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Abstract—This paper develops a unified distributed method
for solving two classes of constrained networked optimization
problems, i.e., optimal consensus problem and resource allocation
problem with non-identical set constraints. We first transform
these two constrained networked optimization problems into a
unified saddle-point problem framework with set constraints.
Subsequently, two projection-based primal-dual algorithms via
Optimistic Gradient Descent Ascent (OGDA) method and Extra-
gradient (EG) method are developed for solving constrained
saddle-point problems. It is shown that the developed algorithms
achieve exact convergence to a saddle point with an ergodic
convergence rate O(1/k) for general convex-concave functions.
Based on the proposed primal-dual algorithms via saddle-
point dynamics, we develop unified distributed algorithm design
and convergence analysis for these two networked optimization
problems. Finally, two numerical examples are presented to
demonstrate the theoretical results.

Index Terms—Distributed optimization, Constrained saddle-
point problem, Optimistic Gradient Descent Ascent (OGDA)
method, Extra-Gradient (EG) method

I. INTRODUCTION

The problem of distributed optimization has attracted con-

siderable attention in recent decades due to its wide ap-

plications in machine learning, power systems, multi-robot

localization, sensor networks, and resource allocation [1]. In

general, most distributed optimization problems in the existing

literature can be divided into two categories: optimal con-

sensus problem and optimal resource allocation problem [2].

The main difference of these two problems is that in the first

problem, each agent has its own objective function with respect

to a common decision variable, while in the second one, all the

agents own independent local objective functions and decision

variables but these decision variables are coupled in a global

equality constraint. To solve the optimal consensus problem,

a common approach is to introduce a consensus constraint

such that the coupled objective functions can be separated

with the local decision variables. In such a case, the optimal

consensus problem and optimal resource allocation problem

can be both regarded as a class of optimization problems with a

linear equality constraint. For these two classes of optimization
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problems, many discrete-time and continuous-time algorithms

are developed in [2]–[20].

Note that most existing distributed optimization algorithms

to solve the optimal consensus problem and resource alloca-

tion problem are designed separately. Fewer results provide

a unified framework for analysis and design of these two

optimization problems. As mentioned above, these two op-

timization problems can be both viewed as the constrained

optimization problem with a linear equality constraint. For the

constrained optimization problem, we can transform it to a

class of saddle-point problems in terms of the corresponding

Lagrangian functions [21]. This fact illustrates that the above-

mentioned two optimization problems can both be transformed

into the saddle-point problems. Therefore, when the saddle

points of the corresponding Lagrangian functions are obtained,

these two optimization problems can be solved.

It is well known that saddle-point problems arise in many

areas such as constrained optimization [22], robust control

[23], zero-sum games [24] and generative adversarial networks

(GANs) [25]. Some typical first-order optimization methods

(e.g., Gradient Descent Ascent (GDA), Optimistic Gradient

Descent Ascent (OGDA) and Extra-gradient (EG) methods)

have been proposed to solve the saddle-point problems. This

paper focuses on OGDA and EG methods, whose ideas were

first proposed in [26] and [27], and have attracted considerable

attention. The authors of [28] showed the linear convergence

rates of OGDA and EG methods for a special case, i.e.,

f(x, y) = xTAy, where A is square and full rank. In [29],

the authors proposed a variant of EG method with linear con-

vergence when f(x, y) is strongly convex-strongly concave,

and applied it to the GANs training. The authors of [30]

showed OGDA and EG methods as approximate variants of the

proximal point method, and provide their linear convergence

for strongly convex-strongly concave functions. For general

convex-concave functions, the authors of [31] provided a

unified convergence analysis of OGDA and EG methods and

proved that these two methods can both achieve an ergodic

convergence rate of O(1/k). Nevertheless, the last iteration of

[31] is shown to only converge into a bounded neighborhood

of a saddle point instead of achieving exact convergence to

a saddle point. In addition, we note that most results on

OGDA and EG methods mentioned above only consider the

saddle-point problems in absence of constraints. Actually, the

saddle-point problems with set constraints are very common

in practical applications.

Inspired by the above discussions, this paper tries to estab-

lish the relationship between two classes of constrained net-

worked optimization problems and general constrained saddle-
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point problems, and then solve them under a unified saddle-

point dynamics framework. Compared with the related results,

the main contributions of this paper are three-fold.

c1) We develop unified distributed algorithm design and

convergence analysis via saddle-point dynamics to solve

two classes of constrained networked optimization prob-

lems, i.e., optimal consensus problem and resource al-

location problem with non-identical set constraints.

c2) Two projection-based primal-dual algorithms via OGDA

and EG methods are developed for constrained saddle-

point problem for general convex-convex functions. Un-

like the results of [31] that are only shown to converge

into a bounded neighborhood of a saddle point, the

developed algorithms achieve exact convergence to a

saddle point with an ergodic convergence rate O(1/k).
c3) The developed distributed algorithms are with constant

step-sizes and performs better convergence performance

than the algorithms in [12]–[14] with diminishing step-

sizes. In contrast with the constant step-size algorithms

in [2] and [15], the developed algorithms are more easier

to be implemented without solving the sub-optimization

problem at each iteration.

The rest of this paper is organized as follows. Section

II formulates the considered problem. Section III proposes

two primal-dual algorithms via OGDA and EG methods.

Section IV develops unified distributed algorithms to solve two

networked optimization problems. Section V gives simulation

examples and Section VI concludes this paper.

II. PRELIMINARIES AND FORMULATION

Notation: Let R be the set of real numbers and N be the

set of natural numbers. In is the n × n identity matrix and

1n is the n× 1 ones vector. ‖ · ‖ denotes the Euclidean norm.

Let IN = {1, 2, . . . , N} and col(xi)
N
i=1 be a column stack of

the vector xi, i ∈ IN . diag(Wi)
N
i=1 denotes a diagonal block

matrix and Wi is placed in the ith diagonal block, and ⊗
represents the Kronecker product.

A. Problem Formulation

In this section, two classes of constrained networked opti-

mization problems are formulated. Consider a network graph

G of N agents. The distributed optimal consensus problem

with non-identical set constraints is described by [3]

min
x∈Ω

f(x) =

N
∑

i=1

fi(xi), s.t. (L⊗ Im)x = 0, (1)

where xi ∈ R
m, x = col(xi)

N
i=1 ∈ R

Nm, Ω =
∏N

i=1 Ωi is the

Cartesian product, and L ∈ R
N×N is an Laplacian matrix of

graph G. In this problem, each agent only privately has access

to local objective function fi(xi) and set constraint Ωi, i ∈ IN .

Provided that graph G is connected, (L ⊗ Im)x = 0 implies

that the consensus xi = xj is satisfied for ∀i, j ∈ IN .

Next, the distributed resource allocation problem via a

multi-agent network is formulated as [10]

min
y∈Ω

h(y) =
N
∑

i=1

hi(yi), s.t.

N
∑

i=1

Wiyi =
N
∑

i=1

di, (2)

where hi(yi) : R
qi → R is the local objective function of agent

i, yi ∈ R
qi is its local decision variable, y = col(yi)

N
i=1 ∈ R

q

with q =
∑N

i=1
qi, and Ω =

∏N

i=1
Ωi is the Cartesian product.

∑N

i=1
Wiyi =

∑N

i=1
di is the coupled equality constraint, in

which Wi ∈ R
m×qi and di ∈ R

m are the local data only

known by agent i.
The following standard assumptions are imposed.

Assumption 1. (i) The graph G is undirected and connected.

(ii) Ωi, i ∈ Ip, is closed and convex. The local objective

functions fi(xi) and hi(yi) are differentiable and convex on

Ωi, and their gradients ∇fi(xi) and ∇hi(yi) are Lipschitz

continuous for ∀i ∈ IN . (iii) There exists at least one solution

to the problems (1) and (2).

Remark 1. The problems (1) and (2) capture a wide class

of networked optimization problems in practical applications.

For instance, the optimal rendezvous, cooperative localization

and machine learning in [1] can be described by problem (1).

The resource scheduling, economic dispatch and flow control

in smart grids [9]–[11] can be formulated by problem (2).

We establish the relationships between the above two classes

of constrained networked optimization problems and con-

strained saddle-point problems for general convex-concave

functions. For the problem (1), its augmented Lagrangian

function is L1(x, v) =
∑N

i=1 fi(xi)+v
T (L⊗Im)x+ 1

2
xT (L⊗

Im)x, where v = col(vi)
N
i=1 ∈ R

Nm is the dual variable [6].

Then, the optimization problem (1) can be transformed into

the following constrained saddle-point problem

min
x∈Ω

max
v∈RNm

L1(x, v). (3)

Note that L1(x, v) is a convex-concave function. We have that

the problem (1) is reformulated as a constrained saddle-point

problem for general convex-concave functions.

For the problem (2), its modified Lagrangian function can

be derived as L2(y, z, λ) =
∑N

i=1
hi(yi) + λT (Wy − d −

(L ⊗ Im)z) − 1

2
λT (L ⊗ Im)λ, where W = diag(Wi)

N
i=1 ∈

R
Nm×q, d = col(di)

N
i=1 ∈ R

Nm, λ = col(λi)
N
i=1 ∈ R

Nm is

the dual variable, and z = col(zi)
N
i=1 ∈ R

Nm is an auxiliary

variable (see eq. (12) in [10]). The problem (2) is transformed

into the following constrained saddle-point problem [10]

min
y∈Ω,z∈RNm

max
λ∈RNm

L2(y, z, λ). (4)

Similarly, we have that L2(y, z, λ) is a convex-concave func-

tion. This implies that problem (2) can be also transformed

into a constrained saddle-point problem for general convex-

concave functions.

B. Unified Problem Framework

To solve the above two classes of constrained networked

optimization problems via a unified framework, we consider

the following general constrained saddle-point problem

min
x∈X

max
y∈Y

f(x, y), (5)

where X ⊆ R
n and Y ⊆ R

m are both closed and convex,

and f : X × Y → R is a convex-concave objective function,
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i.e., for any y ∈ Y , f(x, y) is a convex function with respect

to x ∈ X , and for any x ∈ X , f(x, y) is a concave function

with respect to y ∈ Y . We focus on finding a saddle point

(x∗, y∗) ∈ X × Y of problem (5) that satisfies f(x∗, y) ≤
f(x∗, y∗) ≤ f(x, y∗), ∀(x, y) ∈ X × Y .

According to the optimal condition of [22], the pair (x∗, y∗)
is a saddle point of (5) if the following variational inequality

holds for ∀(x, y) ∈ X × Y .

[

∇xf(x
∗, y∗)

−∇yf(x
∗, y∗)

]T [

x− x∗

y − y∗

]

≥ 0. (6)

Assumption 2. The function f(x, y) is continuously differen-

tiable for any x ∈ X and y ∈ Y . The gradient ∇xf(x, y)
is lxx-Lipschitz in x, and lxy-Lipschitz in y. The gradient

∇yf(x, y) is lyx-Lipschitz in x, and lyy-Lipschitz in y. If

f(x, y) = xTBy is a bilinear function with constant matrix

B, we obtain that the Lpschitz constants lxx and lyy are zero.

Assumption 3. The solution set of problem (5) is nonempty.

This paper aims to develop a unified distributed method for

solving two classes of networked optimization problems. To

achieve this goal, we first propose two primal-dual algorithms

for constrained saddle-point problem (5), and then develop

unified distributed algorithms via saddle-point dynamics for

constrained networked optimization problems (1) and (2).

III. SADDLE-POINT DYNAMICS DESIGN

In this section, we first develop two projection-based primal-

dual algorithms by using OGDA and EG methods to solve the

constrained saddle-point problem (5). Next, the convergence

analysis of these two algorithms is provided.

A. Primal-dual algorithm via OGDA method

We develop a projection-based primal-dual algorithm via

OGDA to solve the constrained saddle-point problem (5)

xk+1 = PX

(

xk − α∇xf(xk, yk) (7a)

− α(∇xf(xk, yk)−∇xf(xk−1, yk−1)
)

,

yk+1 = PY

(

yk + α∇yf(xk, yk) (7b)

+ α(∇yf(xk, yk)−∇yf(xk−1, yk−1))
)

,

where PX (·) and PY(·) represent the projection operations on

X and Y , respectively, and α is the constant step-size that will

be specified later.

Let z = col(x, y) ∈ X × Y ⊂ R
m+n and the operator

F : X ×Y → R
m+n as F (z) = col(∇xf(x, y),−∇yf(x, y)).

Eq. (7) can be arranged as

zk+1 = PΛ

(

zk − αF (zk)− α(F (zk)− F (zk−1))
)

, (8)

where Λ = X × Y .

In contrast to the GDA algorithm that is formulated as

zk+1 = PΛ(zk − αF (zk)) in [33], the main difference of the

proposed OGDA-based algorithm (8) is the added gradient

correction term −α(F (zk) − F (zk−1)), which includes the

gradient information of f(x, y) at the current iteration and

previous iteration. The advantages of adding the gradient

correction term is to guarantee exact convergence to a saddle

point of general convex-concave functions. As mentioned in

[32], the GDA algorithm of [33] requires strongly convex-

strongly concave condition of objective function to ensure the

exact convergence and may not converge to a saddle point for

general convex-concave functions. This result is also illustrated

in Example 1 given in the following simulation section.

B. Primal-dual algorithm via EG method

We also develop a projection-based primal-dual algorithm

via EG method to solve the problem (5). Firstly, we compute

the mid-point iteration (xk+ 1

2

, yk+ 1

2

), i.e.,

xk+ 1

2

= PX

(

xk − α∇xf(xk, yk)
)

, (9a)

yk+ 1

2

= PY

(

yk + α∇yf(xk, yk)
)

, (9b)

where α is the constant step-size that will be specified later.

By using the mid-point (xk+ 1

2

, yk+ 1

2

), we further compute the

next iteration (xk+1, yk+1) as

xk+1 = PX

(

xk − α∇xf(xk+ 1

2

, yk+ 1

2

)
)

, (10a)

yk+1 = PY

(

yk + α∇yf(xk+ 1

2

, yk+ 1

2

)
)

. (10b)

According to the definitions of z and F (z) in (8), we can

rewrite the algorithm (9)-(10) as

zk+ 1

2

= PΛ

(

zk − αF (zk)
)

, (11a)

zk+1 = PΛ

(

zk − αF (zk+ 1

2

)
)

. (11b)

It follows from (11) that the crucial idea of the EG method

is to find a mid-point zk+ 1

2

by using the GDA method at the

current point, and then obtain the next iteration by using the

gradient F (zk+ 1

2

) at this mid-point. Compared with the GDA

method in [33], the EG-based algorithm (11) via adding the

midpoint step can achieve exact convergence to a saddle point

for general convex-concave functions.

Remark 2. In contrast to the work of [31], the main dif-

ferences of our proposed algorithms are two-fold. (i) We

consider the constrained saddle-point problem while [31]

studied the unconstrained one. (ii) Our algorithms achieve

exact convergence to a saddle point while the result of [31]

only converges into a bounded neighborhood of a saddle point.

C. Convergence analysis

The convergence analyses of the proposed two primal-dual

algorithms via OGDA and EG are provided. Firstly, we show

the convergence result for the algorithm (8) in the following

theorem and its proof can be found in Appendix A.

Theorem 1. Suppose that Assumptions 2-3 hold and the

step-size α satisfies 0 < α < 1

2κm
with κm = 2max(lxx,

lxy, lyx, lyy). Under the initial conditions x0 = x−1 and y0 =
y−1, the developed OGDA-based algorithm (8) guarantees that

the iteration sequence {xk, yk} converges to a saddle point of

problem (5). Moreover, it holds that for any T ≥ 1

|f(x̂T , ŷT )− f(x∗, y∗)| ≤
1

2αT
‖z0 − z∗‖2, (12)
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where x̂T = 1

T

∑T

k=1
xk and ŷT = 1

T

∑T

k=1
yk.

We next provide the convergence result of the algorithm

(11) with its proof given in Appendix B.

Theorem 2. Suppose that Assumptions 2-3 hold and the step-

size α satisfies 0 < α < 1

κm
. Under the initial condition

z0 = z−1, the developed EG-based algorithm (11) guarantees

that the iteration sequence {xk, yk} converges to a saddle

point of problem (5). Furthermore, it holds that for any T ≥ 1

|f(x̂T , ŷT )− f(x∗, y∗)| ≤
1

2αT
‖z0 − z∗‖2, (13)

where x̂T = 1

T

∑T−1

k=0
xk+ 1

2

and ŷT = 1

T

∑T−1

k=0
yk+ 1

2

.

Remark 3. It follows from Theorems 1-2 that the proposed

OGDA-based algorithm (8) and EG-based algorithm (11)

both achieve exact convergence to a saddle point rather than

a bounded neighborhood of a saddle point shown in [31].

Moreover, based on (12) and (13) in Theorems 1-2, we have

that the objective function f(x, y) at the average iteration

generated by these two algorithms converge to an optimal

value with a sublinear rate O(1/T ).

IV. UNIFIED DISTRIBUTED ALGORITHM VIA

SADDLE-POINT DYNAMICS

Based on the primal-dual algorithms via OGDA and EG

methods for constrained saddle-point problems, we develop

unified distributed algorithm design and convergence analysis

for solving the networked optimization problems (1) and (2).

A. Distributed constrained optimal consensus problem

Note that the constrained optimal consensus problem (1)

can be transformed into the constrained saddle-point problem

(3). Based on the proposed OGDA-based algorithm (7), we

develop a distributed primal-dual algorithm as

xk+1
i = PΩi

(

xki − 2α∇fi(x
k
i ) + α∇fi(x

k−1
i ) (14a)

− 2α
∑

j∈Ni

(xki − xkj + vki − vkj )

+ α
∑

j∈Ni

(xk−1
i − xk−1

j + vk−1
i − vk−1

j )
)

,

vk+1
i = vki + 2α

∑

j∈Ni

(xki − xkj )− α
∑

j∈Ni

(xk−1
i − xk−1

j ).

(14b)

Let xk = col(xki )
N
i=1, vk = col(vki )

N
i=1,∇f(xk) =

col(∇fi(xki ))
N
i=1, and PΩ(·) = col(PΩi

(·))Ni=1. From the

definition of L1(x, v) in Section II, one has that ∇xL1(x, v) =
∇f(x)+(L⊗Im)(x+v) and ∇vL1(x, v) = (L⊗Im)x. Then,

a compact form of (14) can be obtained as

xk+1 = PΩ

(

xk − 2α∇xL1(̟k) + α∇xL1(̟k−1)
)

, (15a)

vk+1 = vk + 2α∇vL1(̟k)− α∇vL1(̟k−1), (15b)

where ̟k = col(xk, vk). Define Φ(̟) = [∇xL1(x, v);
−∇vL1(x, v)] = [∇f(x)+(L⊗Im)(x+v);−(L⊗Im)x], and

then algorithm (15) can be arranged as ̟k+1 = PΘ1
(̟k −

2αΦ(̟k)+αΦ(̟k−1)) with Θ1 = Ω×R
Nm. This illustrates

that algorithm (15) has the same structure as (7). Thus, the

results of (7) given in Theorem 1 can be easily extended to

the case of (15). Under Assumption 3, one has that Φ(̟) is

Lipschitz continuous, i.e., ‖Φ(̟1)−Φ(̟2)‖ ≤ κc‖̟1−̟2‖
for any ̟1, ̟2, where κc is determined by Lipschitz constants

of ∇fi(xi), i ∈ IN and the largest eigenvalue of L. Similar to

the results of Theorem 1, we obtain the following corollary.

Corollary 1. Suppose that Assumption 1 holds and the step-

size α satisfies 0 < α < 1

2κc

. The developed distributed

algorithm (14) guarantees that xk converges to an optimal

solution of problem (1). Moreover, for any T ≥ 1, it holds that

|L1(x̂T , v̂T )−L1(x
∗, v∗)| ≤ 1

2αT
(‖x0 − x∗‖2 + ‖v0 − v∗‖2),

where x̂T = 1

T

∑T

k=1
xk and v̂T = 1

T

∑T

k=1
vk.

Remark 4. By applying the EG-based algorithm (9)-(10), we

develop another distributed primal-dual algorithm to solve the

optimization problem (1), which is composed of two steps.

Step 1: Calculate the mid-point iteration (x
k+ 1

2

i , v
k+ 1

2

i ).

x
k+ 1

2

i = PΩi

(

xki − α∇fi(x
k
i ) (16a)

− α
∑

j∈Ni

(xki − xkj + vki − vkj )
)

,

v
k+ 1

2

i = vki + α
∑

j∈Ni

(xki − xkj ). (16b)

Step 2: Calculate the next iteration (xk+1
i , vk+1

i ).

xk+1
i = PΩi

(

xki − α∇fi(x
k+ 1

2

i ) (17a)

− α
∑

j∈Ni

(x
k+ 1

2

i − x
k+ 1

2

j + v
k+ 1

2

i − v
k+ 1

2

j )
)

,

vk+1
i = vki + α

∑

j∈Ni

(x
k+ 1

2

i − x
k+ 1

2

j ). (17b)

The proposed algorithm (16)-(17) obtains the same conver-

gence results as Corollary 1, and its detailed proof can be

derived from that of Theorem 2.

Remark 5. From the algorithm (14), it seems that the neigh-

bors’ states (xj , vj) at the current iteration and previous itera-

tion are both transmitted, which leads to twice communication

than those of [6] and [7]. In fact, at the current iteration k,

only (xkj , v
k
j ) is required to be transmitted since (xk−1

j , vk−1
j )

has been transmitted in the previous iteration. Thus, the

communication requirement of the proposed algorithm (14)

is the same as those of [6] and [7].

B. Distributed resource allocation problem

Based on the OGDA-based algorithm (7), we propose a

distributed algorithm to solve the optimization problem (2)

yk+1
i = PΩi

(

yki − 2α(∇hi(y
k
i ) +WT

i λ
k
i )

+ α(∇hi(y
k−1
i ) +WT

i λ
k−1
i )

)

, (18a)

zk+1
i = zki + 2α

∑

j∈Ni

(λki − λkj )

− α
∑

j∈Ni

(λk−1
i − λk−1

j ), (18b)
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λk+1
i = λki + 2α

(

Wiy
k
i − di −

∑

j∈Ni

(zki − zkj

+ λki − λkj )
)

− α
(

Wiy
k−1
i − di

−
∑

j∈Ni

(zk−1
i − zk−1

j + λk−1
i − λk−1

j )
)

. (18c)

Let yk = col(yki )
N
i=1 ∈ R

q , zk = col(zki )
N
i=1 ∈ R

Nm,

λk = col(λki )
N
i=1 ∈ R

Nm, ∇h(yk) = col(∇hi(yki ))
N
i=1 ∈ R

q,

W = diag(Wi)
N
i=1 ∈ R

Nm×q , and d = col(di)
N
i=1 ∈ R

Nm.

According to the definition of L2(y, z, λ) in Section II, we

have that ∇yL2(y, z, λ) = ∇h(y) +WTλ, ∇zL2(y, z, λ) =
−(L⊗Im)λ, and ∇λL2(y, z, λ) =Wy−d−(L⊗Im)(z+λ).
Then, a compact form of (18) is written as

yk+1 = PΩ

(

yk − 2α∇yL2(ξk) + α∇yL2(ξk−1)
)

, (19a)

zk+1 = zk − 2α∇zL2(ξk) + α∇zL2(ξk−1), (19b)

λk+1 = λk + 2α∇λL2(ξk)− α∇λL2(ξk−1), (19c)

where ξk = col(yk, zk, λk). Define Ψ(ξ) = [∇yL2(y, z, λ);
∇zL2(y, z, λ);−∇λL2(y, z, λ)] = [∇h(y) + WTλ;−(L ⊗
Im)λ;−(Wy − d− (L ⊗ Im)(z + λ))], and (19) is rewritten

as ξk+1 = PΘ2
(ξk − 2αΨ(ξk) + αΨ(ξk−1)) with Θ2 = Ω ×

R
Nm×R

Nm, which has the same structure of (7). In addition,

we obtain that Ψ(ξ) is κs-Lipschitz continuous, where κs is

determined by Lipschitz constants of ∇hi(yi), i ∈ IN and

largest eigenvalues of matrices L and W .

Corollary 2. Under Assumption 1 and the step-size satisfying

0 < α < 1

2κs
, the distributed algorithm (18) guarantees

that yk converges to an optimal solution of the problem (2).

Moreover, |L2(ŷT , ẑT , λ̂T ) − L2(x
∗, z∗, λ∗)| ≤ 1

2αT
(‖y0 −

y∗‖2+ ‖z0− z∗‖2+ ‖λ0−λ∗‖2) holds for any T ≥ 1,, where

ŷT = 1

T

∑T

k=1
yk, ẑT = 1

T

∑T

k=1
zk and λ̂T = 1

T

∑T

k=1
λk.

Remark 6. Based on the EG-based algorithm (9)-(10), an-

other distributed primal-dual algorithm is developed to solve

the optimization problem (2), which is formulated as

Step 1: Calculate the mid-point (y
k+ 1

2

i , z
k+ 1

2

i , λ
k+ 1

2

i ).

y
k+ 1

2

i = PΩi

(

yki − α(∇hi(y
k
i ) +WT

i λ
k
i )
)

, (20a)

z
k+ 1

2

i = zki + α
∑

j∈Ni

(λki − λkj ), (20b)

λ
k+ 1

2

i = λki + α
(

Wiy
k
i − di

−
∑

j∈Ni

(zki − zkj + λki − λkj )
)

. (20c)

Step 2: Calculate the next iteration (yk+1
i , zk+1

i , λk+1
i ).

yk+1
i = PΩi

(

y
k+ 1

2

i − α(∇hi(y
k+ 1

2

i ) +WT
i λ

k+ 1

2

i )
)

, (21a)

zk+1
i = zki + α

∑

j∈Ni

(λ
k+ 1

2

i − λ
k+ 1

2

j ), (21b)

λk+1
i = λki + α

(

Wiy
k+ 1

2

i − di

−
∑

j∈Ni

(z
k+ 1

2

i − z
k+ 1

2

j + λ
k+ 1

2

i − λ
k+ 1

2

j )
)

. (21c)

Actually, the algorithm (20)-(21) has the same formulation

as that in [17]. However, only asymptotic convergence was

proven in [17] and its convergence rate analysis was not given.

Based on the result of Theorems 2, we easily prove that the

algorithm (20)-(21) achieves exact convergence to an optimal

solution with O(1/k) convergence rate.

Remark 7. Although the traditional centralized optimization

method (e.g., ADMM-based algorithm in [34]) also can solve

these two networked optimization problems, it requires massive

communication and large bandwidth for the central node.

In contrast, the developed distributed algorithm via local

information interaction can overcome the issues of the cen-

tralized method and therefore can be applied to solve a large-

scale networked optimization problem. In addition, unlike the

distributed algorithms in [2] and [15] that require solving

a sub-optimization problem at each iteration, the developed

algorithms are easier to be implemented without solving the

sub-optimization problem.

V. NUMERICAL SIMULATION

In this section, we provide some numerical simulation

examples for solving networked optimization problems (2) and

general constrained saddle-point problem (5) to demonstrate

the effectiveness of the proposed algorithms.

Example 1: We first verify the proposed OGDA-based

algorithms (8) and EG-based algorithm (11) by solving the

following constrained saddle-point problem

min
x∈X

max
y∈Y

f(x, y) = xTBy, (22)

where B ∈ R
10×10 is a random matrix and its element is

generated from a uniform distribution on [0, 5], the constrained

sets X and Y are set to be X = [−5, 5]10 and Y = [−2, 2]10.

Then, we obtain that (x∗, y∗) = (010, 010) is a saddle point

of problem (22) and the optimal value is f(x∗, y∗) = 0.

We carry out the OGDA-based algorithm (8) and EG-based

algorithm (11) under the same initial values x0 = 10 × 110,

y0 = 10 × 110, and the chosen step-size α = 0.01. In

addition, the GDA algorithm of [33] is also implemented as a

comparison. Fig. 1 shows that the convergence results of the

objective error |f(xk, yk)−f(x∗, y∗)| under the OGDA-based

algorithm (8), EG-based algorithm (11) and GDA algorithm

of [33]. It is shown that the developed OGDA algorithm

(8) and EG algorithm (11) both guarantee that the iteration

(xk, yk) converges to the saddle point (010, 010) while the

GDA algorithm of [33] does not converge.

Example 2: We next demonstrate the distributed ODGA-

based algorithm (18) and EG-based algorithm (20)-(21) to

solve the resource allocation problem (2). Consider a network

ofN = 20 agents and its topology is described by a ring graph.

Each local objective function is hi(yi) = aiyi + bilog(1 +
eciyi), and local set constraint is Ωi = [−1, 1], i ∈ IN .

The datums in the function hi(yi) and coupled equation

constraint
∑N

i=1
(Wiyi − di) = 0 are randomly generated

from ai ∈ [−5, 5], bi ∈ [0, 2], ci ∈ [0, 1],Wi ∈ [−1, 1] and

di ∈ [−2, 2].
The distributed ODGA-based algorithm (18) and EG-based

algorithm (20)-(21) are implemented by choosing different
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Fig. 1. |f(xk , yk)− f(x∗, y∗)| under the OGDA-based algorithm (8), EG-
based algorithm (11) and GDA algorithm of [33].
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Fig. 2. The objective error |h(yk) − h(y∗)| under the distributed ODGA-
based algorithm (18) and EG-based algorithm (20)-(21)

step-sizes α. The left subfigure of Fig. 2 describes the objective

error |h(yk)−h(y∗)| under these two algorithms with respect

to the number of gradient computation, which shows that

the developed two algorithms both guarantee |h(yk)− h(y∗)|
converging to zero. The right subfigure of Fig. 2 provides

the performance comparison between the developed two algo-

rithms and the algorithms in [2] and [15]. It is shown that the

algorithm in [2] enjoys better convergence performance than

the other algorithms, and the developed EG-based algorithm

has similar convergence performance as that in [15].

VI. CONCLUSION

This paper develops a unified distributed method for solving

two classes of networked optimization problems with non-

identical set constraints. We first establish the relationship be-

tween two networked optimization problems and constrained

saddle-point problems, and then propose two projection-based

primal-dual algorithms via OGDA and EG methods. Subse-

quently, we develop unified distributed algorithms via saddle-

point dynamics to solve these two networked optimization

problems. The final examples demonstrates the effectiveness

of the developed algorithms.

APPENDIX

Before presenting the proofs of Theorems 1-2, some pre-

liminary results are provided.

Lemma 1 (Lemma 4, [31]). Let F (·) be defined in (8). Under

Assumption 1, the following results hold

(i) F (·) is a monotone operator, i.e., (F (z1)−F (z2))T(z1−
z2) ≥ 0 for any z1, z2 ∈ X × Y .

(ii) F (·) is Lipschitz continuous, i.e., ‖F (z1) − F (z2)‖ ≤
κm‖z1−z2‖ holds for any z1, z2 ∈ X ×Y , where κm =
2max(lxx, lxy, lyx, lyy).

Lemma 2 (Proposition 7, [31]). Let {zk} be the iteration

sequence generated by the following update

zk+1 = zk − αF (zk+1) + εk,

where F : Rm+n → R
m+n is a continuous function, α is a

positive constant, and εk ∈ R
m+n is an arbitrary vector. For

any z ∈ R
m+n and k ≥ 1, it holds that

‖zk+1 − z‖2 = ‖zk − z‖2 − 2α(zk+1 − z)TF (zk+1) (23)

− ‖zk+1 − zk‖
2 + 2εTk (zk+1 − z).

Lemma 3 (Proposition 5, [31]). Define x̂T = 1

T

∑T

k=1
xk and

ŷT = 1

T

∑T

k=1
yk. Under Assumption 1, it follows that

f(x̂T , y
∗)− f(x∗, ŷT )

≤
1

T

T−1
∑

k=0

(zk+1 − z∗)TF (zk+1). (24)

A. Proof of Theorem 1

Define Yk+1 = PΛ(Υk)−Υk, where Υk = zk −αF (zk)−
α(F (zk)− F (zk−1)). It then follows from (8) that

zk+1 = zk − αF (zk)− α(F (zk)− F (zk−1)) + Yk+1,

which can be rewritten as zk+1 = zk − αF (zk+1) + χk with

χk = α{(F (zk+1) − F (zk) − (F (zk) − F (zk−1))} + Yk+1.

By using (23) of Lemma 2, we obtain that

(zk+1 − z)TF (zk+1)

=
1

2α
‖zk − z‖2 −

1

2α
‖zk+1 − z‖2

−
1

2α
‖zk+1 − zk‖

2 +
1

α
χT
k (zk+1 − z)

=
1

2α
‖zk − z‖2 −

1

2α
‖zk+1 − z‖2 −

1

2α
‖zk+1 − zk‖

2

+
1

α
Y T
k+1(zk+1 − z) + (zk+1 − z)T(F (zk+1)− F (zk))

− (zk − z)T(F (zk)− F (zk−1))

− (zk+1 − zk)
T(F (zk)− F (zk−1)). (25)

According to the Lipschitz continuity of F (z) in Lemma 1

and Young’s inequality, we have that −(zk+1−zk)T(F (zk)−
F (zk−1)) ≤

κm

2
‖zk − zk+1‖2 +

κm

2
‖zk − zk−1‖2. Then, (25)

can be simplified as

(zk+1 − z)TF (zk+1)

≤
1

2α
‖zk − z‖2 −

1

2α
‖zk+1 − z‖2 − η‖zk+1 − zk‖

2 (26)

−
κm
2

‖zk+1 − zk‖
2 +

κm
2

‖zk − zk−1‖
2

+ (zk+1 − z)T(F (zk+1)− F (zk))

− (zk − z)T(F (zk)− F (zk−1)) +
1

α
Y T
k+1(zk+1 − z),

where η = 1

2α
− κm > 0 if α < 1

2κm

is chosen.

Let z∗ = col(x∗, y∗) be a saddle point of problem (5). Since

zk ∈ X ×Y for all k ≥ 1, it then follows from (6) that (zk −
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z∗)TF (z∗) ≥ 0, ∀k ≥ 1. According to the monotone property

of F (·) given in Lemma 1, one has that (zk − z∗)T(F (zk)−
F (z∗)) ≥ 0, which further implies that

(zk − z∗)TF (zk) ≥ 0, ∀k ≥ 1. (27)

In addition, according to the definition of Yk+1, one has

that PΛ(zk+1 − Yk+1) = zk+1. This implies that −Yk+1 ∈
NΛ(zk+1), where NΛ(zk+1) is the normal cone of the set Λ
at zk+1. Since z∗ ∈ Λ, one can further derive that

(zk+1 − z∗)TYk+1 ≤ 0. (28)

Setting z = z∗ of (26), and combining (27)-(28), one has that

0 ≤ (zk+1 − z∗)TF (zk+1) ≤
1

2α
‖zk − z∗‖2 (29)

−
1

2α
‖zk+1 − z∗‖2 − η‖zk+1 − zk‖

2 −
κm
2

‖zk+1 − zk‖
2

+
κm
2

‖zk − zk−1‖
2 + (zk+1 − z∗)T(F (zk+1)− F (zk))

− (zk − z∗)T(F (zk)− F (zk−1)).

Summing (29) over k from 0 to t, we obtain that

η
t

∑

k=0

‖zk+1 − zk‖
2 ≤

1

2α
‖z0 − z∗‖2 −

1

2α
‖zt+1 − z∗‖2

−
κm
2

‖zt+1 − zt‖
2 +

κm
2

‖z0 − z−1‖
2 + (zt+1 − z∗)T

(F (zt+1)− F (zt))− (z0 − z∗)T(F (z0)− F (z−1))

≤
1

2α
‖z0 − z∗‖2 − (

1

2α
−
κm
2

)‖zt+1 − z∗‖2, (30)

where the last second inequality is obtained by using the initial

condition z0 = z−1 and (zt+1 − z∗)T (F (zt+1) − F (zt)) ≤
κm

2
‖zt+1−z∗‖2+

κm

2
‖zt+1−zt‖2. Letting t→ ∞ and under

α < 1

2κm
, it follows from (30) that

∞
∑

k=0

‖zk+1 − zk‖
2 ≤

1

2αη
‖z0 − z∗‖2 <∞.

Consequently, we obtain that limk→∞(zk+1 − zk) = 0. In

addition, it follows from (30) that ( 1

2α
− κm

2
)‖zt+1 − z∗‖2 ≤

1

2α
‖z0 − z∗‖2 holds for any t ≥ 0. This implies that zk

is bounded for ∀k ∈ N. Then, we obtain that zk has the

subsequence {znk
} that converges to some limit point z∞,

i.e., limk→∞ znk
= z∞ = col(x∞, λ∞). Moreover, from (8),

we derive that

z∞ = PΛ(z
∞ − αF (z∞)) = 0.

This implies that −αF (z∞) ∈ NΛ(z
∞) and then we obtain

that (z − z∞)TF (z∞) ≥ 0 holds for z ∈ X × Y . It follows

from (6) that z∞ is a saddle point of problem (5).

To this end, we have shown that {zk} has a convergence

subsequence {znk
}. We next prove the convergence of the

original sequence {zk}. From (29), one has that 1

2α
‖zk+1 −

z∗‖2+ κm

2
‖zk+1− zk‖2− (zk+1− z∗)T(F (zk+1)−F (zk)) ≤

1

2α
‖zk − z∗‖2 + κm

2
‖zk − zk−1‖2 − (zk − z∗)T(F (zk) −

F (zk−1)) − η‖zk+1 − zk‖2. Define ∆k = 1

2α
‖zk − z∗‖2 −

κm

2
‖zk−zk−1‖2+(zk−z∗)T(F (zk)−F (zk−1)) and one has

that ∆k ≥ ( 1

2α
− κm

2
)‖zk − z∗‖2 ≥ 0. It then follows that

∆k+1 ≤ ∆k − η‖zk+1 − zk‖
2.

According to the monotonicity and boundedness of ∆k,

we have that ∆k is convergent. Based on the fact that

limk→∞(zk+1−zk) = 0, one has that ‖zk−z∗‖ is convergent.

By setting z∗ = z∞, we have that limk→∞ znk
= z∞ = z∗.

Based on limk→∞ znk
= z∗ and limk→∞(zk+1−zk) = 0, we

obtain that limk→∞ ∆k = 0. Under the fact that ∆k ≥ ( 1

2α
−

κm

2
)‖zk − z∗‖2 ≥ 0, we obtain that limk→∞ ‖zk − z∗‖2 = 0.

Thus, we have shown that the sequence {zk} converges to a

saddle point of problem (5).

We next analyze the convergence rate of algorithm (8). From

(24) in Lemma 3, we obtain that

f(x̂T , y
∗)− f(x∗, ŷT ) ≤

1

T

T−1
∑

k=0

(zk+1 − z∗)TF (zk+1)

≤
1

T

( 1

2α
‖z0 − z∗‖2 −

1

2α
‖zT − z∗‖2 −

κm
2

‖zT

− zT−1‖
2 + (zT − z∗)T(F (zT )− F (zT−1))

)

≤
1

T

( 1

2α
‖z0 − z∗‖2 − (

1

2α
−
κm
2

)‖zt+1 − z∗‖2
)

≤
1

2αT
‖z0 − z∗‖2.

where the second inequality is derived from (29) and the third

inequality is obtained by using (30). Note that f(x̂T , y
∗) −

f(x∗, ŷT ) = f(x̂T , y
∗)− f(x∗, y∗)+ f(x∗, y∗)− f(x∗, ŷT ) ≤

1

2αT
‖z0 − z∗‖2. Since (x̂T , ŷT ) ∈ X × Y and f(x, y) is a

convex and concave function on X × Y , we obtain that 0 ≤
f(x̂T , y

∗)− f(x∗, y∗) ≤ 1

2αT
‖z0 − z∗‖2 and 0 ≤ f(x∗, y∗)−

f(x∗, ŷT ) ≤
1

2αT
‖z0 − z∗‖2. In addition, since f(x̂T , ŷT ) ≤

f(x̂T , y
∗) and f(x̂T , ŷT ) ≥ f(x∗, ŷT ), we further derive that

f(x̂T , ŷT ) − f(x∗, y∗) ≤ f(x̂T , y
∗) − f(x∗, y∗) ≤ 1

2αT
‖z0 −

z∗‖2 and f(x∗, y∗) − f(x̂T , ŷT ) ≤ f(x∗, y∗) − f(x∗, ŷT ) ≤
1

2αT
‖z0−z∗‖2. Thus, we obtain that |f(x̂T , ŷT )−f(x∗, y∗)| ≤

1

2αT
‖z0 − z∗‖2.

B. Proof of Theorem 2

Let mk+1 = zk+ 1

2

− (zk − αF (zk)) and we obtain

that zk+ 1

2

= zk − αF (zk) + mk+1. It then follows from

(11a) that PΛ(zk+ 1

2

− mk+1) = zk+ 1

2

, which implies

−mk+1 ∈ NΛ(zk+ 1

2

). Since zk+1 ∈ Λ, one has that

(zk+ 1

2

− zk+1)
Tmk+1 ≤ 0. In addition, define nk+1 =

zk+1 − (zk − αF (zk+ 1

2

)) and one can derive that

zk+1 = zk − αF (zk+ 1

2

) + nk+1. (31)

Note from (11b) that PΛ(zk+1 − nk+1) = zk+1, which infers

−nk+1 ∈ NΛ(zk+1). It then follows that (zk+1−z∗)Tnk+1 ≤
0. Also, the above equation (31) can be rewritten as

zk+1 = zk − αF (zk+1) + ψk+1, (32)

where ψk+1 = αF (zk+1)− αF (zk+ 1

2

) + nk+1.

By setting z = z∗ of (23) in Lemma 2, it follows from (32)

that

‖zk+1 − z∗‖2 = ‖zk − z∗‖2 − 2α(zk+1 − z∗)TF (zk+1)

− ‖zk+1 − zk‖
2 + 2ψT

k+1(zk+1 − z∗)
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≤ ‖zk − z∗‖2 − ‖zk+1 − zk‖
2 − 2α(zk+1 − z∗)TF (zk+ 1

2

)

≤ ‖zk − z∗‖2 − ‖zk+1 − zk+ 1

2

‖2 − ‖zk+ 1

2

− zk‖
2

− 2(zk+1 − zk+ 1

2

)T (−αF (zk) +mk+1)

− 2α(zk+1 − zk+ 1

2

)TF (zk+ 1

2

)− 2α(zk+ 1

2

− z∗)TF (zk+ 1

2

)

≤ ‖zk − z∗‖2 − ‖zk+1 − zk+ 1

2

‖2 − ‖zk+ 1

2

− zk‖
2

− 2α(zk+1 − zk+ 1

2

)T (F (zk+ 1

2

)− F (zk))

− 2α(zk+ 1

2

− z∗)TF (zk+ 1

2

), (33)

where the first inequality is obtained by using (zk+1 −
z∗)Tnk+1 ≤ 0, and the second inequality is derived with

‖a−b‖2 = ‖a−c‖2+‖b−c‖2+2(a−c)T (c−b) for any vector

a, b, c and zk+ 1

2

= zk−αF (zk)+mk+1, and the last inequality

is obtained by using (zk+ 1

2

− zk+1)
Tmk+1 ≤ 0. Note that

−2α(zk+1 − zk+ 1

2

)T (F (zk+ 1

2

) − F (zk)) ≤ α2κ2m‖zk+1 −

zk+ 1

2

‖2 + ‖zk+ 1

2

− zk‖2, and it then follows from (33) that

(zk+ 1

2

− z∗)TF (zk+ 1

2

) ≤
1

2α
‖zk − z∗‖2 (34)

−
1

2α
‖zk+1 − z∗‖2 − ρ‖zk+1 − zk+ 1

2

‖2,

where ρ =
1−α2κ2

m

2α
> 0 if α < 1

κm

. Similar to the derivation

of (27), we obtain that (zk+ 1

2

−z∗)TF (zk+ 1

2

) ≥ 0 for ∀k ≥ 0.

It then follows that

‖zk+1 − z∗‖2 ≤ ‖zk − z∗‖2 − 2αρ‖zk+1 − zk+ 1

2

‖2.

Similar to the analysis of Theorem 1, we have that

limk→∞ ‖zk−z∗‖2 = 0. Thus, we conclude that the sequence

{zk} converges to a saddle point z∗ of the problem (5).

We further analyze the convergence rate of algorithm (11).

Let x̂T = 1

T

∑T−1

k=0
xk+ 1

2

and ŷT = 1

T

∑T−1

k=0
yk+ 1

2

. From (24)

in Lemma 3 and (34), one has that f(x̂T , λ
∗) − f(x∗, ŷT ) ≤

1

T

∑T−1

k=0
(zk+ 1

2

− z∗)TF (zk+ 1

2

) ≤ 1

2αT
‖z0 − z∗‖2. Similar

to the proofs of Theorem 1, we obtain that |f(x̂T , ŷT ) −
f(x∗, y∗)| ≤ 1

2αT
‖z0 − z∗‖2.
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