], a collection of potential functions are designed for swarms of
either single or double integrator agents. Most of these functions
are unbounded and are often not appropriate for practice. Therefore,
bounded potential functions are investigated by researchers [5], [6].
What’s more, many studies appear in the investigation of swarm
intelligence for different tasks. For example, Ref. [7] considers the
aggregation and formation problem with a discrete-time model. In
[8], leader-follower configurations are jointly studied under the model
predictive control structure in uncertain environments.

Most of existing results aim at swarm flocking with all agents being
healthy and rational. However, agents may suffer from the safety and
security issues inevitably in practice. The misbehavior of a swarm
appear largely due to three reasons: faults in the physical layer [9],
attacks in the cyber layer [10], and abnormal/malicious decisions in
the supervisory layer [11], [12].

Under physical faults or cyber attacks, agents may under the
appropriate decisions from the supervisory layer. However, malicious
decisions refer to the agent’s subjectively abnormal and malicious
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behavior, which are consequences of either malicious intention or
limited cognitive capability of agents. So the malicious agent in
the supervisory layer is more difficult to handle. Moreover, since
the results on flocking under physical faults are already relatively
well developed [13], [14], this paper is devoted to solving flocking
problem under abnormal/malicious decisions in the supervisory layer.
This is a promising technique with many applications. A typical
example is manned-unmanned multiple (air) vehicle swarm where
some malicious members may gain control of vehicles to sabotage
the mission of the whole swarm [15]. Another example is the well-
known Byzantine agents who do not obey the prescribed strategy and
update their states arbitrarily to threaten the swarm objective [16]. In
real word applications, the control of an Unmanned Aerial Vehicle
(UAV) can be taken over by unintended users in a few seconds.

Some effort has been made on control against the malicious agent:
For the malicious agent in the cyber layer, the resilient flocking
and consensus problems are investigated in [17]- [19]. In these
works, although the malicious agent can communicate untruthful
information, they still execute the agreed upon decisions. This makes
them quite different from the agent with malicious decisions. And
these researches consider that the malicious agent can be removed
and assume that the network topology remain connected; For the
malicious agent in the supervisory layer, Ref. [20] proposes hybrid
R-censoring strategies to withstand Byzantine agents and enable
cooperative agents to reach consensus. This approach as well as most
of other related results merely relies on excluding the malicious agent.

However, to guarantee the completeness of the task in a swarm, the
malicious agent is supposed to be safely contained. What’s more, the
above excluding approaches without considering the motions are not
applicable for the networked agents subject to geometric or dynamical
constraints such as UAV swarms. To the best of our knowledge, until
now almost no result has been reported on flocking control against
malicious decisions of some agent, let alone the flocking control
method that deals with such an agent without excluding it.

Motivated by the above analysis, this paper focuses on the flocking
control problem of a swarm in which some agent makes abnor-
mal/malicious decisions in the supervisory layer. Specifically, the
malicious agent falsifies its controller parameters, breaks the balance
of the attraction or repulsion forces between agents, and thus may
lead to collision, division, and escape of agents in the swarm. As a
proverb says “one rotten apple could ruin a whole barrel of apples”,
this paper aims at studying how the malicious agent affects the whole
swarm and how to achieve the flocking control goal without removing
the malicious agent from the swarm. The main contributions of this
work are summarized as follows:

A novel geometric flocking condition is established to contain the
malicious agent by designing the configuration of the malicious agent
and its neighbors, under which the forces acting on the malicious
agent from its neighbors reach a balance. We establish a parameter
estimate mechanism using filters to help detect the malicious agent
with unknown control parameters. Relying on the geometric condition
and estimate mechanism, a hierarchical flocking control method is
proposed. Such a method consists of the geometrical configuration
based control for the neighbors of the malicious agent and the
adaptive flocking control for other normal agents. To the best of our
knowledge, this is the first attempt to enable a swarm to against the
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agent with malicious decisions and achieve the flocking control goal.
The remainder of the paper is organized as follows: In Section II,

preliminaries and model description are given. Sections III provides
the malicious agent containment analysis and the flocking control
method. The experimental result is presented in Section IV, followed
by a conclusion in Section V.

II. PRELIMINARIES

Notations: Let 1n denote the n × 1 column vector of all ones.
Let |a|1 denote the 1-norm and |a| denote the Euclidean-norm of a,
respectively. Let sgn(a) be the signum function of a. Let diag(a1, · ·
·, ap) be the diagonal matrix with diagonal entries a1 to ap. Let
λmin(·) denote the minimum eigenvalue of a square real matrix with
real eigenvalues. Let ⊗ be the Kronecker matrix product.

A. Flocking of a swarm
Consider a swarm of N agents, whose dynamics take the form{

ẋi = vi,
v̇i = ui, i ∈ V, (1)

where xi ∈ ℜm, vi ∈ ℜm and ui ∈ ℜm denote the position, the
velocity and the control (acceleration) input of agent i for i ∈ V with
V ≜ {1, ..., N}. Define xij ≜ xi−xj as the relative position between
agents i and j for i, j ∈ V . The model (1) can be transformed from
a nonlinear flight control system model [21].

The communication topology between agents in swarm (1) is
modeled by an undirected graph G = (V, E) that consists of a set
of vertices V and a set of edges E ≜ {(i, j)|i, j ∈ V, i ̸= j}.
Vertex i ∈ V represents agent i, and edge (i, j) ∈ E implies that
agents i and j can interact with each other and are unordered. An
undirected path between vertices i and j is a sequence of unordered
edges, (i, k1), (k1, k2), · · · , (kl, j) with distinct vertices kp, p =
1, 2, · · · , l. If there exists an undirected path between vertices i and
j, the two vertices are said to be connected; otherwise, they are
unconnected. An undirected graph is called connected if any two
distinct vertices in the graph are connected. The Laplacian matrix of
graph G is denoted by L. Define R as the sensing radius of each
agent, which indicates that two agents can interact only if distance
between them is smaller than R, i.e., if 0 < |xij | < R, then
(i, j) ∈ E ; otherwise, (i, j) /∈ E . Agent j is called a neighbor of
agent i if (i, j) ∈ E . Define N (i) ≜ {j ∈ V : (i, j) ∈ E , i ̸= j} as
the set of neighbors of agent i in G. Note that the following study can
be applied to the case that the communication topology is considered
static as well.

The flocking control objective is to make the whole swarm tend to a
common speed and approach a fixed configuration without collision,
i.e., limt→∞ ẋij = limt→∞ vi − vj = 0, ∀i, j ∈ V; 0< |xik(t)|<
R, t ≥ 0, ∀i ∈ V , k ∈N (i). A conventional flocking control law is
designed as [2]

ui = −
∑

j∈N (i)

(vi − vj)−
∑

j∈N (i)

∇xiVij(|xij |), i ∈ V (2)

where the first term corresponds to the desired velocity alignment,
and the second term is the gradient of a potential function Vij . Note
that many existing potential functions with different forms can be
applied here in the normal case, for example, the bounded potential
function proposed in [6]

Vij(|xij |) ≜
R2 − |xij |2

|xij |2 + R2

E︸ ︷︷ ︸
Vrij

+
|xij |2

R2 − |xij |2 + R2

E︸ ︷︷ ︸
Vaij

, 0 ≤ |xij | ≤ R

(3)

where E is a positive constant. Vij satisfies the following properties
• Vij(|xij |) = E when |xij | = 0 or |xij | = R;

•
∂Vij(|xij |)
∂(|xij |)

< 0 when |xij | ∈ (0, δ) and
∂Vij(|xij |)
∂(|xij |)

> 0 when

|xij | ∈ (δ,R), where δ ≜
√
2R
2 .

Physically, the potential can be divided into Vij ≜ Vaij + Vrij
where Vaij and Vrij can be viewed as potentials of attraction
and repulsion of agent i with respect to agent j, respectively.
Obviously, Vij reaches its minimum when |xij | = δ. In the
unique distance δ, it holds that ∇xiVaij(δ) + ∇xiVrij(δ) = 0.
In normal case, one can choose E > Q̄ ≜ 1

2

∑
i∈V v

T
i (0)vi(0) +

N(N−1)
2 maxi,j∈V{V̄ij(|xij(0)|)} where V̄ij(|xij |) ≜

R2−|xij |2

|xij |2
+

|xij |2

R2−|xij |2
. This makes the potential between any two agents suffi-

ciently large when the distance between them is equal to 0 or R,
and thus avoids the collision while preserving the connectivity [6].
In the sequel, E will be chosen sufficiently large (i.e., larger than the
initial energy functions built in the following sections) to avoid the
collision and preserve the connectivity when applying the potential
function Vij in the control design.

B. Malicious agent
Consider a malicious agent, denoted as if ∈ V , who intentionally

falsifies controller parameters such that

uif = −kv
∑

j∈N (if )

(vif − vj)−
∑

j∈N (if )

∇xif
Ṽif j(|xif j |) (4)

where

Ṽif j(|xif j |) ≜ kaVaif j(|xif j |) + krVrif j(|xif j |) (5)

We provide some insights on these parameters:
• ka: This parameter represents the strength of the attractive force

on agent if which is inverted for ka < 0, completely lost for
ka = 0, partially lost for 0 < ka < 1, and strengthened for
ka > 1.

• kr: This parameter represents the strength of the repulsive force
on agent if which is inverted for kr < 0, completely lost for
kr = 0, partially lost for 0 < kr < 1, and strengthened for
kr > 1.

• kv < 1: This parameter represents the efficacy for the velocity
consensus of agent if which is inverted for kv < 0, completely
lost for kv = 0, and partially lost for 0 < kv < 1.

Compared with the normal controller in (2), the attraction/repulsion
effort acting on agent if from each of its neighbors is out of balance
under the distance δ. The resultant force of agent if is decided by the
combination of these three parameters. When kv = ka = kr = 1,
the malicious agent is degenerated into a normal one.

Specifically, there are two circumstances that can cause serious
influence to the swarm: (1) When kv ≤ 0, ka ≤ 0 and kr ≫ 1, the
malicious agent if tries its best to run away from the agents around
it and may finally escape from the swarm; (2) When kv ≤ 0, kr ≤ 0
and ka ≫ 1, agent if tries its best to collide with the agents around
it.
Assumption 1 : |kv| ≤ k̄v , |ka| ≤ k̄a, |kr| ≤ k̄r for k̄v, k̄a, k̄r > 0.

□
This assumption means that these parameters are bounded and

this is helpful to design the bounds of potential functions. Such
an assumption is not required if the unbounded potential functions
instead of the bounded ones are applied in this research.

In the following, the definition of containing a malicious agent is
presented.
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Definition 1 : The malicious agent if is said to be contained if v̇if =

uif = 0 and |xif j | = δ̄if j where 0 < δ̄if j < R is a designable
expected distance between agent if and its neighbor j ∈ N (if ). □

C. Problem formulation
Define a undirected graph G′ ≜ (V ′, E ′) consisting of the set of

vertices V ′ ≜ V − {if} and the set of edges E ′ ≜ {(i, j)|i, j ∈
V ′, |xij | < R, i ̸= j}. Define Vi ≜

∑
j∈N (i) Vij for i ∈ V, j ∈

N (i) and Ṽif ≜
∑

j∈N (if )
Ṽif j .

Assumption 2 : The initial graph G′ is connected. □
Assumption 2 guarantees that the information among all the normal

agents in the swarm can be transmitted at the initial time. Similar
classical assumption on initial graph can be found in many flocking
control researches such as [3], [5]. Based on this assumption, the
problem to be solved is formulated as follows.
Problem F : Consider the swarm (1) satisfying Assumptions 1-2
with a malicious agent if ∈ V under controller (4)-(5). Design ui,
i ∈ V ′ such that
① limt→∞(vi − vj) = 0, ∀i, j ∈ V , i.e., all the agents tend to a
same velocity;
② The swarm (1) asymptotically converges to a fixed geometric
configuration, under which

• uif = 0 and |xif j | = δ̄if j , ∀j ∈ N (if ) where 0 < δ̄if j < R,
i.e., the malicious agent if is contained.

• |xij | = δ̃ij , ∀i ∈ V ′, j ∈ N (i) where 0 < δ̃ij < R, i.e., the
normal agents are connected with their neighbors;

③ |xij(t)| ≠ 0 for t ≥ 0, ∀i, j ∈ V and i ̸= j, i.e., no collision
occurs. □

III. MAIN RESULT

A. Malicious agent containment analysis
We first establish a distributed geometric condition under which the

malicious agent can still be contained in the swarm. Such a condition
will be the basis for the flocking control design.
Lemma 1 : Consider the swarm (1) with malicious agent if ∈ V
under controller (4)-(5). Suppose that vif − vj = 0, ∀j ∈ N (if ). If

|xif j | = δ̄, ∀j ∈ N (if ), (6)∑
j∈N (if )

xif j = 0 (7)

Proof : As Ṽif j defined in (5) is symmetric with respect to xif j ,
it holds that∑

j∈N (if )

∇xif
Ṽif j(|xif j |) =

∑
j∈N (if )

∇xif j Ṽif j(|xif j |)

=
∑

j∈N (if )

∂Ṽif j(|xif j |)
∂|xif j |

·
∂|xif j |
∂xif j

It yields from the definition of Euclidean norm that for j ∈ N (if )

∂|xif j |
∂xif j

=
∂(xTif jxif j)

1
2

∂xif j
=

1

2
(xTif jxif j)

− 1
2 ·

∂(xTif jxif j)

∂xif j

=
2xif j

2(xTif j
xif j)

1
2

=
xif j

|xif j |

Thus, one can obtain that∑
j∈N (if )

∇xif
Ṽif j(|xif j |) =

∑
j∈N (if )

∂Ṽif j(|xif j |)
∂|xif j |

·
xif j

|xif j |
(8)

Define s as the number of agents in N (if ). Condition (6) indicates
that |xif j1 | = |xif j2 | = · · · = |xif js | for j1, j2, ..., js ∈ N (if ).
Therefore, it holds Ṽif j1(|xif j1 |) = Ṽif j2(|xif j2 |) = · · · =

Ṽif js(|xif js |). It yields from (8) that∑
j∈N (if )

∇xif
Ṽif j(|xif j |)

= s
∂Ṽif j(|xif j |)

∂|xif j |

∣∣∣∣
|xif j |=δ̄

·
(xif j1 + xif j2 + · · ·+ xif js)

δ̄

According to condition (7), one further has∑
j∈N (if )

∇xif
Ṽif j(|xif j |)

= s
∂Ṽif j(|xif j |)

∂|xif j |

∣∣∣∣
|xif j |=δ̄

·

∑
j∈N (if )

xif j

δ̄
= 0

Suppose that vif −vj = 0 for j∈N (if ). According to the malicious
controller (4)-(5) of if , under conditions (6)-(7), one can deduce that

v̇if = uif = −
∑

j∈N (if )

kv(vif − vj)−
∑

j∈N (if )

∇xif
Ṽif j(|xif j |)

= 0 (9)

This completes the proof. □
Remark 1 : Conditions (6)-(7) provide a desired geometrical con-
figuration that is a regular polygon with the malicious agent being
the center and its neighbors being vertexes. In this case, the total
potential gradient of the malicious agent with respect to its neighbors
is restricted to be 0 and their distances are also fixed. Physically,
this means that the forces acted on the malicious agent from all its
neighbors reach a balance such that the malicious agent can still be
contained in the swarm. An example of the desired configuration
satisfying (6)-(7) is presented in Fig. 1, where the malicious agent is
surrounded by three neighbors. □
Remark 2 : Conditions (6)-(7) require the number of agents in
N (if ), s ≥ 2. This is because when agent if has at least two
neighbors, there exist expected extreme points of the total potential
Ṽif such that ∇xif

Ṽif can be 0. Then agent if ’s malicious behavior

can be contained. Provided that s = 1, Ṽif is only related to
|xif j | for j ∈ N (if ). According to the malicious controller (4)-
(5), Ṽif tries to reach its minimum. However, as Ṽif reaches its
minimum, |xif j | reaches an unexpected or even dangerous distance,
for example, |xif j | = 0 when kr = 0 and ka ̸= 0 in (7). No expected
extreme point can be found since Ṽif monotonically increases with
respect to |xif j |. Once |xif j | ≠ 0, it holds ∇xif

Ṽif > 0 which
leads to the acceleration of agent if . Thus, the malicious agent can
never be contained. □

Malicious agent

Containment agent
1j

fi

2j 3j

Fig. 1. An illustration of the desired configuration to contain the
malicious agent.

B. Hierarchical geometric configuration based flocking control
In this subsection, a hierarchical geometric configuration based

flocking control method is proposed to solve problem F . The control



4 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2022

architecture is shown in Fig. 2, where the malicious agent is in Layer
1, all its neighbors are in Layer 2, and other agents in the swarm are
in Layer 3. An important feature of such an architecture is that the
agents in Layer 2 do not utilize the information of agents in Layer 3.
This feature makes agents in Layer 2 form the desired configuration
as in Lemma 1 more conveniently to contain the malicious one. In
this case, the agents in Layers 2 and 3 can be viewed as leaders and
followers, respectively. Define Vl as the set of agents in Layer 2, Vf

as the set of agents in Layer 3, and Vg ≜ {if} +N (if ) as the set
of agents in Layers 1 and 2 as shown in Fig. 2. Next we shall design
controllers for agents in Layer 2 and Layer 3, respectively.

Layer 1

Layer 2

Layer 3

Malicious agent

Containment agent

(Leader)

Follower

3j

1k

2k

3k

4k

1j

fi

2j

Fig. 2. An illustration of the hierarchical control architecture.

Before giving the main result, the following assumptions are made.
Assumption 3 : At the initial time, there are at least two neighbors
of the malicious agent. □
Assumption 4 : At the initial time, any two agents in N (if ) are
neighbors. □

Assumption 3 is a condition on the number of the malicious agent’s
neighbors under the geometric configuration method, which has been
explained in Remark 2. Assumption 4 means that all neighbors of the
malicious agent can interact with each other at the initial time. Such
an assumption is needed to resist the influence of the malicious agent
by its neighbors jointly under a distributed control structure, and will
be explained in details in Remarks 3 and 4.

For convenience, rewrite the dynamics of the malicious agent if

v̇if = −Cif k (10)

where k ≜ (kv, ka, kr)
T is the vector of the un-

known parameters and Cif ≜
(∑

j∈N (if )
(vif − vj),∑

j∈N (if )
∇xif

Vaif j(|xif j |),
∑

j∈N (if )
∇xif

Vrif j(|xif j |)
)

.
In order to track the unknown parameters, filter vif and Cif in

(10) by low-pass first-order filters, one has

v̇Fif = −avFif + avif , vFif (0) = vif (0) (11)

ĊF
if

= −aCF
if

+ Cif , CF
if
(0) = 0 (12)

where a > 0 is the scalar filter gain. vFif and CF
v are the filtered

vif and Cv , respectively. They can be obtained by the above stable
linear filter equations (11)-(12). And it holds that v̇Fif = −aCF

if
k.

This together with (11) yields

−vFif + vif = −CF
if
k (13)

Define k̂ ≜ (k̂v, k̂a, k̂r)
T as the estimate of k. Design the adaptive

update law of the estimate as follows

˙̂
k = −ΓkC

T
if

∑
j∈N (if )

(vj − vif )

− Γk(C
F
if
)T (CF

if
k̂ + vif − vFif ) (14)

where Γk is the positive-definite gain matrix.
Based on Conditions (6)-(7) of Lemma 1, let

∑
j∈N (if )

x∗if j = 0

and |x∗jif | = δ̄ <R/2 where x∗if j denotes the desired displacement
between agents if and j ∈ N (if ). Note that xjk= xjif−xkif and
x∗jk = x∗jif − x∗kif , ∀j, k ∈ N (if ). Design the controller of agent
j ∈ N (if ) as follows

uj =− κv
∑

p∈N (j)∩Vl

(vj − vp)− κx
∑

p∈N (j)∩Vl

∇xj V̂jp(xjp)

− Cif k̂ (15)

where constants kv, kx ≥ 1. The non-negative potential function
V̂ij(xij) satisfies the following properties that

1) V̂ij attains its unique minimum and
∂V̂ij

∂|xij−x∗ij |
= 0 when

xij = x∗ij ;

2) V̂ij > H̄ when |xij | = 0 and |xij | = R where H̄ is a
designable positive constant.

To solve Problem F , H̄ is chosen as follows

H̄ =
∑

j∈N (if )

(
κxV̂

′
jif

(0) +
κx
2

∑
i∈N (if )∩N (j)

V̂ ′
ji(0)+

1

2
(vj(0)−vif (0))

T (vj(0)−vif (0))
)
+
1

2
λmax(Γ

−1
k )×(

(k̄v+k̂v(0))
2 + (k̄a+k̂a(0))

2+(k̄r+k̂r(0))
2
)

(16)

where V̂ ′
ij(0) ≜

|xij(0)−x∗ij |
2

R−|xij(0)|
+

|xij(0)−x∗ij |
2

|xij(0)|
.

Condition 1) shows that the potential between two agents is
minimized when their displacement is equal to the desired one,
which makes the two agents approach to the desired configuration.
Condition 2) means that the potential would become sufficiently large
when the two agents tend to collide or escape, and thus guarantees
that no collision happens and no edge is lost. One example of such
a potential function is as follows

V̂ij(xij) ≜
|xij − x∗ij |

2

R− |xij |+
(R−δij)

2

H̄+ı

+
|xij − x∗ij |

2

|xij |+
δ2ij
H̄+ı

for 0≤|xij |≤R, where ı is a positive constant and δij ≜ |x∗ij |, 0 <
|x∗ij | < R.
Remark 3 : Note that in controller (15), agent j ∈ N (if ) only
utilizes the information in Vg (Layers 1-2) rather than information in
Vf (Layer 3). In the last term of controller (15), the estimate k̂ of the
unknown parameter k with adaptive updating law (14) is utilized. And
controller (15) requires the state information among all the neighbors
of the malicious agent. This local information exchange is required
since all neighbors need to jointly resist the influence of the malicious
agent. As will be shown in Theorem 1, under Assumption 4, this
local information exchange is always available. We shall explain this
setting later in Remark 4. □

Now design a distributed adaptive controller for agent k ∈ Vf as

uk = −
∑

p∈N (k)

αkpsgn(vk − vp)−
∑

p∈N (k)

∇xkVkp(|xkp|) (17)

α̇kp = γkp|vk − vp|1, p ∈ N (k)

where αkp is a varying gain with initial values αkp(0) ≥ 0 and Vkp
is defined in (2). γkp is a positive constant and γkp = γpk.
Theorem 1 : Consider the swarm (1) satisfying Assumptions 1-4
with malicious agent if ∈ V under controller (4)-(5). Problem F
is solved by applying controller (15) along with parameter estimate
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update law (14) to agents in Vl and controller (17) to agents in Vf .
□

Before moving on, the following concepts of directed graph theory
and a lemma are given that will be used to prove Theorem 1.

A directed graph Ĝ consists of a pair (V̂, Ê), where V̂ ≜
{1, · · · , p} is a set of vertices and Ê ≜ {(j, k)|j, k ∈ V̂, j ̸= k} is a
set of ordered pairs of vertices. An edge (j, k) denotes that vertex k
can obtain and utilize information from vertex j, but not necessarily
vice versa. A directed path from vertex j to k is a sequence of edges
denoted by (j, i1), (i1, i2), · · · , (ir, k) with il ∈ V̂, l ∈ {1, · · · , r}.
Lemma 2 [23] : For an undirected connected graph with the
Laplacian matrix L ∈ ℜn×n, given B ≜ diag(b1, · · · , bn) where
bi ≥ 0, i = 1, · · · , n, if there exists bi > 0, then the matrix
E = L+B is symmetric positive definite. □

Proof of Theorem 1 : The proof of Theorem 1 is divided into two
parts: In Part A, we prove that limt→∞(vi−vj) = 0, limt→∞ xji =
x∗ji and 0 < |xij(t)| < R for t ≥ 0, ∀i, j ∈ Vg . In Part B, we prove
that limt→∞(va − vb) = 0 and 0 < |xab(t)| < R for t ≥ 0,
∀a, b ∈ V . limt→∞ ∇xpVp = 0, ∀p ∈ Vf .

Part A. The behavior of agents in Layers 1-2 is considered and
the proof is given by analyzing the error velocity and position
information between the malicious agent and its neighbors. Denote
xf ≜ (xTif , x

T
j1
, ..., xTjs)

T , vf ≜ (vTif , v
T
j1
, ..., vTjs)

T for jk ∈
N (if ), k ∈ {1, ..., s}. Define an energy function H(xf , vf ) as

H(xf , vf ) ≜κx
∑

j∈N (if )

V̂jif +
κx
2

∑
j∈N (if )

∑
i∈N (if )∩N (j)

V̂ji

+
1

2

∑
j∈N (if )

(vj − vif )
T (vj − vif )

+
1

2
k̃TΓ−1

k k̃ (18)

where k̃ ≜ (k̃v, k̃a, k̃r)
T with k̃v ≜ kv − k̂v, k̃a ≜ ka − k̂a, k̃r ≜

kr − k̂r . Note that ˙̂
Vji = ẋji∇xji V̂ji. The time derivative of

H(xf , vf ) is

Ḣ(xf , vf ) =κx
∑

j∈N (if )

(vTj − vTif )∇xj V̂jif

+
κx
2

∑
j∈N (if )

∑
i∈N (if )∩N (j)

(vTj − vTi )∇xj V̂ji

+
∑

j∈N (if )

(vj − vif )
T (v̇j − v̇if )− k̃TΓ−1

k
˙̂
k

Applying the filters (11)-(12), the estimator (14) and controller (15),
one has

Ḣ(xf , vf )

=κx
∑

j∈N (if )

(
(vTj −vTif )∇xj V̂jif +

1

2

∑
i∈N (if )∩N (j)

(vTj − vTi )

×∇xj V̂ji

)
+

∑
j∈N (if )

(vj−vif )
T
(
− κv(vj − vif )

− κv
∑

p∈N (if )∩N (j)

(vj − vp)− κx
∑

i∈N (if )∩N (j)

∇xj V̂ji

− κx∇xj V̂jif

)
− k̃T (CF

if
)TCF

if
k̃ (19)

It follows from the fact that xji = −xij and xji−x∗ji = −(xij−x∗ij)

that
∂V̂ji
∂xji

=
∂V̂ji
∂xj

= −∂V̂ij
∂xi

. Thus, it holds that

κx
2

∑
j∈N (if )

∑
i∈N (if )∩N (j)

(vTj − vTi )∇xj V̂ji

=
κx
2

∑
j∈N (if )

∑
i∈N (if )∩N (j)

(
(vTj − vTif )∇xj V̂ji

+ (vTi − vTif )∇xi V̂ij

)
=κx

∑
j∈N (if )

(vTj − vTif )
∑

i∈N (if )∩N (j)

∇xj V̂ji (20)

Combining (19) and (20) yields that

Ḣ(xf , vf )

=− κv
∑

j∈N (if )

(vj − vif )
T (vj − vif )− k̃T (CF

if
)TCF

if
k̃

− κv
2

∑
j∈N (if )

∑
p∈N (if )∩N (j)

((vj−vif )−(vp−vif ))
T (vj−vp)

=− κv
∑

j∈N (if )

(vj−vif )
T (vj−vif )−

κv
2

∑
j∈N (if )

∑
p∈N (if )∩N (j)

(vj−vp)T (vj−vp)− k̃T (CF
if
)TCF

if
k̃ (21)

Therefore, Ḣ(xf , vf ) is always nonpositive and H(t) ≤ H(0) for
t ≥ 0. From the definition of H(t) in (18), it holds that H(t) >
V̂ji(t), ∀i, j ∈ Vg . Thus, V̂ji(t) < H(0) for t ≥ 0. According to
the property 2) of V̂ , V̂ji(t) > H̄ , ∀j ∈ N (i) when |xji| = 0
and |xji| = R. Since the constant H̄ is chosen as in (16), it holds
that H̄ > H(0). Thus, V̂ji(t) > H̄ > H(0) when |xji| = 0 and
|xji| = R. This is contradict to V̂ji(t) < H(0), ∀t ≥ 0. Hence,
|xji| ̸= 0 and |xji(t)| ̸= R, ∀t ≥ 0. This guarantees that the collision
is avoided and no edge is lost between any two agents in Vg .

Define the level set Ωf ≜ {(xTf , v
T
f )T ∈ R2(s+1)×m : H(t) ≤

H(0), H(0) > 0}. By applying LaSalle’s invariance principle,
(xTf , v

T
f )T starting in Ωf asymptotically converges to the largest

invariant set inside the region C ≜ {(xTf , v
T
f )T ∈ Ωf : Ḣ(t) = 0}.

According to (21), Ḣ(t) = 0 holds if and only if v1 = v2 =
· · · = vif and CF

if
k̃ = 0. This implies that limt→∞(vi − vj) = 0,

∀i, j ∈ Vg . and limt→∞ CF
if
k̃ = 0. Moreover, according to (12),

limt→∞ CF
if

= Cif /a where a > 0. Thus limt→∞ Cif k̃ = 0.
In the following, we consider the error system v̇j−v̇if = uj−uif

for j ∈ N (if ) at the point v1 = v2 = · · · = vif . Obviously, it holds
that v̇j − v̇i = 0, ∀i, j ∈ Vg . Combining malicious controller (4)
and controller (15), one has v̇j − v̇if = −κv

∑
j∈N (if )

(vif −
vj) −

∑
p∈N (j)∩Vg

(vj − vp) −
∑

p∈N (j)∩Vg
∇xj V̂jp + Cif k̃.

Note that Cif k̃ = 0 at the point v1 = v2 = · · · = vif
∀j ∈ Vg . Thus,

∑
p∈N (j)∩Vg

∇xj V̂jp = 0. Define ψGf
(xf ) ≜

(· · ·, |xij − x∗ij |, · · ·)
T with i, j ∈ Vg . Consider the error system

in the compact form, one obtains that RT
Gf

(xf )ξ(xf ) = 0 where

ξ(xf ) ≜ (···, ∂V̂ij/∂|xij − x∗ij |, ···) and RT
Gf

(xf ) ≜ ∇xfψGf
(xf )

is the rigidity matrix. Since Rank(RGf
(xf )) = md−m(m+1)/2

where m is the dimension and d is the vertex number of Vg , it
follows from the Rigidity Theory in [25] that RT

Gf
(xf )ξ(xf ) = 0

is equivalent to ξ(xf ) = 0. From the property 1) of V̂ij , we can
deduce that ∂V̂ij/∂|xij − x∗ij | = 0 is equivalent to |xij − x∗ij | = 0,
∀i, j ∈ Vg . Hence, it holds that xij → x∗ij as t→ ∞. Also, it yields
from controllers (4) and (15) that v̇if = uif → 0 and v̇j = uj → 0
for j ∈ N (if ).

Part B. As is shown in Fig. 2, all agents in Layer 2 can be
viewed as the leaders of agents in Layer 3. Let Ḡ be the direct graph
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characterizing the information interaction among agents in Vf and
the transmission from agents in Vl(N (if )) to agents in Vf . If there
exists a directed path from agent j ∈ N (if ) to agent k ∈ Vf in
graph Ḡ, agent j is said to be a leader of agent k. Here, we prove
that leader-follower flocking for agents in Layers 2-3 can be realized
under controller (17) by analyzing the graph corresponding to each
leader and all its followers. This together with the results in Part A
yields that all the followers tend to the same velocity as that of the
leaders.

Denote L(k) as the set of agent k’s leaders. Define the energy
function Υ(x, v) as

Υ(x, v) ≜H(xf , vf ) +
∑
i∈Vf

∑
j∈L(i)∩N (i)

Vij

+
1

2

∑
i∈Vf

∑
p∈Vf∩N (i)

sL(i)Vip

+
1

2

∑
i∈Vf

∑
j∈L(i)

(vi − vj)
T (vi − vj)

+
∑
i∈Vf

∑
j∈N (if )∩N (i)

1

2γij
(αij − ᾱ)2

+
∑
i∈Vf

∑
p∈Vf∩N (i)

sL(i)

4γip
(αip − ᾱ)2 (22)

where sL(i) denotes the number of agents in set L(i). Constant ᾱ
will be designed later.

Note that the graph of agents in Layer 3 is undirected, thus sL(i) =
sL(j), ∀i ∈ Vf , j ∈ N (i) ∩ Vf . Therefore, the derivative of Υ is

Υ̇ =Ḣ +
∑
i∈Vf

∑
j∈L(i)∩N (i)

ẋTij∇xijVij +
1

2

∑
i∈Vf

∑
p∈Vf∩N (i)

sL(i)ẋ
T
ip∇xipVip +

∑
i∈Vf

∑
j∈L(i)

(vi − vj)
T (v̇i − v̇j)

+
∑
i∈Vf

∑
j∈N (if )∩N (i)

(αij − ᾱ)|vi − vj |1

+
∑
i∈Vf

∑
p∈Vf∩N (i)

sL(i)

2
(αip − ᾱ)|vi − vp|1

Applying controller (17), one obtains that

Υ̇ =Ḣ(xf , vf ) +
∑
i∈Vf

∑
j∈L(i)∩N (i)

(vi − vj)
T∇xijVij

+
1

2

∑
i∈Vf

∑
p∈Vf∩N (i)

sL(i)ẋ
T
ip∇xipVip +

∑
i∈Vf

∑
j∈L(i)

(vi−vj)T

×
(
−

∑
j∈L(i)∩N (i)

αijsgn(vi−vj)−
∑

p∈Vf∩N (i)

αipsgn(vi−vp)

−
∑

j∈L(i)∩N (i)

∇xijVij −
∑

p∈Vf∩N (i)

∇xipVip − uj

)
+

∑
i∈Vf

∑
j∈N (if )∩N (i)

(αij − ᾱ)|vi − vj |1

+
∑
i∈Vf

∑
p∈Vf∩N (i)

sL(i)

2
(αip − ᾱ)|vi − vp|1

For convenience, label the agents in N (if ) who have neighbors in Vf

as 1 to ω. If there exists a directed path from agent j, j ∈ {1, · · · , ω}
to some agents in Vf , denote the set of these agents as F (j). Note
that F (j) ⊆ Vf , and the leaders of k, p are same if k, p ∈ Vf are

neighbors. Therefore, it yields that

Υ̇ =Ḣ +
1

2

∑
i∈Vf

∑
p∈Vf∩N (i)

sL(i)ẋ
T
ip∇xipVip

−
∑
i∈Vf

∑
j∈N (if )∩N (i)

αij |vi − vj |1 −
ω∑

j=1

∑
i∈F (j)

(vi − vj)
T

×
∑

p∈F (j)∩N (i)

αipsgn((vi − vj)− (vp − vj))

−
ω∑

j=1

∑
i∈F (j)

(vi − vj)
T

∑
p∈Vf∩N (i)

∇xipVip

−
∑
i∈Vf

∑
j∈N (if )∩N (i)

(vi − vj)
Tuj −

ω∑
j=1

∑
i∈F (j)

(vi − vj)
Tuj

+
∑
i∈Vf

∑
j∈N (if )∩N (i)

(αij − ᾱ)|vi − vj |1

+

ω∑
j=1

∑
i∈F (j)

(vi − vj)
∑

p∈F (j)∩N (i)

(αip − ᾱ)

× sgn
(
(vi − vj)− (vp − vj)

)
(23)

Since Vip is symmetric with respect to xip and xip = (xi − χ) −
(xp − χ), ∀χ ∈ ℜm, it holds that

1

2

∑
i∈Vf

∑
p∈Vf∩N (i)

ẋTip∇xipVip(xip)

=
1

2

ω∑
j=1

∑
i∈F (j)

∑
p∈F (j)∩N (i)

((vi − vj)− (vp − vj))

×∇xji V̂ip((xi − xj)− (xp − xj))

=

ω∑
j=1

∑
i∈F (j)

(vi − vj)
∑

p∈F (j)∩N (i)

∇xip V̂i(xip) (24)

Since uj(t) is continuous for t ∈ [0,∞) and it is proved in Part
A that limt→∞ uj = 0, it holds that uj(t) is bounded for t ∈
[0,∞). Denote the bound as µ such that |uj(t)|1 ≤ µ, ∀j ∈ N (if ).
Substituting (24) into (23) yields

Υ̇ ≤Ḣ +
∑
i∈Vf

∑
j∈N (if )∩N (i)

|uj ||vi − vj |

+

ω∑
j=1

∑
i∈F (j)

|uj ||vi − vj | −
∑
i∈Vf

∑
j∈N (if )∩N (i)

ᾱ|vi − vj |1

−
ω∑

j=1

∑
i∈F (j)

(vi − vj)
T

∑
p∈F (j)∩N (i)

ᾱsgn((vi − vj)−(vp − vj))

Define the number of agents in F (j), j ∈ {1, · · · , ω} as sF (j).
Define v̌j as a column stack vector of (vi − vj), i ∈ F (j). Let
Gj be the undirected graph characterizing the interaction among the
sF (j) followers of leader j with the associated Laplacian matrix
Lj ≜ DjD

T
j . Note that by definition, Lj is symmetric positive semi-

definite. Let Ḡj be the directed graph characterizing the interaction
among leader j and its followers. Let the edge weight aij = 1 if
leader j is a neighbor of follower i and aij = 0 otherwise. Define
Λj ≜ diag(ai1j , · · · , aisF (j)j

), ik ∈ F (j), k = 1, · · · , sF (j). Note

that Λ2
j = Λj because aij , i ∈ F (j) is either 1 or 0. Therefore, it
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holds

Υ̇ ≤Ḣ +

ω∑
j=1

1sF (j)
⊗ µ|v̌j | −

ω∑
j=1

ᾱ|Λj ⊗ Imv̌j |1

−
ω∑

j=1

ᾱ|DT
j ⊗ Imv̌j |1

Define the leader-follower topology matrix associated with graph Ḡj
as Rj ≜ Lj + Λj , j ∈ {1, · · · , ω}. According to Lemma 2, Rj is
symmetric positive definite. Based on (21) and the fact that |·| ≤ |·|1
for any vector, one obtains

Υ̇ ≤− κv
∑

j∈N (if )

(vj − vif )
T (vj − vif )

− κv
2

∑
j∈N (if )

∑
p∈N (if )∩N (j)

(vj − vp)
T (vj − vp)

− k̃T (CF
if
)TCF

if
k̃ −

ω∑
j=1

(ᾱ
√
λmin(Rj)− µ̄)|v̌j | (25)

where µ̄ ≜ maxk∈{sF (1),sF (2),··· ,sF (ω)}{1k⊗µ}. If Rj(t), changes
at some time, there exists t1 > 0 such that Rj(t) = Rj(0), ∀t ∈
[0, t1). By designing ᾱ > µ̄/minj∈{1,··· ,ω}{

√
λmin(R(j)(0))},

one has Υ̇(t) ≤ 0 for t ∈ [0, t1). Since Vik(t), i ∈ V ′, k ∈
N (j) ∩ V ′ is continuous, we can conclude that Vik(t1) ≤ Υ(t1).
From the definition of Vik in (2), it follows that there is no collision
and no edge in the graph Ḡj(0) will be lost for t ∈ [0, t1].
Therefore, the only possibility that Rj(t) changes at t = t1 is
that some edges are added in the graph, which means that Ḡj(0)
is a subgraph of Ḡj(t1). Then it yields from Lemma 2.2 in [24]
that Rj(0) ≤ Rj(t1),∀j ∈ {1, · · · , ω} and thus λmin(Rj(0)) ≤
λmin(Rj(t1)). Following the same argument, if Rj(t) changes at
t = ti > t1, i = 1, · · · , one can have the same conclusion.
Therefore, it holds that µ̄/minj∈{1,··· ,ω}{

√
λmin(R(j)(0))} ≥

µ̄/minj∈{1,··· ,ω}{
√
λmin(R(j)(t))} for all t ≥ 0. And there is

no collision and also no edge in the graph Ḡj(0) is lost for all t ≥ 0.
Thus, Υ̇(t) ≤ 0, ∀t ≥ 0.

Combining (25) with the analysis in Part A, it holds that
limt→∞(vj − vif ) = 0 and limt→∞(vi − vj) = 0, ∀i ∈ F (j), j ∈
{1, · · · , ω}. Assumption 2 indicates that there exists at least one
leader in {1, · · · , ω} for each agent in Vf when t = 0. Since no
edge in Ḡj , ∀j ∈ {1, · · · , ω} is lost for t ≥ 0, all agents in Vf are
followers of agents in {1, · · · , ω} for t ≥ 0. This further leads to
limt→∞(vi − vj) = 0, ∀i, j ∈ V . This completes the proof. □
Remark 4 : According to the proof of Theorem 1, limt→∞(xij −
x∗ij) = 0, ∀i, j ∈ Vg holds. Since |x∗if j | = δ̄if j < R/2, ∀j ∈
N (if ), it holds |x∗pk| = |x∗pif + x∗ifk| ≤ |x∗ifp| + |x∗ifk| < R,
∀p, k ∈ N (if ) Also, no edge in Vg is lost under the controller (15).
This together with Assumption 4 that any two agents in N (if ) are
neighbors at the initial time guarantees that any two agents in N (if )
are always neighbors for all t ≥ 0. Therefore, the local information
exchange among all the neighbors of the malicious agent can be
obtained as they can interact with each other. If Assumption 4 is
not satisfied, this information can be achieved in virtue of a local
communication network among agents in Layer 2 [22]. Such a local
network can be built conveniently if it does not exist, since these
agents are close to each other. With this local network, δ̄if j can be
any desired value in (0, R). □
Remark 5 : The main idea of the geometric configuration control
(15) is to contain the malicious agent by “pulling” its neighbors to
the desired geometric shape. In the controller, the first term is to urge
the agents to reach the same common velocity. The second term is

to let the agents approach to the desired configuration to contain the
malicious agent. The last term is to compensate for the influence of
the malicious agent reacting on its neighbors. □

IV. EXPERIMENTAL RESULT

In this section, the experimental result is presented to illustrate the
effectiveness of the proposed flocking control scheme in the above
section.

A semi-physical experimental platform of an Unmanned Aerial
Vehicle(UAV) swarm has been set up based on 40 Raspberry Pi
computers. The dynamics and controller of each UAV are simulated
by 2 Raspberry Pi computers, respectively. Specifically, the flight
control system model of UAV in the platform and the transformation
method between the UAV model and model (1) are from Ref. [21].
Fig. 3 is the picture of the UAV swarm semi-physical platform, which
consists of 4 parts: Raspberry Pi computers, a thrust lever, a data
analysis terminal and a flight display terminal.

In the experiment, we consider a 2-dimensional swarm of 13 UAVs
(UAVs 0-12), including a malicious agent (UAV 6) under controller
(4)-(5) with ka = 0, kr = 450000 and kv = 0.8. Define the velocity
of UAV i ∈ {0, 1, ..., 12} as vi ≜ (vxi, vyi) where vxi and vyi are
velocities in x-dimension and y-dimension, respectively. The control
inputs of UAV i is the banking angle Φi, lift Li and engine thrust
Ti. The initial ground velocity Vi, i ∈ {0, 1, ..., 12} of UAV i is
taken randomly from (27, 35)m/s and heading angle χi is taken
from (π/6, π/4)rad. The initial flight path angle is 0. According to
the model transformation in [21], vxi ≜ Vi cos(γi) cosχi and vyi ≜
Vi cos(γi) sinχi. Let the communication distance be R = 18

√
2m,

thus δ = 18m. Let the desired distance between the malicious agent
and its neighbors be δ̄ = 12m < R/2. Apply controller (15) with
κv = 6 and κx = 2 to UAVs 2, 5, 7 and 10. Apply controller (17)
with γkp = 1 to UAVs 0, 1, 3, 4, 8, 9, 11 and 12. The experimental
result presented in Figs. 4-5 shows that all UAVs tend to a common
velocity and all the control efforts tend to 0. The malicious UAV 6
is contained, and the distances between it and its neighbors tend to
12m as expected and the configuration tends to the desired one as is
shown in Fig. 6.

Data analysis terminal

Thrust lever

Flight display terminal

Raspberry Pi computers

Fig. 3. Overview of UAV swarm semi-physical experimental platform.

V. CONCLUSION

This paper, for the first time, considers the flocking control
with a malicious agent, and the proposed hierarchical geometric
configuration based flocking control method is applied to a swarm
with a malicious agent. The new result enriches the conventional
flocking control theory. In the future, by combining the switching
system theory and the proposed parameter estimation framework,
the malicious agent with changeable parameters will be taken into
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Fig. 4. Trajectories of velocities and control efforts of UAVs 0-12.
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consideration. Moreover, this new result will be extended to more
cases: one malicious agent acts selectively on a part of its neighbors,
or multiple malicious agents existing in the swarm. Further studies
will also focus on the application of the containment method to multi-
agent with nonlinear or other complex dynamics.
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