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 

Abstract—In this paper, a new cooperative fault accommodation algorithm based on a multi-level hierarchical architecture is 

proposed for satellite formation flying missions. This framework introduces a high level (HL) supervisor and two recovery modules, 

namely a low level fault recovery (LLFR) module and a formation level fault recovery (FLFR) module. At the low level fault recovery 

(LLFR) module, a new hybrid and switching framework is proposed for cooperative actuator fault estimation of formation flying 

satellites in deep space. The formation states are distributed among local detection and estimation filters. Each system mode represents 

a certain cooperative estimation scheme and communication topology among local estimation filters. The mode transitions represent 

the reconfiguration of the estimation schemes, where the transitions are governed by information that is provided by the detection 

filters. It is shown that our proposed hybrid and switching framework confines the effects of unmodeled dynamics, disturbances, and 

uncertainties to local parameter estimators, thereby preventing the propagation of inaccurate information to other estimation filters. 

Moreover, at the low level fault recovery (LLFR) module a conventional recovery controller is implemented by using estimates of the 

fault severities. Due to an imprecise fault estimate and an ineffective recovery controller, the high level (HL) supervisor detects 

violation of the mission error specifications. The formation level fault recovery (FLFR) module is then activated to compensate for the 

performance degradations of the faulty satellite by requiring that the healthy satellites allocate additional resources to remedy the 

problem. Consequently, fault is cooperatively recovered by our proposed architecture, and the formation flying mission specifications 

are satisfied. Simulation results confirm the validity and effectiveness of our developed and proposed analytical work.  

 

Index Terms—Cooperative Estimation, Fault Accommodation, Formation Flight Satellites, Hierarchical Systems, Distributed 

Kalman Filter, Distributed Control, Fault Tolerant Control Systems, Reconfigurable Controllers 
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HL High level VS Virtual structure 

LLFR Low level fault recovery EF Estimation filter 
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FFC Formation flying control PHA Probabilistic hybrid automata 
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FDIR Fault detection, isolation, and recovery AFF Autonomous formation flying 

DS Deep space DES Discrete-event system 

CKF Centralized Kalman filter LTI Linear time-invariant 

RDKF Reconfigurable distributed Kalman filter LTV Linear time-varying 

DF Detection filter   

 

I. INTRODUCTION 

Formation flying is relatively a new concept envisaged for a cluster of satellites that calls for development of novel 

technologies. This new field has been surveyed in detail in [1] and [2], where five architectures are introduced for formation 

flying control (FFC), namely Multiple-Input Multiple-Output (MIMO), Leader/Follower (L/F), Virtual Structure (VS), Cyclic 

and Behavioral. Due to the high-precision control requirements, the problem of fault diagnosis, estimation, and recovery of 

formation flying missions has become particularly significant and crucial. Various methods have been developed and proposed 

in the literature for the problem of fault detection and isolation, fault estimation, and recovery in a single satellite. However, none 

of these works have formally investigated the concept of cooperative fault estimation and accommodation in formation flying 

satellites.  

In this paper, the problem of fault estimation and accommodation in formation flying control (FFC) of satellites is investigated 

by using a cooperative scheme. This cooperative scheme was initially proposed by the authors in [3], [4], [5], [6] and is 

formulated in this paper for the general case of multiple-satellite formation. The cooperative formation diagnosis and control 

problem is constrained by the availability of only relative state measurements in deep space (DS), subject to unmodeled 

dynamics, uncertainties and disturbances (for instance, these can be manifested as undesirable and unexpected communication 

delays among the satellites). The objective of our cooperative scheme is to constrain the impacts of unmodeled dynamics and 

uncertainties (such as those due to communication delays) on the local fault estimates and prevent the propagation of undesirable 

errors into the entire formation. In case that a fault estimate is not accurate within an acceptable tolerance level, cooperative 

recovery controllers will be activated to account for the resulting performance degradations (as manifested in tracking errors) of 

the formation mission. In the following, relevant results on fault detection and isolation, fault estimation, fault accommodation 

and recovery problems are reviewed in order to properly motivate and position the contribution and novelty of our proposed 

approach. 

The problems of fault detection and isolation, fault estimation and recovery have been extensively investigated in the 

literature. In [7], fault detection in satellites is performed based on a fault tree approach, through which the fault cause is 

identified. In [8], fault detection is achieved through correlated decision fusion, in which two correlation models are proposed to 

approximate the complicated correlation among sensor measurements for general systems. In [9] and [10], a multiple model 

adaptive estimation approach and a bank of interacting Kalman filters, respectively, are used to detect sensor and actuator faults. 

In [11], decentralized estimation algorithms are surveyed and applied to state estimation of formation flying satellites. In [12], 

state estimation is performed by using a parallel operation of full-order observers with local measurements. A necessary 

condition on the communication topology is obtained to guarantee stability of simultaneous parallel estimators and controllers. 

The work in [13] deals with reduced-order distributed Kalman filters to minimize the computational cost. The overall system 

model is partitioned into several subsystems according to the physical considerations of the system, and a local Kalman filter is 

designed for state estimation in each subsystem. The robust decentralized approach in [14] is based on sliding mode observers to 

detect and estimate actuator faults in large-scale systems. In [15], a statistical local approach is specifically designed for 
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diagnosis and identification of faults with very small magnitudes. 

The reconfigurable fault-tolerant control system approaches are reviewed in [16]. In [17], a fault tolerant control system is 

designed in which the problem of performance degradation is explicitly considered. In [18], a reconfigurable control allocation 

technique is applied to accommodate the aircraft control effector failures. In [19], the problem of fault estimation and control 

reconfiguration is studied in detail based on dynamic models, observers, and Kalman filters. In [20], the problems of fault 

diagnosis and fault tolerant control are investigated for a class of nonlinear systems based on nonlinear observer techniques. In 

[21], a fault is assumed to belong to a finite set of parameters (modes), and a sliding mode controller is designed for 

accommodation of each mode in a hierarchical framework. In [22], by solving a Lyapunov equation a robust state-space observer 

is proposed to simultaneously estimate descriptor system states, actuator faults, their finite time derivatives, and attenuate input 

disturbances to any desired accuracy. Moreover, a fault-tolerant control scheme is developed by using the estimates of descriptor 

states and faults. In [23], an adaptive Kalman filtering algorithm is developed to estimate the reduction of the control 

effectiveness in a closed-loop setting. The state estimates are fed back to achieve steady-state regulation, while the control 

effectiveness estimate is used for an on-line tuning of the control law. In [24], in order to diagnose thruster faults in satellite 

systems, the authors designed an iterative learning observer, which uses a learning mechanism instead of employing integrators 

that are commonly used in classical adaptive observers. In [25], fault detection, isolation and recovery (FDIR) is performed for 

nonlinear satellite models by using the parameter estimation approach and adaptively redesigning and reconfiguring the 

controllers.  

The above referenced estimation and accommodation approaches do not attempt to constrain the effects of unmodeled 

dynamics, uncertainties and disturbances through a cooperative fault estimation and accommodation methodology. Most of the 

above cited fault estimation approaches have also been applied to a single satellite and are not designed specifically for a 

formation flight of satellites. In this work, a hierarchical fault estimation and an accommodation architecture is proposed in 

which the cooperation among different levels and modules of the formation aims at constraining the effects of unmodeled 

dynamics, uncertainties and disturbances. Moreover, it is shown that in presence of unmodeled dynamics, uncertainties and 

disturbances, a centralized estimation scheme has major drawbacks that can be effectively and efficiently handled and tackled by 

using our proposed cooperative estimation technique. 

II. GENERAL FRAMEWORK 

Our proposed framework for cooperative fault estimation and accommodation is shown in Figure 1. In this figure, the solid 

and dashed lines represent internal and inter-level information exchanges, respectively, that are of the main concern in this paper. 

The bus lines, which are indicated by thick (gray) bidirectional arrows, represent the general information exchanges among 

different modules of the formation. The general information exchanges include the necessary communication protocols whose 

analysis falls beyond the scope of this work and is left as a topic of future research. The communication protocols require 

specific handshaking, parity, and other types of signals that are communicated among different modules. The exchange of 

information among satellites is introduced for two main purposes, namely estimation and control. In the case of an estimation 

problem, each satellite communicates relevant actuator and sensor measurement signals with its neighbors, while in the case of a 

control problem, each satellite communicates merely its sensor measurement signals. Our proposed cooperative fault estimation 

and accommodation framework includes a low level fault recovery (LLFR) module, a formation level fault recovery (FLFR) 

module, and a high level (HL) supervisor, whose descriptions are briefly presented next. 

The low-level fault recovery (LLFR) module first detects and determines the severity of actuator faults by using conventional 

Kalman filtering techniques based on a new hybrid and switching framework. The high-level (HL) “supervisor” then makes a 
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decision on reconfiguring the invoked fault estimation scheme. The goal of the HL supervisor, which is represented by a 

discrete-event system (DES) [27], is to achieve an optimal and efficient cooperation (in the sense of communication and 

exchange of information) among local detection and estimation filters in order to limit and constrain the impacts of unmodeled 

dynamics, uncertainties and disturbances on the local estimation filters and prevent the propagation of undesirable errors into the 

entire formation. Once an actuator fault is estimated at the low level, the LLFR module in effect implements the “controller 

reconfiguration” by incorporating the fault estimates in the LLFR controller to improve the overall mission performance by  

reducing the tracking errors. Subsequently, the HL supervisor evaluates the performance of the LL-recovered (faulty) satellite 

with respect to and in view of the overall mission specifications. In case that the faulty satellite is deemed to be “partially” LL-

recovered, that is it violates the overall mission error specifications, the supervisor makes a decision regarding the “formation 

structure reconfiguration” by the formation-level fault recovery (FLFR) module. This module suggests and produces a new 

structure by invoking the cooperation of all the other satellites to fully accommodate the partially LL-recovered satellite due to 

its performance degradations. Consequently, the fault is cooperatively accommodated by the LLFR and FLFR modules. The 

above descriptions state the main principles behind our proposed cooperative fault estimation and accommodation scheme.  

 

 

Figure 1. The proposed cooperative fault estimation and accommodation architecture. 

 

In Figure 1, the LL module is located at the satellite level, and each satellite has its own LL fault diagnosis and LL fault 

recovery (LLFR) modules. The FL and HL modules include algorithms that necessitate the implementation of a central unit 

among the satellites. Therefore, these modules are located on a central satellite which has the most powerful communication 

resources and the best visibilities with respect to all the other satellites. However, redundant copies of the FL and HL algorithms 

can be uploaded onto other satellites as a backup for emergency circumstances when the communication resources of the central 

satellite degrades due to communication failures, or in circumstances when the visibility of the central satellite decreases due to 

the placement of other satellites in its blind spots. 

In order to streamline, motivate and facilitate the transitions among the subsequent sections of this work, the following 
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observations are now stated, specifically: 

(i) This paper considers only the position dynamics of the satellites in free space. Assuming that the thrusters are capable 

of generating any force in the three-dimensional space, the dynamics of satellites can be considered to be decoupled in 

the three axes of an inertial reference frame. This is a conventional technique that is used in the literature [28], e.g. as 

used in deriving the Hill's equation of motion in the planetary orbital environment (POE), in which the orbital dynamics 

of a satellite is considered to be independent of the attitude dynamics. 

(ii) In this work, one of the sources of unmodeled dynamics, uncertainties and disturbances considered is due to the 

manifestations of undesirable and unexpected communication delays among the satellites. A communication delay can 

be induced intrinsically by the communication network or manifested due to the packet dropout in an imperfect 

communication channel [26]. 

(iii) The faults are augmented to the satellite states and will be considered as additional (fault) states. Estimation filters are 

used to estimate all the additional (fault) states, as it is not a standard approach to detect states by using detection filters. 

On the other hand, the detection filters are only used for the purpose of detecting the unmodeled dynamics and 

disturbances, which affect the dynamics of the satellite through an external input channel. 

(iv) All the faults considered in this work occur in the satellite actuators and they are modeled by the corresponding fault 

parameters which are then augmented to the states of the system. The case of sensor faults can similarly be investigated, 

although not formally addressed in this paper and is left as a topic of future work. Furthermore, a sensor fault can be 

represented as an equivalent actuator fault provided that certain observability condition holds as described in [29]. In 

addition multiple actuator faults can be present which implies that multiple nonzero fault parameters can be estimated 

by the LLFR module. However, as far as the accommodation scheme is concerned it is assumed that only one satellite 

can be partially LL-recovered, and hence will need to be accommodated by the FLFR module. The problem of the 

FLFR for multiple partially LL-recovered satellites is left as a topic of future research. 

(v)   The HL supervisor is to be implemented and designed as a discrete-event system (DES) [27]. The details and 

procedures for these are not presented here as they are beyond the scope of this work. However, in order to demonstrate 

the “functionality” of a HL supervisor in this work, for the fault estimation scheme a hybrid and switching framework is 

presented that plays the role of a HL supervisor. By using information from the detection filters, the HL supervisor 

reconfigures the estimation filters to minimize the effects of unmodeled dynamics, uncertainties, and disturbances. 

Within the fault accommodation scheme, the HL supervisor is considered as a simple limit-checker, which takes into 

account the output measurements from all the sensors, compares them with the desired outputs, and determines whether 

the tracking errors are less than a certain error specification ( se ) associated with the overall formation mission. In other 

words, the HL supervisor (as a limit-checker) determines whether the mission specifications are satisfied or not.  

(vi) In this work, we assume that there are no high-level faults in the formation mission. Specifically, we are only concerned 

with low-level faults (also known as component level faults) and among which we mainly focus on actuator faults. The 

high-level fault considerations are beyond the scope of this work. Fault diagnosis in discrete-event systems (DES) 

which can play the role of a HL supervisor is studied in [30]. 

(vii) In our envisaged switching estimation/control framework, the dwell time is defined as a positive time constant that 

guarantees stability of the system provided that the consecutive switching times among controllers and estimators are 

larger than the dwell time [31]. Analysis of the switching limitations of the dwell time is also beyond the scope of this 

paper, and therefore for sake of simplicity we assume that this condition is implicitly satisfied before any switching 

among estimators as well as control reconfigurations takes place.  
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(viii) The overall sequence of procedures that are invoked in this work can be briefly described as follows: In step 1, faults 

are cooperatively estimated by using the LL estimation filters. The HL supervisor decisions (through its hybrid and 

switching framework that aims at minimizing the effects of unmodeled dynamics, uncertainties, and disturbances) and 

the fault estimates are then incorporated into the LLFR controller. In step 2, the HL supervisor (as a limit-checker) 

determines whether the mission specifications are satisfied or not, and correspondingly activates the FLFR module if a 

satellite is partially LL-recovered. Finally in step 3, the FLFR module accommodates the partially LL-recovered 

satellite to preserve and maintain the overall formation mission. 

III. COOPERATIVE FAULT ESTIMATION BY THE LLFR MODULE 

In this section, the notion of cooperative fault estimation is introduced and developed corresponding to the LLFR module to 

compensate for the effects of actuator faults. We consider an N-satellite formation in deep space, where the satellites orbital 

dynamics are approximated by double integrators [1], [2]. By invoking the observation (i) in Section II, we first express the 

absolute dynamics of a satellite in the local inertial frame that is defined by the x, y and z coordinates. However, due to the fact 

that an accurate absolute position measurement in deep space is not feasible, and due to the availability of relative position 

measurement sensors among the satellites in deep space, we will use the relative dynamics (that is, relative measurements among 

the satellites) for representing the orbital dynamics of the satellites in formation.  

As stated above, given that the orbital dynamics of satellites are decoupled along the three x, y and z axes, we only consider 

the x-axis dynamics in this work as all the results can be similarly extended to the other two axes. The x-axis dynamics of the i-th 

satellite, N,...,1i  , including the external disturbances and sensor measurement noise are governed by 
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where 2T
xix R)v,x(

ii
 , Ru

ix  , and Rz
ix   denote the x-axis state vector (including the position ix  and the velocity 

ixv

), the control input (actuator force), and the output (measured state) of the satellite #i ( }N,...,1{i ), respectively, expressed in 

the local inertial frame. Moreover, the total mass of the satellite #i is denoted by im , and the external disturbances and the sensor 

measurement noise are represented by  Txx d0W
i
  ( xd  is the corresponding scalar disturbance) and 

ixV , respectively. The 

subscript “ ix ” used above (as in 
ix  and 

ixz ) represents the x-axis variables of the satellite #i. In addition, 

iii xxx fbb   (2) 

denotes the x-axis actuator gain, in which 
ixb  and 

ixf  represent the x-axis nominal (healthy) actuator gain and its corresponding 

loss-of-effectiveness fault signal, respectively. It should be pointed out that the faults considered in this work are of permanent 

nature and as stated earlier correspond only to actuators. It should be noted that a “permanent” fault is not necessarily constant 

and can be time-varying, as opposed to an “intermittent” fault which is present for usually irregular intervals of time. Due to the 

nature of an intermittent fault, it can be argued that an effective approach for modeling these faults is through an event-based 

framework, e.g. through a discrete-event system (DES) model [32], or a finite state machine, e.g. through Markov models [33], 

but this consideration is beyond the scope of this work.  

In the normal (healthy) operational mode of a satellite, the fault parameter is considered to be zero (that is, 0f
ix  ). In the 
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faulty operational mode of a satellite, the case of a time-varying fault signal (that is, 0f
ix   as a source of unmodeled dynamics 

and disturbance) has already been studied by the authors in [5] and is not the focus this paper. On the other hand, the main focus 

of this paper is on communication delays as a source of unmodeled dynamics and disturbances. Therefore, for the sake of 

simplicity in our analysis, let us assume that the fault signal is time-invariant or can be approximated as a slowly time-varying 

signal (that is, 0f
ix  ). In order to estimate the severity of the fault, a conventional method for joint state-parameter estimation 

would be to augment the fault variable 
ixf  to the state vector 

ix  in order to form an overall extended system, which now 

becomes a more complex bilinear system [34] (as compared to the original linear system (1) above).  

In this work, we represent the satellites formation flight topology by a connected directed graph, namely the formation 

digraph, in which each vertex represents a satellite and each edge connecting two vertices (satellites) represents a relative state 

measurement of the sink satellite with respect to the source satellite. We assume that the formation digraph is connected, which 

implies that one can determine all the 2/)1N(N   relative states ( N  is the number of satellites). Also, we assume that there 

exists the possibility of an all-to-all communication among the satellites, although our goal is to optimize and minimize the 

amount of information that is being exchanged among the satellites. 

 

 

Figure 2. A formation of four satellites #1, #2, #3, and #4 with relative output measurements (dashed edges). 

 

For illustrative purposes only and without loss of generality, let us consider the fault estimation problem for the simple case of 

4-satellite formation with relative output measurements, which include the relative position vectors that are represented by the 

dashed edges in the formation digraph of Figure 2. In this 4-satellite formation in deep space, we assume that the satellites #1, 

#2, and #3 are subjected to actuator faults, and that satellite #4 is healthy and whose dynamics will be excluded from the 

estimation procedure in the following derivations and analysis. We take the x-axis relative position ijij xxx   and the x-axis 

relative velocity 
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fault-augmented relative-measurement relative-state model is now governed by 
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matrices are clearly identified.  
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x 0 x x x x( t ) A ( t ) B  u W   

1 123

a
x 1 xu A ( t )

2 123

a
x 2 xu A ( t )  

)t(A
12x

 

)t(A
23x

 

12x
B  

23x
B  

23x
C  

12x
u  

23x
u  

x12
C  
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3 123

a
x 3 xu A ( t )  contains the multiplicative state-input (or bilinear) terms 

1 123

a
x 1 xu A ( t ) , 

2 123

a
x 2 xu A ( t ) , and 

3 123

a
x 3 xu A ( t ) (that is 

why the above system is classified as a bilinear system) as well as state and input (or linear) terms 
123

a
0 xA ( t )  and 

123x xB  u , 

respectively (that are common in linear systems).  

By invoking results from the observability theorem of bilinear systems that is developed in [34] one can indeed show that the 

system given by equations (3)-(4) is observable since its observability matrix is full-rank, that is 

7n))A,A,A,A,C(O(rank 3210x123
 , in which the observability matrix is defined according to 

)AC,...,AAC,AAC,...,AAC,AC,AC,...,AC,C(col)A,A,A,A,C(O 1n
3x01x30x10x

2
0x3x0xx3210x 123123123123123123123123123

  

where the operator (.)col  implies that one stacks all the operand elements in one column with the same order. The above bilinear 

model is merely used to verify the observability of the system that is given by equations (3)-(4), which will be used in the 

following to design the estimation filters. 

Since the fault-augmented model given by equations (3)-(4) is observable, it can be used to design a centralized Kalman filter 

(CKF) for estimating all the associated variables and states, namely 
ixf , ijx , 

ijxv , and 
jxf . The matrix )t(A

123x  in equation (3) 

is an overlapping-block-diagonal square matrix, which contains two blocks )t(A
12x  and )t(A

23x . A conventional CKF can be 

designed for the bilinear (or equivalently the linear time-varying (LTV)) model that is represented by the quadruple 

),C,B),t(A( 32xxx 123123123 0  given by equations (3)-(4). The CKF estimator has two major drawbacks, namely 

 Communication constraint: The CKF estimator requires full state communication exchanges among the satellites, albeit 

that the information availability will not remain robust to communication interruptions, dropouts and failures, and 

 Error propagation: The CKF estimator requires an accurate centralized model of the entire satellite formation; whereas a 

local failure, uncertainty, or unmodeled dynamics can adversely affect the estimation performance of the entire 

formation. 

In order to remedy the above major limitations and shortcomings, we are therefore motivated to propose and design 

reconfigurable distributed Kalman filters (RDKF) that can cooperate through a hybrid and switching framework. Our proposed 

RDKF approach is “distributed” in the sense that multiple local estimation filters (with information exchanges among them) will 

be utilized instead of a single centralized estimation filter. Moreover, our proposed RDKF approach is “reconfigurable” in the 

sense that a proper set of local estimation filters will be selected (by using a hybrid and switching framework) based on the 

information regarding the detected unmodeled dynamics, uncertainties, and disturbances. These issues are described formally 

next. 

 

A. Reconfigurable Distributed Kalman Filters (RDKF)  

In this part, we introduce our proposed unconditional and conditional local estimation filters as well as our proposed 

reconfigurable distributed Kalman filters (RDKF) that are developed and obtained through cooperation (information exchanges) 

among the local estimation filters. 

Unconditional Local Estimation Filters: 

 

Unconditional local estimation filters are introduced to tackle and resolve the communication constraint problem that is 

discussed above. An unconditional local estimation filter is a local Kalman filter that is to be implemented for each satellite #i, 

with the neighboring satellite #j, which is governed by the local linear time-varying (LTV) model as described below 
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jijiijijijijijijij x
j

xx
i
xxxx

a
xx

a
x gEgEW)t(uB)t()t(A)t(    (5) 

ijijijij x
a
xx

a
x V)t(C)t(z    (6) 

where T
xxijx

a
x )f,v,x,f(

jijiij
  is the fault-augmented state with elements that are similarly defined in equations (3)-(4), except 

for the vectors )t(g
ix  and )t(g

jx  that represent the possible unmodeled dynamics and disturbances acting on satellites #i and 

#j, respectively, and i
xij

E  and j
xij

E  that denote the appropriate input vectors. The unmodeled dynamics and disturbances )t(g
ix  

can arise due to  

 variations of the fault 
ixf , that is 0f)t(g

ii xx    as studied by the authors in [5], but that will not be considered in 

this paper by assuming that the fault signals are time-invariant or can be approximated as slowly time-varying signals 

(that is, 0f
ix  ), or 

 an unexpected communication delay   that occurs while satellite #i is sending its control signal )t(u
ix  to the other 

satellites, that is )t(u)t(u)t(g
iii xxx   . 

Our goal is to detect the presence of  )t(g
ix  and )t(g

jx  in order to determine the reliability of the local model. If 

0)t(g)t(g
ji xx  , then equation (5) is simply a subsystem of equation (3).  

For illustrative purposes and without loss of generality let us consider the case 
1xg 

2xg 0g
3x  , corresponding to the 

three faulty satellites #1, #2, and #3 of the 4-satellite formation that is shown in Figure 2. Figure 3a depicts the configuration of 

the two unconditional local estimation filters that represent reconfigurable distributed Kalman filters (RDKF) and are denoted by 

)f̂,f̂(EF
3113 xxx  and 

21 2 1x x x
ˆ ˆEF ( f , f ) . These filters are basically conventional Kalman filters for the local model that is governed 

by equations (5)-(6) with the indices )3j,1i(   and )1j,2i(  , respectively (Figure 3a). The bi-directional information 

exchange that is shown in Figure 3a is used for communicating the estimate of the common parameter 
1xf̂  between the two local 

filters for subsequent date fusion [13]. This bidirectional information exchange is a source of error propagation when one is 

confronted with a local fault, uncertainty, or unmodeled dynamics, similar to the problems that one is confronted with in the 

CKF scheme in which the centralized overlapping-block-diagonal matrix structure of )t(A
123x  (as characterized by equation (3)) 

propagates a local error to all the estimators of the system. For example, assume that in Figure 2 the satellites #1 and #3 are 

unmodeled dynamics and disturbance free (that is, 0gg
31 xx  ), however satellite #2 is subject to unmodeled dynamics and 

disturbances (that is, 0g
2x  ). In case of a bi-directional information exchange, as shown in Figure 3a, the unmodeled dynamics 

and disturbance )t(g
2x  will affect the estimates of all the three fault signals 

1xf , 
2xf  and 

3xf . In the following, the problem of 

error propagation will be tackled by using the conditional local estimation filters. 



 11 

 

Figure 3. Reconfigurable distributed Kalman filter (RDKF) architectures in case of unmodeled dynamics and disturbances for the 3 faulty satellites of the 4-

satellite formation: (a) uncertainties are absent in all satellites, (b) uncertainties are present in satellite #2, and (c) uncertainties are present in satellite #1. 

 

It should be noted that if an estimation filter is initialized with a positive definite covariance matrix for the estimation error, 

and if the covariance matrices of the system disturbance and measurement noise are positive semi-definite and bounded, then the 

covariance matrix of the estimation error remains positive definite and bounded for all time [40], [41]. 

 

Conditional Local Estimation Filters: 

Conditional local estimation filters are introduced to remedy the error propagation problem that is discussed above. We need 

to control the direction of information exchange and data flow among the local filters. For example, the distributed structure that 

is shown in Figure 3b provides the necessary flexibility that one requires for restricting the effects of the unmodeled dynamics 

and disturbances )t(g
2x  on the local fault estimate of satellite #2. This is achieved by implementing two local estimation filters, 

namely (a) the unconditional estimation filter )f̂,f̂(EF
3113 xxx , which is a conventional Kalman filter for the local model given 

by equations (5)-(6) with the indices )3j,1i(  , and (b) the conditional estimation filter 
21 2 1x x x

ˆ ˆEF ( f | f ) , which is a 

conventional Kalman filter with the indices )1j,2i(  for the local model that is governed by 

jj|ijij|ijij

j|ijx

jji

j|ij

j|ijx

i

j|ij x
j

xx
i
xx

)t(B

j

xx

i

x

a
x

)t(A

i

x

a
x gEgE)t(u

m

fb

m

b

00

00

)t(

00
m

u
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000

)t( 
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










































    

   

 

 

 

(7) 

  )t(001)t(z a
x

)t(C

a
x j|ij

j|ijx

ij



  (8) 

where T
xijx

a
x )v,x,f(

ijij|ij
  is the fault-augmented state and i

x j|ij
E  and 

j

x j|ij
E  denote the appropriate input vectors. 

The unconditional estimation filter )f̂,f̂(EF
3113 xxx  estimates the fault signals 

1xf  and 
3xf  by using the relative measurement 

231213 xxx zzz  , as shown in Figure 3b. The information on the estimate of 
1xf  is then sent from )f̂,f̂(EF

3113 xxx  to 

#2                #1 

0g
2x   

#1                 #3 

One-directional 

Information 

Exchange 

21 2 1x x x
ˆ ˆEF ( f | f )  )f̂,f̂(EF

3113 xxx  

 (b) 

#1                #2 

0g
1x   

#2                 #3  (c) 

)f̂|f̂(EF
2112 xxx

 

)f̂,f̂(EF
3223 xxx

 

One-directional 
Information 

Exchange 

#2                #1 #1                 #3 

Bi-directional 

Information 

Exchange 

21 2 1

ˆ ˆ( , )x x xEF f f  )f̂,f̂(EF
3113 xxx  

 (a) 
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21 2 1x x x
ˆ ˆEF ( f | f ) . This is shown by a solid arrow line in Figure 3b. The conditional estimation filter )f̂|f̂(EF

1221 xxx  estimates 

the fault signal 
2xf  based on the information on 

1xf  that it receives through an exchange with the unconditional estimation filter 

)f̂,f̂(EF
3113 xxx . This communication is the manifestation and representation of the cooperative nature of our proposed scheme 

for estimating the fault parameters. Through the above cooperative scheme, the unmodeled dynamics and disturbances )t(g
2x  

can only be guaranteed to affect the local estimate
2xf̂ . 

Remark 1. In the fault diagnosis literature, estimation methods belong to as one class of fault detection techniques [35]. In this 

paper, we use estimation filters to explicitly estimate the faults and implicitly detect them (in fact a fault is detected if it is 

estimated to be nonzero). The faults are augmented to the states of the system as governed by equations (5)-(6), where the faults 

are considered as part of the overall system states. In other words, they are considered as additional (fault) states that do not 

affect the dynamics of the system through an external input channel (as in the case of unmodeled dynamics and disturbances). 

Therefore, estimation filters are used to estimate the additional (fault) states, in contrast to standard approaches in the literature 

which are used to detect the faults (by using detection filters). On the other hand, the detection filters are only used for the 

purpose of detecting the uncertainties and disturbances, which affect the dynamics of the system through an external input 

channel. In order for the detection filters to distinguish between the unmodeled disturbances and modeled dynamics (and for 

improving the filters robustness), thresholds can be selected by using the Monte Carlo approach in which simulations are 

conducted for a number of scenarios that include random unmodeled dynamics and disturbances with specified ranges. In this 

manner, the thresholds are chosen so that the unmodeled disturbances can now be distinguished from the modeled dynamics, and 

hence can be used to improve the fault estimates as provided by the estimation filters. 

The cooperative estimation strategy that is depicted in Figure 3 is mainly concerned with the following two tasks: 

 detection of possible unmodeled dynamics and disturbances 0)t(g
ix  , and 

 estimation of the fault signals )t(f
ix  based on the information on the unmodeled dynamics and disturbances )t(g

ix . 

For each of the above two problems, we offer a proposition below to address the issue. 

Proposition 1. Consider an N-satellite formation flight that is represented by the set S . Using local detection filters it is 

possible to determine the set DS , which is defined as the set of all satellites subjected to unmodeled dynamics and disturbances, 

if at least 2 satellites are unmodeled-disturbance free (that is, 2)SS(n D   where (.)n  denotes the cardinality of the set).  

Proof. In order to design the local detection filters, let us first consider the extended dynamical model that is given by 

equations (5)-(6). The structure of our proposed local Kalman detection filter 
ijxDF  is now specified according to 

))t(ẑ)t(z)(t(K)t(uBˆ)t(A)t(ˆ a
x

a
xxxx

a
xx

a
x ijijijijijijijij

 


 

a
xx

a
x ijijij

ˆC)t(ẑ   

where )t(K
ijx  denotes the Kalman filter gain matrix. Let us select the residual error as ))t(ẑ)t(z(M)t(R a

x
a
xx ijijij

 , with an 

appropriate definition for the matrix M as conventionally determined in the fault diagnosis literature. When 0gg
ji xx  , the 

residual is in a neighborhood around zero (that is, 0)t(R
ijx  ). By proper selection of the threshold value, one can detect either 

a nonzero 
ixg  or 

jxg  by observing that the residual has exceeded the selected threshold bound for a sufficient duration of time. 
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Therefore, either 
ixg  or 

jxg  can force the residual error to exceed and cross over the threshold, and therefore it is not possible to 

isolate these signals based on the detection filters alone. Consequently, one needs to monitor all the residual errors within the 

formation in order to isolate the satellites that have unmodeled dynamics and disturbances.  

Consider now the following logical definitions 

0g0G
ii xx   

0g1G
ii xx   

threshold the exceed not does DF the of residual0R
ijij xx   

ypermanentl threshold the exceeds DF the of residual1R
ijij xx   

The logical functional relation 
jiij xxx GGR   holds according to the definitions above. In other words, we have 

1R,j,i1G,iN)S(nIF)a(
iji xxD   

1R,j,i1G,ik,0G,i!1N)S(nIF)b(
ijki xxxD   












)0R( 0RSk

)0R( 0RSk
}j,i{k 0R 0GG,j,i2N)S(nIF)c(

jkik

jkik

ijji
xxD

xxD

xxxD  

The above can clearly demonstrate that one needs at least two unmodeled-disturbance free satellites to identify the set DS  and 

this completes the proof of the proposition.                                                                                                                                       

Following the above result on the set DS , next we introduce our proposed estimation reconfiguration scheme in which a 

proper set of distributed conditional and unconditional estimation filters are selected to constrain the adverse effects of the 

unmodeled dynamics and disturbances on the local state estimates and prevent them from propagating to the neighboring satellite 

states. 

Proposition 2. Given an N-satellite formation flight system, assume that at least 2 satellites (#i and #j) are unmodeled-

disturbance free so that faults can be isolated by invoking the detection filters according to the Proposition 1. The Algorithm 1 

presented below provides a procedure for reconfiguring the state estimation scheme by using distributed conditional and 

unconditional estimation filters. Using this algorithm the adverse effects of a given nonzero unmodeled dynamics and 

disturbances 0g
kx   are guaranteed to be constrained to only the corresponding satellite #k and will not propagate to the entire 

formation. 

 

Table 1. Algorithm 1 for reconfiguration of the state estimation scheme. 

Algorithm 1. Consider a set of N satellites that are denoted by }s,...,s{S N1 . Assume that the associated formation flight 

digraph is connected. 

(i) START: Specify the set DS  ( SSD  ), which is defined as the set of all satellites with unmodeled dynamics and 

disturbances, by using the distributed local detection filters as given in Proposition 1. It should be noted that at least two 

satellites are unmodeled-disturbance free (that is 2N)S(n D   where (.)n  denotes the cardinality of the set). 

(ii) For each satellite Di SSs  , choose a satellite j Ds S S   ( j i ) to be used in the corresponding unconditional 

filter
ij i jx x x

ˆ ˆEF ( f , f ) . 

(iii) For each satellite k Ds S , choose a satellite j Ds S S   to be used in the corresponding conditional filter 

kj k jx x x
ˆ ˆEF ( f | f ) ; END. 
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Proof. Assume that the two satellites #i and #j are identified according to the Proposition 1 to be unmodeled-disturbance free (

DSSj,i  ). The unconditional local estimation filter )f̂,f̂(EF
jiij xxx  can be employed to estimate the fault signals 

ixf  and 

jxf  without being exposed to the effects of the unmodeled-disturbances 0g
kx  . The fault 

kxf that is injected in the satellite k 

with an unmodeled disturbance can be estimated by either the conditional estimation filter )f̂|f̂(EF
ikki xxx  or )f̂|f̂(EF

jkkj xxx . 

The conditional estimation filter )f̂|f̂(EF
ikki xxx  (or )f̂|f̂(EF

jkkj xxx ) estimates the severity of 
kxf  by taking information on the 

estimate 
ixf̂  (or 

jxf̂ ) of the unmodeled-disturbances free satellite #i (or #j) through a communication with the unconditional 

estimation filter )f̂,f̂(EF
jiij xxx . In other words, the conditional estimation filter )f̂|f̂(EF

ikki xxx  (or )f̂|f̂(EF
jkkj xxx ) merely 

estimates the local fault signal 
kxf  and not 

ixf  (or 
jxf ). Therefore, the effects of the unmodeled-disturbances 

kxg  will not 

propagate to the entire formation state estimators through the fault estimates 
ixf̂  and 

jxf̂ . This completes the proof of the 

proposition.  

                                                                                                                                                                                                       

In order to generalize our reconfigurable distributed estimation approach, in the next section we propose a hybrid and 

switching framework. In this framework, each mode represents a certain estimation scheme as well as a specific communication 

topology among the local estimation filters (as per Proposition 2). The transitions among the modes are conditioned on the 

residuals that are generated by the local detection filters (as per Proposition 1). 

B. Cooperation of Estimators in a Hybrid and Switching Framework 

In general, a linear approximation of a nonlinear system can be better represented by a hybrid structure, which is constructed 

by using discrete modes corresponding to various operating conditions and linear continuous-time models. In the literature a 

number of estimation methods based on the interactive multiple model (IMM) or the probabilistic hybrid automata (PHA) have 

been proposed to address the state estimation problem in hybrid systems [36]. In our work, we consider the formation system as 

being represented by a non-hybrid continuous-time model. The system is to be estimated by using distributed and local 

estimation filters. Cooperation among these estimation filters will require different communication topologies, which are 

individually considered as particular modes that are integrated into a hybrid model framework. In other words, we represent our 

proposed cooperative fault estimation framework through a hybrid and switching model in which each mode represents a certain 

cooperative scheme that is achieved among the local filters (as per Proposition 2).  

In order to set up our hybrid and switching framework for cooperative fault estimation, we first start by allocating the states of 

the formation flight system to the local estimation and detection filters based on topological considerations. For sake of 

illustrative purposes we describe this concept with an example of 3 faulty satellites #1, #2, and #3 (from the 4-satellite formation 

as shown in Figure 2). Figure 4 shows the configuration of the 3 faulty satellites (having only relative measurements) among the 

3 distributed local detection filters, 3 unconditional and 6 conditional local estimation filters, where the superscript ij  in 
ij

xi
f̂  

indicates that the fault estimate 
ij

xi
f̂  is accomplished by the conditional estimation filter )f̂|f̂(EF

ij

x

ij

xx
jiij

 or the unconditional 

estimation filter )f̂,f̂(EF
ij

x

ij

xx
jiij

. It should be noted that the healthy satellite #4 is omitted from Figure 4 as well as the 

subsequent discussions since this satellite is healthy, and hence it does not require an actuator fault estimator. 
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Figure 4. The allocation of the local detection filters (DFs) and the local estimation filters (EFs) among the 3 faulty satellites #1, #2, and #3 (from the 4-satellite 

formation shown in Figure 2). 

 

Let us now introduce the following notations and definitions to characterize the cooperation among the reconfigurable 

distributed estimation filters that are suggested by the Propositions 1 and 2. The residual error signal 
ijxR  is generated by the 

three detection filters 
ijxDF  (as indicated in Figure 4) according to Proposition 1. Through construction of these three residuals 

additional conditions that are denoted by )m( i  are obtained below that determine the transition (switching) to a mode #i, in 

which the distributed (3 unconditional and 6 conditional) local estimation filters (as indicated in Figure 4) are reconfigured 

according to Proposition 2. In Proposition 2, it was assumed that at least 2 satellites are unmodeled-disturbance free, that is 

2N)S(n D   as explained in the Algorithm 1. Therefore, for the case of 3 faulty satellites #1, #2, and #3 in Figure 4 one can 

distinguish four modes, namely mode #0 with {}SD  , mode #1 with }s{S 1D  , mode #2 with }s{S 2D  , and mode #3 with 

}s{S 3D  , where the condition 1232N)S(n D   is satisfied in all modes. These four modes are formally defined 

next. 

 

Mode #0. Transition to this mode is conditioned on }0RRR{)m(
231312 xxx0  , which implies that no unmodeled-

disturbances is present in the formation satellites. Therefore, the two distributed unconditional filters )f̂,f̂(EF 12
x

12
xx 2112

 and 

)f̂,f̂(EF 13
x

13
xx 3113

 are employed to estimate all the system states and parameters. The two estimates of the common parameter 
1xf̂  

are then fused [13] according to 13
x

13
x

12
x

12
xx 11111

f̂f̂f̂   , where 1,0 13
x

12
x 11

   and 013
x

12
x 11

  . This mode is depicted in 

Figure 3a. 

Mode #1. Transition to this mode is conditioned on }0R,0R,0R{)m(
231312 xxx1  , which implies that the unmodeled-

disturbances 
1xg  is present ( 0g

1x  ) in satellite #1. Therefore, the unconditional filter )f̂,f̂(EF 23
x

23
xx 3223

 and either the 

conditional filter )f̂|f̂(EF 23
x

12
xx 2112

 or )f̂|f̂(EF 23
x

13
xx 3113

 can be employed to cooperatively estimate all the system states and 

parameters. This mode is depicted in Figure 3c. 

Mode #2. Transition to this mode is conditioned on }0R,0R,0R{)m(
132312 xxx2  , which implies that the unmodeled-
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disturbances 
2xg  is present ( 0g

2x  ) in satellite #2. Therefore, the unconditional filter )f̂,f̂(EF 13
x

13
xx 3113

 and either the 

conditional filter 
21 2 1

12 13
x x x

ˆ ˆEF ( f | f )  or )f̂|f̂(EF 13
x

23
xx 3223

 can be employed to cooperatively estimate all the system states and 

parameters. This mode is depicted in Figure 3b. 

Mode #3. Transition to this mode is conditioned on }0R,0R,0R{)m(
122313 xxx3  , which implies that the unmodeled-

disturbances 
3xg  is present ( 0g

3x  ) in satellite #3. Therefore, the unconditional filter )f̂,f̂(EF 12
x

12
xx 2112

 and either the 

conditional filter 
31 3 1

13 12
x x x

ˆ ˆEF ( f | f )  or 
32 3 2

23 12
x x x

ˆ ˆEF ( f | f )  can be employed to cooperatively estimate all the system states and 

parameters. 

We are now in a position to integrate the above four modes for the 3 faulty satellites to construct a hybrid and switching 

representation of our proposed reconfigurable distributed estimation filters as shown in Figure 5. In this figure, certain condition

)m( i , 4,3,2,1i   should be satisfied in order to switch to the mode #i, in which combinations of 6 conditional and 3 

unconditional local estimation filters are employed. As explained in the four modes above, the condition )m( i  is constructed 

by using the residuals of the 3 local detection filters. Formally analyzing and designing a HL supervisor for our hybrid and 

switching estimation framework is beyond the scope of this work, although it has been studied by the authors in [6] by using a 

discrete-event system (DES) [27] approach for the general case of linear time-invariant (LTI) systems. Finally, the sensitivity of 

our proposed fault estimation scheme with respect to the probabilities of “mis-detect” and “false-alarm” is also beyond the scope 

of this work and is left as a topic of future research.  

Once the low-level fault recovery (LLFR) module completes the cooperative fault estimation task, the fault estimates are then 

utilized by the controllers in the LLFR. As the number of satellites in the fleet increases and the communication resources 

become constrained, the motivation for implementing a semi-decentralized FLFR strategy becomes more justifiable and crucial. 

Our proposed decentralized control recovery methodology is now discussed and developed in the next section. 

 

 

Figure 5. The hybrid and switching estimation model that is employed for the 3 faulty satellites. 

IV. SEMI-DECENTRALIZED RECOVERY CONTROLLERS BY THE LLFR MODULE 

Consider now a four-satellite formation flight system, whose formation digraph is shown in Figure 6. In practice, it is not 

always possible to ensure and provide a one-to-all inter satellite relative measurements. Therefore, one needs to avoid and handle 

the so-called cascade of accumulating measurement error effects. The measurement topology adopted highly depends on (a) the 

formation geometry, and (b) the resource availability (measurement sensors). As an illustration of (a) formation geometry, when 

all the satellites are lined up in a straight line, it is not possible to achieve a one-to-all measurement topology due to lack of 

visibility and field of view obstacles from the outer satellite to all the others. As an example of (b) resource availability, a one-to-
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all measurement scheme requires the availability of a large number of sensors that are not cost-wise practical. In this paper, the 

one-to-all relative measurements are not required to be available among the satellites, and therefore the sensors are assumed to be 

sufficiently accurate to avoid the cascade accumulating measurement error effects. 

Based on our previous discussions in Sections II and III, the model of the satellite #i shown in Figure 6 is approximated by a 

double integrator [1], [2] for each of the three axes as follows 

zzzii

yyyii

xxxii

dubzm

dubym

dubxm

ii

ii

ii













 

 

(9) 

where the environmental disturbances are represented by T
zyx )d,d,d( ( the above representation is similar to the model given 

by equation (1)), and the other parameters and variables are defined in Section II. 

 

 

Figure 6. A four-satellite formation flight system. 

 

For sake of simplicity in the derivations, the following analysis ignores the effects of disturbances for now. However, these 

effects are subsequently analyzed and taken into account in the next section. Moreover, as in the previous discussions, given that 

the three axes dynamics are decoupled, we only consider the dynamics of the x-axis although the results can trivially be extended 

to the y- and z-axes dynamics. The dashed line edges shown in Figure 6 represent the system output measurements. In order to 

avoid output redundancy, three outputs (corresponding to the three dashed lines) are chosen. For each dashed line, the 

corresponding output tracking error and its first two time derivatives are formally defined 

d
ijijij xxe   

d
ijijij xxe    

d
ijx

i

x

x
j

x

ij xu
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b
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j
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(10) 

where ijij xxx   is the relative position between the satellites #i and #j, and d
ijx  is their desired relative reference trajectory. 

In the compact matrix form the second derivatives of the output errors for the four-satellite formation system can be expressed as 

follows 

#2 #3 

#1 #4 



 18 























































































d
34

d
23

d
12

x

x

x

x

J

4

x

3

x

3

x

2

x

2

x

1

x

34

23

12

x

x

x

u

u

u

u

m

b

m

b
00

0
m

b

m

b
0

00
m

b

m

b

e

e

e

4

3

2

1

43

32

21







  







 

 

 

(11) 

In order to investigate the controllability of the system given by equation (11) under the loss of effectiveness actuator faults, 

let us express the above system in the standard state space form as follows 
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The standard controllability matrix of the above system is defined as 

 tot
n
tottot

2
tottottottottottot BABABAB)B,A(C            ( 6n  ) 

For all values of the loss-of-effectiveness fault parameters 
ixf  ( 4,3,2,1i  ) in 

iii xxx fbb   (as in equation (2)), the 

controllability matrix remains full rank if we have 
ii xx bb0   or equivalently 0fb

ii xx  . Therefore, the overall formation 

system that is subjected to the loss-of-effectiveness fault parameters satisfying 0fb
ii xx   ( 4,3,2,1i  ) will always remain 

controllable. 

Remark 2. As evident from equation (11), the dynamical equation of the formation flight system is in the linear time-invariant 

form from the control point of view. It should also be noted that the fault-augmented relative-measurement relative-state model 

that is given by equations (3)-(4) was earlier shown to be in the form of linear time-varying model and bilinear model from the 

estimation and the observability perspectives, respectively. 

In deep space, instead of using imprecise measurements of absolute states ix  and ix , due to the availability of high precision 

autonomous formation flying (AFF) sensors [37] one can alternatively consider measuring the relative states ijx  and ijx  and 

then use them in the formation feedback loop. In order to avoid redundant measurements, we assume that the formation digraph 

is connected. To each edge ijij xxx   representing the relative state measurement of the satellite #j with respect to the satellite 

#i, we assign two parameters Rij   and Rij   in order to design our semi-decentralized controllers [42].  

Let us now define the following general vectors for the case of N  satellites with a connected digraph 
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where the elements d
ijx , ije , ij , ij , and  Tijij ee   are on the same corresponding rows of the vectors dx , e ,  ,  , and X , 

respectively. The states d
ijx  and ije  were introduced earlier in equation (10). In the compact matrix form, the tracking error 

dynamics can be expressed according to 

dxJue    (13) 

where the input vector u  and the matrix J  are given by 
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with the notation that [i]e  denotes the i-th element of the vector e  in equation (12). For example, in the special case of Figure 6, 

the error dynamics is given by equation (11). The dynamics of individual satellites are coupled through their relative state 

measurements. In the following, a semi-decentralized control strategy is proposed and implemented in order to meet the 

restrictive communication constraints that are imposed on the formation system due to the availability of only local relative state 

measurements. Motivated by conventional linear control design techniques, a semi-decentralized controller is designed in which 

the control signal 
ixu  of satellite #i is specified in terms of the local relative state measurements and the desired trajectories of its 

neighboring satellites.  

To design the semi-decentralized controllers, we first start by incorporating the actuator faults estimates that are obtained from 

the previous section into the control channels as follows 

    sd
1

x
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x
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xN21 uu b̂ , ... ,b̂ ,b̂diag m , ... ,m ,mdiagu
N21

   (14) 

where the actuator gain 
ixb  is now replaced by its estimate 

ixb̂  (that is, 
iii xxx f̂bb̂  ), where the estimate 

ixf̂  of the fault 
ixf  

is given by equation (2). Moreover, it easily follows that 
ii xx bb̂   when the system is fault free or when one has an accurate 

estimate of
ixf . The control terms du and su are the desired acceleration tracking control and the stabilizing control signals, 

respectively, that are specified as follows 

d
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where the tracking error state X  and the desired acceleration state dx  are defined in equation (12), and 
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(15) 

with )(  and )(   denoting the design matrices that depend on the parameters   and  .  

In order to finally construct our proposed semi-decentralized controllers one needs to appropriately select the above matrices 

such that their structure is sufficiently sparse. In other words, one needs to generate the control signal 
ixu  of satellite #i merely in 

terms of the information that is available from the local relative state measurements and the desired trajectories of its neighboring 

satellites. Towards this end, the matrices )(  and )(   are selected and specified next. 
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For obtaining the vectors )(i  , N,...,1i   in equation (15), an arbitrary satellite, let’s say rs  is chosen as the reference and 

is assigned with  )(r . For each ij , an associated vector 
ijT  is defined according to ijij

TT    . Let us define the set 

)r(N  as the index set of all the satellites js  that are neighbors to the satellite rs , that is 

}ee  or  ee ; }1N,...,1{k |j{)r(N jr[k]rj[k]   (16) 

where as before [k]e  denotes the k-th element of the vector e  in equation (12).  

For any given neighbor satellite js  ( )r(Nj ), we evaluate  

 rjrj T)(A)(   

with the consideration that 
jrrj TT  . This neighboring derivation can be accomplished by induction through the relative-

measurement digraph of the entire formation so that all the vectors )(i  , N,...,1i   are specified to form the matrix )(  in 

equation (15). 

For deriving  )1N,i(B)1,i(B)(BT
i    in equation (15), we take 















otherwise0

ee ; N(i)j  if

ee ; N(i)j  if1

)k,i(B ji[k]ji

ij[k]ij





 

As an illustration, in the special case of the formation flight that is shown in Figure 6, the matrices )(  and )(B   have the 

following structures 
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(17) 

In the following, the stability of the overall formation flight system is shown formally by using the semi-decentralized controller 

that is given by equation (14). 

Theorem 1. Consider either a fault free satellite formation flight system (13) (that is, 
ii xx bb   or 0f

ix  ) or the formation 

flight system that is equipped with an accurate fault estimation scheme (that is, 
ii xx bb̂  ), then by proper choice of the design 

parameters ),( 10   there exists a nonempty set for the vector 1NR   such that the closed-loop system given by equations 

(13)-(14) is input-output stable for all the values of 1NR  . 

Proof. First, it should be pointed out that by substituting the control law u  from equation (14) into equation (13), the control 

signal du  cancels out the terms dx  and )( , which results in the closed-loop system. The control su  forms the nominal 

(disturbance free) closed-loop dynamical system that is given by X))(I(X d  . This closed-loop dynamical system can 

equivalently be represented by an alternative system S  and the controller CON , that are characterized as follows 
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and )(d   is a square matrix whose elements are either zero or function of  .  

The system S  is controllable and observable, and the matrix   is stable (that is all its poles are in the left-half of the s-plane) 

for all 00   and 01  . Using the results from the small-gain theorem [38], and by taking  
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a sufficient condition for stability of the closed-loop system is given by  1d
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This completes the proof of the theorem.                                                                                                                                           

For the special case of the formation flight system that is shown in Figure 6, the matrix )(d   has the following structure 
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and the stability condition becomes 
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Since  |||,1||||,1|min0.5 23341223    holds always, the set D  is nonempty by the proper choice of ),( 10   as 

follows 
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In the next section, it is shown that an imprecise estimate of an actuator fault signal can significantly impact the performance 

of the overall formation flying system. This performance degradation will be detected by the HL supervisor and, subsequently, 

the FLFR module is activated. We will then propose a semi-decentralized cooperative fault accommodation scheme in the FLFR 

module by designing a controller that is similar to equation (14) and which guarantees that the desired mission error 

specifications in presence of possible estimation inaccuracies and biases are nevertheless maintained and satisfied. 

V. COOPERATIVE FAULT ACCOMMODATION BY THE FLFR MODULE 

Consider the four-satellite formation flight system that is depicted in Figure 6. Assume that the satellite #2 is faulty and is 

partially recovered by the low-level fault recovery (LLFR) system due to the presence of a biased and inaccurate fault estimate. 

In other words, satellite #2 tracks the desired trajectory with an error bound of r , which is greater than the mission error 

specification given by se  (that is ser  ).  

The purpose of the formation-level fault recovery (FLFR) module is to ensure that by restraining the control efforts of satellite 
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#2, at the expense of higher control efforts from other satellites #1, #3 and #4, the mission tracking error bound r  is reduced to 

satisfy the design specifications of the formation flight (that is ser  ). Our main objective here is to propose a framework and 

suggest guidelines for optimally accomplishing the FLFR module performance requirements. 

Let us now consider a loss-of-effectiveness fault in satellite #i actuator and assume that the LLFR module has estimated the 

severity of this fault, which is biased and imprecise, that is 
ii xx ff̂ , or equivalently 

ii xx bb̂ , where   is unknown but 

bounded (that is  B||  ) with B  a known bound. This biased estimate will result in overall formation performance 

degradations that are subsequently detected by the HL supervisor. The supervisor then activates the FLFR module in order to 

satisfy the desired mission error specifications.  

In the following, we investigate the stability and convergence of an N-satellite formation flying system by using the semi-

decentralized controller that is given by equation (14) and is subject to the fact that the fault estimate in satellite #i actuator is 

biased. Our main result of this section is stated by the following theorem. 

Theorem 2. Let the actuator of the satellite #i be subject to a loss effectiveness fault, and let the corresponding fault parameter 

estimate be biased such that 
ii xx bb̂ , where   is unknown but bounded (  B||  ) and B  is a known bound. Using the 

semi-decentralized control scheme that is given by equation (14) it can be shown that: 

(a) for proper choices of the design parameters ),(10 10
D),(    given by equation (21) (shown below), there exists nonzero 

values for 1NR   given by equation (20) for the control law su  that is defined in equation (14) such that the nominal 

(disturbance free) closed-loop system given by equations (13)- (14) is stable, and  

(b) for the stabilized closed-loop system in (a) there exists nonzero values for 1NR   given by equation (24) for the control 

signal du  that is defined in equation (14) such that the norm of the tracking error X  remains smaller than the predefined 

specification given by se . 

Proof. By substituting the control law u  from equation (14) into equation (11) the resulting closed-loop system is obtained as 

 

)()( ,, tDXIX idid  
  (19) 

where ),(i,d    is a square matrix that depends on   and  , and 

)t(x)(AT
b̂

)t(D dT
ii

i

i,d



  

in which the vector )1N(2
i RT   is defined as follows 















otherwise0

eX ; N(i)j  if1

eX ; N(i)j  if1

)k(T ji[k]

ij[k]

i




 

Similar to the proof of Theorem 1, by using the results from the small-gain theorem and by taking 

])sI([sup 1
max

R
1





 


 

a sufficient condition for stability of the closed-loop system is governed by 

 1i,d
1N /1||),(||],B,B[  R D    
  (20) 

The set D  is nonempty if the design parameters ),( 10   are chosen properly, that is 
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(21) 

This completes the proof of part (a).  

For part (b), we start from the fact that the closed-loop system is already shown to be stable according to the results from part 

(a). Denoting   )I( i,di,dclp   in equation (19), the tracking error X  is now governed by the dynamical system 

)t(D)t(X)t(X i,di,dclp  , whose Laplace transform is given by 

)s(D)s(G)s(D)sI()s(X i,di,di,d
1

i,dclp    

(assuming that the initial conditions are neglected) where )s(G i,d  is the transfer function matrix. By using the definition of 

)t(D i,d  from equation (19), we get 

)}t(x{)(T)s(G
b̂

)s(X dT
iii,d

i

L


  

where {.}L  denotes the Laplace transform of a given signal. Let us denote )(ˆ||)(||)( iii   , where )(ˆ
i   is the 

normalized )(i  . We now obtain 

}x{)(ˆ||)(||T)s(G
b̂

)s(X dT
iiii,d

i

L


  

Taking 

  )t(x)(ˆT)t(G  sup  
b̂

1
))(ˆ(H dT

iii,d
D , B|| , Rti

      

ii,d


 




 

 
 

(22) 

where “ ” denotes the convolution operator, we get 

i,Xiii,d B||)(||))(ˆ(H|||)t(X|


   
(23) 

In order for the norm of the tracking error X  be smaller than the specification se , a conservative solution based on equation 

(23) can be obtained as follows 

siii,d e||)(A||))(ˆ(H||max             
))(ˆ(HB

e
||)(A||

ii,d

s
i






  

The desired domain for the parameter   can therefore be specified which is given by 


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







 

))(ˆ(HB

e
||)(A||  RD

ii,d

s
i

1N






  

 

(24) 

This completes the proof of part (b) and of the theorem.                                                                                                                   

For the special case of the formation flight system that is depicted in Figure 6, the matrix ),(2,d    and the vector 2T  

(satellite #2 is assumed faulty) have the following structures 



 24 



































































00000

000000

10)1(
b̂

01
b̂

0

000000

00)1(
b̂

10
b̂

0

000000

2

3423

2

12

2

23

2

12

2

2,d















     ,    T2 001010T   

Consequently, the stability condition in Theorem 2 becomes 
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Let us now assume that an external (environmental) disturbance extD  that is bounded by extB  (that is extext B||D||  ) is 

applied to the system that is given by equation (19) as exti,di,d D)t(DX)I(X   
 . Following along similar steps as 

those used in the proof of Theorem 2, equation (23) can be re-written as follows 

toti,exti,X BBB|)t(X|   (25) 

where 

0tdBT)tt(G   supB

t

extii,d
D , B|| , Rt

      

i,ext  



 
 



 

One immediate conclusion from the above is that one cannot certainly get a better (smaller) error bound than i,extB . 

The domain D  that is given by equation (24) yields a conservative estimate. Therefore, it may be preferable to deal with this 

problem from a probabilistic perspective. We assume that the probability distribution function of the estimation error   is 

known and is given by )m(f  where ]  [m  . Our objective is to specify and determine the parameter vector   such that 

the probability of violating the error specification se  is less than a predefined value   ( 10  ), namely 

-1      )e|)t(X(|P s  . 

By taking into account the definition of totB  from equation (25), we have 

)eB(P)eB|e|)t(X|P()eB(P)eB|e|)t(X|(P)e|)t(X(|P stotstotsstotstotss   

Since totB|)t(X|  , we have 1)eB|e|)t(X|(P stotsi  . Therefore, the above equation is equivalent to 

)eB(P)eB|e|)t(X|P(     )eB(P)e|)t(X(|P stotstotsstots   

Since the second right-hand term in the above expression is positive, we conclude that 

)eB(P          )e|)t(X(|P stots   

or equivalently, replacing for i,XB  and totB  from equations (23) and (25), respectively, we get 

  )(PeB||)(A||))(ˆ(H|| P    )e|)t(X(|P si,ext
T
iii,ds

    

where  

||)(A||))(ˆ(H

Be

T
iii,d

i,exts





  . 

Therefore, the problem reduces to that of finding the vector   which satisfies the equality 



 25 







 -1          dm)m(f
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



 

If the information about the probability distribution function of the estimation error   is not available, one conventional and 

practical solution would be to assume that it is uniformly distributed over the interval ]B B[  and is given by 
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
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

otherwise0

BmB
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)m(f 
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(26) 

Consequently, the following equation needs to be solved for  , that is 





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1
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. 

The above expression yields the desired set of feasible solutions for   as follows 
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(27) 

The solution in equation (24) is a special case (the most conservative result corresponding to 0 ) of the solution in 

equation (27). It should be pointed out that one can improve the performance of the FLFR module by utilizing a more accurate 

probability distribution function instead of the uniform distribution function that is given in equation (26). 

The limitation of our proposed FLFR scheme is that it can only accommodate at most one partially LL-recovered satellite in 

each of the x-, y-, and z-axes (that is at most 3 satellites simultaneously). If more than one satellite in each axis is partially LL-

recovered, then the proposed solution would be to reduce (.)H i,d  (as given by equation (22)) by decreasing the desired trajectory 

)t(xd , which implies that one requires a new path planning procedure for the entire satellite formation. These scenarios are 

beyond the scope of the present work and will be investigated in future. In the next section, the effectiveness of our proposed 

strategy will be demonstrated in a number of simulation studies. 

VI. SIMULATION RESULTS 

Consider the four-satellite deep space formation in the xy-plane as shown in Figure 6. The objective is a counter-clockwise 

rotation maneuver in the xy-plane with the frequency of )s/rad(  1.0 , such that the satellites always maintain a square 

shape with the side lengths of )m(  200  and with an error specification of )m( 025.0es  . The desired formation outputs are the 

relative distances among the neighboring satellites. The major environmental disturbance in deep space is solar pressure [39]. It 

is calculated according to the formula C/ISCF R , where 0.1CR    is the solar radiation coefficient,  I  is the solar radiation 

intensity, S  is the area upon which solar radiation is forced, and )s/m( 103C 8  is the speed of light. By taking 

)m/Watt( 3000I 2  and )m( 1S 2  the solar pressure is computed to be in the order of )N(10 5
. This is represented as an 

additive zero-mean white Gaussian process with the variance of )N(10 5
. For simulations, the sensor noise is also considered 

to be an additive zero-mean white Gaussian process with the variance of )(m 10 24
. 

A %20  loss-of-effectiveness fault is applied to the x-axis actuator of satellites #1, #2, and #3. The corresponding fault 

parameter in satellite #2 is estimated by the LLFR module within a %22  relative error, that is 

22.0b/|bb̂|b/||
22222 xxxxx  , whereas the fault parameter in satellites #1 and #3 are estimated accurately. Using the low-
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level (LL) recovery controller and the design parameters that are selected as 20   and 31   to satisfy ),(10 10
D),(   , 

we consider the following three simulation scenarios, namely (A), (B), and (C).  

In scenario (A), all the satellites are fault free and the error specification )m( 025.0es   is satisfied with a properly designed 

controller. In scenario (B), satellites #1, #2, and #3 are faulty and the HL supervisor activates the LLFR module. This module 

estimates the actuator faults by using the cooperative estimators according to our proposed hybrid and switching framework and 

incorporates the estimates in the LLFR module controllers to fully recover all the satellites. However, satellite #2 is assumed to 

be only partially recovered by the LLFR module due to a biased estimate of its fault, and consequently the overall mission error 

specification )m( 025.0es   is violated. In scenario (C), the HL supervisor first detects this violation and consequently activates 

the FLFR module to cooperatively accommodate the partially LL-recovered satellite #2 so that the overall mission error 

specifications can now be guaranteed. In the following, the above three scenarios are described and analyzed in more detail. 

Scenario A. All the satellites are fault free 

In this case, the semi-decentralized controller given by equation (14) is specified with the parameter T)75.0,50.0,25.0( . 

This selection is made by minimizing the energy of the input signal du  according to the cost function 

 





 

0t 
d

T
dtcos dt )t(u)t(u    (.)f  

The concluding result obtained yields 0.6124||)(A|| T
2  . The vector   T)6165.0,5000.0,3835.0(  is chosen according to the 

condition given by Theorem 1. It can be shown that the maximum tracking error corresponding to the closed-loop system is 

indeed quite acceptable (namely, sem025.0m  015.0error  ). Figure 7a shows the x-axis cumulative control effort 

expensed which is defined according to 






t

0

2
xixi d )(u)t(E



      ( 4,3,2,1i  ) 

Scenario B. Satellites #1, #2, and #3 are faulty and the fault in satellite #2 is only partially recovered by the LLFR module 

In this case, the HL supervisor activates the LLFR module which performs cooperative fault estimation according to our 

proposed hybrid and switching framework for the three faulty satellites  #1, #2, and #3 (from the 4-satellite formation shown in 

Figure 2) based on the reconfiguration strategy that is introduced in Propositions 1 and 2 and illustrated in Figure 3. For each 

local Kalman filter estimator, we assume that the model disturbance (
ijxW ) and the sensor noise (

ijxV ) are zero-mean white 

Gaussian random processes with covariance matrices nn
5 I10Q 
  and mm

4 I10R 
 , respectively, where I  denotes an 

identity matrix and m  and n  are the dimensions of the system state and the output vectors, respectively. 

In the time interval (sec)100]   0[12  , the LLFR module successfully performs the estimation task in mode #0 of the hybrid 

and switching framework. Note that the notion of modes #0, #1, #2, and #3 are defined for the three faulty satellites #1, #2, and 

#3 (from the 4-satellite formation shown in Figure 2) in Section III, and they are applicable to our case study in this section. 

Subsequently, at time (sec)  100t 2  , satellite #2 is exposed to additional permanent unknown disturbances and unmodeled 

dynamics )t(g
2x  that affect the estimation performance. This uncertainty has arisen due to an unexpected communication delay 

that has occurred while satellite #2 is sending its control signal )t(u
2x  to the other satellites. In the simulations conducted this 
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uncertainty is represented by )t(u)t(u)t(g
222 xxx   , where (sec)  1.0 . In order to constrain the adverse effects of 

)t(g
2x  on the local estimators and to prevent its effects on the estimates of all the states and parameters throughout the 

formation, at time 2  the HL module (through a hybrid and switching framework) makes a decision to switch from mode #0 to 

#1 as described in more detail next. 

We consider the following sequential simulation steps: 

1. At time (sec) 01   the estimation process is initiated in mode #0 (as per the configuration that is shown in Figure 3a), 

and the estimate for the fault signal in satellite #2 is shown in Figure 8. Similar results for the estimate of the fault 

signals in satellites #1 and #3 are obtained (not shown). The estimation performance corresponding to this mode is 

similar to that of a CKF but due to space limitations the simulation results are omitted. 

2. In the time interval (sec)100]   0[12  , no uncertainties are present in the formation ( 0)t(g
ix  , 3,...,1i  ). This 

situation can be detected by monitoring the residual signals as shown in Figure 9. It can be concluded that the condition 

)m( 0 
12xR{  

13xR }0R
23x   corresponding to mode #0 is satisfied. 

3. At time (sec)  1002  , the uncertainty )t(g
2x  )t(u)t(u

22 xx  , as described earlier, is injected to the formation 

system. This event is detected by monitoring the residual signals that are shown in Figure 9 during the time interval 

(sec)200]   100[23  . It can be concluded that the condition )m( 1 ,0R{
12x  ,0R

23x   }0R
13x   to switch to 

mode #2 is satisfied.  

4. At time (sec) 1002   the estimation process switches to the mode #2 (as per configuration shown in Figure 3b), and 

the estimates for the fault signals are now obtained as shown in Figures 10 and 11. The results for the satellite #3 are 

very similar to those of satellite #1 and are therefore not shown. 

 

In order to demonstrate the significance and effectiveness of our proposed switching framework from mode #0 to mode #2 at 

time 2 , both the time intervals 12  and 23  are depicted in Figures 7-11. One can compare the 23 -interval estimation 

performance of mode #0 in Figure 8 with that of mode #2 in Figure 11. The results of this comparison are summarized in Table 

2. In this table the means and variances of the fault signal estimation errors are indicated for the modes #0 and #1. It can be 

clearly observed that by using our proposed reconfigurable distributed estimation scheme, the LLFR module has successfully 

made the right decision to switch from mode #0 to mode #2. 

The fault estimates are ultimately used in the semi-decentralized LLFR module controllers as given by equation (14), where 

the parameter vectors   and   are taken to be the same as those obtained in part (A). Figure 7b shows the x-axis cumulative 

control efforts of the LLFR module controllers. Since the fault estimate in satellite #2 is biased, the maximum tracking error that 

is obtained in satellite #2 is unacceptable (in other words, sem025.0m  034.0error  ), and hence the faulty satellite #2 is 

partially recovered by the LLFR module, although the satellites #1 and #3 are fully recovered by this module. Therefore, in the 

next part (C) the HL supervisor is invoked to activate the FLFR module for performing cooperative fault accommodation among 

the four satellites in support of the partially LL-recovered satellite #2.  

Scenario C. The partially LL-recovered satellite #2 is cooperatively accommodated by the FLFR module 

When the semi-decentralized controller that is given by equation (14) is selected, the FLFR module modifies the parameter 

vector   by using the results of Theorem 2 such that ||)(A|| T
2   is reduced from its initial value of 6124.0 , as selected in parts 
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(A) and (B). The analytical (as per equation (27)) and the simulation (experimental) values for ||)(A|| T
2   versus the maximum 

allowable tracking error se  are sketched in Figure 12. This figure shows that the tracking error is reduced by decreasing 

||)(A|| T
2   in the FLFR module. To achieve the mission tracking error specification of )m( 025.0es  , the experimental curve 

in Figure 12 shows that the maximum required value of ||)(A|| T
2   is 4593.0||)(A|| T

2  . On the other hand, based on 

analytical curves the maximum value of ||)(A|| T
2   is estimated to be 4712.0||)(A|| T

2   and 3603.0||)(A|| T
2   

corresponding to the violation probabilities of 25.0  and 00.0  (most conservative case), respectively. This result justifies 

the validity and effectiveness of our analytically estimated ||)(A|| T
2   when compared with the experimental result of the desired 

||)(A|| T
2  .  

Figure 7c and Figure 7d depict the x-axis cumulative control efforts for the values of 4712.0||)(A|| T
2   (for 25.0 ) and 

3603.0||)(A|| T
2   (for 00.0 ), respectively. Comparing the Figures 7c and 7d with the Figure 7b, one can conclude that the 

more ||)(A|| T
2   is decreased by the FLFR module, the less satellite #2 will use its control effort, and the more other satellites 

will allocate their control efforts to compensate for the deficiency of the satellite #2. This is an interesting interpretation of the 

FLFR module acting in support of the partially LL-recovered satellite #2. 

 

Table 2. Comparison between the estimation performance of the reconfigurable distributed Kalman filter (RDKF) in mode #0 with mode #2 in the time interval 

(sec)200]   100[23  . 

 Mean Estimation Error Estimation Error Variance 

 
1xf  

2xf  
3xf  

1xf  
2xf  

3xf  

Mode #0 0.0363

 

0.0297

 

0.0311

 

-4101.9

 

4101.1 

 

4101.2 

 

Mode #2 0004.0

 

0.0160

 

0003.0

 

7103.1 

 

4102.5 

 

7107.1 

 

VII. CONCLUSION 

In this paper, a solution to the cooperative actuator fault estimation and accommodation in satellite formation flying was 

proposed and developed by introducing and considering a new hierarchical multi-level architecture. Two fault-recovery modules 

are designed, namely a low-level fault recovery (LLFR) and a formation-level fault recovery (FLFR). The LLFR module utilizes 

a hybrid and switching framework to cooperatively estimate the fault severities, and subsequently, utilizes these estimates in a 

conventional recovery controller. However, due to the inexact and biased estimate of the fault, the high level (HL) supervisor 

then detects the violations of the overall mission specifications, so that the FLFR module is activated. At the formation level, the 

partially LL-recovered faulty satellite is further accommodated by the entire formation, at the expense of the other healthy 

satellites allocating more control efforts to compensate for the deficiencies in the faulty satellite. The simulation results presented 

demonstrate that our proposed reconfigurable distributed Kalman filters (RDKF) for the hybrid and switching estimation 

framework could successfully limit and constrain the effects of unmodeled dynamics and uncertainties that are imposed on the 

local parameter estimators. This enables us to prevent the propagation of undesirable effects to the state estimators throughout 

the formation flight system. Moreover, as shown by simulations the FLFR module accommodates the faulty and partially LL-

recovered satellites and ensures further improvements to the overall mission performance. 
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                                 (a)                                                         (b)                                                           (c)                                                          (d) 

Figure 7. The x-axis cumulative control effort for the scenarios where (a) all the satellites are fault free, (b) the faulty satellite #2 is partially LL-recovered with 

0.6124||A|| T
2  , (c) the faulty satellite #2 invokes the HLFR module with 0.4712||A|| T

2  , and (d) the faulty satellite #2 invokes the HLFR module with 

0.3603||A|| T
2  . 

 

Figure 8. The actual, the estimated, and the estimation error of the fault in satellite #2 by using the reconfigurable distributed Kalman filter (RDKF) in mode #0 

(unconditional filters during the entire time interval). 

 

Figure 9. The residual signals corresponding to the three detection filters that are used by the LLFR module to determine the switching form mode #0 to mode #2 

at time (sec) 1002  , which are used to detect the unmodeled dynamics and disturbances of 3 faulty satellites #1, #2, and #3 (of the 4-satellite formation in 

Figure 2). 
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Figure 10. The actual, the estimated, and the estimation error of the fault in satellite #1 by using the reconfigurable distributed Kalman filter (RDKF) in mode #2. 

 

Figure 11. The actual, the estimated, and the estimation error of the fault in satellite #2 by using the reconfigurable distributed Kalman filter (RDKF) in mode #2 

(unconditional filters during the entire time interval). 

 

Figure 12. The analytical and simulation (experimental) values of ||)(A|| T
2   versus the maximum allowable tracking error 

se  subject to different violation 

probabilities  . 
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