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Persymmetric Adaptive Radar Detectors
Guilhem Pailloux, Philippe Forster, Jean-Philippe Ovarlez and Frédéric Pascal

Abstract

In the general framework of radar detection, estimation of the Gaussian or non-Gaussian clutter

covariance matrix is an important point. This matrix commonly exhibits a particular structure: for instance,

this is the case for active systems using a symmetrically spaced linear array with constant pulse repetition

interval. In this paper, we propose to use the particular persymmetric structure of the covariance matrix

to improve the detection performance.

In this context, this paper provides two new adaptive detectors for Gaussian additive noise and non-

Gaussian additive noise which is modeled by the Spherically Invariant Random Vector. Their statistical

properties are then derived and compared to simulations. The vast improvement in their detection

performance is demonstrated by way of simulations or experimental ground clutter data. This allows

for the analysis of the proposed detectors on both real Gaussian and non-Gaussian data.

Index Terms

Adaptive signal detection, Gaussian and non-Gaussian clutter, SIRV, covariance matrix estimation.

I. INTRODUCTION

The problem of adaptive radar detection requires the estimation of the clutter covariance matrix (CCM).

In recent years, improvements of the associated estimation schemes have gained tremendous interest in
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the radar community. For that purpose, the Sample Covariance Matrix (SCM) has been widely used and

this non-parametric estimator may be improved by exploiting the CCM structure. Toeplitz structure has

been addressed by Burg in [1] while Fuhrmann in [2] used this estimator for radar detection purposes. In

radar systems using a symmetrically spaced linear array with constant pulse repetition interval, the CCM

has the persymmetric property. This structure information could then be exploited to improve detection

performance. In this context, we use a particular linear transformation in order to take into account

the persymmetry of the CCM and to study the statistical property of new detectors for both Gaussian

and non-Gaussian environments. For Gaussian data, the CCM Maximum Likelihood (ML) estimator has

been derived in [3]. The corresponding Generalized Likelihood Ratio Test (GLRT) has been investigated

in [4]. For non Gaussian clutter modeled by Spherically Invariant Random Vectors (SIRV), detection

schemes have been proposed in [5] and [6]. In [5] the persymmetry is only exploited to build two

sets of independent data in order to derive a SIRV-Constant False Alarm Rate (CFAR) detector: the

Persymmetric Adaptive Normalized Matched Filter (P-ANMF). In [6] these sets are used to initialize an

iterative algorithm simultaneously proposed in [7] and [8]. This allows the derivation of the Recursive

P-ANMF (RP-ANMF). Our approach, based on the Fixed Point Adaptive Normalized Matched Filter

(FP-ANMF), also called GLRT-FP [7], [8], exploits an original transformation already proposed in [9]

for Gaussian case and in [10] for non-Gaussian case. This leads to the Persymmetric Fixed Point Adaptive

Normalized Matched Filter (PFP-ANMF) also called GLRT-PFP, i.e. the persymmetry property of the

CCM. Its interest is to render the CCM real, leading to a simpler problem. Moreover this approach allows

the derivation of the statistical analysis of the proposed detection scheme.

This paper is organized as follows. Section II presents the studied problem in terms of matrix estimation

and radar detection and introduces persymmetry tools where it is shown how the persymmetric structure

of the CCM can be exploited to provide the new Persymmetric Adaptive Matched Filter (PS-AMF). In

section III, we derive the statistical distribution of the PS-AMF under hypothesis H0, in which only

noise is present in order to determine the improvement in terms of Probability of False Alarm (PFA). To

confirm this improvement, some Gaussian data are extracted from the experimental data to validate the

study. Section III also presents similarly the problem in non-Gaussian noise. The purpose is to derive an

estimator of the CCM based on the secondary data and to take into account its structure (Persymmetric

Fixed Point, M̂PFP ). The statistical properties of M̂PFP are also established and enable the investigation

of the distribution of the detector ΛGLRT−PFP , called GLRT-PFP (Generalized Likelihood Ratio Test

- Persymmetric Fixed Point). Finally we present in section IV some simulated and experimental results
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that illustrate the improvement in terms of detection performance of the PS-AMF with respect to the

conventional Adaptive Matched Filter (AMF) for Gaussian case. Moreover, results obtained with non-

Gaussian real data demonstrate the interest of the proposed detection scheme compared to the existing

detectors P-ANMF, RP-ANMF and GLRT-FP.

II. BACKGROUND AND PROBLEM STATEMENT

This paragraph provides a guide to the notation used throughout the remainder of the paper. In general,

a boldface, lowercase variable indicates a column vector quantity; a boldface, upper variable indicates a

matrix; a variable with a caret (̂ ) is an estimate of an unknown quantity. Superscripts > or H applied to

a vector or a matrix denote the transpose or Hermitian (conjugate) transpose operations. The superscript
∗ denotes the conjugate operation. E[.] stands for the statistical expectation operator, Tr(.) denotes the

trace operator, Re(.) denotes the real part and |.| denotes the determinant. In this paper, ‖ . ‖ stands for

the usual L2-norm. Im is the m-th order identity matrix,Pr(.) stands for the probability and the notation

∼ means ” is distributed as”.

In radar detection, the main problem consists in detecting a signal Ap ∈ Cm corrupted by an additive

clutter c. This problem can be stated as the following binary hypothesis test: H0 : y = c, yk = ck, for 1 ≤ k ≤ K ,

H1 : y = A p + c, yk = ck, for 1 ≤ k ≤ K ,
(1)

where y is the complex m-vector of the received signal, A is an unknown complex target amplitude and

p stands for the known ”steering vector”. Under both hypotheses, it is assumed that K signal-free data

yk are available for clutter parameters estimation. The yk’s are the so-called secondary data where they

are assumed independent, but their statistical distribution depends on the clutter nature. In this paper

two cases will be investigated according to the clutter statistics: the Gaussian clutter and the case of

non-Gaussian clutter as modeled by SIRV.

A. Gaussian clutter

In the Gaussian case, c and ck are complex circular zero-mean Gaussian m-vectors sharing the same

covariance matrix M, with distribution denoted by CN (0,M). When M is known, the GLRT for A

unknown is referred to as the Optimum Gaussian Detector (OGD):

ΛOGD =

∣∣pH M−1 y
∣∣2

pH M−1 p
H1

≷
H0

λOGD , (2)
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where the detection threshold λOGD is related to the PFA Pfa by λOGD = − ln(Pfa). However, in

practice, the CCM M is generally unknown. One solution is to substitute for M an estimator M̂ based

on the secondary data. When no prior information on the M-structure is available, the SCM is classically

used:

M̂SCM =
1
K

K∑
k=1

yk yHk . (3)

leading to the so-called Adaptive Matched Filter (AMF) test [11]:

ΛAMF =

∣∣∣pH M̂
−1

SCM y
∣∣∣2

pH M̂
−1

SCM p

H1

≷
H0

λAMF . (4)

The relationship between the PFA Pfa and the detection threshold λAMF is given by [11], [12]:

Pfa = 2F1

(
K −m+ 1,K −m+ 2;K + 1;−λAMF

K

)
, (5)

where 2F1(.) is the hypergeometric function [13] defined by

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1 (1− t)c−b−1

(1− tz)a
dt .

B. Non-Gaussian clutter

In recent years, there has been an increasing interest for non-Gaussian clutter models motivated by

experimental radar clutter measurements [14], which have shown that the clutter is perfectly modeled by

K-distribution or Weibull distribution. More generally, c can be modeled by a SIRV [15], [16] which is

the product of the square root of a positive random variable τ (called the texture) and a m-dimensional

independent complex Gaussian vector g (called the speckle) with zero-mean and covariance matrix M

normalized according to Tr(M) = m for identifiability considerations [17]:

c =
√
τ g . (6)

The model when M is known and texture τ is unknown has been widely studied and this enables the

construction of the Generalized Likelihood Ratio Test - Linear Quadratic (GLRT-LQ) [18], [17] defined

by:

ΛGLRT−LQ =

∣∣pHM−1y
∣∣2(

pHM−1p
) (

yHM−1y
) H1

≷
H0

λGLRT−LQ , (7)

where λGLRT−LQ is the corresponding detection threshold.

When M is unknown, one solution is to substitute a given estimator M̂ of M in Eqn. (7) resulting in

an adaptive version of the GLRT. When replacing M by an estimator M̂, this detector is often called
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Adaptive Cosine Estimate (ACE) [19] or Adaptive Normalized Matched Filter (ANMF)

In non-Gaussian case, the CCM estimator M̂ is based on the signal-free secondary data yk = ck where

the clutter samples ck are SIRVs sharing the same CCM as c: ck =
√
τk gk, where E[gk gHk ] = M. For the

case when no prior information on the M-structure is available, Conte and Gini in [7], [8] proposed an

Approximate Maximum Likelihood (AML) estimator M̂FP of M, called the Fixed Point (FP) estimator,

which is defined as the solution of the following implicit equation:

M̂FP =
m

K

K∑
k=1

yk yHk
yHk M̂

−1

FP yk
. (8)

Existence and uniqueness of the above equation solution have been proven in [20], while the complete

statistical properties of M̂FP have been derived in [21]. The estimator M̂FP does not depend on the

texture and allows to obtain the following adaptive detector GLRT-FP:

ΛGLRT−FP =

∣∣∣pHM̂
−1

FP y
∣∣∣2(

pHM̂
−1

FPp
)(

yHM̂
−1

FP y
) H1

≷
H0

λGLRT−FP . (9)

The relationship between the PFA Pfa and the detection threshold λGLRT−FP is given by [22]:

Pfa = (1− λGLRT−FP )a−1
2F1(a, a− 1; b− 1;λGLRT−FP ). (10)

where K ′ = m
m+1K, a = K ′ −m+ 2 and b = K ′ + 2.

C. Persymmetry considerations and problem formulation

It is clear that the estimation accuracy of M̂ has an important impact on the adaptive detection

performance in both Gaussian and non-Gaussian clutter. M̂SCM and M̂FP defined by Eqn. (3) and Eqn.

(8) do not take into account any prior information on the CCM structure. However many applications

lead to a CCM which exhibits some particular structure, and considering this structure may lead to a

improvement in both estimation and detection performance. Such a situation is frequently met in radar

systems using a symmetrically spaced linear array and a symmetrically spaced pulse train for temporal

domain processing [1], [4], [5]. In these systems, the CCM M has the persymmetric property, defined as

follows:

M = Jm M∗ Jm , (11)

February 15, 2010 DRAFT



6

where Jm is the m-dimensional antidiagonal matrix having 1 as non-zero elements. The steering vector

of the problem is also persymmetric, i.e. it satisfies:

p = Jm p∗ . (12)

The persymmetric structure of M will be exploited in this paper in order to improve its estimation

accuracy compared to unstructured estimators. This will be done by means of the transformation matrix

T introduced in [23] and whose properties are recalled in the following proposition.

Proposition II.1 ( [23] ) Let T be the unitary matrix defined as:

T =



1√
2

 Im/2 Jm/2

i Im/2 −i Jm/2

 for m even

1√
2


I(m−1)/2 0 J(m−1)/2

0
√

2 0

i I(m−1)/2 0 −i J(m−1)/2

 for m odd.

(13)

Persymmetric vectors and Hermitian matrices are characterized by the following properties:

• p ∈ Cm is a persymmetric vector if and only if T p is a real vector.

• M is a persymmetric Hermitian matrix if and only if T M TH is a real symmetric matrix.

Using proposition II.1, the original problem (1) can be equivalently reformulated. Let us introduce the

transformed primary data x, the transformed secondary data xk, the transformed clutter vector n and the

transformed signal steering vector s defined as: x = T y, xk = T yk, s = T p, n = T c, nk = T ck.

It follows that the transformed signal steering vector s and the transformed CCM are both real. Then,

the original problem (1) is equivalent to: H0 : x = n xk = nk, for 1 ≤ k ≤ K ,

H1 : x = A s + n xk = nk, for 1 ≤ k ≤ K ,
(14)

where x ∈ Cm, s is a known real vector.

In the Gaussian case, under hypothesis H0, n and the K transformed secondary data xk are i.i.d

and share the same CN (0,R) distribution where R = T M TH is a real symmetric matrix according to

proposition II.1.
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In the Non-Gaussian case, one has:

n =
√
τ h (15)

nk =
√
τk hk (16)

where h = T g and hk = T gk denote the transformed speckle vector with the same real covariance

matrix R = T M TH . n and nk are still SIRV’s with the same texture and CCM R = T M TH . From now

on, the problem under study is the problem defined by (14).

III. DETECTION SCHEME

In this section the detection problem (14) is investigated in Gaussian and non-Gaussian frameworks.

More precisely, the CCM estimation problem is addressed and adaptive detection schemes are proposed.

In both cases, the adaptive detector properties are studied.

A. Detection in circular Gaussian noise

Let us first investigate the ML estimator of the real covariance matrix R from the K secondary data

xk. The main motivation for introducing the transformed data is that the resulting distribution of the ML

estimator of R is very simple. This was not the case in [3] when dealing with the original secondary

data yk with persymmetric covariance matrix.

Proposition III.1 The ML estimator R̂P of the real matrix R is unbiased and is given by:

R̂P = Re(R̂SCM ) , (17)

where:

R̂SCM =
1
K

K∑
k=1

xk xHk = T M̂SCM TH . (18)

R̂P is an unbiased estimator and K R̂P is real Wishart distributed with parameter matrix
1
2

R and 2K

degrees of freedom.

Proof: It is easy to show that the MLE of the real covariance matrix is provided by equation (17).

Let us now investigate its statistical properties. Let ak and bk be the real and imaginary parts of the

secondary data:

xk = ak + ibk (19)
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and

K R̂P =
K∑
k=1

ak a>k +
K∑
k=1

bk b>k . (20)

xk is circular, i.e. E[xk x>k ] = 0 which leads to:

E[ak a>k ]− E[bk b>k ] = 0

E[ak b>k ] + E[bk a>k ] = 0 (21)

Moreover, xk has a real covariance matrix R which implies:

E[ak a>k ] + E[bk b>k ] = R

E[ak b>k ]− E[bk a>k ] = 0 (22)

Equations (21) and (22) yield:

E[ak a>k ] = E[bk b>k ] =
1
2

R

E[akb>k ] = 0 (23)

showing that the ak’s and the bk’s are independent and share the same covariance matrix
1
2

R.

From Eqn. (20), KR̂P has a real Wishart distribution with 2K degrees of freedom and parameter

matrix
1
2

R. Moreover,

E[K R̂P ] = 2K
1
2

R , (24)

resulting in E[R̂P ] = R.

Actually, taking into account the real structure of R (or equivalently the persymmetric structure of M)

in the ML estimation procedure allows to virtually double the number of secondary data. Let us now

consider the AMF for the detection problem (14) based on the estimator R̂P defined by (17). This leads

to the following detection test, called the PS-AMF,

ΛPS−AMF =

∣∣∣s>R̂
−1

P x
∣∣∣2

s>R̂
−1

P s

H1

≷
H0

λPS−AMF , (25)

or equivalently, in terms of the original data,

ΛPS−AMF =

∣∣∣pHTH [Re(TM̂SCMTH)]−1Ty
∣∣∣2

pHTH [Re(TM̂SCMTH)]−1Tp

H1

≷
H0

λPS−AMF . (26)
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The distribution of Eqn. (25) is well-known when K R̂P is complex Wishart distributed with parameter

matrix K R and K degrees of freedom: this is the classical AMF distribution [11], [24]. However, in

our problem, K R̂P is real Wishart distributed with parameter matrix
1
2

R and 2K degrees of freedom

while x is complex. The following proposition establishes the statistical distribution of the PS-AMF and

the relationship between the PFA Pfa and the detection threshold λPS−AMF .

Proposition III.2 • Under H0, the PDF p(z) of ΛPS−AMF , defined by Eqn. (25), is:

p(z) =
(2K −m+ 1) (2K −m+ 2)

2K (2K + 1) 2F1

(
2K −m+ 3

2
,
2K −m+ 4

2
;
2K + 3

2
;− z

K

)
, (27)

• The relationship between Pfa and the detection threshold λ is:

Pfa = 2F1

(
2K −m+ 1

2
,
2K −m+ 2

2
;
2K + 1

2
;−λPS−AMF

K

)
.

Proof: The proof is given on Appendix VII-A

As will be seen in section IV for both simulated and experimental data, the PS-AMF outperforms the

AMF, especially for a small number of secondary data.

B. Detection in non-Gaussian noise

The purpose of this section is to address the non-Gaussian case for the detection problem (14). Let us

first recall some notations. The additive SIRV noise n is defined by:

n =
√
τ h (28)

where τ is a positive random variable, and h is a zero-mean circular complex Gaussian vector with real

CCM R. The K secondary data nk =
√
τk hk are i.i.d. and share the same distribution as n.

Since the transformed CCM R is real, its structure may be taken into account in the estimation procedure

by retaining only the real part of the FP estimator. This leads to the proposed covariance estimator called

the Persymmetric Fixed-Point since it results from the persymmetric structure of the original speckle

covariance matrix:

R̂PFP = Re(R̂FP ), (29)

with

R̂FP = T M̂FP TH . (30)
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In this section, the statistical properties of the detector ΛGLRT−PFP are investigated under the null

hypothesis H0. Let us recall some basic definitions:

• A test statistic is said to be texture-CFAR when its distribution is independent of the texture

distribution,

• A test statistic is said to be matrix-CFAR when its distribution is independent of R,

• A test statistic is said to be SIRV-CFAR when it is both texture-CFAR and matrix-CFAR.

The statistical properties of R̂PFP are provided by the following proposition.

Proposition III.3 (Statistical performance of R̂PFP )

• The distribution of R̂PFP does not depend on the texture.

• R̂PFP is a consistent estimator of R.

• R̂PFP is an unbiased estimator of R.

• R̂PFP
Tr
(

R−1 R̂PFP
) has the same asymptotic distribution as

R̂

Tr
(

R−1 R̂
) , where R̂ is real Wishart

distributed with
m

m+ 1
2K degrees of freedom and parameter matrix R.

Proof: In [21], unbiasedness and consistency of R̂FP are proved. Taking the real part of this estimator

does not change these two statistical properties.

It has been shown in [21] that
R̂FP

Tr
(

R−1 R̂FP

) has the same asymptotic distribution as
R̂c

Tr
(

R−1 R̂c

)
with R̂c complex Wishart distributed with m

m+1 K degrees of freedom and parameter matrix R. Therefore
R̂PFP

Tr
(

R−1 R̂PFP

) has the same asymptotic distribution as
Re(R̂FP )

Tr
(

R−1Re(R̂FP )
) . By noting that Tr (AB) =

Tr (ARe(B)) when A is real symmetric and B is Hermitian, it follows that
R̂PFP

Tr
(

R−1 R̂PFP

) has the same

asymptotic distribution as
R̂

Tr
(

R−1 R̂
) , where R̂ = 2Re(Rc) is real Wishart distributed with parameter

matrix R and K ′ =
m

m+ 1
2K degrees of freedom.

Definition III.1 The adaptive GLRT, for the transformed problem (14), based on Eqn. (7) and on the

PFP estimator is:

ΛGLRT−PFP =

∣∣∣s> R̂
−1

PFP x
∣∣∣2(

s> R̂
−1

PFP s
)(

xH R̂
−1

PFP x
) H1

≷
H0

λGLRT−PFP . (31)
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Proposition III.4 ΛGLRT−PFP is SIRV-CFAR. For large K, under hypothesis H0, ΛGLRT−PFP has the

same distribution as Λ =

∣∣∣e>1 Ŵ
−1

w
∣∣∣2(

e>1 Ŵ
−1

e1

)(
wHŴ

−1
w
) where w ∼ CN (0, I), e1 = (1, 0, ..., 0)> and where

Ŵ is real Wishart distributed with parameter matrix I and K ′ =
m

m+ 1
2K degrees of freedom.

Proof: Since the FP estimator M̂FP does not depend on the texture, it follows from Eqn. (29) and (30)

that R̂PFP is itself texture independent. Moreover, under hypothesis H0, ΛGLRT−PFP is homogeneous

in terms of τ . Therefore, ΛGLRT−PFP is texture-CFAR.

Let us now investigate the matrix-CFAR property. Let R
1
2 R

>
2 be a real factorization of R, and let Q

be a real unitary matrix such that:

Q R−1/2 s = (s>R−1 s)1/2 e1. (32)

Note that the last equation is possible with Q real since s is itself real.

The test statistic ΛGLRT−PFP may then be rewritten

ΛGLRT−PFP =

∣∣∣e>1 Â
−1

w
∣∣∣2(

e>1 Â
−1

e1

)(
wHÂ

−1
w
) , (33)

where

w = Q R−
1
2 h ∼ CN (0, I) (34)

and where

Â = Q R−
1
2 R̂PFP R−

>
2 Q>

= Re (Q R−
1
2 R̂FP R−

>
2 Q>) . (35)

It has been shown in [25] that Q R−
1
2 R̂FP R−

>
2 Q> in Eqn. (35) is a FP estimator of the identity matrix

and that its distribution is therefore independent of R. Thus, the same conclusion holds for its real part

Â defined by Eqn. (35) and the matrix-CFAR property is proved.

From the fourth point of proposition III.3, ΛGLRT−PFP has the same distribution as

Λ =

∣∣∣s> R̂
−1

x
∣∣∣2(

s> R̂
−1

s
)(

xH R̂
−1

x
) , (36)

where R̂ is real Wishart distributed with K ′ degrees of freedom and parameter matrix R.
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Let Q be the real unitary matrix defined by Eqn. (32) and let us define Ŵ = QR−
1
2 R̂R−

>
2 Q>. The

matrix Ŵ is real Wishart distributed with K ′ degrees of freedom and parameter matrix I. Then Λ defined

by Eqn. (36) can be rewritten as

Λ =

∣∣∣e>1 Ŵ
−1

w
∣∣∣2(

e>1 Ŵ
−1

e1

)(
wHŴ

−1
w
) , (37)

which concludes the proof.

Moreover, in the sequel, all the statistical properties can be analyzed by choosing n and nk to be

Gaussian distributed because of these texture-CFAR properties. The analytical expression for the PDF of

the detector ΛGLRT−PFP has not been derived but the following theorem gives some insight about its

distribution. This derivation is important from an operational point of view in order to regulate the false

alarm.

Proposition III.5 For large K, ΛGLRT−PFP has the same distribution as
F

F + 1
where:

F =

(α1 l22 − α2 l21)2 +

(
1 +

(
β3

l33

)2
)

(a l22 − b l21)2

(α2 l11)2 +
(
l11 l22

β3

l33

)2

+ l211

(
1 +

(
β3

l33

)2
)
b2

(38)

and where all the following random variables are independent and distributed according to:

a, b, α1, l21 ∼ N (0, 1), α2
2 ∼ χ2

m−1, β
2
3 ∼ χ2

m−2, l
2
11 ∼ χ2

K′−m+1, l
2
22 ∼ χ2

K′−m+2, l
2
33 ∼ χ2

K′−m+3,

with K ′ =
m

m+ 1
2K.

Proof: The proof of this proposition is given on Appendix VII-B.

Proposition III.5 may be used to obtain, through Monte-Carlo simulations, the relation between the

PFA and the detection threshold λ for the GRLT-PFP (31).

IV. VALIDATION ON EXPERIMENTAL DATA

After the statistical study of these detectors, this section presents some results obtained on some

experimental and simulated data in Gaussian and non-Gaussian case.
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Fig. 1. Ground clutter data level (in dB) corresponding to the first pulse.

A. Experimental Gaussian data extraction and validation

The ground clutter data used in this paper were collected by an operational radar at Thales Air System.

The radar is 13 meters above the ground and illuminating the ground at low grazing angle. Ground clutter

complex echoes were collected for N = 868 range bins, for 70 different azimuth angles and for m = 8

pulses. Fig. 1 displays the ground clutter data level (in dB) corresponding to the first pulse echo. Near

the radar, echoes characterize heterogeneous ground clutter whereas beyond the radioelectric horizon of

the radar (around 15 km), only heterogeneous thermal noise (the blue part of the map) is present.

In order to test the PS-AMF and given the non-Gaussian nature of experimental data, it is necessary

to select particular data on the radar map. In addition, on some operational map, further parts of the data

present a low amplitude. Beyond the electromagnetic horizon of the radar, the absence of reflectors gives

an homogeneous area of data, characterized as Gaussian thermal noise. A statistical selection of these

data allows us to obtain experimental Gaussian noise to test our detection algorithm.

For that purpose, the well-known goodness-of-fit test of Kolmogorov-Smirnov (KS) is widely used

[26]. This test verifies the adequacy of a given data sample to a Gaussian distributed sample N (µ;σ). In

order to obtain an homogeneous area of data, the KS test is applied successively on little blocks of data.

With this test, the non-Gaussian data are rejected but the obtained map is lacunar. Indeed, the original
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clutter map presents a particular structure where there are horizontal band corresponding to constant

azimuths of the radar. The transitions between these bands show a significant difference of the mean

of the data and a consequence is that the KS test is then inefficient. This is also the case for another

goodness-of-fit test like Anderson-Darling [26].
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(a) Binary area selected for Gaussian data extraction (Gaussian area

in red and non-Gaussian in blue).
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(b) Gaussian map (in dB) corresponding to the Gaussian selection

and extracted from entire map

Fig. 2. Selection of the Gaussian area in the data presented in Fig. 1

In order to get round this problem, a robust algorithm using connectedness of the data is developed.
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The idea is to include in the Gaussian area all the little blocks of supposed non-Gaussian data when they

are not connected with the main non-Gaussian area. All the little blocks of data which are Gaussian but

not characterized as Gaussian because of the non homogeneity of the KS test are now included in the

main Gaussian area. We obtain with this method a wide area of Gaussian homogeneous data. In Fig.

2(a), we present the Gaussian area selected by the statistical study of the entire map. Gaussian area is

colored in red and non-Gaussian area is in blue. This map confirms that only Gaussian thermal noise is

present on the radioelectric horizon of the radar. In terms of experimental data, we present on Fig. 2(b)

the clutter map with only Gaussian data extracted. The similar color map as in Fig. 1 allows to verify

the adequacy between original and extracted data.
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(a) Theoretical and experimental PFA-threshold curves for various

Gaussian detectors.
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(b) Probability of Detection versus SNR for the AMF and PS-AMF

Fig. 3. Comparison between Performance of detectors for Pfa = 10−2,m = 8 and K = 14.

Once Gaussian data have been extracted from entire clutter map, we present the classical performance

of this detector. In Fig. 3(a) and Fig. 4(a), the PFA with respect to detection threshold are presented. The

theoretical relations for the OGD, the AMF and the PS-AMF are compared to the experimental relation

(AMF and PS-AMF) in order to confirm the validity of the statistical study. Experimental curves are

determined by Monte-Carlo counting, moving a (5× 3) and (5× 5) CFAR mask with different number

of simulations (nsimu). The theoretical relation is then validated. In Fig. 3(b) and 4(b), we present the

Probability of Detection versus SNR in order to verify and to quantify the improvement in terms of

detection for the PS-AMF compared to the AMF. However, these figures show the benefit of taking into
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account the persymmetric structure of the CCM in the Gaussian case.
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(a) Theoretical and experimental PFA-threshold curves for various

Gaussian detectors.
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(b) Probability of Detection versus SNR for the AMF and PS-AMF

Fig. 4. Comparison between Performance of detectors for Pfa = 10−2,m = 8 and K = 24.

B. Non-Gaussian experiments

In the context of non-Gaussian clutter, Conte and De Maio in [5] and [6] have proposed two detectors

derived respectively from the GLRT with some different estimators: the P-ANMF and the RP-ANMF.

In [5], the persymmetry property is only used to separate their original set of secondary data nk into

two new uncorrelated and then independent sets of data rek and rok, in order to render the detector

matrix-CFAR and improve the performance in terms of detection. These new vectors have the same size
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as the original, and share the same texture. Their speckle components are i.i.d. and zero-mean complex

Gaussian vectors. These news sets of secondary data allow the introduction of their new estimator for

the CCM:

Σ̂ =
1
K

K∑
k=1

rek rHek(∣∣rokrHok
∣∣)
i,i

. (39)

where (A)i,i stands for any (i, i)th element of the matrix A.

The previous estimator is then replaced in the classical GLRT-LQ given by (7) which leads to the

P-ANMF detector defined as:

ΛP−ANMF =
|pH Σ̂

−1
x|2

(pH Σ̂
−1

p)(xH Σ̂
−1

x)

H1

≷
H0

λP−ANMF . (40)

In [6], the same method is used to define two set of secondary data rek and rok and the FP matrix

estimator Σ̂(inf) is found by using the recursive procedure:

Σ̂(t+1) =
N

K

K∑
k=1

rek rHek
rHek
(
Σ̂(t)

)−1
rek

, (41)

with starting point:

Σ̂(0) =
1
K

K∑
1

rek rHek(∣∣T rokrHok TH
∣∣)
i,i

. (42)

This estimator is next replaced in the GLRT-LQ (7) to provide the RP-ANMF:

ΛRP−ANMF =

∣∣∣pH Σ̂
−1

(inf) x
∣∣∣2(

pH Σ̂
−1

(inf) p
)(

xH Σ̂
−1

(inf) x
) H1

≷
H0

λRP−ANMF . (43)

Please note that, as stated in [20], the solution Σ̂
(inf)

of the implicit FP matrix equation is unique and

does not depend on the starting point.

In order to compare all these detectors (GLRT-LQ with M known or with the classical SCM, GLRT-FP,

GLRT-PFP, P-ANMF and RP-ANMF), we present in Fig. 5(a) the PFA versus the detection threshold for

all these detectors and in Fig. 5(b), the Probability of Detection versus the Signal to Noise Ratio (SNR).

The simulated impulsive clutter is in this case chosen to be K-distributed [27]:

fx(x) =
2

aΓ(ν + 1)

( x
2a

)ν+1
Kν

(x
a

)
,

where Γ(.) is the standard Gamma function [13] and Kν is the modified Bessel function of order ν [13]

and where a and ν are constant positive parameters.
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These figures show the improvement in terms of detection of the RP-ANMF on the conventional

GLRT-SCM (which is not efficient on non-Gaussian data) but also the improvement of the GLRT-PFP

on all the other detectors. Moreover, theoretical results based on the asymptotic Wishart distributions of

R̂FP and R̂PFP (circle lines) are displayed. It can be noticed that the simulated results are in very good

agreement with the theory.
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(a) Theoretical and experimental PFA-threshold curves for various

non-Gaussian detectors.
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Fig. 5. Comparison between radar performance for various non-Gaussian detectors in simulated K-distributed clutter

characterized by its parameter ν with Pfa = 10−3,m = 8,K = 16 and ν = 0.2.
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(a) Sea clutter data from an over the horizon radar.

Range bins

S
pe

ed
 (

m
/s

)

Range−Doppler image

 

 

0 50 100 150 200 250 300 350

−200

−150

−100

−50

0

50

100

150

200

90

100

110

120

130

140

150

160

(b) Range-Doppler image of Atlantic Ocean sea clutter.

Fig. 6. Atlantic Ocean sea clutter data collected by the ONERA Over The Horizon Radar Nostradamus

Similar analyses performed on experimental sea-clutter data give the same conclusion. Figure 6(a) and

figure 6(b) show the sea clutter signal (range bins versus Pulse Repetition Interval and Range-Doppler)

collected by the operational Over The Horizon radar from the French Aerospace Lab (ONERA) illumining

the Atlantic ocean, and its associated range-Doppler image. In this context, we use a set of m = 8 pulses

of the signal on the entire range bins group and K = 16 reference range bins to estimate the CCM.

Fig. 7(a) and Fig. 7(b) show the improvement in detection performance on these data and the agreement

between theoretical (circle line) and practical (solid line) results.

V. CONCLUSION

In the radar detection framework, estimation of the CCM is a major procedure in the detection process.

In many applications, since this matrix commonly exhibits a particular structure, we therefore introduced

in this paper two adaptive detection tests which take into account the widespread persymmetric structure of

the CCM. In both contexts of Gaussian and non-Gaussian environments, we have presented and analyzed

new detectors based on a modified estimator of the CCM.

Under Gaussian assumption, the CCM estimator is developed based on the Maximum Likelihood

procedure. The analytical distribution and some statistical properties of the corresponding detector, called

the PS-AMF, have been established. These results are important since they enable a theoretical regulation
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Fig. 7. Comparison between radar performance for various non-Gaussian detectors in sea clutter data for Pfa = 10−2,m = 8

and K = 16.

of the false alarm, which is essential in the radar detection process.

The second detector is an extended version of the GLRT-LQ. It has been derived in the case of

persymmetric non-Gaussian clutter modeled by SIRVs. After a transformation of the detection scheme,

we have proposed an improved covariance matrix estimator, the PFP estimator. Its complete statistical

analyses have exhibited good statistical performance. Moreover the corresponding GLRT-PFP detector

has shown a wide improvement in terms of detection performance, as compared to the classical detectors.

Finally, all these theoretical results have been validated on simulations for both Gaussian and non-

Gaussian environments. Moreover, we have shown the validity and the good agreement between the

theoretical and the experimental results, on both real ground and sea clutter data. Furthermore, the

performance of the proposed detectors and the classical ones have been compared on these real data

which highlight the improved performance of the former. These analysis have demonstrated the relevance

and the advantage of exploiting the CCM structure.
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VII. APPENDIX

A. Appendix A : Proof of the Proposition III.2

We will use in this derivation the Bartlett matrix decomposition [28]. Let us set e1 = (1, 0, ..., 0)>, R =

R1/2 R>/2 a factorization of R and Q a real unitary matrix such that Q R−1/2 s = (s>R−1 s)1/2 e1.

Note that the last equation is possible with Q real since s is itself real. Let us set

Ŵ = 2KQ R−1/2 R̂P R−>/2 Q> and z = QR−1/2x .

Ŵ is real Wishart distributed with 2K degrees of freedom and parameter matrix Im, z ∼ CN (0, Im).

Then, the test statistic ΛPS−AMF (25) is equal to:

ΛPS−AMF =

∣∣∣s>R̂
−1

P x
∣∣∣2

s>R̂
−1

P s

=

∣∣∣s>R−>/2Q>(QR−1/2R̂PR−>/2Q>)−1QR−1/2x
∣∣∣2

s>R−>/2Q>(QR−1/2R̂PR−>/2Q>)−1QR−1/2s

= 2K

∣∣∣e>1 Ŵ
−1

z
∣∣∣2

e>1 Ŵ
−1

e1

(44)

which may be rewritten, for our statistical analysis, as:

ΛPS−AMF = 2K ba, (45)

where:

a =

∣∣∣e>1 Ŵ
−1

x
∣∣∣2

e>1 Ŵ
−2

e1

, b =

(
e>1 Ŵ

−2
e1

e>1 Ŵ
−1

e1

)
.

We will show that a and b are independent and we will derive their statistical distribution. Let us first

investigate the distribution of a. By introducing the unitary vector v, defined by:

v =
1(

e>1 Ŵ
−2

e1

)1/2
Ŵ
−1

e1,

a may be rewritten as:

a = |v>x|2.
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It follows that the conditional distribution of 2a given Ŵ is a Chi square distribution with 2 degrees of

freedom denoted by χ2
2. This distribution does not involve Ŵ, and

a ∼ 1
2
χ2

2 (46)

is therefore independent of Ŵ and consequently of b.

Now, to derive the PDF of b, we use the Bartlett matrix decomposition Ŵ = U.U> where U =

(uij)1≤i≤j≤m is an upper triangular matrix whose random elements are independent and distributed as:

u2
i,i ∼ χ2

2K+i−m and ui,j ∼ N (0, 1) for i < j.

Let u′i,j be the elements of the matrix U−1 which is itself upper-triangular. By noticing that U−1 e1 =

u′1,1 e1, we have :

b =
e>1 Ŵ

−2
e1

e>1 Ŵ
−1

e1

.

=
e>1 U−>U−1 U−>U−1e1

e>1 U−>U−1e1

= ‖e>U−1‖2

=
m∑
j=1

u′21,j (47)

We are thus lead to investigate the distribution of the squared norm of the first row of U−1. Let u′1,k be

the k-th order vector whose components are the k first elements of the first row of U−1 and ui,j the i-th

order vector the components of which are the i first elements of the j-th column of U. The definition of

U−1, i.e. U−1 U = Im, allows to determine recursively its elements according to:

u′1,1 = u−1
1,1

and

u′1,k+1 =
−u′>1,kuk,k+1

uk+1,k+1
for 1 6 k < m.

It follows that u′1,k is independent of the ui,j’s for j > k. Now we have from the above equation:

u′21,k+1 =
|u′>1,k uk,k+1|2

u2
k+1,k+1

=
|u′>1,k uk,k+1|2

‖ u′1,k ‖2
‖ u′1,k ‖2

u2
k+1,k+1

= = αk
‖ u′1,k ‖2

u2
k+1,k+1

. (48)
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The conditional distribution of αk given u′1,k is a Chi square distribution with 1 degree of freedom

denoted by χ2
1. This distribution does not involve u′1,k and αk ∼ χ2

1 is therefore independent of u′1,k.

Moreover, αk is independent of ui,j for i and j > k. Now, notice from Eqn. (48) that b = ‖u′1,m‖2. Since

‖ u′1,m ‖2=‖ u′1,m−1 ‖2 +u′21,m, one has therefore:

b =‖ u′m−1 ‖2
(

1 +
αm−1

u2
m,m

)
=

1
u2

1,1

m∏
k=2

(
1 +

αk−1

u2
k,k

)
, (49)

where the αk’s are independent, independent of the u2
k,k’s and χ2

1-distributed. Since
(

1 + αk−1

u2
k,k

)−1
∼

β1

(
2K−m+k

2 , 1
2

)
, we have from [29]:

b =
1
u2

1,1

1
m∏
k=2

β1

(
2K −m+ k

2
,
1
2

) ∼ 1
χ2

2K−m+1

1

β1

(
2K −m+ 2

2
,
m− 1

2

) , (50)

where the β1’s are independent (first kind) Beta distributed random variables. Finally we obtain from

Eqn. (45), Eqn. (46) and Eqn. (49):

ΛPS−AMF ∼ K
χ2

2

χ2
2K−m+1

1

β1

(
2K −m+ 2

2
,
m− 1

2

) (51)

which can be rewritten in terms of an F-distributed random variable:

ΛPS−AMF ∼ K
2

2K −m+ 1
F (2, 2K −m+ 1)

1

β1

(
2K −m+ 2

2
,
m− 1

2

) (52)

Let us now derive the PFA-threshold relation. From [13], page 946:

PFA = Pr(ΛPS−AMF > λ)

= Pr

(
F (2, 2K −m+ 1) >

2K −m+ 1
2

λ

K
β1

(
2K −m+ 2

2
,
m− 1

2

))

=
∫ 1

0

 1

1 +
λ

K
x


2K−m+1

2

fν1,ν2(x) dx (53)

where fν1,ν2 is the PDF of a first kind beta random variable with parameters ν1 = 2K−m+2
2 and ν2 =

m−1
2 . We finally obtain:

PFA =
1

B

(
2K −m+ 2

2
,
m− 1

2

) ∫ 1

0

 1

1 +
λ

K
.x


2K−m+1

2

x
2K−m+2

2
−1(1− x)

m−1
2
−1 dx, (54)
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which may be expressed in terms of the hypergeometric function [13] page 558:

Pfa = 2F1

(
2K −m+ 1

2
,
2K −m+ 2

2
;
2K + 1

2
;− λ

K

)
. (55)

The negative derivative of Pfa with respect to λ yields the PDF of ΛPS−AMF . By using the expression of

the derivative of hypergeometric functions given in [13] page 557, we obtain Eqn. (27) which concludes

the proof.

B. Appendix B : Proof of the proposition III.5

From theorem III.4, ΛGLRT−PFP has the same asymptotic distribution as

Λ =

∣∣∣e>1 Ŵ
−1

w
∣∣∣2(

e>1 Ŵ
−1

e1

)(
wHŴ

−1
w
)

=

∣∣∣e>1 Ŵ
−1

(
√

2 w)
∣∣∣2(

e>1 Ŵ
−1

e1

)(√
2 wH Ŵ

−1√
2 w
) , (56)

where (
√

2 w) = w1 + iw2 with w1 and w2 uncorrelated and N (0, I) distributed.

Thus

Λ =

∣∣∣e>1 Ŵ
−1

w1

∣∣∣2 +
∣∣∣e>1 Ŵ

−1
w2

∣∣∣2(
e>1 Ŵ

−1
e1

)(
w>1 Ŵ

−1
w1 + w>2 Ŵ

−1
w2

) .
For large K, Ŵ is real Wishart distributed with K ′ = m

m+1 2K degrees of freedom. The vectors w1 and

w2 can be decomposed on an orthonormal vectors triplet (e1, f2, f3):

w1 = α1 e1 + α2 f2

w2 = β1 e1 + β2 f2 + β3 f3.

where α1, β1 and β2 are N (0, 1) distributed, α2
2 is χ2

m−1 distributed and β2
3 is χ2

m−2 distributed. Moreover

α1, α2, β1, β2, β3 are independent and independent of (f2, f3).

Let (e1, e2, . . . , em) be the canonical basis. Using an appropriate rotation G such that G (e1, f2, f3) =

(e1, e2, e3), we have

Gw1 = α1 e1 + α2 e2

= v1 (57)
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Gw2 = β1 e1 + β2 e2 + β3 e3

= v2 (58)

and Λ can be rewritten as

Λ =

∣∣∣e>1 Ẑ
−1

v1

∣∣∣2 +
∣∣∣e>1 Ẑ

−1
v2

∣∣∣2(
e>1 Ẑ

−1
e1

)(
v>1 Ẑ

−1
v1 + v>2 Ẑ

−1
v2

) , (59)

where Ẑ = G Ŵ G>.

Conditionally (and unconditionally) to G, Ẑ is Wishart distributed with K ′ degrees of freedom and

parameter matrix I. Let Ẑ = L> L be the Bartlett’s decomposition of Ẑ [28] where L = (li,j)1≤i≤j≤m is

a lower triangular matrix whose non-zeros random elements are independent and distributed as:

l2i,i ∼ χ2
K′+i−m and li,j ∼ N (0, 1) for i > j.

Let l′i,j be the elements of the matrix L−1 which is lower-triangular itself. The following elements of

L−1 are involved in Eqn. (59):

l′11 =
1
l11

, l′22 =
1
l22

, l′21 = − l21

l11 l22
, l′33 =

1
l33

, l′32 = − l32

l22 l33
, l′31 = − 1

l11

(
l31

l33
− l32 l21

l22 l33

)
. (60)

From Eqn. (59), we define:

α =

∣∣∣e>1 Ẑ
−1

v1

∣∣∣2 +
∣∣∣e>1 Ẑ

−1
v2

∣∣∣2
e>1 Ẑ

−1
e1

,

which can be rewritten as:

α =

∣∣e>1 L−1L−>G w1

∣∣2 +
∣∣e>1 L−1L−>G w2

∣∣2
e>1 L−1L−> e1

,

= (α1 l
′
11 + α2 l

′
21)2 + (β1 l

′
11 + β2 l

′
21 + β3 l

′
31)2 ,

and

β = v>1 Ẑ
−1

v1 + v>2 Ẑ
−1

v2 ,

which can be rewritten as:

β = v>1 L−1L−> v1 + v>2 L−1L−> v2,

= α+ (l′22 α2)2 + (l′22 β2 + l′32 β3)2 + (l′33 β3)2.
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We deduce that Λ =
α

β
=

F

1 + F
with

F =
(α1 l

′
11 + α2 l

′
21)2 + (β1 l

′
11 + β2 l

′
21 + β3 l

′
31)2

(l′22 α2)2 + (l′22 β2 + l′32 β3)2 + (l′33 β3)2

=
(α1 l22 − α2 l21)2 +

(
β1 l22 − β2 l21 − β3

l31

l33
l22 +

l32l21

l33
β3

)2

(l11 α2)2 +
(
l11l22

l33
β3

)2

+ l211

(
β2 −

β3

l33
l32

)2 . (61)

In this equation, we have(
β1 l22 − β2 l21 − β3

l31

l33
l32 +

l32l21

l33
β3

)2

=
(
l22

(
β1 −

β3

l33
l31

)
− l21

(
β2 −

β3

l33
l32)
))2

=

(
1 +

(
β3

l33

)2
)

(l22a− l21b)
2 (62)

with a =
1√

1 +
(
β3

l33

)2

(
β1 −

β3

l33
l31

)
and b =

1√
1 +

(
β3

l33

)2

(
β2 −

β3

l33
l32

)
. Conditionally to β3

and l33, a and b are independent and N (0, 1) distributed. Since their distribution does not involve β3 and

l33, a and b are also independent of β3 and u33.

By replacing it in Eqn. (61), we finally obtain

F =

(α1 l22 − α2 l21)2 +

(
1 +

(
β3

l33

)2
)

(a l22 − b l21)2

(α2 l11)2 +
(
l11 l22

β3

l33

)2

+ l211

(
1 +

(
β3

l33

)2
)
b2

(63)

where all the following random variables are independent and distributed according to:

a, b, α1, l21 ∼ N (0, 1), α2
2 ∼ χ2

m−1, β
2
3 ∼ χ2

m−2, l
2
11 ∼ χ2

K′−m+1, l
2
22 ∼ χ2

K′−m+2, l
2
33 ∼ χ2

K′−m+3,

with K ′ = m
m+12K which concludes the proof.
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