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Abstract

In this paper, we have focused on identifying a class of continuous- and
discrete-time MAS for which a scale-free non-collaborative (i.e., scale-free
fully distributed) linear protocol design is developed. We have identified
conditions on agent models that enable us to design scalable linear protocols.
Moreover, we show that these conditions are necessary if the agents are
single input and single output. We also provide a complete design of scalable
protocols for this class.

1 Introduction

In recent decades, the synchronization problem for multi-agent systems (MAS) has
attracted substantial attention due to the wide potential for applications in several
areas, see for instance the books [1, 2, 7, 13, 17, 19, 26] and references [8, 15, 16],
etc.

In the synchronization literature, the communication between agents is based
on measurements of the difference between the output of a specific agent and the
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output of neighboring agents:

𝜁𝑖 =

𝑁∑︁
𝑗=1

𝑎𝑖 𝑗 (𝑦𝑖 − 𝑦 𝑗)

where 𝑦𝑖 denotes the output of agent and 𝑎𝑖 𝑗 is constant for 𝑖, 𝑗 = 1, · · · , 𝑁 .
Non-collaborative protocol only uses the relative measurement 𝜁𝑖 and achieves

fully distributed protocols. Collaborative protocols have been traditionally pre-
sented in MAS literature (see the above books on MAS). On the other hand,
collaborative protocols allows extra information exchange between neighbors. Typ-
ically, this additional information exchange consists of relative information about
the difference between the state of the protocol of a specific agent and the state of
the protocol of a neighboring agent using the same network.

Collaborative protocols which were introduced by [8] has been utilized to
somewhat relax the solvability conditions for partial-state coupling as has been
documented in the book [19]. Loosely speaking by allowing the extra commu-
nication exchange, the solvability conditions for partial-state coupling reduced to
solvability conditions for full-state coupling. Using non-collaborative protocols, the
solvability conditions for partial-state coupling place strong restrictions on either
poles or zeros of the agent model (see [21]) and, in contrast, these conditions are not
required in full-state coupling. Moreover, some relaxation on network knowledge
also occurs in full-state coupling. This should be apparent since protocol design
for partial-state coupling requires a distributed observer which is not needed in
full-state coupling.

On the other hand, most of the proposed protocols in the literature for synchro-
nization of MAS requires some knowledge of the communication network such as
bounds on the spectrum of the associated Laplacian matrix or the number of agents.
As it is pointed out in [22–25], these protocols suffer from scale fragility where
stability properties are lost when the size of network increases, or when commu-
nication network is altered, such as increases or decreases in the size of sensing
neighborhoods.

In the past few years, a scale-free protocol design has been the subject of current
research for MAS. Scale-free protocol design addresses this issue by designing
protocols which do not rely on any knowledge about the communication graph, i.e.,

1. The protocol is designed only based on knowledge of the agent model
(𝐴, 𝐵, 𝐶).

2. The protocol is designed to work with any fixed communication graph which
contains a spanning tree without incorporating knowledge about the graph
into the protocol.
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Almost all results of scalable protocols available in the literature are collabora-
tive, see [4, 9, 10, 14]. To the best of our knowledge, the scalable non-collaborative
protocols are only for MAS with passive or passifiable agents, see [3] and [11].

In this paper, the main objective is to show when it is possible to achieve a scale-
free design which is non-collaborative and hence only relies on the original relative
measurement 𝜁𝑖 . We present necessary conditions and design protocols to achieve
this objective under assumptions which are very close to these necessary conditions.
More specifically we have identified one class of continuous- and discrete-time
MAS for which scalable non-collaborative (i.e., scalable fully distributed) linear
protocols can be designed.

Notations and Background

Given a matrix 𝐴 ∈ R𝑚×𝑛, 𝐴T and 𝐴∗ denote its transpose and conjugate transpose
respectively. A square matrix 𝐴 is said to be Hurwitz stable if all its eigenvalues
are in the open left half complex plane, and 𝐴 is said to be Schur stable if all its
eigenvalues are in the open unit disk. 𝐴⊗ 𝐵 depicts the Kronecker product between
𝐴 and 𝐵. 𝐼𝑛 denotes the 𝑛-dimensional identity matrix and 0𝑛 denotes 𝑛 × 𝑛 zero
matrix; sometimes we drop the subscript if the dimension is clear from the context.

To describe the information flow among the agents we associate a weighted
graph G to the communication network. The weighted graph G is defined by a
triple (V, E,A) where V = {1, . . . , 𝑁} is a node set, E is a set of pairs of nodes
indicating connections among nodes, and A = [𝑎𝑖 𝑗] ∈ R𝑁×𝑁 is the weighted
adjacency matrix with non negative elements 𝑎𝑖 𝑗 . Each pair in E is called an edge,
where 𝑎𝑖 𝑗 > 0 denotes an edge ( 𝑗 , 𝑖) ∈ E from node 𝑗 to node 𝑖 with weight 𝑎𝑖 𝑗 .
Moreover, 𝑎𝑖 𝑗 = 0 if there is no edge from node 𝑗 to node 𝑖. We assume there
are no self-loops, i.e. we have 𝑎𝑖𝑖 = 0. A path from node 𝑖1 to 𝑖𝑘 is a sequence of
nodes {𝑖1, . . . , 𝑖𝑘} such that (𝑖 𝑗 , 𝑖 𝑗+1) ∈ E for 𝑗 = 1, . . . , 𝑘 − 1. A directed tree is a
subgraph (subset of nodes and edges) in which every node has exactly one parent
node except for one node, called the root, which has no parent node. A directed
spanning tree is a subgraph which is a directed tree containing all the nodes of the
original graph. If a directed spanning tree exists, the root has a directed path to
every other node in the tree [5].

For a weighted graph G, the matrix 𝐿 = [ℓ𝑖 𝑗] with

ℓ𝑖 𝑗 =

{ ∑𝑁
𝑘=1 𝑎𝑖𝑘 , 𝑖 = 𝑗 ,

−𝑎𝑖 𝑗 , 𝑖 ≠ 𝑗 ,

is called the Laplacian matrix associated with the graph G. The Laplacian matrix
𝐿 has all its eigenvalues in the closed right half plane and at least one eigenvalue
at zero associated with right eigenvector 1 [5]. Moreover, if the graph contains a
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directed spanning tree, the Laplacian matrix 𝐿 has a single eigenvalue at the origin
and all other eigenvalues are located in the open right-half complex plane [17].

A row stochastic matrix 𝐷 can be associated with a graph G. 𝑁 , the dimension
of 𝐷, is the number of node and an arc ( 𝑗 , 𝑖) ∈ E if 𝑑𝑖 𝑗 > 0. It is shown in [16] that
1 is a simple eigenvalue of 𝐷 if and only if G contains a directed spanning tree.
Moreover, the other eigenvalues are in the open unit disk if 𝑑𝑖 𝑗 > 0 for all 𝑖.

2 Problem formulation

Consider a homogeneous MAS composed of 𝑁 identical linear time-invariant agents
of the form,

𝑥+
𝑖
= 𝐴𝑥𝑖 + 𝐵𝑢𝑖 ,

𝑦𝑖 = 𝐶𝑥𝑖 ,
(1)

where 𝑥𝑖 ∈ R𝑛, 𝑢𝑖 ∈ R𝑚 and 𝑦𝑖 ∈ R𝑝 are the state, input, output of agent 𝑖 for
𝑖 = 1, . . . , 𝑁 . In the aforementioned presentation, for continuous-time systems,
𝑥+
𝑖
(𝑡) = ¤𝑥𝑖 (𝑡) for 𝑡 ∈ R; while for discrete-time systems, 𝑥+

𝑖
(𝑡) = 𝑥𝑖 (𝑡 + 1) for 𝑡 ∈ Z.

The communication network is composed of 𝑁 linear combinations and each
combination includes agent’s own output relative to that of other agents. Network
with continuous-time agent is shown as follows for agent 𝑖:

𝜁𝑖 =

𝑁∑︁
𝑗=1

𝑎𝑖 𝑗 (𝑦𝑖 − 𝑦 𝑗) (2)

where 𝑎𝑖 𝑗 > 0 and 𝑎𝑖𝑖 = 0. Here we use a weighted and directed graph G to describe
the communication topology of the network, the nodes of network correspond to
the agents and the weight of edges given by the coefficient 𝑎𝑖 𝑗 . In the matter of the
coefficients of the associated Laplacian matrix 𝐿 = [ℓ𝑖 𝑗]𝑁×𝑁 , 𝜁𝑖 can be rewritten
as

𝜁𝑖 =

𝑁∑︁
𝑗=1

ℓ𝑖 𝑗 𝑦 𝑗 . (3)

We refer to (3) as partial-state coupling since only part of the states are communi-
cated over the network. When 𝐶 = 𝐼, we call it full-state coupling.

In the case of networks with discrete-time agents, each agent has access to the
following information

𝜁𝑖 (𝑡) =
1

1 + 𝑑in(𝑖)

𝑁∑︁
𝑗=1, 𝑗≠𝑖

𝑎𝑖 𝑗 (𝑦𝑖 (𝑡) − 𝑦 𝑗 (𝑡)) (4)
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where 𝑑in(𝑖) is an upper bound of 𝑑𝑖𝑛 (𝑖) =
∑𝑁

𝑗=1 𝑎𝑖 𝑗 for 𝑖 = 1, . . . , 𝑁 . Next we
write 𝜁𝑖 as

𝜁𝑖 (𝑡) =
𝑁∑︁

𝑗=1, 𝑗≠𝑖
𝑑𝑖 𝑗 (𝑦𝑖 (𝑡) − 𝑦 𝑗 (𝑡)), (5)

where 𝑑𝑖 𝑗 ⩾ 0, and we choose 𝑑𝑖𝑖 = 1 − ∑𝑁
𝑗=1, 𝑗≠𝑖 𝑑𝑖 𝑗 such that

∑𝑁
𝑗=1 𝑑𝑖 𝑗 = 1 with

𝑖, 𝑗 ∈ {1, . . . , 𝑁}. Note that 𝑑𝑖𝑖 satisfies 𝑑𝑖𝑖 > 0. The weight matrix 𝐷 = [𝑑𝑖 𝑗] is
then a so-called, row stochastic matrix, where all eigenvalues of 𝐷 satisfy |𝜆𝑖 | ⩽ 1
and 1 has one simple eigenvalue. Let 𝐷in = diag{𝑑in(𝑖)}. Then the relationship
between the row stochastic matrix 𝐷 and the Laplacian matrix 𝐿 is

(𝐼 + 𝐷in)−1𝐿 = 𝐼 − 𝐷. (6)

Our goal is to achieve state synchronization, i.e.,

lim
𝑡→∞

(𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡)) = 0 (7)

for all 𝑖, 𝑗 ∈ {1, . . . , 𝑁}.
We need the following definition to explicitly state our problem formulation.

Definition 1 We define the following set. G𝑁 denotes the set of fixed, directed
graphs of 𝑁 agents which contains a directed spanning tree.

We formulate the scale-free state synchronization problem of a MAS without
localized collaborative information exchange, i.e. non-collaborative protocol, as
follows.

Problem 1 The scale-free state synchronization problem without localized col-
laborative information exchange for MAS (1) and communication network with (3)
for continuous-time case or (5) for discrete-time case is to find, if possible, a fixed
linear protocol of the form: {

𝑥+
𝑖,𝑐

= 𝐴𝑐𝑥𝑖,𝑐 + 𝐵𝑐𝜁𝑖 ,

𝑢𝑖 = 𝐹𝑐𝑥𝑖,𝑐 + 𝐺𝑐𝜁𝑖 ,
(8)

where 𝑥𝑐,𝑖 (𝑡) ∈ R𝑛𝑐 is the state of protocol, and matrices 𝐴𝑐, 𝐵𝑐, 𝐹𝑐, 𝐺𝑐 are pre-
designed parameters, such that the state synchronization (7) is achieved for any
number of agents 𝑁 , any fixed communication graph G and all initial conditions of
agents.

Remark 1 Note that the number of agents 𝑁 and the weight 𝑎𝑖 𝑗 are fixed in a control
period.
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In discrete-time MAS, we work with a row stochastic matrix which is a scaled
version of the Laplacian matrix. This is completely in line with all papers in this
area. For the scaling it should be noted that this only uses some local information
about the graph, namely, 𝑑in(𝑖) as used in (4). One might ask whether scale-free
state synchronization problem without localized collaborative information exchange
is possible without using this scaled Laplacian. It can actually be shown that this
latter problem is never solvable in discrete-time MAS.

3 Necessary conditions for solvability

The first important result that we provides necessary conditions for the solvability
of Problem 1 for both continuous- and discrete-time MAS.

Theorem 1 (Continuous-time MAS) Consider a continuous-time, single-input, single-
output MAS (1) with communication via (3). There exists a linear protocol of the
form (8) which achieves scale-free state synchronization problem without localized
collaborative information exchange only if:

1. Agent model is stabilizable and detectable.

2. Agent model is neutrally stable.

3. Agent model is weakly minimum phase.

4. Agent model has relative degree equal to 1.

Proof: The necessity of stabilizability and detectability is obvious. If we define

�̃� =

(
𝐴 𝐵𝐹𝑐

0 𝐴𝑐

)
, �̃� =

(
𝐵𝐺𝑐

𝐵𝑐

)
, �̃� =

(
𝐶 0

)
(9)

then [19, Chapter 2] has shown that we achieve synchronization if

�̃� + 𝜆𝑖 �̃��̃�

is asymptotically stable for all nonzero eigenvalues {𝜆2, . . . , 𝜆𝑁 } of the Laplacian
matrix 𝐿. To obtain a scale-free design we should therefore guarantee that

�̃� + 𝜆𝑖 �̃��̃� (10)

is asymptotically stable for all 𝜆𝑖 ∈ C with Re(𝜆𝑖) > 0, 𝑖 = 2, · · · , 𝑁 . We define

𝑔(𝑠) = 𝐶 (𝑠𝐼 − 𝐴)−1𝐵, 𝑔𝑐 (𝑠) = 𝐹𝑐 (𝑠𝐼 − 𝐴𝑐)−1𝐵𝑐 .
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Note that (10) asymptotically (Hurwitz) stable is equivalent to:

1 − 𝜆𝑖𝑔(𝑠)𝑔𝑐 (𝑠) ≠ 0

for all 𝑠 ∈ C with Re 𝑠 ⩾ 0 without unstable pole-zero cancellations in 𝑔(𝑠)𝑔𝑐 (𝑠).
Since this must be true for all 𝜆𝑖 ∈ C with Re(𝜆𝑖) > 0, this yields the requirement
that 𝑔(𝑠)𝑔𝑐 (𝑠) is positive-real. From [6, Section 3.51] this requires that 𝑔(𝑠)𝑔𝑐 (𝑠)
satisfies:

• The poles of 𝑔(𝑠)𝑔𝑐 (𝑠) are in the closed left half plane and the poles on the
imaginary axis are simple.

• The zeros of 𝑔(𝑠)𝑔𝑐 (𝑠) are in the closed left half plane and the zeros on the
imaginary axis are simple.

• The relative degree of 𝑔(𝑠)𝑔𝑐 (𝑠) is less than or equal to 1.

Since there are no unstable pole-zero cancellations in 𝑔(𝑠)𝑔𝑐 (𝑠), the above con-
ditions immediately yield that the agent model should be neutrally stable, weakly
minimum-phase, and have relative degree 1.

Theorem 2 (Discrete-time MAS) Consider a discrete-time, single-input, single-
output MAS (1) with communication via (5). There exists a linear protocol of
the form (8) which achieves scale-free state synchronization problem without local-
ized collaborative information exchange only if:

1. Agent model is stabilizable and detectable.

2. Agent model is neutrally stable.

Proof: The necessity of stabilizability and detectability is obvious, too. Using (9).
we obtain from [19, Chapter 3] that we need

�̃� + (1 − 𝜆𝑖)�̃��̃� (11)

is asymptotically (Schur) stable for all 𝜆𝑖 ∈ C with |𝜆𝑖 | < 1. Using similar
arguments as in the continuous time, we obtain that we need that 𝑔(𝑠)𝑔𝑐 (𝑠) + 1

2
has to be positive real. From [27] we obtain that this requires that the poles of
𝑔(𝑠)𝑔𝑐 (𝑠) are in the closed unit disc and the poles on the unit circle are simple.
Since there are no unstable pole-zero cancellations in 𝑔(𝑠)𝑔𝑐 (𝑠), this immediately
yields that the agent model should be neutrally stable.
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4 Scale-free non-collaborative protocol design: Continuous-
time case

We make the following assumption for agent models.

Assumption 1 Continuous-time agents (1) satisfy the following properties:

1. Agent model is stabilizable and detectable.

2. Agent model is neutrally stable.

3. Agent model is minimum phase.

4. Agent model must be uniform rank with order of infinite zero equal to one.

Remark 2 If we compare the above with the necessary conditions we obtained for
SISO systems in Theorem 1 then we note that we only strengthened to condition of
weakly minimum-phase to minimum-phase. The other conditions are the same.

We would like to emphasize that the agent model can be non-square and neither
right nor left invertible. Also it is known that passive agents satisfy these Assump-
tions 1 and as such form a subset of the class of agents that we consider in this
paper.

Figure 1: Architecture of the scalable non-collaborative linear protocol

We provide a scale-free non-collaborative linear protocol design in continuous
via partial-state coupling. The design architecture is shown in Fig. 1. In other
words, the design has two steps:

1. The first module designs a precompensator to make the agent model (1)
left-invertible.
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2. The second module designs a non-collaborate dynamical protocols for left-
invertible agents to achieve state synchronization.

4.1 Protocol design for partial-state coupling

The detailed design procedure is listed as follows.

Step I: Design of pre-compensator

Pre-Compensator Agent Model𝑣𝑖 𝑢𝑖 𝑦𝑖

Figure 2: The compensated agent with pre-compensator

In this step we design the following asymptotically stable pre-compensator
such that the compensated agent shown at Fig. 2 is left-invertible and satisfies
Assumption 1. {

¤𝑝𝑖 = 𝐴𝑝𝑝𝑖 + 𝐵𝑝𝑣𝑖
𝑢𝑖 = 𝐶𝑝𝑝𝑖 + 𝐷 𝑝𝑣𝑖

(12)

where 𝑝𝑖 ∈ R𝑞 and 𝑣𝑖 ∈ R𝑚𝑣 are state and input of pre-compensator. All
eigenvalues of 𝐴𝑝 are in open left-half plane.

The following lemma guarantees the existence of this pre-compensator.

Lemma 1 Consider a continuous-time agent of the form (1) which is stabilizable
and detectable. In that case there exists an asymptotically stable pre-compensator
(1), such that the interconnection of (1) and this pre-compensator which is given
by, {

¤𝑧𝑖 = �̃�𝑧𝑖 + �̃�𝑣𝑖
𝑦𝑖 = �̃�𝑧𝑖

(13)

where
𝑧𝑖 =

(
𝑥𝑖
𝑝𝑖

)
, �̃� =

(
𝐴 𝐵𝐶𝑝

0 𝐴𝑝

)
, �̃� =

(
𝐵𝐷 𝑝

𝐵𝑝

)
, �̃� =

(
𝐶 0

)
.

has the following properties:

• It is stabilizable and detectable,

• It is left-invertible,
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• Its poles are the poles of the system (1) plus the stable poles of the pre-
compensator (i.e., the eigenvalues of 𝐴𝑝),

• Its infinite zero structure is the same as the infinite zero structure of the system
(1),

• Its invariant zeros are the invariant zeros of the system (1) and some additional
invariant zeros that can be arbitrarily placed in the open left-half complex
plane,

Proof: Obviously, we just need to prove the case where agent model is not left-
invertible, i.e., right-invertible and neither left-invertible or right-invertible.

If the agent model is right-invertible, we can directly use the results in [18,
Section III-B, and the dual results of Theorem 3.1 and Remark 3.3] or [20, Theorem
1-(2) and Remark 1].

If the agent model is neither left-invertible or right-invertible, we can design a
pre-compensator only to make the compensated agent left-invertible, by using the
results in [18, Section III-C, and the dual results of Theorem 3.1 and Remark 3.3]
or [20, Theorem 1-(3) and Remark 1].

Step II: Design of a scalable non-collaborative linear protocol
Under Assumption 1, we can use the Special Coordinate Basis (SCB) [18] to

achieve the following transformation for the compensated agents (13). In other
words, there exists a non-singular state transformation matrix 𝑆 with(

𝑧1𝑖
𝑧2𝑖

)
= 𝑆𝑧𝑖 ,

such that the dynamics of 𝑧1𝑖 and 𝑧2𝑖 are represented by
¤̄𝑧1𝑖 = 𝐴11𝑧1𝑖 + 𝐴12𝑧2𝑖 ,
¤̄𝑧2𝑖 = 𝐴21𝑧1𝑖 + 𝐴22𝑧2𝑖 + �̄�𝑣𝑖 ,

𝑦𝑖 =

(
𝑦1𝑖
𝑦2𝑖

)
=

(
�̄�𝑧1𝑖
𝑧2𝑖

)
,

(14)

where 𝑧1𝑖 ∈ R𝑛+𝑞−�̄� and 𝑧2𝑖 ∈ R�̄�, �̄� is a non-singular matrix, and (𝐴11, �̄�) is
detectable while

𝑆�̃�𝑆−1 =

(
𝐴11 𝐴12
𝐴21 𝐴22

)
, 𝑆�̃� =

(
0
�̄�

)
, �̃�𝑆−1 =

(
�̄� 0
0 𝐼

)
.

Meanwhile, we have

𝜁𝑖 =

(
𝜁1𝑖
𝜁2𝑖

)
=

(
�̄�𝜁𝑠𝑖
𝜁2𝑖

)
, 𝜁𝑠𝑖 =

𝑁∑︁
𝑗=1

ℓ𝑖 𝑗 𝑧1 𝑗 , 𝜁2𝑖 =

𝑁∑︁
𝑗=1

ℓ𝑖 𝑗 𝑧2 𝑗 .
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Since the compensated agents are neutrally stable, we have the eigenvalues of
𝐴 are on the imaginary axis, if any, are semi-simple. According to Lemma 1, the
poles of compensated system (13) are on closed left half plane and therefore, there
exists a positive definite matrix 𝑃 such that

𝑃�̃� + �̃�T𝑃 ⩽ 0 (15)

Now we are ready to give our scale-free protocol design below.


¤𝑝𝑖 = 𝐴𝑝𝑝𝑖 − 𝜌𝐵𝑝 �̃�

T𝑃𝑆−1
[(
𝐼𝑛+𝑞−�̄�

0

)
ˆ̄𝑧1𝑖 +

(
0 0
0 𝐼�̄�

)
𝜁𝑖

]
¤̄̂𝑧1𝑖 = (𝐴11 − 𝐻�̄�) ˆ̄𝑧1𝑖 +

(
𝐻 𝐴12

)
𝜁𝑖

𝑢𝑖 = 𝐶𝑝𝑝𝑖 − 𝜌𝐷 𝑝 �̃�
T𝑃𝑆−1

[(
𝐼𝑛+𝑞−�̄�

0

)
ˆ̄𝑧1𝑖 +

(
0 0
0 𝐼�̄�

)
𝜁𝑖

] (16)

where 𝐻 is a matrix such that 𝐴11 − 𝐻�̄� is Hurwitz stable, 𝑃 > 0 satisfies
(15), 𝜌 > 0, and 𝑖 = 1, . . . , 𝑁 .

Next, we have the following theorem to achieve state synchronization.

Theorem 3 Consider a continuous-time MAS described by (1) and (2). Assume
Assumption 1 is satisfied. Let the set G𝑁 denote all graphs satisfy Definition 1.

Then, the scale-free non-collaborative state synchronization problem via linear
protocol as stated in Problem 1 is solvable. More specifically, the protocol (16)
achieve state synchronization for any fixed graph G ∈ G𝑁 with any size of the
network 𝑁 .

Proof: According to Lemma 1, we can know that there must exist pre-compensator
(12) to make agent (1) left-invertible, and obtain the compensated system (13).

From (14) and (16), we have
¤̄𝑧1𝑖 = 𝐴11𝑧1𝑖 + 𝐴12𝑧2𝑖
¤̄̂𝑧1𝑖 = 𝐴11 ˆ̄𝑧1𝑖 + 𝐴12𝜁2𝑖 + 𝐻 (𝜁1𝑖 − �̄� ˆ̄𝑧1𝑖).

By defining

𝑧1 =
©«
𝑧11
...

𝑧1𝑁

ª®®¬ , 𝑧2 =
©«
𝑧21
...

𝑧2𝑁

ª®®¬ , ˆ̄𝑧1 =
©«

ˆ̄𝑧11
...

ˆ̄𝑧1𝑁

ª®®¬ ,
we obtain

¤̄𝑧1 = (𝐼 ⊗ 𝐴11)𝑧1 + (𝐼 ⊗ 𝐴12)𝑧2
¤̄̂𝑧1 = [𝐼 ⊗ (𝐴11 − 𝐻�̄�)] ˆ̄𝑧1 + (𝐿 ⊗ 𝐴12)𝑧2 + (𝐿 ⊗ 𝐻�̄�)𝑧1
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Let 𝑒 = (𝐿 ⊗ 𝐼)𝑧1 − ˆ̄𝑧1, then we have

¤𝑒 = [𝐼 ⊗ (𝐴11 − 𝐻�̄�)]𝑒.

Since 𝐴11 − 𝐻�̄� is Hurwitz stable, it is obvious that 𝑒 is asymptotically stable, i.e.

lim
𝑡→∞

ˆ̄𝑧1𝑖 → 𝜁𝑠𝑖 =

𝑁∑︁
𝑗=1

ℓ𝑖 𝑗 𝑧1 𝑗 .

Meanwhile, we obtain ( ˆ̄𝑧1𝑖
𝜁2𝑖

)
→ 𝑆

©«
𝑁∑︁
𝑗=1

ℓ𝑖 𝑗 𝑧 𝑗
ª®¬ as 𝑡 → ∞. (17)

On the other hand, from (12), (13), and (16) we have

𝑣𝑖 = −𝜌�̃�T𝑃𝑆−1
( ˆ̄𝑧1𝑖
𝜁2𝑖

)
According to agent model (13) and result (17), we have

¤𝑧𝑖 = �̃�𝑧𝑖 − 𝜌�̃��̃�T𝑃
∑︁
𝑗=1

ℓ𝑖 𝑗 𝑧 𝑗

Then, by setting

𝑧 =
©«
𝑧1
...

𝑧𝑁

ª®®¬ ,
we obtain

¤𝑧 = (𝐼 ⊗ �̃� − 𝜌𝐿 ⊗ �̃��̃�T𝑃)𝑧. (18)

By using the method from [11, Lemma 2], there exists a non-singular matrix 𝑇

such that (18) can be transformed as{
¤𝜂1 = �̃�𝜂1,

¤𝜂𝑖 = ( �̃� − 𝜌𝜆𝑖 �̃��̃�
T𝑃)𝜂𝑖 , 𝑖 = 2, . . . , 𝑁, (19)

where 𝜆𝑖 denotes all non-zero eigenvalues of 𝐿. Therefore, we need to prove the
stability of (19) to obtain original MAS’ state synchronization, i.e. the stability of
�̃� − 𝜌𝜆𝑖 �̃��̃�

T𝑃 for 𝑖 = 2, . . . , 𝑁 where we know that Re(𝜆𝑖) > 0, i.e. the real part of
𝜆𝑖 is positive.
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Choosing 𝑃 > 0 satisfying (15), then we have

𝑃( �̃� − 𝜌𝜆𝑖 �̃��̃�
T𝑃) + ( �̃� − 𝜌𝜆𝑖 �̃��̃�

T𝑃)∗𝑃
=𝑃�̃� + �̃�T𝑃 − 2𝜌 Re(𝜆𝑖)𝑃�̃��̃�T𝑃

⩽ − 2𝜌 Re(𝜆𝑖)𝑃�̃��̃�T𝑃.

Since ( �̃�, �̃�) is stabilizable and Re(𝜆𝑖) > 0, it follows from LaSalle’s invariance
principle that �̃� − 𝜌𝜆𝑖 �̃��̃�

T𝑃 is Hurwitz stable and we obtain the required stability
of (19).

Meanwhile, from [11, Lemma 2], we can obtain the state synchronization result

lim
𝑡→∞

𝑧𝑖 − 𝑧 𝑗 → 0.

Furthermore, it implies that

lim
𝑡→∞

𝑥𝑖 − 𝑥 𝑗 → 0.

Therefore, the synchronization result can be obtained for any graph G ∈ G𝑁 with
any size of the network 𝑁 .

4.2 Protocol design for full-state coupling, i.e. 𝐶 = 𝐼

When 𝐶 = 𝐼, we only need the assumption that the agents are stabilizable and neu-
trally stable, i.e., the other conditions in Assumption 1 are satisfied automatically.
Moreover, since (3) can be rewritten as

𝜁𝑖 =

𝑁∑︁
𝑗=1

ℓ𝑖 𝑗𝑥 𝑗 , (20)

it means that we do need neither a pre-compensator nor use SCB to transform the
compensated system (13). Thus, we can obtain a static protocol, i.e., the estimator
(or observer) is not needed to achieve the synchronization. Of course, the protocol
design in (16) can still be applied.

Firstly, since agent model (1) is neutrally stable, there still exists a positive
definite matrix 𝑃 such that

𝑃𝐴 + 𝐴T𝑃 ⩽ 0. (21)

The scale-free protocol design for continuous-time MAS with neutrally stable
agent is listed as follows.
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𝑢𝑖 = −𝜌𝐵T𝑃𝜁𝑖 , (22)

where 𝑃 > 0 satisfies (21) and 𝜌 > 0.

Then, we have the following theorem.

Theorem 4 Consider a continuous-time MAS consisting of neutrally stable agents
described by (1) and (20) where (𝐴, 𝐵) is stabilizable. Let the set G𝑁 denote all
graphs satisfy Definition 1.

Then, the scale-free state synchronization problem via linear protocol as stated
in Problem 1 is solvable. More specifically, then protocol (22) achieves state
synchronization for any fixed graph G ∈ G𝑁 with any size of the network 𝑁 .

Proof: Combining (1) and (22), we obtain

¤𝑥𝑖 = 𝐴𝑥𝑖 − 𝜌𝐵T𝑃

𝑁∑︁
𝑗=1

ℓ𝑖 𝑗𝑥 𝑗 (23)

Then we have
¤𝑥 = (𝐼 ⊗ 𝐴 − 𝜌𝐿 ⊗ (𝐵𝐵T𝑃))𝑥 (24)

by defining

𝑥 =
©«
𝑥1
...

𝑥𝑁

ª®®¬ .
Similar to the proof of Theorem 3, we can obtain the following transformed system{ ¤𝜙1 = 𝐴𝜙1,

¤𝜙𝑖 = (𝐴 − 𝜌𝜆𝑖𝐵𝐵
T𝑃)𝜙𝑖 , 𝑖 = 2, . . . , 𝑁

by using a non-singular matrix 𝑇 𝑓 . According to [11, Lemma 2], we just prove the
stability of 𝐴 − 𝜌𝜆𝑖𝐵𝐵

T𝑃 to obtain the state synchronization.
Since 𝑃 > 0 satisfies (21), we have

𝑃(𝐴 − 𝜌𝜆𝑖𝐵𝐵
T𝑃) + (𝐴 − 𝜌𝜆𝑖𝐵𝐵

T𝑃)∗𝑃 ⩽ −2𝜌 Re(𝜆𝑖)𝑃𝐵𝐵T𝑃 ⩽ 0

for 𝜌 > 0.
Since (𝐴, 𝐵) is stabilizable and Re(𝜆𝑖) > 0, it follows from LaSalle’s invariance

principle that 𝐴− 𝜌𝜆𝑖𝐵𝐵
T𝑃 is Hurwitz stable. Thus, the synchronization result can

be obtained for any graph G ∈ G𝑁 with any size of the network 𝑁 .
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5 Scale-free non-collaborative protocol design: Discrete-
time case

We make the following assumptions:

Assumption 2 Discrete-time agents (1) satisfy the following properties:

1. Agent model is stabilizable and detectable.

2. Agent model is neutrally stable.

Remark 3 These assumptions are equal to the necessary conditions we obtained
for SISO systems in Theorem 2

Meanwhile, there still exists a positive definite matrix 𝑃 such that

𝐴T𝑃𝐴 − 𝑃 ⩽ 0. (25)

Our design is intrinsically different from the continuous-time. We first start
of with the partial-state coupling, which is going to use a stable observer with the
so-called CSS architecture.

5.1 Protocol design for partial-state coupling

We have the following scale-free protocol design for discrete-time MAS with neu-
trally stable agents:

𝜒𝑖 (𝑡 + 1) = (𝐴 − 𝐻𝐶)𝜒𝑖 (𝑡) + 𝐻𝜁𝑖 (𝑡)
𝑢𝑖 (𝑡) = −𝛿𝐵T𝑃𝐴𝜒𝑖 (𝑡)

(26)

where 𝛿 ∈ (0, 𝛿∗] and 𝛿∗ is obtained only from the knowledge of agent
model (𝐴, 𝐵, 𝐶). 𝑃 > 0 satisfies (25) and 𝐻 is a matrix such that 𝐴 − 𝐻𝐶 is
Schur stable. For computation of 𝛿∗, see the proof of Theorem 5.

Then, we have the following theorem.

Theorem 5 Consider a discrete-time MAS described by (1) and (5). Assume As-
sumption 2 is satisfied. Let the set G𝑁 denote all graphs satisfy Definition 1.

Then, the scale-free state synchronization problem via non-collaborative linear
protocol as stated in Problem 1 is solvable. More specifically, there exists 𝛿∗ > 0
which is obtained only from agent model (𝐴, 𝐵, 𝐶), such that for all 𝛿 ∈ (0, 𝛿∗], the
protocol (26) achieves state synchronization for any fixed graph G ∈ G𝑁 with any
size of the network 𝑁 .

15



Proof: For agent model (1) and (26), we have{
𝑥(𝑡 + 1) = (𝐼 ⊗ 𝐴)𝑥(𝑡) − [𝛿(𝐼 − 𝐷) ⊗ 𝐵𝐵T𝑃𝐴]𝜒(𝑡),
𝜒(𝑡 + 1) = [𝐼 ⊗ (𝐴 − 𝐻𝐶)]𝜒(𝑡) + (𝐼 ⊗ 𝐻𝐶)𝑥(𝑡). (27)

By using [12, Lemma 3], there exists a non-singular matrix 𝑇 𝑓 , we can transform
(27) to {

𝜙𝑖 (𝑡 + 1) = 𝐴𝜙𝑖 (𝑡) − 𝛿(1 − 𝜆𝑖)𝐵𝐵T𝑃𝐴𝜓𝑖 (𝑡),
𝜓𝑖 (𝑡 + 1) = (𝐴 − 𝐻𝐶)𝜓𝑖 (𝑡) + 𝐻𝐶𝜙𝑖 (𝑡)

(28)

for 𝑖 = 2, . . . , 𝑁 , where 𝜆𝑖 satisfies |𝜆𝑖 | < 1. Thus, we only need to prove that the
system (28) is asymptotically stable for all |𝜆𝑖 | < 1.

Define 𝑒𝑖 (𝑡) = 𝜙𝑖 (𝑡) −𝜓𝑖 (𝑡). The system (28) can be rewritten in terms of 𝜙𝑖 (𝑡)
and 𝑒𝑖 (𝑡) as

𝜙𝑖 (𝑡 + 1) = (𝐴 − (1 − 𝜆𝑖)𝛿𝐵𝐵T𝑃𝐴)𝜙𝑖 (𝑡) + (1 − 𝜆𝑖)𝛿𝐵𝐵T𝑃𝐴𝑒𝑖 (𝑡),
𝑒𝑖 (𝑡 + 1) = (𝐴 − 𝐻𝐶 + (1 − 𝜆𝑖)𝛿𝐵𝐵T𝑃𝐴)𝑒𝑖 (𝑡)

−(1 − 𝜆𝑖)𝛿𝐵𝐵T𝑃𝐴𝜙𝑖 (𝑡).
(29)

Let 𝑄 be the positive definite solution of the Lyapunov equation,

(𝐴 − 𝐻𝐶)T𝑄(𝐴 − 𝐻𝐶) −𝑄 + 4𝐼 = 0.

There exists a 𝛿1 such that for all 𝛿 ∈ (0, 𝛿1], we have

(𝐴 − 𝐻𝐶 + (1 − 𝜆𝑖)𝛿𝐵𝐵T𝑃𝐴)∗𝑄(𝐴 − 𝐻𝐶 + (1 − 𝜆𝑖)𝛿𝐵𝐵T𝑃𝐴)
−𝑄 + 3𝐼 ⩽ 0.

for all 𝜆𝑖 with |𝜆𝑖 | < 1. Consider 𝑉1(𝑡) = 𝑒𝑖 (𝑡)∗𝑄𝑒𝑖 (𝑡) and let 𝜇 = 𝛿𝐵T𝑃𝐴𝜙𝑖 (𝑡).
We have

𝑉1(𝑡 + 1) −𝑉1(𝑡)
⩽ −3∥𝑒𝑖 (𝑡)∥2 + |1 − 𝜆𝑖 |2𝜇∗𝐵T𝑄𝐵𝜇

+ 2
�� ((1 − 𝜆𝑖)∗𝜇∗𝐵T𝑄 [𝐴 − 𝐻𝐶 + (1 − 𝜆𝑖)𝛿𝐵𝐵T𝑃𝐴]𝑒𝑖 (𝑡)

) ��
⩽ −3∥𝑒𝑖 (𝑡)∥2 + |1 − 𝜆𝑖 |2𝑀2∥𝜇∥2

+ (|1 − 𝜆𝑖 |𝑀1 + |1 − 𝜆𝑖 |2𝛿𝑀3)∥𝜇∥∥𝑒𝑖 (𝑡)∥,

where 𝑀1 = 2∥𝐵T𝑄∥∥𝐴 − 𝐻𝐶∥, 𝑀2 = ∥𝐵T𝑄𝐵∥, and 𝑀3 = 2∥𝐵T𝑄∥∥𝐵𝐵T𝑃𝐴∥.
It should be noted that 𝑀1, 𝑀2, and 𝑀3 are independent of 𝛿 and 𝜆. Consider
𝑉2(𝑡) = 𝜙∗

𝑖
(𝑡)𝑃𝜙𝑖 (𝑡). Note that

[𝐴 − (1 − 𝜆𝑖)𝛿𝐵𝐵T𝑃𝐴]∗𝑃[𝐴 − (1 − 𝜆𝑖)𝛿𝐵𝐵T𝑃𝐴] − 𝑃

⩽ −2 Re(1 − 𝜆𝑖)𝛿𝐴T𝑃𝐵𝐵T𝑃𝐴 + |1 − 𝜆𝑖 |2𝛿2𝐴T𝑃𝐵𝐵T𝑃𝐵𝐵T𝑃𝐴.
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There exists a 𝛿2 < 𝛿1 such that, for all 𝛿 ∈ (0, 𝛿2], we have 2𝛿𝐵T𝑃𝐵 ⩽ 𝐼𝑚. Since
|1 − 𝜆𝑖 |2 ⩽ 2 Re(1 − 𝜆𝑖) for |𝜆𝑖 | < 1, we get for all 𝛿 ∈ (0, 𝛿2],

[𝐴 − (1 − 𝜆𝑖)𝛿𝐵𝐵T𝑃𝐴]∗𝑃[𝐴 − (1 − 𝜆𝑖)𝛿𝐵𝐵T𝑃𝐴] − 𝑃

⩽ −1
2 |1 − 𝜆𝑖 |2𝛿𝐴T𝑃𝐵𝐵T𝑃𝐴.

Hence

𝑉2(𝑡 + 1) −𝑉2(𝑡)
⩽ − 1

2𝛿 |1 − 𝜆𝑖 |2∥𝜇∥2 + |1 − 𝜆 |2𝛿2𝑒∗𝑖 (𝑡)𝐴T𝑃𝐵𝐵T𝑃𝐵𝐵T𝑃𝐴𝑒𝑖 (𝑡)
+ 2

��(1 − 𝜆∗)𝑒∗𝑖 (𝑡)𝐴T𝑃𝐵𝜇 − |1 − 𝜆 |2𝛿𝑒∗𝑖 (𝑡)𝐴T𝑃𝐵𝐵T𝑃𝐵𝜇
��

⩽ − 1
2𝛿 |1 − 𝜆 |2∥𝜇∥2 + 𝜃1 |1 − 𝜆 |∥𝑒𝑖 (𝑡)∥∥𝜇∥

+ 𝜃2𝛿
2∥𝑒𝑖 (𝑡)∥2 + 𝜃3𝛿 |1 − 𝜆 |2∥𝑒𝑖 (𝑡)∥∥𝜇∥,

where 𝜃1 = 2∥𝐴T𝑃𝐵∥, 𝜃2 = 4∥𝐴T𝑃𝐵𝐵T𝑃𝐵𝐵T𝑃𝐴∥, and 𝜃3 = 2∥𝐴T𝑃𝐵𝐵T𝑃𝐵∥.
Define a Lyapunov candidate 𝑉 (𝑡) = 𝑉1(𝑡) + 𝛿𝜅𝑉2(𝑡) with 𝜅 = 4 + 2𝑀2 + 2𝑀2

1 . We
get that

𝑉 (𝑡 + 1) −𝑉 (𝑡)
⩽ − (3 − 𝛿3𝜃2𝜅)∥𝑒𝑖 (𝑡)∥2 − (2 + 𝑀2

1 ) |1 − 𝜆𝑖 |2∥𝜇∥2

+ (𝑀1 + 𝛿𝜃1𝜅) |1 − 𝜆𝑖 |∥𝜇∥∥𝑒𝑖 (𝑡)∥
+ (𝛿𝑀3 + 𝛿2𝜃3𝜅) |1 − 𝜆𝑖 |2∥𝜇∥∥𝑒(𝑡)∥.

There exists a 𝛿∗ < 𝛿2 such that for a 𝛿 ∈ (0, 𝛿∗], 3−𝛿3𝜃2𝜅 ⩾ 2.5, 𝑀1+𝛿𝜃1𝜅 ⩽ 2𝑀1,
and 𝛿𝑀3 + 𝛿2𝜃3𝜅 ⩽ 1. This yields,

𝑉 (𝑡 + 1) −𝑉 (𝑡)
⩽ − 2.5∥𝑒𝑖 (𝑡)∥2 − (2 + 𝑀2

1 ) |1 − 𝜆𝑖 |2∥𝜇∥2

+ (2𝑀1 |1 − 𝜆𝑖 | + |1 − 𝜆𝑖 |2)∥𝜇∥∥𝑒𝑖 (𝑡)∥
⩽ − 0.5∥𝑒𝑖 (𝑡)∥2 − |1 − 𝜆𝑖 |2∥𝜇∥2 − (∥𝑒𝑖 (𝑡)∥ − 𝑀1 |1 − 𝜆𝑖 |∥𝜇∥)2

− |1 − 𝜆𝑖 |2( 1
2 ∥𝑒𝑖 (𝑡)∥ − ∥𝜇∥)2

⩽ − 0.5∥𝑒𝑖 (𝑡)∥2 − |1 − 𝜆𝑖 |2∥𝜇∥2.

Since (𝐴, 𝐵) is controllable, it follows from LaSalle’s invariance principle that the
system (29) is globally asymptotically stable for 𝛿 ⩽ 𝛿∗.
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5.2 Protocol design for full-state coupling, i.e. 𝐶 = 𝐼

Firstly, the information measurement (5) is rewritten as

𝜁𝑖 (𝑡) =
𝑁∑︁

𝑗=1, 𝑗≠𝑖
𝑑𝑖 𝑗 (𝑥𝑖 (𝑡) − 𝑥 𝑗 (𝑡)). (30)

The scalable protocol for discrete-time MAS with neutrally stable agent via full-
state coupling is listed as follows.

𝑢𝑖 (𝑡) = −𝜀𝐵T𝑃𝐴𝜁𝑖 (𝑡), (31)

where 𝑃 > 0 satisfies (25), and 𝜀 ∈ (0, 𝜀∗] with 𝜀∗ = ∥𝐵T𝑃𝐵∥−1.

Then, we have the following theorem.

Theorem 6 Consider a discrete-time MAS consisting of neutrally stable agents
described by (1) and (30) where (𝐴, 𝐵) is stabilizable. Let the set G𝑁 denote all
graphs satisfy Definition 1.

Then, the scale-free state synchronization problem via linear protocol as stated
in Problem 1 is solvable. More specifically, for any given 𝜀 ∈ (0, 𝜀∗] with 𝜀∗ =

∥𝐵T𝑃𝐵∥−1, the protocol (31) achieves state synchronization for any fixed graph
G ∈ G𝑁 with any size of the network 𝑁 .

Proof: For agent model (1) and (31), we have

𝑥(𝑡 + 1) = [𝐼 ⊗ 𝐴 − 𝜀(𝐼 − 𝐷) ⊗ 𝐵𝐵T𝑃𝐴]𝑥(𝑡). (32)

By using [12, Lemma 3], there exists a non-singular matrix 𝑇 𝑓 , we can transform
(32) to

𝜙𝑖 (𝑡 + 1) = (𝐴 − 𝜀(1 − 𝜆𝑖)𝐵𝐵T𝑃𝐴)𝜙𝑖 (𝑡), 𝑖 = 2, . . . , 𝑁, (33)

where 𝜆𝑖 satisfies |𝜆𝑖 | < 1. Thus, we just need to prove the stability of 𝐴 − 𝜀(1 −
𝜆𝑖)𝐵𝐵T𝑃𝐴.

Since the matrix 𝑃 > 0, we obtain the stability of (33).

[𝐴 − 𝜀(1 − 𝜆𝑖)𝐵𝐵T𝑃𝐴]∗𝑃[𝐴 − 𝜀(1 − 𝜆𝑖)𝐵𝐵T𝑃𝐴] − 𝑃 ⩽ −𝜑𝐴T𝑃𝐵𝐵T𝑃𝐴

with 𝜑 = 𝜀[2 Re(1 − 𝜆𝑖) − |1 − 𝜆𝑖 |2]. Note that |𝜆𝑖 | < 1 implies

|1 − 𝜆𝑖 |2 ⩽ 2 Re(1 − 𝜆𝑖), (34)

and therefore we have 𝜑 > 0. Since (𝐴, 𝐵) is stabilizable, it then follows from
LaSalle’s invariance principle that the system (33) is globally asymptotically stable.
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Note that 𝜀∗ depends only on agent’s model, hence the synchronization result can
be obtained for any graph G ∈ G𝑁 with any size of the network 𝑁 .

Remark 4 The results in [11] and [12] are used in Theorems 3-6. Compared with
this paper, [11] focused on continuous-time MAS with agents which are squared-
down passive and passifiable. The linear protocol for squared-down passive agents
is scalable and a subset of the design in this paper. In particular, the additional
structure in [11] enabled the use of static protocols which is not possible for the
more general class of agents in this paper. The nonlinear adaptive protocols are
also scalable for the undirected communication network. [12] developed a linear
protocol design for discrete-time MAS only with squared-down passifiable via input
feedforward agents. The designs is not scale-free.

6 Numerical Examples

In this section, we will illustrate the effectiveness of our designs with two numerical
examples for state synchronization of continuous- and discrete-time MAS with
partial-state coupling. Meanwhile, we consider two communication networks with
different topologies to show the scalability of our protocols.

Case 𝐼: We consider MAS with 4 agents 𝑁 = 4, and directed communication
topology shown in Figure 3.

Figure 3: Directed topology network with 4 nodes

Case 𝐼 𝐼: In this case, we consider MAS with 60 agents i.e. 𝑁 = 60, and
directed communication topology with associated adjacency matrix A𝐼 𝐼 being
𝑎𝑖+1,𝑖 = 𝑎1,60 = 1 and 𝑖 = 1, · · · , 59.

Then, the continuous- and discrete-time MAS are studied respectively.

6.0.1 Continuous-time MAS

Consider continuous-time agent models (1) with the following parameter:

𝐴 =
©«

0 1 1
−1 0 1
0 0 0

ª®¬ , 𝐵 = 𝐼, 𝐶 =

(
1 0 0
0 1 0

)
.
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We design pre-compensator (12) with the choice of

𝐴𝑝 = −2, 𝐵𝑝 = 1, 𝐶𝑝 =
(
0 0 1

)T
, 𝐷 𝑝 =

(
0 1 0

)T
.

Then the other protocol parameters in (16) are as follows,

𝑃 =

©«
1 0 −1 −0.6
0 1 1 0.2
−1 1 3 1.3
−0.6 0.2 1.3 2

ª®®®¬ , 𝑆
−1 =

©«
1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 1

ª®®®¬ , �̃� =

©«
0
1
0
1

ª®®®¬ ,
𝐴11 =

©«
0 0 1
−1 −2 1
0 −1 0

ª®¬ , 𝐴12 =
©«
1
2
1

ª®¬ , 𝐻 =
©«
1
0
1

ª®¬ , �̄� =
(
1 0 0

)
.

The simulation results for both Cases I and II are demonstrated in Figure 4
and 5. And the error states 𝑥𝑖 𝑗 − 𝑥𝑖1 are shown in 6 to show the synchronization
more clearly. The results show that the protocol design is independent of the
communication graph and is scale free so that we can achieve synchronization with
one-shot protocol design, for any graph with any number of agents.

Figure 4: State synchronization for continuous-time MAS with communication
graph in Case 𝐼.

Compared with scale-free collaborative protocol design in [10], the synchro-
nized time is deteriorating since no extra information exchange is employed. For
example, the running time of the 60-node case is 21.6768s, but this time is 6.8072s
under the same parameters using the scalable collaborative protocol by SIMULINK.
However, non-collaborative protocol design does not need extra information ex-
change through communication network and is more likely applied in practical.
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Figure 5: State synchronization for continuous-time MAS with communication
graph in Case 𝐼 𝐼.

Figure 6: Error state for continuous-time MAS with communication graph in Case
𝐼 𝐼.

6.0.2 Discrete-time MAS

Consider discrete-time agent models (1) with the following parameters:

𝐴 =
©«

0 1 1
−1 0 1
0 0 1

ª®¬ , 𝐵 =
©«
0
0
1

ª®¬ , 𝐶 =
(
1 0 0

)
.

We design protocol (26) with the following parameters

𝐻 =
©«

0.5
−0.5
0.4

ª®¬ , 𝑃 =
©«

1 0 −1
0 1 0
−1 0 2

ª®¬ , 𝛿 = 0.1.

We let the information exchange 𝜁𝑖 satisfy (4). Then the simulation results for
both Cases I and II are demonstrated in Figure 7 and 8. And the error states 𝑥𝑖 𝑗 −𝑥𝑖1
are shown in 6 to show the synchronization more clearly. The results show that the
protocol design is independent of the communication graph and is scale free so that
we can achieve synchronization with one-shot protocol design, for any graph with
any number of agents.
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Figure 7: State synchronization for discrete-time MAS with communication graph
in Case 𝐼.

Figure 8: State synchronization for discrete-time MAS with communication graph
in Case 𝐼 𝐼. In particular, we only show the synchronized trajectories for states 𝑥𝑖1
and 𝑥𝑖2, since there are many lines to make the figures difficult illuminating.

Figure 9: Error state for discrete-time MAS with communication graph in Case 𝐼 𝐼.

7 Conclusion

In this paper, we have proposed a scale-free non-collaborative protocol design to
achieve state synchronization for homogeneous MAS with the agents satisfying
Assumptions 1 and 2. Moreover, we have provided these assumptions (conditions)
are very close to necessary. The non-collaborative protocols are designed for one
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class of continuous- and discrete-time MAS, which are solely based on agent models
without utilizing localized collaborative information exchange, and work for any
number of agents and any fixed communication graph containing a spanning tree.
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New York, 2022.

[20] P. Sannuti, A. Saberi, and M. Zhang. Squaring down of general MIMO
systems to invertible uniform rank systems via pre- and/or post-compensators.
Automatica, 50(8):2136–2141, 2014.

[21] A. A. Stoorvogel, A. Saberi, and M. Zhang. Solvability conditions and design
for state synchronization of multi-agent systems. Automatica, 84:43–47, 2017.
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