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Alignment of the strapdown inertial navigation system (INS)

has strong nonlinearity, even worse when maneuvers, e.g.,

tumbling techniques, are employed to improve the alignment.

There is no general rule to attack the observability of a nonlinear

system, so most previous works addressed the observability

of the corresponding linearized system by implicitly assuming

that the original nonlinear system and the linearized one have

identical observability characteristics. Strapdown INS alignment

is a nonlinear system that has its own characteristics. Using the

inherent properties of strapdown INS, e.g., the attitude evolution

on the SO(3) manifold, we start from the basic definition and

develop a global and constructive approach to investigate the

observability of strapdown INS static and tumbling alignment,

highlighting the effects of the attitude maneuver on observability.

We prove that strapdown INS alignment, considering the

unknown constant sensor biases, will be completely observable

if the strapdown INS is rotated successively about two different

axes and will be nearly observable for finite known unobservable

states (no more than two) if it is rotated about a single axis.

Observability from a global perspective provides us with insights

into and a clearer picture of the problem, shedding light on

previous theoretical results on strapdown INS alignment that were

not comprehensive or consistent.. The reporting of inconsistencies

calls for a review of all linearization-based observability studies in

the vast literature. Extensive simulations with constructed ideal

observers and an extended Kalman filter are carried out, and

the numerical results accord with the analysis. The conclusions

can also assist in designing the optimal tumbling strategy and the

appropriate state observer in practice to maximize the alignment

performance.
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I. INTRODUCTION

The strapdown inertial navigation system (INS)
necessitates an alignment stage to determine the initial
condition before the navigation operation. Alignment
is vitally important, because the performance of an
INS is largely decided by the accuracy and rapidness
of the alignment process. We care most about the
initial body attitude during the alignment, because
other initial conditions such as position and velocity
are relatively easy to determine [1—3]. Attitude is
essentially an SO(3) manifold1 [4—6], which inevitably
brings strong nonlinearity to the strapdown INS
system, as well as the alignment stage, and even
stronger nonlinearity when inertial sensor (gyroscope
and accelerometer) biases are considered or when
rotating or accelerating maneuvers are intentionally
introduced to improve the observability or estimability
[7—10].
Regardless of the technique (gyrocompassing,

state estimation, or observer) used to address the
alignment problem, observability analysis is necessary,
because it reveals the inherent estimability of the
system [11—13]. For an unobservable system, we
cannot achieve satisfactory estimation even if the
measurement is accurate enough. Unfortunately,
no formal criterion tells whether or not a nonlinear
dynamic system, such as alignment and other
strapdown INS-related problems, is observable [13],
so observability works so far have been largely
devoted to observability of the corresponding
linearized system (direct form) or the linear error
dynamic equation (indirect form) [7—10, 14—25]. For a
linear time-invariant system, the observability analysis
is straightforward: it tests the rank of the observability
matrix. In contrast, the linearization is generally an
implicit time-varying linear system, analysis of which
is cumbersome and involves the evaluation of the
observability Grammian [12]. If a linear time-varying
system could be well approximated by a piecewise
linear constant system and certain conditions on
the null space of the dynamic matrix were met for
each constant segment, the observability analysis
would be considerably simplified, obtaining the main
observability characteristics of the original system by
a rank test of concatenation of the constant segment
observability matrices [20], e.g., in transfer or in-flight
alignment [20, 23], so-called multiposition alignment
[7, 25], and simultaneous localization and mapping
[26]. A general linear time-varying model was used
in [9] to investigate the observability properties of
INS/GPS (Global Positioning System) by examining
the time derivatives of the system output.

1In differential geometry, SO(3) is the abbreviation for the

special orthogonal matrix in three-dimensional space that has +1

determinant. The manifold can be simply seen as a linear space

satisfying nonlinear constraints; specifically, the SO(3) manifold

is a 3£ 3 matrix that satisfies the orthogonal and unit-determinant
constraints.
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Regarding the observability analysis based on the

linearized system, we need to underline three weak

points:

1) Practitioners often find themselves lost in

nontrivial symbolic matrix rank testing, especially

for high-dimensional systems [8, 9, 25]. It is

extremely difficult to obtain analytical observability

conditions for general linear time-varying systems,

and practitioners must seek nonanalytical support from

numerical simulations [9].

2) Linearization implies that the observability

result can only locally characterize the properties

of the original nonlinear system [13, 27, 28]. That

is to say, the insights thus obtained are for the

corresponding linearized system, not for the nonlinear

system. Just as different curves might have the

same tangential line, different nonlinear systems

might have an identical linearized system, so the

observability result for the linearized system may

not be comprehensive for the original nonlinear

system [29].

3) Setting aside the linearization approximation,

validity of the observability analysis for the linearized

system is arguable. By definition, a system is

observable if the initial state can be determined

given the state transition and measurement models

of the system and outputs during some time interval

[12, pp. 153—158]. In other words, the state and

measurement matrices should be known. In [7—10]

and [14—25], however, state, measurement, or both

matrices of the linearized system are functions of the

unknown current state at which the nonlinear system

is linearized. It is the unknown state that is to be

determined by the estimation process.

In this paper, we revisit the observability of

strapdown INS alignment from a global perspective

in an effort to overcome the preceding weaknesses. In

particular, the statement that no general rule exists to

check the observability of a general nonlinear system

does not imply the impossibility of observability

analysis by exploiting the structure inherent in

special classes of systems [30]. Strapdown INS

alignment, as well as other strapdown INS-based

systems, is a kind of special-structure system, with

its attitude state evolving on the SO(3) manifold. In

earlier studies, we used the special SO(3) structure

to examine the observability of nonlinear INS and

odometer self-calibration [31, 32] and the INS/GPS

system [29], yielding new, comprehensive insights.

In this paper, we investigate the observability

property of the original nonlinear strapdown INS

alignment directly, starting from the basic definition

of observability. Throughout this paper, we use the

terms “global observability” to name the observability

analysis of the nonlinear system on a finite time

interval and “instantaneous observability” to name

the observability analysis in an infinitely small

neighborhood at the linearization point.2 We know

that instantaneous observability deals with the ability

to distinguish the states from their neighbors in an

infinitely small time interval or instantaneously,

while global observability describes the ability to

estimate the states in the entire time span [28]. The

instantaneous observability concept is identical to that

of global observability for a linear system but different

for a nonlinear system. An instantaneously observable

system is globally observable, but a globally

observable system may be locally or instantaneously

unobservable [28]. In other words, the requirements

for global observability are looser than those for local

ones. As we demonstrate, the global observability

perspective is straightforward and constructive, leading

to insights into and comprehensive understanding

of tumbling effects on the nonlinear strapdown INS

alignment problem.

This paper is organized as follows. Section II

formulates and establishes strapdown INS alignment

as a problem of solving a set of infinite nonlinear

equations on a continuous time interval, in contrast to

that of matrix rank computation in linearization-based

observability analysis. Section III presents the result

of global observability in the form of constructive

theorems. Static and attitude-maneuvering cases

are both considered. Sufficient conditions to make

the alignment fully observable are analytically

derived, drawing a clear picture of the effect of

attitude maneuvers, i.e., inputs, on state observability.

Section IV carries out extensive numerical simulations

to aid understanding of the theoretical analysis.

Simulation results accord with what theorems tell us.

Conclusions are made in Section V.

The contribution of the paper is twofold. First,

a global-observability perspective is proposed to

investigate strapdown INS alignment, which provides

us with insights into the problem and unveils the

incompleteness and inconsistency of previous

linearization-based observability studies of the

problem. Specifically, the reporting of inconsistency

calls for a review of all linearization-based

observability studies in the vast literature. Second,

this paper, along with [29], [31], and [32], provides

a straightforward and efficient way to perform

observability analysis for other strapdown INS-based

systems.

II. PROBLEM STATEMENT OF ALIGNMENT AND
OBSERVABILITY

This section presents a mathematical formulation

of strapdown INS alignment based on which

observability analysis is to be performed in the sequel.

Here, we focus on the ground alignment at a known

2The previous linearization-based observability analysis is an

approximation of instantaneous observability, but we show that it

is not a consistent approximation.
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location (longitude, latitude, and height are given).

For brevity, the nonlinear alignment system is directly

provided and the development details are readily

available in textbooks such as [1—3] and [33].

Without loss of generality, the local-level frame N

is selected as the reference frame (east, north, up). We

denote with B the INS body frame, with E the Earth

frame, and with I some chosen inertial frame. The

inertial sensor outputs are contaminated by random

constant biases. Using gyroscopes and accelerometers

outputs, the ground velocity vn = [vN vU vE]
T and

the body attitude matrix with respect to the reference

frame Cbn satisfy the kinematic equations as
3

_Cnb =C
n
b(!

b
nb£)

!bnb = !
b
ib ¡bg ¡Cbn(!nie+!nen)

(1)

and

_vn =Cnb(f
b¡ba)¡ (2!nie+!nen)£ vn+ gn (2)

where !bnb is the body angular rate with respect to
the reference frame, expressed in the body frame;

!bib is the error-contaminated body angular rate
measured by gyroscopes in the body frame; !nie =
[− cosL − sinL 0]T is the Earth rotation rate in

the reference frame, with − being the Earth rate

and L being the local latitude; !nen = [vE=(RE + h)
vE tanL=(RE +h) ¡ vN=(RN + h)]T is the angular
rate of the reference frame with respect to the Earth

frame, expressed in the reference frame; RE and

RN are, respectively, the transverse radius and the

meridian radius of curvature; h is the altitude; fb is

the error-contaminated specific force measured by

accelerometers in the body frame; gn = [0 ¡ g 0]T
is the gravity vector in the reference frame; and g

is the magnitude of local gravity. The 3£ 3 skew
symmetrical matrix (¢£) is defined so that the cross
product satisfies a£b= (a£)b for arbitrary two
vectors. The gyroscope drift bg and the accelerometer
bias ba are taken into consideration approximately as

random constant vectors, i.e.,

_bg = 0,
_ba = 0: (3)

Equations (1)—(3) form the augmented system

dynamic equation, with its state comprising the

body attitude matrix Cbn, the ground velocity v
n, the

gyroscope drift bg, and the accelerometer bias ba.
Because the strapdown INS has zero ground velocity

during ground alignment (whether angular motion

exists or not), the measurement equation is

y= vn ´ 0: (4)

The purpose of alignment is to estimate the state

of system (1)—(4) using some kind of observer or

estimation method. To attain accurate alignment,

3If not explicitly stated, quantities in this paper are time dependent.

The dependence on t is omitted for clearer presentation.

the observability analysis is indispensable, because

it fundamentally reveals how to enhance the

potential alignment performance through tumbling

techniques.

This paper considers deterministic observability

[11—13], where random noises in system dynamics

and measurements are not considered, in contrast to

stochastic observability evaluated under uncertainty

[34—36]. A system is said to be observable if the

initial state could be derived from knowledge of the

system in finite time. In a more formal language, the

definition of observability is as follows [12]:

“A system is said to be (globally) observable

if for any unknown initial state x(0) there exists a
finite t1 > 0 such that knowledge of the input and the

output over [0, t1] suffices to determine uniquely the

initial state x(0). Otherwise, the system is said to be

(globally) unobservable.”

The ground velocity is observable, because vn(0) =

0. By substituting (4), the strapdown INS alignment
observability problem (SAOP) of interest is reduced to

the following:

Does it suffice to uniquely determine the initial

state by solving the infinite nonlinear equations over

the continuous time interval [0, t1]

_Cnb =C
n
b(!

b
nb£), !bnb = !

b
ib¡bg ¡Cbn!nie (5)

Cnb(f
b¡ba) +gn = 0 (6)

_bg = 0,
_ba = 0 (7)

where the initial state includes the initial attitude

matrix Cbn(0), the gyroscope drift bg and the
accelerometer bias ba Unlike a linear system, whose
observability is irrelevant to the system input,

observability of a nonlinear system highly depends on

the system input [11, 13]. In this case, system input

refers to the body angular rate !bib and the specific
force fb. Equivalently, the SAOP investigates the effect

of the known body angular rate and specific force on

state observability. The required body angular rate and

specific force are fulfilled by attitude motion.

III. GLOBAL PERSPECTIVE OF OBSERVABILITY

This section shows how to attack the SAOP

from a global perspective by decoupling and solving

the nonlinear (5)—(7). If not explicitly stated, the

strapdown INS is not located at the Earth’s poles, i.e.,

L 6=§¼=2.
First, we present several lemmas, which are used

later.

LEMMA 1 [37, 38] For any two linearly independent

vectors, if their coordinates in two arbitrary frames are

given, then the attitude matrix between the two frames

can be determined.

LEMMA 2 Given m known points ak, k = 1,2, : : : ,m, in
three-dimensional space satisfying jak ¡ xj= r, where
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x is an unknown point, r is a positive scalar, and j ¢ j
is the norm operator. If points ak do not lie in any

common plane, x has a unique solution. See Appendix

Section A for the proof.

LEMMA 3 Let a(t) and b(t) be known

three-dimensional vectors on some time interval that

satisfy a(t)£m= b(t), where m is an unknown constant

vector. If a(t) has nonconstant directions, then m can be

uniquely solved. See Appendix Section B for the proof.

LEMMA 4 Let a and b be known three-dimensional

vectors satisfying a£m= b (jaj 6= 0), where m is an

unknown vector. If jmj is given, then m has solutions

expressed as m=§a
p
jaj2jmj2¡jbj2=jaj2¡ a£b=jaj2.

See Appendix Section C for the proof.

A. Static Alignment

For most applications, the strapdown INS has to

align itself under a still condition, which is known as

static alignment. This kind of alignment has been most

frequently studied so far [1, 15, 16, 33].

THEOREM 1 For static alignment, the SAOP is

unobservable. The number of unobservable states is

infinite.

PROOF OF THEOREM 1 During the static period, the

body angular rate !bib and the specific force f
b are

constants and !bnb = 0. From (5), it gives

!bib¡bg =Cbn!nie: (8)

Attitude transformation does not change the

magnitude of a vector, so we have

j!bib¡bgj= − (9)

which means that the solution of bg can be any point

on the sphere surface with radius − that centers on

!bib. Because !
b
ib is constant, (9) imposes a constraint

on bg that has three unknown components.

Similarly, taking norms on both sides of (6)

indicates

jfb ¡baj= g (10)

where g is the known magnitude of the local gravity.

It shows that the solution of ba can be any point

of the sphere surface with radius g that centers on

fb. Equation (10) imposes a constraint on the three

unknown components of ba.

The biases bg and ba are not independent.

Equations (6) and (8) imply

(!bib ¡bg)T(fb¡ba) =¡!nTie CnbCbngn = g− sinL
(11)

which imposes one more constraint on bg and ba.

Using (9) and (10), we see that (11) says the angle

formed by the two vectors !bib ¡bg and fb ¡ba is
¼=2¡L.

Fig. 1. Trajectory history of gravity vector in inertial frame

depicts cone.

Designate an inertial frame I to be the local-level

frame at t= 0, i.e., I =N(0). Decompose the body

attitude matrix at the current time as

Cbn =C
b(t)
b(0)C

b(0)
n(0)C

n(0)
n(t) =C

b(t)
b(0)C

b
n(0)C

n(0)
n(t) (12)

where Cb(t)b(0) and C
n(0)
n(t) are attitude matrices as functions

of !bib ¡bg and !nie, respectively. They encode,
respectively, the attitude changes of the body frame

and the navigation frame from time 0 to t. Substituting

into (6) gives

Cbn(0)C
n(0)
n(t) g

n =Cb(0)b(t) (ba¡ fb): (13)

The quantity Cn(0)n(t) g
n is the gravity vector seen

from the inertial frame I, and its trajectory history

forms a cone at all locations but the two Earth poles

where the cone degenerates to a line, as shown in

Fig. 1. So there always exist two time instants that

Cn(0)n(t) g
n have linearly independent directions. Using

Lemma 1, the initial body attitude Cbn(0) can be solved
if only bg and ba are given.

Because bg and ba are not definite, C
b
n(0) is

indeterminate and has a solution for each feasible pair

of bg and ba. Therefore, the system is unobservable,

and the unobservable states are constrained by

(9)—(11) and (13).

REMARK 1 Given bg and ba, the initial body matrix

Cbn(0) can be analytically solved. Right multiplying

(Cn(0)n(t) g
n)T on both sides of and integrating over [0, t1],

we have

Cbn(0)

Z t1

0

Cn(0)n(t) g
ngnTCn(t)n(0)dt

=

Z t1

0

Cb(0)b(t) (ba¡ fb)gnTCn(t)n(0)dt (14)

from which we solve

Cbn(0) =

Z t1

0

Cb(0)b(t) (ba¡ fb)gnTCn(t)n(0)dt

¢
·Z t1

0

Cn(0)n(t) g
ngnTCn(t)n(0)dt

¸¡1
: (15)
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REMARK 2 Theorem 1 shows that we cannot

accomplish the state estimation during static

alignment. If a full-state estimator, e.g., the Kalman

filter, is designed to do the static alignment, the

estimator is supposed to converge to one of the

unobservable states depending on the estimator

settings, e.g., the selection of initial value (see Static

Alignment in Section IV).

In the linearization-based observability analysis,

the state space was usually divided into the observable

subspace and the unobservable subspace to achieve

better accuracy of estimation [15, 16]. This was

done by setting all but one unobservable state in the

observable combination to zeros. In the nonlinear

context given here, it is equivalent to imposing

constraints in addition to (9)—(11) and (13). For a

navigational strapdown INS, we may as well perform

the static alignment by simply assuming zero inertial

sensor biases. This is common sense for practitioners

(e.g., see [39]). The standard deviations of the

neglected sensor biases impose a limit on the accuracy

to which the remaining states may be determined.

Theorem 1 can be generalized to portray the

problem of multiposition alignment.

THEOREM 2 Consider a strapdown INS over [0, t1].

If it is static on several disconnected subintervals such

that either !bib or f
b on these static segments does not

lie in any common plane, then the system is observable.

PROOF OF THEOREM 2 The determination of bg
and ba can be achieved by using Lemma 2. Let

us first consider !bib. As for (9), we know from
Lemma 2 that bg has a unique solution if !

b
ib on

these static segments does not lie in any common

plane. Consequently, the known !bib ¡bg does not lie
in one plane as well. So ba is uniquely determined,
noting (11) can be rewritten as (!bib¡bg)Tba =
(!bib¡bg)Tfb ¡g− sinL. The same story goes if we
start the discussion from fb. Once the correct bg
and ba are found, the initial body matrix C

b
n(0) is

analytically solved.

REMARK 3 For the multiposition alignment in [7],

it was claimed (Theorem 2 therein) that two still

positions with different heading angles result in

an observable system. We can readily show using

Theorem 2 and Lemma 2 that the constraints (9)—(11)

introduced by such two still positions are not enough

to guarantee unique solutions of the sensor biases. In

fact, Lemma 2 says that at least four still positions

are required. As shown later, the rotating motion

between still positions matters for observability.

As a counterexample, consider a rotating motion

that never stops or stops at an end position with the

same heading as the start position. Theorem 2 in

[7] says nothing about this, although the defect was

partly remedied by a later work [24] using Lyapunov

transformation and by our short note [25].

Theorem 2 employs only the information during

the disconnected stays and thus requests tight

conditions for an observable system. It is attitude

motion that brings the strapdown INS from one

static position to another. We next investigate attitude

motion’s contribution to observability.

B. Tumbling Alignment

The proper way to obtain accurate alignment is

to improve the observability by, e.g., maneuvering

[7—10, 14, 18, 24, 40, 41]. Observability has a tight

connection with the input for a nonlinear system

[11, 13]. As far as the SAOP is concerned, the

observability is affected by the input, i.e., the body

angular rate and specific force. Constant-speed

rotation is considered first and then extended to

varying-speed rotation.

THEOREM 3 Consider the system rotating with the

non-zero constant !bnb (!
b
nb 6= 0 and _!bnb = 0) over

[0, t1]. Suppose _!
b
ib or

_fb has a nonconstant direction:

1) If !bnb is not perpendicular to both g
b and !bie,

the system is unobservable with two indistinguishable

states.

2) If !bnb is perpendicular to g
b but not to !bie,

the system is unobservable with two indistinguishable

states. In addition, ba is observable.

3) If !bnb is perpendicular to !
b
ie but not to g

b,

the system is unobservable with two indistinguishable

states. In addition, bg is observable.

4) If !bnb is perpendicular to both g
b and !bie, the

system is observable.

PROOF OF THEOREM 3 From (5), we have

!bnb = !
b
ib¡ bg ¡Cbn!nie: (16)

Because !bnb is constant, taking the time derivative on
both sides and substituting (5) and (7) gives

0= _!bib+(!
b
nb£)Cbn!nie: (17)

With (16), the preceding equation is rewritten as

0= _!bib +!
b
nb£ (!bib¡ bg): (18)

Taking the time derivative again on both sides, we

obtain
_!bib£!bnb = !̈bib: (19)

In addition, the time derivative of (6) yields

Cnb(!
b
nb£ (fb¡ ba)+ _fb) = 0 (20)

or, equivalently,

!bnb £ (fb ¡ ba)+ _fb = 0: (21)

Taking the time derivative again, it gives

_fb£!bnb = f̈b: (22)
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Because _!bib or
_fb has a nonconstant direction as

assumed, Lemma 3 tells us that !bnb can be uniquely
determined from (19) or (22). Now !bnb can be used
as a known quantity.

Rewrite (21) as

!bnb £ (fb¡ba) =¡_fb: (23)

According to (10), jfb ¡baj= g. Using Lemma 4, the
solution of ba is

ba+,¡ = f
b §

!bnb

q
g2j!bnbj2¡ j_fbj2
j!bnbj2

¡ !
b
nb£ _fb
j!bnbj2

: (24)

Substituting (23) and using (6), it is reduced to

ba+,¡ = f
b § !

b
nbj!bnb ¢ gbj
j!bnbj2

¡ !
b
nb £ _fb
j!bnbj2

= ba+
!bnb(§j!bnb ¢ gbj ¡!bnb ¢ gb)

j!bnbj2
(25)

where gb =Cbng
n = ba¡ fb according to (6) and “¢”

denotes the dot product of vectors. When !bnb is
perpendicular to gb, ba+,¡ = ba and we have the
correct solution; otherwise, we get two distinctive

solutions, one of which is correct.

Rewrite (18) as

!bnb£ (!bib ¡bg ¡!bnb) =¡ _!bib: (26)

According to (16), j!bib ¡bg ¡!bnbj=−. With the help

of Lemma 4, the solution of bg is given by

bg+,¡ = !
b
ib¡!bnb§

!bnb

q
−2j!bnbj2¡ j _!bibj2
j!bnbj2

¡ !
b
nb £ _!bib
j!bnbj2

: (27)

Substituting (26) and using (16), it yields

bg+,¡ = !
b
ib ¡!bnb§

!bnbj!bnb ¢!biej
j!bnbj2

¡ !
b
nb£ _!bib
j!bnbj2

= bg +
!bnb(§j!bnb ¢!biej+!bnb ¢!bie)

j!bnbj2
(28)

where !bie =C
b
n!

n
ie = !

b
ib ¡bg ¡!bnb, according to (16).

When !bnb is perpendicular to !
b
ie, bg+,¡ = bg and

it gives the correct solution; otherwise, we get two

distinctive solutions, one of which is correct.

For each feasible (ba,bg) pair, the corresponding

solution of the initial attitude matrix Cbn(0) is given by

(15). Therefore, the observability result depends on

the following:

1) !bnb is not perpendicular to both g
b and !bie.

Both ba and bg have two solutions. We have four

possible (ba,bg) pairs, among which only two are

valid (see Appendix Section D for explanations), so

the system is unobservable with two indistinguishable

states. Specifically, if (!bnb ¢!bie) ¢ (!bnb ¢ gb)< 0, the
feasible pairs should be (ba+,bg+) and (ba¡,bg¡);
otherwise, the feasible pairs are (ba+,bg¡) and
(ba¡,bg+).
2) !bnb is perpendicular to g

b but not to !bie. ba has
one solution, but bg has two solutions. There are two
feasible (ba,bg) pairs, so the system is unobservable

with two indistinguishable states.

3) !bnb is perpendicular to !
b
ie but not to g

b. ba has

two solutions and bg has one solution. We have two
feasible (ba,bg) pairs, and the system is unobservable

with two indistinguishable states.

4) !bnb is perpendicular to both g
b and !bie. Both ba

and bg have one solution, so the system is observable.

REMARK 4 The precondition “ _!bib or
_fb has a

nonconstant direction” is not easy to check because

of derivative involvement. Equation (26) shows that
_!bib is perpendicular to !

b
nb. With (26) and (16), we

have

j _!bibj2 = j!bnb£!biej2: (29)

Using (19), we obtain

_!bib£ !̈bib = _!bib£ ( _!bib £!bnb) =¡j _!bibj2!bnb
=¡j!bnb £!biej2!bnb: (30)

That “ _!bib has a nonconstant direction” ( _!
b
ib £ !̈bib 6= 0)

is identical to “!bnb is unparallel to !
b
ie.” Similarly,

(23) shows that _fb is perpendicular to !bnb. With (23)
and (6), it yields

j_fbj2 = j!bnb £ gbj2: (31)

With (22),

_fb£ f̈b = _fb £ (_fb £!bnb) =¡j_fbj2!bnb =¡j!bnb £ gbj2!bnb
(32)

It shows that “_fb has a nonconstant direction”
(_fb£ f̈b 6= 0) is identical to “!bnb is unparallel
to gb.”

Theorem 3 makes moderate assumptions and

has a wide scope of applicability. Consider the case

in which _!bib and
_fb have constant directions in the

entire interval. In such a case, (30) and (32) show

that the three vectors !bnb, !
b
ie, and g

b must be in the

same direction. It refers to a strapdown INS system at

L=§¼=2 rotating with respect to the Earth along the
Earth’s axis. This case is extremely rare.

REMARK 5 The indistinguishable states bg and ba
are separated from each other in the direction of !bnb.
As shown by (25) and (28), ba+¡ba¡ = 2!bnbj!bnb ¢
gbj=j!bnbj2 and bg+¡bg¡ = 2!bnbj!bnb ¢!biej=j!bnbj2, so
wehave jba+¡ba¡j= 2gjcos( d!bnb,gb)jand jbg+¡bg¡j=
2−jcos( d!bnb,!bie)j, where cos( b¢, ¢) denotes the cosine
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of the angle formed by two vectors. The distances

between the indistinguishable states of bg and ba
depend on the relation of !bnb with respect to g

b and

!bie, respectively.

REMARK 6 gb is in the vertical direction, and !bie is
parallel to the Earth axis. The following are natural

corollaries of Theorem 3: 1) If !bnb points in the local
vertical direction, the system has two indistinguishable

states. In addition, bg is observable when the system

is located at the equator (L= 0). 2) If !bnb points
in the north-south direction, the system has two

indistinguishable states. In addition, ba is observable.

3) If !bnb points in the east-west direction, the system
is observable.

The following theorem shows that it is not the

static positions but the rotating motion between

that matters for observability. In other words,

static segments theoretically contribute nothing to

observability improvement.

THEOREM 4 Consider the system over [0, t1]. It rotates

with the non-zero constant !bnb over the subinterval
[t2, t3] 2 [0, t1] and stays static for the other periods. If
_!bib or

_fb has a nonconstant direction over [t2, t3], then

the claims are the same as in Theorem 3.

PROOF OF THEOREM 4 Because Theorem 3 is

directly applicable to the subinterval [t2, t3], the claim

will be proved if we can show that bg+,¡ and ba+,¡
satisfy (9)—(11) during the static periods. Without loss

of generality, we assume bg+ = bg (!
b
nb ¢!bie < 0) and

ba+ = ba (!
b
nb ¢ gb > 0).The correct biases bg+ and ba+

naturally satisfy (9)—(11). Then we have

j!bib(ts)¡bg¡j2 = j!bib(ts)¡bg+ +bg+¡bg¡j2

= −2 +2(!bib(ts)¡bg+)T(bg+¡bg¡)
+ jbg+¡bg¡j2 (33)

where !bib(ts) denotes the measured body angular rate
when the system is in static condition at ts. From (8),

!bib(ts)¡bg+ = !bie(ts). Substituting into (33), we get
from Remark 5

j!bib(ts)¡bg¡j2

=−2 +4
(!bnb ¢!bie(ts))j!bnb ¢!biej

j!bnbj2
+4−2 cos2( d!bnb,!bie)

=−2 +4
(!bnb ¢!bie)j!bnb ¢!biej

j!bnbj2
+4−2 cos2( d!bnb,!bie)

!b
nb
¢!b
ie
<0

= −2¡ 4 j!
b
nb ¢!biej2
j!bnbj2

+4−2 cos2( d!bnb,!bie)
=−2 (34)

where the second equality is valid because the

physical vector !nb is unchanged with respect to the

Earth, i.e.,d!bnb(t),!
b
ie(ts) =

d!bnb(t2),!
b
ie(t2) =

d!bnb(t),!
b
ie(t)

for ts < t2d!bnb(t),!
b
ie(ts) =

d!bnb(t3),!
b
ie(t3) =

d!bnb(t),!
b
ie(t)

for ts > t3:

(35)

Similarly, we have

jfb(ts)¡ba¡j2 = jfb(ts)¡ba+ +ba+¡ba¡j2

= g2 +2(fb(ts)¡ba+)T(ba+¡ba¡)
+ jba+¡ba¡j2 (36)

where fb(ts) is the measured specific force when

the system is static. From (6), fb(ts)¡ba+ =¡gb(ts)
Substituting into (36), we obtain from Remark 5

jfb(ts)¡ba¡j2

= g2¡ 4(!
b
nb ¢ gb(ts))j!bnb ¢ gbj

j!bnbj2
+4g2 cos2( d!bnb,gb)

= g2¡ 4(!
b
nb ¢ gb)j!bnb ¢ gbj
j!bnbj2

+4g2 cos2( d!bnb,gb)
!b
nb
¢gb>0
= g2¡ 4 j!

b
nb ¢ gbj2
j!bnbj2

+4g2 cos2( d!bnb,gb)
= g2: (37)

As far as (11) is concerned, it yields

(!bib(ts)¡bg¡)T(fb(ts)¡ba¡)
= (!bib(ts)¡bg+ +bg+¡bg¡)T

¢ (fb(ts)¡ba+ +ba+¡ba¡)
= g− sinL+!bTie (ts)(ba+¡ba¡)
¡ (bg+¡bg¡)Tgb(ts) + (bg+¡bg¡)T(ba+¡ba¡)

= g− sinL+

2(!bnb ¢!bie(ts))j!bnb ¢ gbj ¡ 2(!bnb ¢ gb(ts))
j!bnb ¢!biej+4j!bnb ¢ gbjj!bnb ¢!biej

j!bnbj2
!b
nb
¢!b
ie
<0,!b

nb
¢gb>0

= g− sinL: (38)

REMARK 7 For multiple static segments and rotating

segments interlaced, the proof of Theorem 4 indicates

that static segments contribute nothing to observability

enhancement because their immediate neighboring

rotating segments impose tighter constraints on the

state. The previous results in [7], [24], and [25]

contradict Theorem 4 and Remark 6 (see Table I for a

simple comparison). For example, it was claimed there

that if the strapdown INS is rotated around the vertical

direction for some time, the alignment becomes

observable and consequently globally observable (by

definition). As discussed in Remark 3 and confirmed
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TABLE I

Simple Comparison with Linearization-Based Observability Result

Linearization-Based

Rotation Axis Global Observability Observability

Vertical Unobservable Observable

North-South Unobservable Observable

East-West Observable Unobservable

in the next section, the previous claims in [7], [24],

and [25] are theoretically incorrect (the estimator

may converge to a wrong solution for some initial

value). The inconsistency of the linearization-based

observability result occurs because of the weak points

outlined in the Introduction.

Theorem 3 is constructive in that its proof not only

tells us whether the system is observable or not under

the assumptions but also gives us the explicit form of

analytical solutions to the observable or unobservable

states. Using the constructive proofs, we can design

an ideal observer to estimate the states. Here, the term

“ideal” is used because it requires the exact first and

second derivatives of gyroscope and accelerometer

outputs.

Consider that the strapdown INS rotates at the

non-zero constant !bnb over [t2, t3]. Rewrite (19) and
(22) in a compact form as"

_!bib£
_fb£

#
!bnb =

"
!̈bib

f̈b

#
, t 2 [t2, t3]: (39)

Left multiplying [ _!bib £ _fb£] on both sides and
integrating over [t2, t3] giveZ t3

t2

(( _!bib£)2 + (_fb£)2)dt ¢!bnb

=

Z t3

t2

[ _!bib£ !̈bib+ _fb£ f̈b]dt (40)

from which we can solve

!bnb =

·Z t3

t2

(( _!bib£)2 + (_fb£)2)dt
¸¡1

¢
Z t3

t2

[ _!bib£ !̈bib + _fb £ f̈b]dt: (41)

According to Lemma 3, the matrix inverse exists if
_!bib or

_fb has a nonconstant direction over [t2, t3].
The ideal observer for non-zero constant rotation

(IO-NCR) are summarized here for clarity:

1) To determine !bnb by (41).
2) To obtain the possible solutions of gyroscope

and accelerometer biases by (24) and (27).

3) To obtain the initial body matrix by (15) for

each feasible (ba,bg) pair.

The major assumption of Theorems 3 and

4 (fixed-direction, fix-magnitude rotation) can

be largely relaxed to allow for fixed-direction,

varying-magnitude rotation. This has the practical

significance of eliminating the smooth requirement

of tumbling tables.

THEOREM 5 Consider the system rotating with the

non-zero, fixed-direction, varying-magnitude !bnb ( _!
b
nb 6=

0 and !bnb£ _!bnb = 0) over [0, t1]. If
_fb is the non-zero

(_fb 6= 0), then the claims are the same as in Theorem 3.
PROOF OF THEOREM 5 As in the proof of Theorem

3, we obtain, using the time derivative of (6),

_fb = (fb ¡ba)£!bnb: (42)

Taking the time derivative of (42) gives

f̈b = (fb ¡ba)£ _!bnb+
_fb£!bnb: (43)

Because !bnb is parallel to _!
b
nb as assumed, (42)

and (43) indicate that !bnb is normal to both
_fb and f̈b.

That is, !bnb can be expressed as

!bnb = k(t)f̈
b£ _fb (44)

where k(t) is a scalar time function. Using (42)—(44),

we obtain

f̈b £ _fb = (_fb £!bnb)£ _fb = j_fbj2!bnb = k(t)j_fbj2f̈b£ _fb

(45)

from which we solve k(t) = 1=j_fbj2, because j_fbj 6= 0.
So,

!bnb = f̈
b£ _fb=j_fbj2 (46)

is known. The remaining part of the proof is almost

the same as in Theorem 3 and thus has been omitted.

THEOREM 6 Consider the system over [0, t1]. It rotates

with the non-zero, fixed-direction, varying-magnitude

!bnb (!
b
nb 6= 0 and !bnb £ _!bnb = 0) over the subinterval

[t2, t3] and stays static for the other periods. If
_fb is the

non-zero (_fb 6= 0) over [t2, t3], then the claims are the
same as in Theorem 3.

PROOF OF THEOREM 6 See the proof of Theorem 4.

By assuming _fb 6= 0, Theorems 5 and 6 are
inapplicable when !bnb is in the vertical direction (see
(31) and Remark 5). Consider that the strapdown INS

rotates with the fixed-direction, varying-magnitude

!bnb over [t2, t3]. We can construct a second ideal
observer by the proof of Theorem 5, the ideal

observer for non-zero, fixed-direction,

varying-magnitude rotation (IO-NFVR)

1) To determine !bnb by (46).
2) To obtain the possible solutions of gyroscope

and accelerometer biases by (24) and (27).

3) To obtain the initial body matrix by (15) for

each feasible (ba,bg) pair.

The following theorems prove that an observable

SAOP can always be attained by successive tumbling

around two or more different directions.
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THEOREM 7 If there are no less than two subintervals

over [0, t1] on which !
b
nb not only is a non-zero constant

but also is linearly independent, then the system is

observable.

PROOF OF THEOREM 7 For each subinterval, !bnb is a
non-zero constant, so we have from (18) and (21) that

!bnb £bg = _!bib +!
b
nb £!bib

!bnb£ba = _fb+!bnb£ fb
(47)

in which !bnb is a known quantity. Because !
b
nb on the

subintervals is linearly independent as assumed, bg
and ba can be determined by (47). Consequently,

Cbn(0) is unique.

THEOREM 8 If there are no less than two subintervals

over [0, t1] on which !
b
nb not only has a non-zero,

fixed-direction, varying-magnitude but also is linearly

independent, and additionally _fb 6= 0, then the system is
observable.

PROOF OF THEOREM 8 The proof is almost the same

as that for Theorem 7, except the first equation in (47)

is replaced with

!bnb£bg = _!bib +!
b
nb £!bib¡ _!bnb: (48)

REMARK 8 Theorems 2, 7, and 8 give conditions

to obtain an observable system. Theorem 2 seems

to be of little use in that static segments contribute

nothing to observability, but it helps us when it comes

to numerical computation. To solve the unknown

state, Theorem 2 needs only the raw sensor outputs,

while Theorems 7 and 8 require their derivative

information, which magnifies the noises in practice.

The difference relates to the so-called observability

degree in some literature [7, 24]. The observability

degree lacks a solid analytical basis because of its

origin from numerical computation, but we find in our

later simulations that static segments do help suppress

the numerical errors.

IV. SIMULATION STUDY

This section is devoted to numerical verification of

analytical results, using extensive simulations with

the two ideal observers (IO-NCR and IO-NFVR)

and a practical approximate nonlinear observer

(extended Kalman filter, or EKF). The strapdown INS

(gyroscope drift of 0.01 deg/h, accelerometer bias of

50 ¹g, and output bandwidth of 100 Hz) is assumed

to be located at L= 28:2204 deg and h= 60 m. For

the apparent exhibition of observability changes,

the sensor noises are not added. Euler angles from

the reference frame to the body frame are defined

as first around the y-axis (yaw, Ã), followed by the

z-axis (pitch, μ) and then by the x-axis (roll, '). The

indirect form of EKF is used, and the linear error

dynamic equation for the system equations in (1)—(4)

is readily available in [1—3]. EKF has 12 states: 3

for angle error, 3 for velocity error, 3 for gyroscope

bias error, and 3 for accelerometer bias error. If not

explicitly stated, the following EKF settings are used:

The first 20 s are for coarse alignment, and random

error of 1 deg (1¾) is intentionally added to the coarse

alignment result. The initial sensor biases are zeros.

A. Static Alignment

The strapdown INS initial true attitude is set

to '= 20 deg, Ã = 30 deg, and μ = 10 deg. The

alignment lasts for 300 s. In all simulations, EKF

converges to different estimates depending on the

initial attitude angle, as predicted in Remark 2.

Results for two runs of simulation are given for

demonstration. Figs. 2 and 3 present the estimated

attitude and sensor bias, respectively, for the

initial angle [19:896 deg 29:626 deg 9:620 deg]T,

and Figs. 4 and 5 are for the other initial angle

[20:124 deg 31:123 deg 10:474 deg]T. The filter

converges quickly in both runs, but the two estimates

are quite different and there seems no connection

between them. In Fig. 6, we plot j!bib ¡bgj, jfb¡baj,
and (!bib¡bg)T(fb ¡ba) using the estimated sensor
biases in the two runs, along with their analytical

values from (9)—(11). The constraints equations shown

in (9)—(11) clearly dictate how the unobservable

sensor biases behave in the estimation process. The

same goes for the attitude estimate, with (13) as the

constraint.

Because sensor biases are relatively small in

magnitude compared to gyroscope and accelerometer

outputs, (11) approximately leads to (!bib ¡bg)Tfb ¼
(fb¡ba)T!bib ¼ g− sinL. This means that bg lies on a
circle, the intersection of the sphere surface jbg ¡!bibj
and a cone, with ¡fb being its rotation axis and the
half angle ¼=2¡L; ba lies on a circle, the intersection
of the sphere surface jba¡ fbj and a cone, with ¡!bib
being its rotation axis and the half angle ¼=2¡L. The
vertexes of the two cones coincide with the centers of

the two spheres. The two intersecting circles are the

unobservable spaces of sensor biases. Fig. 7 illustrates

the unobservable spaces by plotting the bias estimates

of 1000 Monte Carlo EKF runs as dots in space (the

random error added to coarse alignment increases

to 5 deg, or 1¾, for better visual effect). In the left

graph, the gyroscope bias estimates apparently form

a segment of a circle on the sphere surface jbg ¡!bibj;
the accelerometer bias estimates in the right graph,

lying on the sphere surface jba¡ fbj, are too close to
be distinguished from one another.

B. Tumbling Alignment by Single-Axis Rotation

The strapdown INS initial true attitude angles

are set to zeros for clear demonstration. Rotations

along the three body axes are inspected in turn. The
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Fig. 2. Attitude estimates for initial angle [19:896 deg 29:626 deg 9:620 deg]T.

Fig. 3. Sensor bias estimates for initial angle [19:896 deg 29:626 deg 9:620 deg]T.

body axes are now in the local north, up, and east

directions. As for EKF, the random error added to

coarse alignment deceases to 0:1 deg (1¾) to shorten

the transient stage.

1) Up-Down Direction: The strapdown INS is

rotated along the up-down direction at 10 deg=s,

i.e., !bnb = [0,10 deg=s,0]
T. The alignment lasts up

to 600 s. The rotation starts at 100 s and ends at

500 s. IO-NCR is applied to the rotating segment,

and the bias estimates are given in Fig. 8 (zeros

for 0—100 s and 500—600 s mean that IO-NCR

cannot apply on them, not that the sensor biases

are zeros). The gyroscope and accelerometer biases

in the x-axis and the z-axis are unique and correct,

but in the y-axis, the direction of rotation, IO-NCR

gives the other (wrong) solution in addition to the

correct one: 14.2348 deg/h for gyroscope bias and

19:5839 m=s2 for accelerometer bias. It can be readily

verified that the outcome is in accord with Remark

5, i.e., jbg+¡bg¡j= 2− sinL¼ 14:2248 deg/h and
jba+¡ba¡j= 2g ¼ 19:5834 m=s2.
Figs. 9 and 10 present EKF estimates of attitude

and sensor biases, respectively. All bias estimates

converge quickly to the correct values once the

rotation takes place, although the gyroscope bias

in the up direction needs more time to do so (see

Fig. 10, top graph). It indicates that the rotation

motion greatly affects observability. Fig. 11 “zooms

in” on the bias estimates, where we observe an

interesting phenomenon that exists in almost each

run. After the strapdown INS stops at 500 s, the

gyroscope estimates approach the true values faster,
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Fig. 4. Attitude estimates for other initial angle [20:124 deg 31:123 deg 10:474 deg]T .

Fig. 5. Sensor bias estimates for other initial angle [20:124 deg 31:123 deg 10:474 deg]T .

whereas the accelerometer estimates depart from their

true values. As discussed in Remark 8, although the

static state does nothing to improve observability

(in addition to the rotating motion), it seemingly

helps mitigate numerical errors. The reason is

intuitive: it might be because various constraints have

different error-propagating characteristics. From the

viewpoint of global observability, the static segment

in 500—600 s reinforces the constraint equations

found in (9) and (10), of which (10) is used on

the rotating segment in 100—500 s, as explained

in the development of (23) and (24), but (9) is not

used. In addition, we examine the EKF response

by setting the initial value of accelerometer bias

to [0,18 m=s2,0]T with other initial parameters

unchanged. In Figs. 12 and 13, EKF unsurprisingly

stabilizes at the unobservable state (the roll angle rests

at 180 deg).

Next, the strapdown INS rotates with the

varying-magnitude !bnb = [0,6+4sin(0:04¼(t¡
100)) deg=s,0]T. IO-NFVR is applied to the

varying-magnitude rotation segment and yields the

same result as IO-NCR in Fig. 8. Figs. 14 and 15 plot

the EKF bias estimates for zero initial sensor biases

and for initial accelerometer bias [0,18 m=s2,0]T,

respectively. EKF in this case converges to the correct

or the wrong solution depending on the initial value.

Because the observers perform quite similarly for

constant and varying-magnitude rotations, we just

present the result of the former in the next subsection.

2) North-South Direction: The strapdown

INS is rotated along the north-south direction at

!bnb = [10 deg=s,0,0]
T. The IO-NCR estimates of
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Fig. 6. Computed values of j!b
ib
¡bg j, jfb ¡baj, and (!bib ¡bg)T(fb ¡ba) using estimated sensor biases in two sample runs, as

compared to their analytical values from (9)—(11). Solid blue line is for first run, dotted blue line is for second run, and dashed red line

is for analysis.

Fig. 7. Sensor bias estimates of 1000 Monte Carlo runs. Left (in radians per second): gyroscope bias estimates (blue dots), sphere

surface jbg ¡!bib j (gray), and vector ¡fb pointing outward (red). Right (in meters per second squared): accelerometer bias estimates
(blue dots), sphere surface jba¡ sbj (gray), and vector ¡!bib pointing outward (red).

sensor biases for 600 s are given in Fig. 16. The

accelerometer biases in three axes and the gyroscope

biases in the y-axis and the z-axis have only one

solution, but the gyroscope bias along the rotation

direction has two solutions: the correct one and

26.5164 deg/h. As revealed in Remark 5, in this case,

jbg+¡bg¡j= 2− cosL¼ 26:5064 deg/h and jba+¡ba¡j
= 0. Figs. 17 and 18 present the EKF estimates of

attitude and sensor biases, respectively, for 3600 s.

The rotation segment is 100—3500 s. The estimates

converge to the true value, although the sensor biases

in the x-axis and the pitch angle exhibit apparent

oscillation. EKF converges to the wrong solution for

the initial gyroscope bias [25 deg=h,0,0]T, as shown

in Figs. 19 and 20, in which the accelerometer bias in

the x-axis needs more time to stabilize.

3) East-West Direction: The strapdown INS

is rotated along the east-west direction with !bnb =
[0,0,10 deg=s]T. The IO-NCR estimates of sensor

biases for 600 s are given in Fig. 21. We see that

the sensor biases have only one solution, because

the system is observable for this case. As in Remark

5, jbg+¡bg¡j= jba+¡ba¡j= 0. The EKF estimates
of attitude and sensor biases for 7200 s are given

in Figs. 22 and 23, respectively. The rotating period

is 100—7000 s. The attitude shows severe jumps
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Fig. 8. Bias estimates of IO-NCR for constant up-down rotation.

Fig. 9. Attitude estimates by EKF for constant up-down rotation.

as a result of Euler angles’ ambiguity and the

accelerometer bias in the z-axis converges to the true

value, with strong oscillating effects. The gyroscope

bias in the z-axis descends extremely slowly to

0.01 deg/h after 3000 s in Fig. 23. But we find later

that the convergence speed is considerably improved

for non-zero initial attitude (see Fig. 26, 100—700 s).

C. Tumbling Alignment by Multiple-Axis Rotation

We consider now the tumbling alignment by

rotating about multiple independent axes. The

strapdown INS true attitude is set to '= 20 deg,

Ã = 30 deg, and μ = 10 deg, and the process lasts

2400 s. The random error added to coarse alignment

increases to 0.5 deg (1¾) for better demonstration. The

strapdown INS rotates first in the east-west direction

by !nnb = [0,0,3 deg=s]
T at 100—700 s, second in

the north-south direction by !nnb = [3 deg=s,0,0]
T

at 800—1400 s, and finally in the vertical direction

by !nnb = [0,3 deg=s,0]
T at 1500—2100 s. For the

remaining periods, the strapdown INS stays static.

Fig. 24 shows the history profile for !bnb over the
three disconnected rotation segments, and Figs. 25

and 26 give the EKF estimates of attitude and

sensor biases, respectively. The estimates converge

satisfactorily to their true values. The second rotation
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Fig. 10. Sensor bias estimates by EKF for constant up-down rotation.

Fig. 11. “Zoom-in” view of EKF bias estimates.

starting at 800 s removes the remaining solution

ambiguity after the first rotation4 and has a great

positive impact on reducing the bias estimate errors

and attitude errors, especially the accelerometer biases

in the y- and z-axes. The EKF computed standard

variances of bias estimates are plotted in Fig. 27.

Finally, we report an interesting phenomenon

about the wrong solution. The true initial angles are

set to zeros for easy demonstration. The strapdown

INS rotates first in the up-down direction by !nnb =
[0,10 deg=s,0]T at 100—500 s and second in the

north-south direction by !nnb = [10 deg=s,0,0]
T at

4Thanks to one reviewer’s suggestions, it can be shown that an

added linear acceleration helps resolve the ambiguity. See Appendix

Section E for a brief discussion.

600—1000 s. The first rotation is the same as in the

single up-down rotation in subsection B. Figs. 28 and

29 present the EKF results when setting the initial

value of accelerometer bias to [0,18 m=s2,0]T. EKF

stabilizes at the unobservable and wrong solution

during the first up-down rotation but is forced to

diverge from the wrong solution once the second

rotation starts. The second rotation eliminates the

solution ambiguity, and the wrong solution is

no longer a stabilizing state for EKF. This

phenomenon is a convincing support for the analysis

in Section III.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have revisited the strapdown INS

static and tumbling alignment from the perspective
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Fig. 12. Attitude estimates by EKF (wrong convergence) for constant up-down rotation. Apparent jumps in top graph result from Euler

angles’ ambiguity.

Fig. 13. Sensor bias estimates by EKF (wrong convergence) for constant up-down rotation.

of global observability. The observability problem

is formulated as SAOP, i.e., whether it suffices to

determine the initial state by solving the infinite

nonlinear equations over the continuous time

interval. Equivalently, it investigates the effect of

the known body angular rate and specific force

on state observability. We prove that it is not the

static positions but the rotating motion that matters

for observability. Furthermore, SAOP will be

fully observable if the strapdown INS is rotated

successively about two axes. For cases of rotating

about a single axis, SAOP will be nearly observable

for no more than two unobservable states to which the

explicit solutions are analytically derived. The global

observability analysis is shown to be straightforward

and constructive and results in insights into and

a clearer picture of the strapdown INS alignment

problem. It sheds light on the incompleteness and

inconsistency of previous results. The paper also

throws doubts on and calls for a review of all

linearization-based observability studies in the vast

literature.

The theorems and claims in this paper are

supported by extensive simulations with constructed

ideal observers and an approximate nonlinear

observer (EKF). Although they make no observability

contribution in theory, EKF results show that static

segments do help mitigate numerical errors in the

rotating segments and static segments interlaced

simulations. Conclusions obtained can assist in
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Fig. 14. Sensor bias estimates by EKF for varying-magnitude up-down rotation.

Fig. 15. Sensor bias estimates by EKF (wrong convergence) for varying-magnitude up-down rotation.

optimal tumbling strategy and appropriate state

observer designs in practice to improve the alignment

performance. Before that, however, we have to

consider the lever arm between the table rotation

center and the strapdown INS origin, because presence

of the lever arm may remarkably decay the accuracy

of the zero velocity measurement and thus the

estimation performance. We are working on this in

the context of global observability.
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APPENDIX

A. Proof of Lemma 2

The equality jak ¡ xj= r means that x locates on
the surface of the sphere with radius r that centers on

ak, i.e.,

aTk ak ¡ 2aTk x+ xTx= r2, k = 1,2, : : : ,m: (49)

Without loss of generality, subtracting (49) for k =

1 from (49) for k = 2, : : : ,m yields, in the matrix

form,

2

2664
(a2¡ a1)T

...

(am¡ a1)T

3775x=
2664
ja2j2¡ ja1j2

...

jamj2¡ ja1j2

3775 (50)

16 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 48, NO. 1 JANUARY 2012

Mt2 job no. 2158 ieee aerospace and electronic systems 2158D02 [16] (XXX) 08-30-11 03:37 PM



Fig. 16. Bias estimates of IO-NCR for constant north-south rotation.

Fig. 17. Attitude estimates of EKF for constant north-south rotation.

each row of which represents a plane in geometry.

Left multiplying [a2¡ a1 ¢ ¢ ¢am¡ a1] on both sides, we
have

2

Ã
mX
k=2

(ak ¡ a1)(ak ¡ a1)T
!
x

=

mX
k=2

(ak ¡ a1)(jakj2¡ ja1j2): (51)

If the matrix A
¢
=
Pm
k=2(ak ¡ a1)(ak ¡ a1)T is

nonsingular or, equivalently, points ak do not lie

in one plane, the unknown x can be determined.
Nonsingular A implies m¸ 4, because any three
points are contained in some common plane.

For singular cases, we have further comments:

1) If rank(A) = 2, i.e., ak lie in a common plane
(but not on a line), then the solution space of (50) is

of dimension 1. For any feasible x, the line x+®³
also satisfies (50), in which ® is a real scalar and ³ is
the unit normal of the plane. Therefore, we may get

one or two solutions, depending on the relationship

between the line x+®³ and the sphere surface, i.e.,
(49) for k = 1.
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Fig. 18. Sensor bias estimates by EKF for constant north-south rotation.

Fig. 19. Attitude estimates of EKF (wrong solution) for constant north-south rotation. Apparent jumps in middle graph result from

Euler angles’ singularity.

2) If rank(A) = 1, i.e., ak lie on a common
line–say, l–then the solution space is of dimension

2. The possible solutions lie on the intersection of

the sphere surface, i.e., (49) for k = 1, and the plane

normal to l.

3) If rank(A) = 0, i.e., ak are equal to each other.

The solution space is the sphere surface (49) for

k = 1.

B. Proof of Lemma 3

Because a(t) has nonconstant directions in the

interval, there exist two time instants–say, t1 and

t2–in the interval such that a(t1) and a(t2) have

different directions. Then we have·
a(t1)£
a(t2)£

¸
m=

·
b(t1)

b(t2)

¸
: (52)

Because

rank

μ·
a(t1)£
a(t2)£

¸¶
= 3

m has a unique solution.

C. Proof of Lemma 4

Because

a£m= b (53)
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Fig. 20. Sensor bias estimates by EKF (wrong solution) for constant north-south rotation.

Fig. 21. Bias estimates of IO-NCR for constant east-west rotation.

the unknown vector m lies in the plane containing

the vectors a and a£b and can be expressed
as

m= ®a+¯a£b (54)

where ® and ¯ are real numbers. Substituting into

(53), and considering aTb= 0,

¯a£ (a£b) = ¯(aTba¡ jaj2b) =¡¯jaj2b= b:
(55)

So ¯ =¡1=jaj2. Taking the norm on both sides, (54)

gives

jmj2 = ®2jaj2 +¯2ja£bj2 = ®2jaj2 +¯2jaj2jbj2

(56)

which yields ®=§
p
jaj2jmj2¡ jbj2=jaj2. The solution

of m is

m=§a
p
jaj2jmj2¡ jbj2
jaj2 ¡ a£bjaj2 =§aja ¢mjjaj2 ¡ a£bjaj2 :

(57)

WU, ET AL.: OBSERVABILITY OF STRAPDOWN INS ALIGNMENT: A GLOBAL PERSPECTIVE 19

Mt2 job no. 2158 ieee aerospace and electronic systems 2158D02 [19] (XXX) 08-30-11 03:37 PM



Fig. 22. Attitude estimates of EKF for constant east-west rotation. Apparent jumps result from Euler angles’ ambiguity.

Fig. 23. Sensor bias estimates by EKF for constant east-west rotation.

D. Why Are Only Two of Four Pairs Valid?

Check the angular relationship of !bie and g
b,

which is similar to (11). Substituting (25) and (28),

¡!bie ¢ gb = (!bib ¡bg+,¡ ¡!bnb) ¢ (fb ¡ba+,¡)

=

μ
¨!

b
nbj!bnb ¢!biej
j!bnbj2

+
!bnb £ _!bib
j!bnbj2

¶

¢
Ã
¨!

b
nbj!bnb ¢ gbj
j!bnbj2

+
!bnb £ _fb
j!bnbj2

!

=§j!
b
nb ¢!biejj!bnb ¢ gbj

j!bnbj2
+
(!bnb £ _!bib) ¢ (!bnb £ _fb)

j!bnbj4
:

(58)

For the third equality, “+” indicates ba and bg take the

same sign; otherwise, they take different signs. From

(23) and (26), !bnb is perpendicular to both _!
b
ib and

_fb

and

¡!bie ¢ gb =§
j!bnb ¢!biejj!bnb ¢ gbj

j!bnbj2
+
_!bib ¢ _fb
j!bnbj2

=§j!
b
nb ¢!biejj!bnb ¢ gbj

j!bnbj2
¡ (!

b
nb £ gb) ¢ (!bnb £!bie)

j!bnbj2

=§j(!
b
nb ¢!bie)(!bnb ¢ gb)j

j!bnbj2
+
(!bnb ¢!bie)(!bnb ¢ gb)

j!bnbj2

¡!bie ¢ gb (59)
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Fig. 24. History profile of !b
nb
in multiple-axis tumbling alignment.

Fig. 25. EKF attitude estimates for multiple-axis tumbling alignment.

Fig. 26. EKF sensor bias estimates for multiple-axis tumbling alignment.
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Fig. 27. EKF computed standard variances of bias estimates in multiple-axis tumbling alignment.

Fig. 28. EKF attitude estimate for multiple-axis tumbling alignment (wrong solution phenomenon).

which means that the equality is valid only when it

takes “+” or “¡,” not both. If (!bnb ¢!bie)(!bnb ¢ gb)< 0,
it takes “+” and the (ba,bg) pairs with same signs
are feasible, i.e., (ba+,bg+) and (ba¡,bg¡); otherwise,
(ba+,bg¡) and (ba¡,bg+) are feasible pairs.

E. Added Linear Acceleration Helps Resolve the
Ambiguity

Consider an added linear acceleration maneuver

after the first rotation. If the non-zero reference

velocity vn is available while accelerated, we have
from (2)

_vn =Cnb(f
b ¡ba)¡ (2!nie+!nen)£ vn+ gn

$ jfb¡baj= j _vn+(2!nie+!nen)£ vn¡ gnj

$ fbTfb ¡ 2fbTba+bTaba
= j _vn+(2!nie+!nen)£ vn¡ gnj2

¢
=½:

(60)
Taking the time derivative on both sides,

2_fbTba = 2
_fbTfb ¡ _½: (61)

Because we have from (23) !bnb£ba = !bnb£ fb+
_fb, the accelerometer bias ba is obtained if

_fb is
not parallel to !bnb (Lemma 3). Consequently, the
gyroscope bias ambiguity is removed.
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