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A Note on Stability of Event-Triggered Control

Systems with Time Delays

Kexue Zhang Bahman Gharesifard Elena Braverman

Abstract

This note studies stability of event-triggered control systems with the event-triggered control al-

gorithm proposed in [1]. We construct a novel Halanay-type inequality, which is used to show that

sufficient conditions of the main results in [1] ensure stability of the event-triggered control systems that

was missing in [1]. It is also shown that a positive parameter in the proposed event-triggering condition

in [1] can be freely selected to exclude Zeno behavior from the event-triggered control system. An

illustrative example is investigated to demonstrate the theoretical results of this study with numerical

simulations.

Index Terms
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I. Introduction

In [1], an event-triggered control algorithm was proposed for nonlinear time-delay systems. In

the designed event-triggering condition, the exponential function ae−b(t−t0) with tunable parameters

a and b plays a vital role in ensuring boundedness and attractivity of the system states while

excluding Zeno behavior, a phenomenon that the control updates are triggered infinitely many
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times over a finite time period. However, stability criterion with the proposed event-triggered

control algorithm was not established in [1] when a > 0.

In this note, we will show that event-triggered control systems with positive a in [1] actually

are stable if the sufficient conditions in Theorem 2 (or Theorem 3) of [1] are satisfied. We

will also prove that the positive parameter b can be chosen arbitrarily, whereas the results in [1]

require the positive b to be upper bounded, in order to exclude Zeno behavior from the control

system.

The rest of this note is organized as follows. In Section I, we rephrase the event-triggered

control problem for general nonlinear time-delay systems considered in [1]. To show stability of

the event-triggered control systems, a new Halanay-type inequality is introduced in Section III.

Main results are presented in Section IV with some remarks to further elaborate the improvements

achieved in this study. We illustrate the main results by a numerical example in Section V, and

finally draw conclusions in Section VI.

II. Problem Formulation

To make this note self-contained, we adopt the notations from [1] and briefly introduce the

event-triggered control problem formulated in [1] in this section.

Denote by N the set of positive integers, R the set of real numbers, R+ the set of nonnegative

reals, and Rn the n-dimensional real space equipped with the Euclidean norm denoted by ∥ · ∥.

For a, b ∈ R with b > a, we define

PC([a, b],Rn) ={ϕ : [a, b]→ Rn | ϕ is piecewise right-

continuous}

PC([a,∞),Rn) ={ϕ : [a,∞)→ Rn | ϕ|[a,c] ∈ PC([a, c],Rn)

for all c > a}

where ϕ|[a,c] is a restriction of ϕ on interval [a, c]. Let C(J,Rn) denote the set of continuous

functions from interval J to Rn. Given τ > 0, the linear space C([−τ, 0],Rn) is equipped with the

supremum norm ∥ϕ∥τ := sups∈[−τ,0] ∥ϕ(s)∥ for ϕ ∈ C([−τ, 0],Rn). A function α : R+ → R is said to

be of class K and we write α ∈ K , if α is continuous, strictly increasing, and satisfies α(0) = 0.

If α ∈ K and also α(s) → ∞ as s → ∞, we say that α is of class K∞ and we write α ∈ K∞.

A continuous function β : R+ × R+ → R+ is said to be of class KL and we write β ∈ KL, if
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the function β(·, t) is of class K for each fixed t ∈ R+, and the function β(s, ·) is decreasing and

β(s, t)→ 0 as t → ∞ for each fixed s ∈ R+.

Next, we recall the event-triggered control problem in [1]. Consider the following sampled-data

control system 
ẋ(t) = f (t, xt, u(t))

u(t) = k(x(ti)), t ∈ [ti, ti+1)

xt0 = φ

(1)

where x ∈ Rn is the system state; control input u ∈ Rm is the state feedback control regulated

by the feedback control law k : Rn 7→ Rm satisfying k(0) = 0; the sampling time sequence {ti}i∈N

is to be determined by a certain triggering condition from [1] which will be introduced later;

φ ∈ C([−τ, 0],Rn) represents the initial function; f : R+ × C([−τ, 0],Rn) × Rm 7→ Rn satisfies

f (t, 0, 0) = 0 for all t ∈ R+, and hence system (1) admits the zero solution; given a time t, the

function xt is defined as xt(s) := x(t + s) for s ∈ [−τ, 0], and τ > 0 represents the maximum

involved delay in the system.

Let us denote the sampling error by

ϵ(t) = x(ti) − x(t), for t ∈ [ti, ti+1). (2)

Then system (1) can be written as the following closed-loop system ẋ(t) = f (t, xt, k(x + ϵ))

xt0 = φ
(3)

To introduce the triggering condition for determining the time sequence {ti}i∈N, we recall

some concepts related to the Lyapunov functional candidate for time-delay systems. A function

V : R+ × Rn 7→ R+ is said to be of class V0 and we write V ∈ V0, if, for each x ∈ C(R+,Rn),

the composite function t 7→ V(t, x(t)) is continuous. A functional V : R+ × C([−τ, 0],Rn) 7→ R+

is said to be of class V∗0 and we write V ∈ V∗0, if, for each function x ∈ C([−τ,∞),Rn), the

composite function t 7→ V(t, xt) is continuous in t for all t ≥ 0, and V is locally Lipschitz in

its second argument. Given an input u ∈ PC([t0,∞),Rm), we define the upper right-hand Dini

derivative of the Lyapunov functional candidate V(t, xt) with respect to system (1):

D+V(t, ϕ) = lim sup
ε→0+

V (t + ε, xt+ε(t, ϕ)) − V(t, ϕ)
ε

where x(t, ϕ) denotes the solution to (1) satisfying xt = ϕ.

October 2, 2023 DRAFT



4

Throughout this study, we assume the closed-loop system (3) satisfies the following conditions.

Assumption II.1. There exist functions V1 ∈ V0, V2 ∈ V
∗
0, α1, α2, α3 ∈ K∞ and χ ∈ K , and

constant µ > 0 such that

(i) α1(∥ϕ(0)∥) ≤ V1(t, ϕ(0)) ≤ α2(∥ϕ(0)∥) and 0 ≤ V2(t, ϕ) ≤ α3(∥ϕ∥τ);

(ii) V(t, ϕ) := V1(t, ϕ(0)) + V2(t, ϕ) satisfies

D+V(t, ϕ) ≤ −µV(t, ϕ) + χ(∥ϵ∥).

Now we are in the position to introduce the triggering condition in [1] for system (1). To

enforce ϵ to satisfy the condition

χ(∥ϵ∥) ≤ σα1(∥x∥) + χ
(
ae−b(t−t0)

)
(4)

where σ ≥ 0, a ≥ 0, and b > 0 are constants, we update the control input u when the following

triggering condition is satisfied

χ(∥ϵ∥) = σα1(∥x∥) + χ
(
ae−b(t−t0)

)
. (5)

When condition (5) holds, we say an event occurs and then a control update is executed.

Therefore, the sampling times {ti}i∈N are determined as follows:

ti+1 = inf
{
t ≥ ti | χ(∥ϵ∥) = σα1(∥x∥) + χ

(
ae−b(t−t0)

)}
, (6)

which are also called event times. Since the event times are implicitly determined by the

triggering condition (5), it is essential to exclude Zeno behavior, a phenomenon that infinitely

many events happen over a finite time interval, from the closed-loop system.

It has been shown in [2] that Assumption II.1 implies the closed-loop system (3) is input-to-

state stable with respect to the sampling error ϵ, and the state feedback control u(t) = k(x(t)) for

t ≥ t0 renders the following closed-loop system ẋ(t) = f (t, xt, k(x(t)))

xt0 = φ
(7)

globally asymptotically stable. The objective of this study is to show that when a > 0, the

sufficient conditions provided in [1] ensures global asymptotic stability of system (3) with the

event times determined by (6), rather than just uniform boundedness and global attractivity as

proved in [1], and also to show that the closed-loop system (3) does not exhibit Zeno behavior

for any positive b, while the results in [1] require b < µ − σ to rule out Zeno behavior.
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To show stability of the closed-loop system, we will introduce a novel Halanay-type inequality

in the next section.

III. Halanay-Type Inequality

For a continuous function g : R → R, the Dini-derivatives D+g(t) and D−g(t) are defined as

follows:

D+g(t) = lim sup
ε→0+

g(t + ε) − g(t)
ε

and

D−g(t) = lim inf
ε→0−

g(t + ε) − g(t)
ε

.

The following lemma from [3] provides a relationship between D+g(t) and D−g(t), which will

be used to construct our Halanay-type inequality.

Lemma 1. Let p and q be continuous functions with D+p(t) ≤ q(t) for t in some open interval

I. Then D−p(t) ≤ q(t) for t ∈ I.

Next, we introduce a new Halanay-type inequality which allows us to bound the states of the

event-triggered control system with time delays.

Lemma 2. Let g : [t0 − r, t0 + Γ)→ R+ be a continuous function satisfying

D+g(t) ≤ γ1g(t0) + γ2∥gt∥r for t0 ≤ t < t0 + Γ (8)

where r, Γ, γ1, and γ2 are positive constants. Then

g(t) ≤ ∥gt0∥re
λ(t−t0) for t0 ≤ t < t0 + Γ

where λ = γ1 + γ2.

Proof. Define

w(t) =

 ∥gt0∥re
λ(t−t0), if t0 < t < t0 + Γ

∥gt0∥r, if t0 − r ≤ t ≤ t0

and let K > 1 be an arbitrary constant. Then, for t ∈ [t0 − r, t0], we have

g(t) ≤ ∥gt0∥r = w(t) < Kw(t), (9)

that is, g(t) < Kw(t) for t ∈ [t0 − r, t0].

October 2, 2023 DRAFT



6

Next, we use a contradiction argument to show that g(t) < Kw(t) for t ∈ (t0, t0 + Γ). Suppose

there exits some t ∈ (t0, t0 + Γ) such that g(t) ≥ Kw(t), then we define

t̄ = inf {t ∈ (t0, t0 + Γ) | g(t) ≥ Kw(t)} .

From the continuities of g and w, we have

g(t) < Kw(t) for t0 < t < t̄ (10)

and

g(t̄) = Kw(t̄). (11)

By (10) and (11), we conclude that

g(t̄ + ε) − g(t̄)
ε

>
Kw(t̄ + ε) − Kw(t̄)

ε

for ε < 0 close to 0. Hence,

D−g(t̄) ≥ Kẇ(t̄). (12)

On the other hand, by Lemma 1 and (8), we get

D−g(t̄) ≤ γ1g(t0) + γ2∥gt̄∥r

< γ1Kw(t0) + γ2K∥wt̄∥r

< (γ1 + γ2)Kw(t̄)

= λKw(t̄)

= Kẇ(t̄)

where we used (9), (10), (11), and the definition of w in the last two inequalities. This is a

contradiction to (12). Therefore, we conclude that g(t) < Kw(t) for t ∈ (t0, t0 + Γ).

Since K > 1 is arbitrary, we let K → 1 and then g(t) ≤ w(t) for t ∈ [t0, t0 + Γ), that is, the

proof is completed.

□

Discussions on this lemma will be provided in Remark 2 with the main results in the following

section.
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IV. Main Results

Now we are ready to introduce the main results of this study.

Theorem 1. Suppose that Assumption II.1 holds with V1 ∈ V0, V2 ∈ V
∗
0, α1, α2, α3 ∈ K∞ and

χ ∈ K , and constant µ > 0. The event times {ti}i∈N are defined by (6) with 0 ≤ σ < µ, a > 0, and

b > 0. We further assume that

(iii) α−1
1 , χ, and k are locally Lipschitz, where α−1

1 denotes the inverse of α1;

(iv) f is locally Lipschitz in its second and third arguments, respectively.

Then the closed-loop system (3) is globally asymptotically stable and does not exhibit Zeno

behavior.

Proof. Let

η :=

 min{b, µ − σ}, if b , µ − σ

ξ, if b = µ − σ
(13)

where ξ < b is a positive constant, and

M̄ :=


aL

|µ−σ−b| , if b , µ − σ
aL

|µ−σ−ξ|
, if b = µ − σ

then from the proof of Theorem 2 in [1], we have

∥x(t)∥ ≤ α−1
1

(
Me−η(t−t0)) ≤ α−1

1
(
M

)
(14)

for all t ≥ t0, where M = α2(∥φ(0)∥) + α3(∥φ∥τ) + M̄. Global attractivity of the zero solution

follows from (14), that is, limt→∞ ∥x(t)∥ = 0 for any initial condition φ ∈ C([−τ, 0],Rn).

Next, we show stability of the closed-loop system (3). From the system dynamics of (1) on

[ti, ti+1) and the Lipschitz conditions on f and k, we have

D+∥x(t)∥ ≤ ∥ẋ(t)∥ = ∥ f (t, xt, k(x(ti)))∥

≤ L2∥xt∥τ + L3∥x(ti)∥ (15)

which implies (8) holds on [ti, ti+1) with r = τ, g(t) = ∥x(t)∥, γ1 = L3, and γ2 = L2, where

L2 is the Lipschitz constant of the function f (t, ·, u) : C([−τ, 0],Rn) 7→ Rn on the compact

set {ϕ ∈ C([−τ, 0] | ∥ϕ∥τ ≤ R}, and L3 is the Lipschitz constant of the composite function

f (t, ϕ, k(·)) : Rn 7→ Rn on the compact set {x ∈ Rn | ∥x∥ ≤ R} with R = α−1
1 (M).
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We then conclude from Lemma 2 that

∥x(t)∥ ≤ ∥xti∥τe
λ(t−ti) for ti ≤ t < ti+1 and i ∈ Z+ (16)

where λ = L2 + L3 and Z+ denotes the set of non-negative integers.

We next use mathematical induction to show that ∥x(t)∥ ≤ ∥φ∥τeλ(t−t0) for all t ≥ t0. We can

see from (16) that this statement holds for t ∈ [t0, t1). Suppose ∥x(t)∥ ≤ ∥φ∥τeλ(t−t0) holds for

t ∈ [t0, ti), and we will show this inequality holds for t ∈ [ti, ti+1). By (16), we get

∥x(t)∥ ≤ ∥xti∥τe
λ(t−ti)

= eλ(t−ti) sup
s∈[−τ,0]

∥x(ti + s)∥

≤ eλ(t−ti)∥φ∥τeλ(ti−t0)

= ∥φ∥τeλ(t−t0) for ti ≤ t < ti+1,

that is, ∥x(t)∥ ≤ ∥φ∥τeλ(t−t0) for all t ∈ [t0, ti+1). By induction, we conclude that

∥x(t)∥ ≤ ∥φ∥τeλ(t−t0) for all t ≥ t0. (17)

Then (17) and (14) imply

α1(∥x(t)∥) ≤ min
{
α1

(
∥φ∥τeλ(t−t0)

)
,Me−η(t−t0)

}
for all t ≥ t0. (18)

Let δ1 = inf{s ≥ 0 : α2(s)+α3(s) ≥ M̄}, then ∥φ∥τ < δ1 implies M = α2(∥φ(0)∥)+α3(∥φ∥τ)+ M̄ <

2M̄ and

α1(∥x(t)∥) ≤ min
{
α1

(
∥φ∥τeλ(t−t0)

)
, 2M̄e−η(t−t0)

}
for all t ≥ t0. (19)

Since α1 is strictly increasing, we have that ∥φ∥τ < δ2 implies α1(∥φ∥τ) < 2M̄ where δ2 =

α−1
1 (2M̄).

Next, we consider the initial function φ satisfying ∥φ∥τ < min{δ1, δ2}. Then, there exists a

unique t̂ > t0 such that

α1

(
∥φ∥τeλ(t̂−t0)

)
= 2M̄e−η(t̂−t0),

where we used the fact that both α1

(
∥φ∥τeλ(t−t0)

)
and 2M̄e−η(t−t0) are strictly monotonic in t.

Furthermore, for any ε > 0, there exists a δ3, depending on ε, such that ∥φ∥τ < δ3 implies

α1

(
∥φ∥τeλ(t̂−t0)

)
= 2M̄e−η(t̂−t0) < α1(ε),

that is, small enough ∥φ∥τ leads to large enough t̂ so that 2M̄e−η(t̂−t0) < α1(ε). Note that M̄ is

independent of ∥φ∥τ.

October 2, 2023 DRAFT



9

Now we can conclude from (19) that, for any ε > 0, there exists a δ = min{δ1, δ2, δ3} such

that ∥φ∥τ < δ implies

α1(∥x(t)∥) ≤ 2M̄e−η(t̂−t0) < α1(ε)

for t ≥ t0, that is, ∥x(t)∥ < ε. The stability proof is completed.

Therefore, if a > 0 in the triggering condition (5), we can conclude from stability and global

attractivity of the zero solution that the closed-loop system (3) is globally asymptotically stable.

Last but not least, we show that system (3) does not exhibit Zeno behavior for any b > 0. It

has been shown in [1] that the inter-event times {ti − ti−1}i∈N are lower bounded by a positive

quantity when b < µ − σ, that is, system (3) does not exhibit Zeno behavior. Hence, we will

focus on the scenario of b ≥ µ − σ.

It follows from the proof of Theorem 2 in [1] that

ae−b(ti+1−t0) ≤ λ1

(
e−η(ti−t0) − e−η(ti+1−t0)

)
+ λ2 (ti+1 − ti) e−η(ti−t0) (20)

where λ1 = L1L2Meητ/η > 0, λ2 = L1L3M > 0, and L1 is the Lipschitz constant of α−1
1 on the

interval [0,M]. Let Ti+1 = ti+1 − ti, then multiplying both sides of (20) by eη(ti−t0) yields

ae−bTi+1e(η−b)(ti−t0) ≤ λ1

(
1 − e−ηTi+1

)
+ λ2Ti+1. (21)

Next we use contradiction argument to show that system (3) is free of Zeno behavior. Suppose

that there exists a t̄ < ∞ such that limi→∞ ti = t̄, that is, ti < t̄ for all i ∈ N. The fact b ≥ µ − σ

and the definition of η imply η < b. It then follows from (21) that

ae−bTi+1e(η−b)(t̄−t0) ≤ λ1

(
1 − e−ηTi+1

)
+ λ2Ti+1. (22)

Define a function

g(T ) = ae−bT e(η−b)(t̄−t0) − λ1

(
1 − e−ηT

)
− λ2T

for T ≥ 0. It can be observed that g(0) = ae(η−b)(t̄−t0) > 0, limT→∞ g(T ) = −∞, and

g′(T ) = −bae−bT e(η−b)(t̄−t0) − ηλ1e−ηT − λ2 < 0.

Thus, g(T ) is a strictly decreasing function, and then the equation g(T ) = 0 has a unique solution

T ∗ > 0. Moreover, g(T ) < 0 if T > T ∗. On the other hand, it follows from (22) that g(Ti+1) < 0,

and then Ti+1 = ti+1 − ti > T ∗, that is, the inter-event times {ti+1 − ti}i∈N are bounded by T ∗ > 0

from below. This contradicts to the assumption limi→∞ ti = t̄ < ∞. Therefore, system (3) with (6)

does not exhibit Zeno behavior when b ≥ µ − σ, which completes the proof. □
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Remark 1. It should be mentioned that the above proof does not reply on the Lipschitz condition

on α−1
1 . Nevertheless, if α−1

1 is locally Lipschitz, then t̂ and δ can be obtained explicitly. To be more

specific, suppose α−1
1 is locally Lipschitz, and we can show stability as follows. Combining (17)

and (14) yields

∥x(t)∥ ≤ min
{
∥φ∥τeλ(t−t0), L1Me−η(t−t0)

}
for all t ≥ t0, (23)

where L1 is the Lipschitz constant of α−1
1 on interval [0,M]. Consider ∥φ∥τ < min{δ1, δ̄2} with

δ̄2 = α
−1
1 (2L1M̄), then M < 2M̄, ∥φ∥τ < 2L1M̄, and there exists a unique t̂ > t0 such that

∥φ∥τeλ(t̂−t0) = 2L1M̄e−η(t̂−t0),

and then t̂ can be derived as

t̂ =
ln

(
2L1 M̄
∥φ∥τ

)
λ + η

+ t0.

By (23) and the definition of t̂, we have

∥x(t)∥ < 2L1M̄e−η(t̂−t0)

= 2L1M̄ exp
(
−η

λ + η
ln

(
2L1M̄
∥φ∥τ

))
= ∥φ∥

η
λ+η

τ

(
2L1M̄

) λ
λ+η (24)

for all t ≥ t0. For any ε > 0, let δ = min{δ1, δ̄2, δ3} with δ3 = ε
(λ+η)/η(2L1M̄)−λ/η. For ∥φ∥τ < δ,

we can derive from (24) that

∥x(t)∥ < ∥φ∥
η
λ+η

τ

(
2L1M̄

) λ
λ+η
< ε

for t ≥ t0, that is, the closed-loop system (3) is stable. It can be seen that δ is given explicitly

since δ1, δ̄2, and δ3 are specifically defined.

Remark 2. The upper bound α−1
1 (Me−η(t−t0)) of the state norm in (14) guarantees attractivity

of the closed-loop system. However, M = α2(∥φ(0)∥) + α3(∥φ∥τ) + M̄ depends not only on the

initial function φ but also on parameter a in M̄. Since M̄ is independent of the initial function φ,

the stability criterion of the event-triggered control system couldn’t be derived from this upper

bound solely. The role of Lemma 2 is to provide another bound in (17) for ∥x∥. Combining these

two bounds in (18) or (23) allows stability analysis for the closed-loop system. Lemma 2 is

different from the existing Halanay-type inequalities (see, e.g., [3], [4]) in the following sense.

In the existing Halanay-type inequalities, the Dini derivative D+g(t) is bounded by the sum
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of a function of g(t) and a function of ∥gt∥r, while in Lemma 2 we bound D+g(t) by a linear

combination of g(t0) and ∥gt∥r. This major difference in the dependence of g at the initial time

t0 allows the estimation of the state bound over each interval [ti, ti+1) since the control input is

unchanged during two consecutive event times.

For quadratic forms of V1, the inverse of the K class function α1 in Assumption II.1(i) is

not locally Lipschitz in its domain. Hence, Theorem 1 cannot be applied for such types of

Lyapunov candidates. Nevertheless, the following result allows us to use quadratic forms of

Lyapunov function as V1 in the Lyapunov candidate V .

Theorem 2. Suppose all the conditions of Theorem 1 are satisfied, and the Lipschitz assumption

on α−1
1 is replaced by the following condition:

• α−1
1 is Lipschitz on any closed and bounded sub-interval of (0,∞).

Then the closed-loop system (3) with the event times determined by (6) is globally asymptotically

stable and does not exhibit Zeno behavior.

Proof. From the discussion in Remark 1, we can conclude that the proof of Theorem 1 also

implies global asymptotic stability of the closed-loop system under the conditions of Theorem 2.

When b < µ − σ, the non-existence of Zeno behavior has been shown in [1]. If b ≥ µ − σ, the

exclusion of Zeno behavior is identical to the contradiction argument in the proof of Theorem 1.

Therefore, the detailed proof is omitted. □

Remark 3. Compared with the results in [1], the improvements that Theorems 1 and 2 have

achieved for a > 0 are as follows. Under the sufficient conditions established in [1], the closed-

loop system (3) with the sequence of event times determined by (6) is guaranteed to be globally

asymptotically stable, while the results in [1] only showed the closed-loop system is uniformly

bounded and globally attractive. Furthermore, the positive parameter b can be chosen arbitrarily

to rule out Zeno behavior from the closed-loop system, whereas the results in [1] need b < µ−σ

to exclude Zeno behavior. In summary, if Assumption II.1 and conditions (iii), (iv) of Theorem 1

hold, then the tunable parameter σ can be chosen so that σ < µ, and both parameters a and b

can be selected freely in the triggering condition (5). We refer the reader to [1] for a detailed

discussion about the effects of different parameter selections on the dynamic performance of the

event-triggered control system.

October 2, 2023 DRAFT



12

V. An Illustrative Example

Consider the following nonlinear time-delay control system ẋ1(t) = x2(t) + ω0x2
1(t)x2(t) + u(t)

ẋ2(t) = −ω2x1(t) − ω1x2(t) − ω3x1(t − 1) − ω2x3
1(t)

(25)

where x(t) = (x1(t), x2(t))⊤ ∈ R2, ωi with i = 0, 1, 2, 3 are non-negative constants, and u(t) = −x1(t)

is the feedback control. System (25) has been widely used to model the machine tool chatter

in the cutting process (see, e.g., [5] and references therein). In this example, we consider the

following parameters: ω0 = 1, ω1 = 0.5, ω2 = 1, and ω3 = 0.3.

To show system (25) with the given feedback control is asymptotically stable and to design the

event-triggered control implementation, we consider the Lyapunov functional V(t) = V1(t)+V2(t)

with

V1(t) = x⊤(t)x(t)

and

V2(t) = δ
∫ t

t−1
e−ζ(t−s)x⊤(s)x(s)ds

where δ = 0.4 and ζ = 0.28. It can be seen that Assumption II.1(i) holds with α1(s) = s2, and its

inverse function is not locally Lipschitz but Lipschitz on any closed and bounded sub-interval

of (0,∞).

Under the sampled-data implementation, system (25) can be written as the following closed-

loop system  ẋ1(t) = x2(t) + ω0x2
1(t)x2(t) − x1(t) − ϵ1(t)

ẋ2(t) = −ω2x1(t) − ω1x2(t) − ω3x1(t − 1) − ω2x3
1(t)

(26)

where ϵ1(t) = x1(ti)− x1(t) for t ∈ [ti, ti+1), and the event times {ti}i∈N are to be determined by the

event-triggering condition (5).

To verify condition (iii) of Theorem 1, it yields from the dynamics of system (25) that

V̇1(t) =2x1(t)ẋ1(t) + 2x2(t)ẋ2(t)

=(2 − 2ω2)x1(t)x2(t) + (2 − 2ω2)x3
1(t)x2(t) − 2x2

1(t)

− 2ω1x2
2(t) − 2x1(t)ϵ1(t) − 2ω3x2(t)x1(t − 1) (27)

and

V̇2(t) = − ζV2(t) + δV1(t) − δe−ζ(x2
1(t − 1) + x2

2(t − 1)), (28)
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Fig. 1. System trajectories with the state feedback control u(t) = −x1(t).

then,

V̇(t) ≤(2 − 2ω2)x1(t)x2(t) + (2 − 2ω2)x3
1(t)x2(t) + ϵ21 (t)

− δe−ζx2
2(t − 1) + (ω3 − δe−ζ)x2

1(t − 1) − ζV(t)

+ (−2 + 1 + ζ + δ)x2
1(t) + (−2ω1 + ω3 + λ + δ)x2

2(t)

≤ − 0.28V(t) + ∥ϵ(t)∥2 (29)

where ϵ(t) = (ϵ1(t), ϵ2(t))⊤ = x(ti)− x(t) for t ∈ [ti, ti+1). Therefore, condition (iii) is satisfied with

µ = 0.28 and χ(∥ϵ∥) = ∥ϵ(t)∥2.

Based on the above analysis, the event-triggering condition (5) can be written as follows:

∥ϵ(t)∥ = σ∥x(t)∥2 +
(
ae−b(t−t0)

)2
(30)

where σ < µ, and parameters a and b can be chosen arbitrarily. Theorem 2 concludes that

system (26) with the triggering condition (30) is globally asymptotically stable. Simulation results

are shown in Fig. 1, Fig. 2, and Fig. 3 with initial condition x(s) = (1, 2)⊤ for s ∈ [−1, 0], initial

time t0 = 0, and parameters σ = 0.16, a = 1, b = 0.14. It should be noted that b > µ − σ = 0.12

in our simulations, and hence the results in [1] are not applicable for these parameter selections.

VI. Conclusions

We have revisited the event-triggered control problem for time-delay systems considered

in [1]. It has been shown that under the sufficient conditions proposed in [1] the event-triggered
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Fig. 2. System trajectories with the proposed event-triggered control mechanism. Red dots on the time axis indicate the event

times.

t
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Fig. 3. Event-triggered control input under the triggering condition (30).

control system is globally asymptotically stable rather than just uniformly bounded and globally

attractive. Moreover, our analysis has allowed us to arbitrarily choose a parameter in the event-

triggering condition to both ensure global asymptotic stability and non-existence of Zeno behavior

in the event-triggered time-delay control systems. A numerical example has been presented to

verify the theoretical results.
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