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Extended object tracking using a radar resolution
model

Lars Hammarstrand, Fredrik Sandblom, Lennart Svensson Senior Member, IEEE, and Joakim Sörstedt

Abstract—This paper concerns the problem of vehicle tracking
when multiple radar reflection centers could be resolved on
each vehicle. For this extended target tracking problem we
propose a radar sensor model, capable of describing such
measurements, incorporating sensor resolution. Furthermore,
we introduce approximations to handle the inherently complex
data association problem. The evaluation in terms of describing
measured data and resulting tracking performance shows that
the model effectively exploits the information in multiple vehicle
detections.

Index Terms—Radar, Sensor model, Extended targets, Track-
ing, Sensor resolution.

I. INTRODUCTION

ADVANCED automotive active safety systems often use
sensors, such as radar and camera, to gather observations

on the traffic environment around the vehicle. Through a
tracking framework, these observations are refined to estimates
of, e.g., position of other vehicles, pedestrians and the road.
Based on the estimates, dangerous situations can be detected
and decisions of appropriate actions are taken. For example,
the system may warn the driver of an impending collision
or intervene by braking or steering in order to avoid the
collision or mitigate its consequences. For the active safety
system to be able to make effective decisions, it is of great
importance that the provided estimates meet the requirements
in terms of accuracy and detail. To achieve this with a cost
efficient system, the tracking framework needs to have an
accurate description of the statistical properties of the sensor
observations [2].

Many of the active safety systems on the market today
are solely or partly radar based. Except from being robust
against different weather conditions, the radar offers accurate
measurements of range and range rate to objects. Furthermore,
the radar has a long history of use in, e.g., airborne applica-
tions, and there exists a vast amount of literature on how to
design a tracking system based on radar observations, see [3],
[4] and the references therein. There are, however, important
differences between target tracking in airborne applications

This work was sponsored by the Swedish Intelligent Vehicle Safety Systems
(IVSS) program, and is a part of the SEnsor Fusion for Safety Systems (SEFS)
project.

This article is a substantially expanded version of [1] presented at the IEEE
symposium on Intelligent Vehicle Systems, Istanbul, Turkey, June 2007.

L. Hammarstrand and L. Svensson are with the Department
of Signals and Systems, Chalmers University of Technology,
Gothenburg, Sweden lars.hammarstrand@chalmers.se.,
lennart.svensson@chalmers.se.

F. Sandblom is with Volvo 3P, Gothenburg, Sweden
fredrik.sandblom.2@volvo.com.

J. Sörstedt is with Volvo Car Corporation, Gothenburg, Sweden
jsorsted@volvocars.com.

and vehicle tracking for active safety systems. In airborne
radar applications the aim is to track aircrafts at distances
of tens of kilometers, whereas in automotive active safety
systems the distances to the objects of interest are in the order
of tens of meters. At such short distances, the radar resolution
is typically finer than the physical extent of objects. Where, in
airborne radar applications, the targets behave as point sources
[3], [4], in automotive scenarios the radar is typically capable
of detecting multiple features (reflection centers) on the same
object. In the radar literature this type of target is referred to
as an extended or distributed object/target [5].

Receiving multiple detections from a vehicle offers a pos-
sibility to extract detailed information about the object. For
example, the spread of the individual detections gives infor-
mation regarding the physical extent of the object as well
as its orientation [2]. However, multiple measurements per
object also introduce some considerable difficulties compared
to the point source case. For one, the algorithms and models
developed using the point source assumption are no longer
valid. Additionally, an accurate sensor model is more complex
as the detections are spread over large parts of the object and
not accurately described as originating from a single point. The
sensor model also needs to consider the possibility that a target
can generate multiple detections in contrast to at most one in
the point source case. The uncertainty in the number of target
detections makes the data association problem more intricate.
The aim of this paper is to develop a computationally tractable
sensor model that accurately describes the radar detections
from this type of object (vehicles). The ultimate purpose being
to improve the tracking of vehicles for automotive active safety
systems.

Although the classical point source assumption does not
hold for extended objects, little attention has been given to
find a more suitable tracking formulation. A good overview of
different contributions up to 2004 can be found in [6], covering
extended object tracking and the closely related problem of
tracking groups of targets. More recent suggestions include,
[7], [8] where a formal Bayesian tracking framework is
proposed for estimating the centroid of the extended targets (or
target groups). The object extension is modelled as an ellipse
and it is assumed that multiple measurements can originate
from each object. The elliptical shape of each object is de-
scribed using a positive definite random matrix. By including
these matrices in the state vector, both the target centroid and
object extension are jointly estimated from data. Although
the proposed approach shows promising results which are
robust against object shape, it is difficult to exploit object
specific shape information using this framework, when such
information is available. Gilholm et. al. [9] propose a particle
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filter solution where the detections from the extended object
are modelled by a non-homogenous Poisson point process with
a known but arbitrary spatial intensity. Using this description,
it is possible to include information about the shape of the
objects, but due to the limited flexibility of the Poisson
distribution, it is often impossible to incorporate specific
knowledge regarding expected number of target returns. The
probabilistic multi-hypothesis tracker (PMHT) [10] relaxes
the point source criterion by modeling the measurement to
target associations as stochastic and independent, and has been
applied to extended object tracking in, e.g., [11]. Although
the PMHT does not directly provide covariance estimates, the
method is useful if the number of detections originating from
each target cannot be accurately modeled.

For the problem of tracking vehicles using radar obser-
vations, there are reasons to believe that both the spatial
distribution and the number of detections from a vehicle
can be accurately modelled. For example, the study in [12]
indicates that radar return from vehicles mainly originate
from a number of specifically strong reflection centers (point
sources), such as the headlamps and the wheel housings, see
Fig. 3. Furthermore, if reflection centers are located within a
resolution cell, the echoes from these reflectors are merged
into a single joint detection (cluster detection). In [13]–[16], a
model that captures the general behavior of a detection from
a cluster including two sources/targets is used in conjunction
with a description of the probability that the two targets
are unresolved. Using this probabilistic description, the data
association hypotheses and measurement model are expanded
to also consider a merged detection from the two targets.
A similar approach is proposed in [17], using a Gaussian
approximation of the two-source cluster detection density
originally derived in [18]. Although the solutions referred to
here consider the influence of merged measurements, they
are limited to handle only two sources, and the result is not
easily expanded to the more general case of merging multiple
sources.

Inspired by the findings in [12], we propose a radar sensor
model describing the spatial distribution of vehicle detections
as well as a probabilistic description over the number of vehi-
cle detections. The proposed model also considers the effects
of merging a general number of target reflections (limited
resolution). As such, we are able to both incorporate shape
information and expected number of vehicle detections, as well
as describe the statistical behavior of the measurements. More
specifically, the model family describes the radar reflections
from a vehicle as originating from a set of reflection centers
and, depending on the resolution of the sensor, reflectors likely
to render a merged detection are grouped. The number of de-
tections from each group is modelled as well as the distribution
of the resulting detections. By associating measurements to
reflector groups, instead of individual reflectors or reflector
clusters, the number of association hypotheses is significantly
reduced.

Furthermore, we derive a vehicle tracking framework based
on our proposed sensor model. The framework is based on
a linear minimum mean square error (LMMSE) estimator
where the needed densities are estimated using the unscented

transform (UT) [19]. A generalized version of the joint prob-
abilistic data association (JPDA) technique [3], [20] is used to
handle data association uncertainties. The proposed model is
compared to the commonly used point source model in two
aspects: model likelihood and tracking performance. The eval-
uation clearly indicates that the proposed model has significant
benefits in both aspects.

The paper is organized as follows. In Section II the tracking
problem is formalized and the necessary notation is introduced.
Section III presents the radar sensor model, and in Section IV
we show how this model can be used in a tracking framework.
Finally, Section V presents evaluation results of our proposed
sensor model and the derived tracking framework.

II. PROBLEM FORMULATION

This article studies the problem of tracking vehicles with
known physical dimensions, using multiple radars mounted
on the host vehicle. The objective is twofold. First, to derive
a family of detailed statistical models describing the radar
returns from the vehicles. Second, to develop a vehicle track-
ing framework based on this model with the ultimate aim to
improve the estimates of, i.e., the position and the velocity of
the vehicles.

This section is partitioned as follows. The state parameters
to be estimated are defined in Section II-A together with a
model of how they evolve over time. Section II-B describes
the necessary background properties of the radar observations,
and Section II-C discusses in more detail the needed properties
of the radar sensor model and the tracking framework for our
specific problem.

A. State parametrization

All the parameters of interest are collected in the discrete
time state vector zk, where k is the discrete time index
corresponding to continues time instance tk. The state vector
contains both the states of the surrounding vehicles and the
host vehicle. Each vehicle, l, is described by the sub-state
vector

zlk =
[
ζlx,k ζ

l
y,k ψ

l
k v

l
k c

l
k v̇

l
k

]T
, (1)

where (ζlx,k, ζ
l
y,k) is the position of vehicle l expressed in a

global Cartesian coordinate system. As illustrated in Fig. 1,
Ψl
k is the heading angle and vlk is the speed in the heading

direction of vehicle l and v̇lk is its time derivative. The variable
clk represents the curvature of the current path of the lth

vehicle. The state vectors of all vehicles are stacked to form
the complete state vector

zk =

[(
zhk
)T (

z1k
)T (

z2k
)T

. . .
(
zNvk

)T]T
, (2)

where zhk is the host vehicle state and Nv is the number of
surrounding vehicles.

The state vector evolves over time as stipulated by the
motion model,

zk = fk−1 (zk−1, ek−1) , (3)
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Figure 1. Coordinate system and state parametrization used in this paper.

where fk−1(·) is a non-linear function and ek is a noise
process included to reflect both model uncertainties and the
dynamics of the vehicles. Assuming that the vehicles move
independently, we can consider the motion of each vehicle
separately. To describe the motion of a vehicle we use a
slightly modified version of the simplified bicycle model
derived in [1], where the difference lies in the use of curvature
instead of yaw-rate, ψ̇k = vkck.

B. Radar observations

For each discrete time k a radar provides Mk detections,
where M t

k detections originate from the tracked vehicles and
M c
k are clutter detections. All detections are stored in the

unordered (unlabeled) measurement vector,

yk =

[(
y1
k

)T (
y2
k

)T
. . .

(
yMk

k

)T]T
. (4)

Each detection is defined as

yik =
[
rik ṙ

i
k φ

i
k

]T
, (5)

where rik is related to the range, ṙik to the range rate, and φik to
the angle to the object that gave rise to the detection relative
to the sensor.

Let us define an ordered collection of the detections origi-
nating from the tracked vehicles as ytk and a collection of those
originating from clutter as yck. These vectors are related to
the measurement vector, yk, through an unknown permutation
matrix, ΠMk

p , with dimension [MkxMk],

yk =
(
ΠMk
p ⊗ I3x3

)[ yck
ytk

]
. (6)

where ⊗ is the Kronecker product and I3x3 is a three-by-
three identity matrix. The purpose of ΠMk

p is to describe
mathematically that the measurement origin (data association)
is unknown. In our model, all permutation matrices ΠMk

p are
equally likely, which means that the order of the detections
in yk is completely unknown (random). The treatment of this
uncertainty is an important part in the derivation of the tracking
framework and is further detailed in Section IV. However, let
us first define yck and ytk in more detail.

1) Clutter detections: It is commonly assumed, see e.g. [3],
that yck is described by a homogenous Poisson process in the
observation space according to

yck,i ∼ Uniform(V ), M c
k ∼ Poisson(µV ), (7)

where yck,i is the ith clutter measurement, µ is the clutter
intensity and V is the volume of the observation space. In
addition, we assume that the clutter detections are independent
from each other and the target detections.

2) Target detections: Given zk, we assume it is possible to
partition the visible reflections centers into Ng

k well separated
groups, where each group can render multiple detections.
Furthermore, we assume that the number of target detections
for group n, M t

k,n, has a probability mass function

Pr
{
M t
k,n

∣∣ zk
}
. (8)

that we can model. Conditioned on M t
k,n, the detections from

group n can be described using a sensor model

ytk,n = hnk
(
zk,wk,M

t
k,n

)
, (9)

where wk is a measurement noise process capturing both
model uncertainties and measurement disturbances. From (9)
we can generate

ytk =

[(
ytk,1

)T (
ytk,2

)T
. . .

(
ytk,Ngk

)T]T
, (10)

and the total number of target detections is given by

M t
k =

Ngk∑
n=1

M t
k,n. (11)

C. Objectives

The main objective of this paper is to improve tracking
performance by accurately modeling the radar response from
the vehicles. To accomplish this, we need to derive an accurate
model of the radar detections which is also suitable to be
used in a tracking framework. In this section we discuss the
objectives of the radar sensor model and the vehicle tracking
framework separately.
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1) Sensor model: The aim of the sensor model is to
describe the statistical behavior of the measurements, given
zk. The behavior of the clutter detections is readily given
by (7), but modelling the target detections (8) – (9) is more
complicated. It is crucial that these models capture the be-
havior of the vehicle detections from different aspect angles
and at all ranges [21]. A vehicle radar response model, i.e.,
expressions for (8) – (9), that considers these aspects is derived
in Section III.

2) Tracking framework: Assuming that the number of
vehicles is known, the objective of the tracking filter is to
recursively calculate the posterior probability density function
(pdf) p

(
zk
∣∣Yk

)
, where Yk , {y1,y2, . . . ,yk} contains

all the available observations up to and including time k.
From p

(
zk
∣∣Yk

)
, it is then possible to compute estimates and

uncertainty measures of zk. The calculation of p
(
zk
∣∣Yk

)
is

feasible if we have knowledge regarding two specific models
[3], namely the motion model, defined in (3) and the sensor
model, defined by (7) - (9).

To arrive at a computationally tractable solution, we restrict
our tracking filter to an LMMSE estimator of zk. As such, only
the first two moments of p

(
zk
∣∣Yk

)
need to be calculated, i.e.,

ẑk|k = E
{
zk
∣∣Yk

}
, P̂k|k = Cov

{
zk
∣∣Yk

}
. (12)

However, due to non-linearities in both the process and mea-
surement model it is difficult to find an exact solution to
(12). Instead, filters which approximate these moments are
commonly used, e.g., the extended Kalman filter (EKF) [22]
or the unscented Kalman filter (UKF) [19]. The latter is derived
for the proposed sensor model in Section IV, treating the
uncertainty in measurement origin (data association) modelled
by the unknown permutation matrix ΠMk

p .

III. RADAR SENSOR MODEL

Our proposed sensor model is based on the findings pre-
sented in [12], where the radar response from vehicles is
modeled as originating from reflection centers (features) on
the vehicles more likely to reflect the incident radar wave.
Due to limitations in radar signal bandwidth, pulse duration
and antenna aperture size, radar sensors are not capable of
resolving reflection centers that are too closely spaced. As
such, not all of these reflectors are always resolvable and the
response from some might merge to form a joint detection. In
[12], a mapping is proposed for how to transform the vehicle
states to a set of reflector positions in observation space.
Additionally, a scheme is described for how to form clusters of
those reflection centers that are unresolvable and how to model
detections from these clusters. As this model was developed
for simulation purposes, rather than for use in a tracking
system, it neglects important probabilistic descriptions needed
in the tracking context. For example, the model requires the
received signal strength of each individual reflection center to
be known. Moreover, conditioned on the signal strength and
zk, both which reflectors are clustered and the positions of the
resulting clusters are deterministic. In the tracking context, it
is not realistic that the signal strength is known a-priori and
consequently, we do not know which reflectors are clustered
or the position of the resulting detections from the vehicle.

In this section, we derive a radar sensor model using a
stochastic description of the received signal amplitude from
each reflector center, arriving at a model more suitable in a
tracking framework. The derivation is conducted in four steps
which are shown in Fig. 2 and summarized as follows. First,
based on the model in [12], the positions of the reflection
centers of the vehicles in zk are mapped to the observation
space. Second, we form all possible clusters of reflection cen-
ters which may generate merged detections. Due to uncertainty
regarding which reflectors are resolved and which are not,
the resulting probability density of reflector cluster could be
highly multi-modal. Third, to alleviate this multi-modality,
we group reflectors which may belong to the same cluster,
and approximate the cluster density by marginalizing over all
cluster possibilities. The result is a description of reflector
groups capable of generating multiple measurements. Finally,
depending on the probability of detecting the possible clusters
in each group, we find an expression for (8). Assuming that
the measurement noise is additive and Gaussian, we now write
(9) on the form

ytk,n = Gn
(
zk,M

t
k,n

)
+ wk, wk ∼ N

(
0,W

Mt
k,n

k

)
(13)

where

W
Mt
k,n

k = IMt
k,nxMt

k,n
⊗Wk. (14)

The function Gn(·) maps zk to the target measurement vector
for group n, given knowledge regarding the number of mea-
surements generated by the group, M t

k,n. Note that although
we condition on zk and the number of detections from the
group, Gn(zk,M

t
k,n) is still stochastic due to uncertainty in

which reflectors that are clustered (we call this clustering
uncertainty).

The following sections present the derivation of the distri-
bution of Gn(zk,M

t
k,n) and M t

k,n using the steps described
above. To simplify notation, the time dependence is omitted
and all stochastic variables are conditioned on zk, even though
it is not explicitly stated.

A. Reflection center model

According to the model in [12], the studied radar only
receives reflections from a discrete set of points on a vehicle,
so called reflection centers. The different reflection centers
are divided into two categories: point reflectors and plane
reflectors. Fig. 3 displays the configuration of point reflectors
suggested in [12], where the reflectors are placed in the vehicle
wheel houses and corners. Associated with each reflector is a
visibility region, indicated by cones in Fig. 3; a reflector can
only render a reflection if the sensor is within this region.
The plane reflectors are modelled as circle sectors typically
describing the sides of the vehicle. Furthermore, it is assumed
that the radar only can receive a reflection from these plane
reflector if there is a point on the surface which normal points
directly towards the sensor. The reflecting point on a surface
therefore depends on the position of the sensor, and may
change over time as the vehicle moves relative to the sensor
platform.
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Figure 2. Schematic view of the measurement generation process in our proposed radar sensor model. The notation used in the figure is introduced in
subsequent sections.

Figure 3. Vehicle reflection centers with associated visibility regions.

Given the vehicles’ positions and physical dimensions, each
reflector i has a deterministic position in observation space,
denoted ri = [ri, ṙi, φi]

T and expected signal power σi,
expressed as [

(ri)
T σi

]T
= Ri(z), (15)

where the mapping R is defined in Appendix A. Although
the physical dimensions of the observed objects are assumed
known in this paper, in a sensor data fusion system, infor-
mation regarding object extent could be provided by, e.g., a
vision sensor and/or vehicle-to-vehicle communication.

In addition to the position of the reflector in observation
space, it is also important to model the signal amplitude, Ai,
of the received reflection. This is an important model feature as
the probability of detecting a reflector depends on the strength
of the received echo, and the position of a merged detection
depends on the relative amplitude of the included echoes. The
amplitude model used in [12] is a deterministic function of
the radar antenna pattern as well as the position and visibility
of the reflectors. We instead propose to use a Swerling I
model [23] for the amplitude of the reflected signal, where
the reflection amplitudes are modeled as fluctuating according
to the Rayleigh distribution,

Ai ∼ Rayleigh(σi). (16)

As is shown in the coming section, using a stochastic ampli-
tude model instead of a deterministic enables us to describe
uncertainty regarding number of vehicle detections as well as
their positions.

B. Cluster model

In Section III-A we presented a model for the vehicle
response from a radar with infinite resolution through the
mapping z

R−→ r. However, a sensor with limited resolution
cannot resolve too closely spaced reflectors. To model this
behavior, a resolution cell is used

∆d = [∆r ∆ṙ ∆φ]
T (17)

and two radar responses which are not separated more than
∆d, in all three dimensions, yield a merged detection. Un-
fortunately, the situation is more complicated for multiple
reflectors, as unresolved clusters can be formed in several
ways.

1) Cluster formation: In [12], the following algorithm is
used to map reflectors into clusters, an operation here denotes
as r

C−→ ccc:

i) Find the reflector with the strongest amplitude, Ai.
ii) Form a cluster by identifying the reflectors which are

within the resolution cell (centered at ri).
iii) Repeat i) and ii) with the remaining reflectors, until no

reflectors are left.

The clustering algorithm above, can be used to divide the
set of all visible reflectors into clusters and we refer to a
description of all resulting clusters as a cluster constellation.
However, it is important to note that since the amplitudes
of the reflections are stochastic (in contrast to [12]), several
different cluster constellations may be possible, even for a
given z. For notation, we construct a list of all possible
constellations, and introduce the variable cc as a pointer to
the cluster constellations in that list. The total number of
constellations in the list is denoted N cc (and consequently
cc ∈ {1, 2, . . . , N cc}), and the number of reflector clusters
in constellation cc is Lcc. Fig. 4 illustrates these concepts
by showing three possible cluster constellations in a simple
example. Here, N cc = 3 with L1 = 1, L2 = 2 and L3 = 2 as
the first constellation clusters all reflectors and the other two
contains two clusters each.

Cluster i in constellation cc, containing J reflectors1 with
indices i1, . . . , iJ , can at most generate one detection which
in that case can be modelled as ycci = ccci + wcc

i where
wcc
i ∼ N (0,W). The signal component, ccci , is modelled

1The notation for the number of reflectors will change as we can get more
specific. In this section we use J to indicate the number of reflectors in a
generic cluster.
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Figure 4. Example of a vehicle with three reflectors (top) and three different cluster constellations (bottom). The dashed line corresponds to a reflector cluster.

as a weighted sum [12] of reflector components:

ccci =

J∑
l=1

wilril , (18)

where
wil =

Ail∑J
l=1Ail

. (19)

Although this is a rather simplified model of the underlying
physical phenomenon of merged measurements (such as target
glint) [5], [24], it serves the purposes for our radar sensor
model. Since the amplitudes are stochastic, so are the weights
(19) and the signal component of the cluster (18). As for the
reflector detections, the received amplitude of a cluster is also
Rayleigh distributed but with the parameter

σcci =

√√√√ J∑
l=1

σ2
il
. (20)

2) Cluster density: For a cluster, the distribution of its
position is defined by (16), (18) - (19), which is difficult to
evaluate. As the aim is to use the proposed sensor model in
a Kalman filter framework, it is convenient to approximate
p
(
ccci
∣∣ z) as a Gaussian density with the same first two

moments as the underlying distribution.
Let overscore denote the expected value of stochastic vari-

ables, such that, e.g., Āi = E {Ai}. Further, let ∆ril =
ril − c̄cci , ∆wil = wil − w̄il and set Si =

∑J
l=1Ail . The

first moment of ccci , as given by (18), is

c̄cci =

J∑
l=1

w̄ilril (21)

and after some manipulations an expression for the covariance
can be found as

Ccc
i =

J∑
s, t=1

∆ris (∆rit)
T
E {∆wis∆wit} . (22)

The position of each reflector, ril , is given by transformation
(15), but we also need to express w̄il and Cov {wis , wit}.
As the moments of a Rayleigh distribution are well known,

approximations of these quantities are readily found through
Taylor expansion,

wil =
Ail
Si
≈ Āil

S̄i
+
Ail
S̄i
− SiĀil

S̄2
i

. (23)

More details on the derivation of the mean and covariance
of ccci as well as the approximations used are found in
Appendix B.

To summarize, we propose a stochastic mapping of reflec-
tors into cluster constellations, r

C(·)−−→ {ccc}N
cc

cc=1, where
N cc is deterministic but both cc and ccc = [ccc1 , . . . , c

cc
Lcc ] are

stochastic. The density of each cluster in each constellation,
ccci , is approximated as a Gaussian density,

p
(
ccci
∣∣ cc, z) = N (ccci ; c̄cci ,C

cc
i ) , (24)

where c̄cci and Ccc
i are given by (21) and (22), respectively.

C. Group model
In multi-target scenarios, the total number of possible clus-

ters,
∑Ncc

cc=1 L
cc, can be significant. Hence, it could be difficult

to find a computationally feasible solution for associating
measurements to individual clusters. To mitigate this difficulty,
we suggest to form reflector groups containing reflectors that
are likely to get clustered, and describe the measurement
distribution by marginalizing over the cluster constellations.
Let a group be a set of reflectors, formed such that for every
reflector i in the group, all other reflectors belonging to one
or more clusters with reflector i are also included. As a
consequence, each reflector i in the group is positioned within
∆d to at least one other reflector in the group. The number of
groups, Ng , is then the total number of such partitions of the
reflectors. Fig. 5 displays a scenario where two groups, i.e.,
Ng = 2, are formed; one containing only one reflection center
in the rear wheel and the other composed of three reflection
centers in the front. A suboptimal, but simplified, solution
to the association problem is obtained by associating the
detections to the reflector groups. By ignoring which specific
cluster in a group that gave rise to a detection, the number of
hypotheses are reduced substantially.

Each group is viewed as an entity which can generate
multiple and independent detections. The number of detections
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g1

g2

Figure 5. The formation of two reflector groups (solid lines).

from group n is denoted by M t
n, and the signal components

(the positions) as g̃n =
[
(gn,1)

T
, . . . ,

(
gn,Mt

n

)T ]T
. Using

this notation, (13) can be written as

ytn = g̃n + w, (25)

As only reflectors within each group can form clusters with
each other, we can consider the cluster constellations for each
group independently. For group n we can generate N cc

n cluster
constellations, and we let cc in this case indicate one specific
constellation in this group and Lccn denote the number of
clusters in this cluster constellation. A new list of cluster
constellations is generated for each group and cc is used to
index one of the constellations. Further, let cccn,l denote the
signal component of the lthcluster in constellation cc for group
n, and P ccn (l) denote the detection probability of this cluster
- a probability easily computed from the Rayleigh assumption
in (16) and (20). If we assume that all possible cluster
constellations are equally likely, we can describe the pdf of
g̃n by approximating its components gn,i as independent and
identically distributed with the density2

p (gn,i) =
1

N cc
n

Nccn∑
cc=1

Lccn∑
l=1

qccn,lpcccn,l(gn,i), (26)

where the weights qccn,l are defined as

qccn,l =
P ccn (l)∑Lccn

m=1 P
cc
n (m)

. (27)

To further simplify the implementation of a tracking algorithm
based on this model we make a Gaussian approximation,
p (gn,i) ≈ N (gn,i; ḡn,i,Cn). Using the approximation in
(24), the expected value, ḡn = E {gn,i} is given by

ḡn =
1

N cc
n

Nccn∑
cc=1

Lccn∑
l=1

qccn,lc̄
cc
n,l (28)

and the second moment, Cn = E
{

(gn,i − ḡn)(gn,i − ḡn)T
}

by

Cn =

Nccn∑
cc=1

Lccn∑
l=1

qccn,l
N cc
n

(
Ccc
n,l +

(
ḡn − c̄ccn,l

) (
ḡn − c̄ccn,l

)T)
,

(29)

2In (26), the notation pccc
n,l

(gn,i) should be interpreted as the pdf of cccn,l
evaluated at gn,i.

where c̄ccn,l and Ccc
n,l is given by (21) and (22), respectively.

Additionally, to complete the description of the groups,
we need to calculate the probability mass function M t

n, the
number of detections originating from group n. By again
assuming that all cluster constellations are equally likely, we
have

Pr
{
M t
n

}
=

1

N cc
n

Nccn∑
cc=1

Pr
{
M t
n

∣∣ cc} , (30)

where Pr
{
M t
n

∣∣ cc} is easily calculated from P ccn (l).
In summary; we group closely spaced reflectors and use the

cluster description to calculate the expected signal component
each group, its covariance matrix and the probability mass
function for M t

n, the number of detections from group n.

D. Target measurement model

In Sections III-A, III-B and III-C we describe three map-
pings, R(·), C(·) and G(·), relating the position of the vehi-
cles to the measurement distribution. The procedure can be
depicted as

z
R(·)−−−→ r

C(·)−−→ {ccc}N
cc

cc=1

G(·)−−→ gn,M
t
n,

where the first two mappings are deterministic whereas the last
two are stochastic due to uncertainty in the resolution capabil-
ities of the sensor. The transformation z

R(·)−−−→ r describes the
signal components of strong (vehicle related) radar reflectors
in observation space. By modelling the resolution capability
of the sensor, C(·), we form a set of cluster constellations,
{ccc}N

cc

cc=1. To reduce the complexity of the data association
problem, we form groups of reflectors that belong to the
same cluster constellations, G(·). The groups are described
by their spatial density, p (gn) ≈ N (gn; ḡn,Cn), and the
probability mass function Pr {M t

n}, describing the number of
target detections from each group. The result is a description
of target measurements originating from groups of reflectors,
where each group n generates M t

n independent and identically
distributed measurements. The ith detection from group n,

ytn,i ∼ N (ḡn,Cn + W), (31)

is an independent of all other detections (conditioned on z).
The complete target measurement vector yt can be gener-
ated by drawing the number of target detections from the
group, M t

n, according to (30), for each group n = 1 . . . Ng .
Subsequently, construct ytn by generating M t

n independent
realizations of ytn,i conforming to (31). The complete target
measurement vector is formed by concatenating all group
measurements as defined in (10). This concludes the derivation
of our sensor model.

IV. TRACKING FRAMEWORK

In this section we present a tracking framework for re-
cursively calculating the posterior density, p

(
zk
∣∣Yk

)
, using

the proposed sensor model derived in Section III. To handle
uncertainty in the number of target and clutter detections
as well as the random permutation matrix, ΠMk

p , in the
calculation of p

(
zk
∣∣Yk

)
, it is convenient to introduce a data
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association hypothesis vector, λ. The purpose of this vector
is to associate detection number j in yk to a certain group,
n. Consequently, λ(j) = n, if measurement j originates from
group n and, λ(j) = 0, if it is to be regarded as clutter. Using
this description, the sensor model can be written as

p
(
yjk
∣∣λ, zk) =

{
N
(
yjk; ḡλ(j),Cλ(j) + Wk

)
if λ(j) 6= 0(

1
V

)
if λ(j) = 0.

(32)

This formulation makes it possible to associate measurements
to group n according to the support of Pr

{
M t
n

∣∣ z}. That is,
each group can generate multiple detections, each carrying in-
formation regarding the state of the vehicle. This distinguishes
our sensor model from the classical point source model.

By considering all possible data association hypothesis, the
posterior density can be formed as

p
(
zk
∣∣Yk

)
=
∑
λ

p
(
zk
∣∣λ,Yk

)
Pr
{
λ
∣∣Yk

}
, (33)

where p
(
zk
∣∣λ,Yk

)
is the posterior density without data

association uncertainty and Pr
{
λ
∣∣Yk

}
is the probability of

that association. Due to, e.g., non-linearities in (15) and the
dimensionality of the data association problem, it is difficult
to find an exact solution to (33). Instead, we resort to an
approximate solution.

In the literature it is possible to find several possible
approaches, such as particle filters [25], Multiple Hypothe-
sis Tracking (MHT) filters [26] or the Probabilistic Multiple
Hypothesis Tracker (PMHT) [10] to handle or simplify these
types of problems. To make the implementation suitable for
real-time applications with limited capacity to batch mea-
surements, we propose a Kalman-like filter framework [27]
employing a generalized version of the Joint Probabilistic
Data Association (JPDA) algorithm [20]. The generalization
of the JPDA algorithm for this problem consists in allowing
multiple measurements to originate from the same group, in
contrast to at most one in the original JPDA formulation. The
conditional posterior density, p

(
zk
∣∣λ,Yk

)
, can be calculated

for each λ, and we approximate this distribution by a Gaussian
density with mean ẑλk|k and covariance Pλ

k|k. Estimates of ẑλk|k
and Pλ

k|k are found using the UT [19] through

ẑλk|k = ẑk|k−1 + Pλ
zy

(
Pλ

yy

)−1 (
yλ
k − ŷλ

k|k−1

)
(34)

Pλ
k|k = Pk|k−1 −Pλ

zy

(
Pλ

yy

)−1 (
Pλ

zy

)T
, (35)

where ẑk|k−1 and Pk|k−1 are estimates of the mean and co-
variance of zk

∣∣Yk−1, respectively. The covariance, Pλ
yy, is the

innovation covariance under the data association hypothesis
λ and, Pλ

zy is the corresponding cross covariance between
the state and the measurements. In accordance with the JPDA
idea, the resulting Gaussian mixture (33) is also approximated
as a single Gaussian where the contribution from the indi-
vidual densities are weighted by their hypothesis probability,
Pr
{
λ
∣∣Yk

}
. Given a Gaussian prior density, p

(
zk−1

∣∣Yk−1
)
,

the proposed approach is briefly outlined below.
1) State prediction: Estimate ẑk|k−1 and Pk|k−1 by propa-

gating zk−1
∣∣Yk−1 through the motion model (3) using

the unscented transform.

2) Measurement prediction: Transform zk
∣∣Yk−1 to the

observation space, using the series of mappings derived
in Section III and the unscented transform to retain an
approximation of the predicted group measurement

ŷtk,n = ĝn = E
{
gn
∣∣Yk−1

}
, (36)

as well as the predicted group covariances

Pn
gg = Cov

{
gn,i,gn,i

∣∣Yk−1
}
, (37)

Pnm
gg = Cov

{
gn,i,gm,j

∣∣Yk−1
}
, (38)

where i 6= j if n = m. The innovation covariance,
Pλ

yy, is given by (37) – (38) and the measurement noise
covariance, Wk.

3) Data association: Use ĝn and Pn
yy = Pn

gg + Wk to
perform measurement gating. Then generate the set of all
possible measurement to group association hypotheses
and calculate their probabilities Pr

{
λ
∣∣Yk

}
.

4) Measurement update: For all λ, form the needed entities
in (34) - (35) and approximate p

(
zk
∣∣λ,Yk

)
. Finally,

p
(
zk
∣∣Yk

)
, is found by marginalizing the data associa-

tion hypotheses, see (33).
A detailed description of the different steps is given in the
following sections.

A. State prediction

The state prediction is performed by calculating a Gaussian
approximation of the predicted density

p
(
zk
∣∣Yk−1

)
=

∫
p
(
zk
∣∣ zk−1) p (zk−1∣∣Yk−1

)
dzk−1.

(39)

This approximation is found by propagating p
(
zk−1

∣∣Yk−1
)

through (3) using the unscented transform [19] as

p
(
zk
∣∣Yk−1

)
≈ N

(
zk; ẑk|k−1,Pk|k−1

)
. (40)

Assuming the vehicles move independently, the unscented
transform can be performed for each vehicle separately.

B. Measurement prediction

In Section III we derived a radar sensor model conditioned
on the state through a series of mappings. To form the
expressions (34) - (35) we need estimates of the first and the
second-order moments (36), (37) and (38). Again we use the
unscented transform to find approximations of these moments.
However, for our proposed group measurement model, the
approximation is not as straightforward as for the motion
model. As such, it requires some additional discussion.

Using the unscented transform described in [19], we choose
2nz + 1 deterministic sigma points with associated weights,
where nz is the dimensionality of zk. The sigma points and
their weights are chosen such that they capture the first two
moments of (40) exactly. Let us denote the set of sigma points
with associated weights as,{

Zik, u
i
k

}2nz+1

i=1
. (41)
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Although not required, we choose the weights such that
uik > 0, ∀ i = 1 . . . 2nz + 1. This is used to avoid
risks associated with using the unscented transform in high
dimensions, such as the risk of estimating non-positive definite
covariance matrices and a mean situated far away from each
propagated sigma point.

By propagating each sigma point through the mapping (15),
we receive the sigma point sets{

Ri
k, u

i
k

}2nz+1

i=1
,
{
Σi
k, u

i
k

}2nz+1

i=1
(42)

where Ri
k describe the reflector positions of the ithsigma

point in observation space and Σi
k their expected signal power.

From (42) we can form estimates of the first two moments of
rk
∣∣Yk−1 according to

r̂k|k−1 ≈
∑
i

uikR
i
k (43)

Prr ≈
∑
i

uik
(
Ri
k − r̂k|k−1

) (
Ri
k − r̂k|k−1

)T
(44)

where r̂k|k−1 is the estimate of the reflector position. The
covariance matrix, Prr, has the following structure

Prr =


P11

rr P12
rr . . . P1nr

rr

P21
rr P22

rr . . . P2nr
rr

...
...

. . .
...

Pnr1
rr . . . . . . Pnrnr

rr

 , (45)

where nr is the total number of reflectors on the vehicles in
zk. From Σk, the estimated expected signal power is similarly
attained as

σ̂k|k−1 ≈
∑
i

uikΣ
i
k, (46)

which is used in (30) to account for reflector visibility under
state uncertainty, primarily in target heading. In practice, we
only need to consider those reflectors which are visible, i.e.,
for which σ̂ik|k−1 > 0.

From (43), we determine which reflectors belong to the
same group. As only reflectors within each group are able to
form clusters with each other, we consider the cluster constel-
lations for each group independently. Following the algorithm
in Section III-C, we form all possible cluster constellations for
each group. Using the mapping (26) we can calculate two of
the sought moments, (36) and (37), as

ĝn =
1

N cc
n

Nccn∑
cc=1

Lccn∑
l=1

qccn,lĉ
cc
n,l (47)

Pn
gg =

Nccn∑
cc=1

Lccn∑
l=1

qccn,l
N cc
n

(
Pcc,n

clcl
+
(
ĝn − ĉccn,l

) (
ĝn − ĉccn,l

)T)
.

(48)

Note that the weights, qccn,l, are dependent on the estimated
expected amplitudes, σ̂k|k−1, through P ccn . Values for ĉccn,l
and Pcc,n

clcl
are found using the same approximations as in the

derivation of (21) - (22), detailed in Appendix B, and assuming

independence between wi and rk,i,

ĉccn,l = E
{
cccn,l
∣∣ cc,Yk−1

}
≈

Jccn,l∑
i=1

w̄li r̂
li
k|k−1 (49)

Pcc,n
clcl

= Cov
{
cccn,l
∣∣ cc,Yk−1

}
≈

Jccn,l∑
i,j=1

(
P
lilj
rr +

(
r̂lik|k−1 − ĉccn,l

)(
r̂
lj
k|k−1 − ĉccn,l

)T)
× E

{
wliwlj

}
, (50)

where, l1, . . . , lJccn,l are the indexes to the reflectors in the
cluster under consideration. Using (47), (48) we can form the
Gaussian approximation of the ithpredicted measurement from
group n as

p
(
ytk,n,i

∣∣Yk−1
)
≈ N (ytk,n,i; ĝn,P

n
gg + Wk). (51)

The additional sought covariance, Pnm
gg , assesses the co-

variance between two detections from the same group or
alternatively two detections from different groups. For the filter
to be able to perform the state update for all groups jointly, it is
important to accurately assess these correlations. Conditioned
on zk, it is assumed that these detections are uncorrelated.
Hence, the correlation only comes from uncertainty in zk and
we can approximate the group cross covariance as,

Pnm
gg =

Jccn∑
i

Jccm∑
j

w̄niw̄njP
nimj
rr , (52)

where {ni}J
cc
n
i=1 and {mi}J

cc
m
i=1 are the indices of all the reflectors

in each group, respectively. The weights, w̄ni and w̄ni , are
calculated using the assumption that all reflectors in each
group are clustered as, for example,

w̄ni = E

{
Ani∑Jccn
j Anj

}
. (53)

The cross covariance between detections from the same group
is simply found when n = m.

C. Data association

In difference to standard JPDA, the generalized version of
the JPDA algorithm proposed here considers the possibility that
a single track can generate multiple measurements. To avoid
unlikely data association hypotheses, we employ an ellipsoidal
gate [3] centered at the group mean using (51). From the gated
measurements and knowledge regarding the maximum number
of detections generated by group n (max M t

k,n), it is possible
to construct the set of all local hypotheses, i.e., the set of all
feasible associations between yk and group n. By combining
local hypotheses from all groups in an admissible fashion
(such that each detection in yk is associated to precisely one
group, or classified as clutter) we obtain a global hypothesis,
described by the vector λ. The hypothesis probability can be
expressed as

Pr
{
λ
∣∣Yk

}
∝ p

(
yk
∣∣λ,Yk−1

)
Pr
{
λ
∣∣Yk−1

}
. (54)
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The likelihood of the data association hypothesis is found
through the Gaussian approximation (51) and the clutter model
(7) as

p
(
yk
∣∣λ,Yk−1

)
= N

(
yλ
k , ŷ

λ
k|k−1,P

λ
yy

)( 1

V

)Mc
k

. (55)

where

ŷλ
k|k−1 =

[(
ĝλ(j1)

)T
,
(
ĝλ(j2)

)T
, . . . ,

(
ĝλ(jm)

)T ]T
(56)

yλ
k =

[(
y
λ(j1)
k

)T
,
(
y
λ(j2)
k

)T
, . . . ,

(
y
λ(jm)
k

)T]T
(57)

for {j1, . . . , jm} = {j : λ(j) 6= 0}, and similarly Pλ
yy is

constructed as

Pλ
yy =


P

λ(j1)
gg + Wk . . . P

λ(j1)λ(jm)
gg

...
. . .

...
P

λ(jm)λ(j1)
gg . . . P

λ(jm)
gg + Wk

 . (58)

The expected signal component of the group n, ĝn, used
in (56) is found in (47). Expressions for the covariance
components in (58) are found in (48) for the group covariance,
Pn

gg, and in (52) for the cross covariances between group n
and m, Pnm

gg .
The data association vector, λ, provides perfect knowledge

regarding the number of clutter detections, M c
k , and the

number of detections from group n, M t
k,n. Hence, the prior

probability for the association vector in (54) can be partitioned
as

Pr
{
λ
∣∣Yk−1

}
= Pr

{
λ,Mt

k,M
c
k

∣∣Yk−1
}

= Pr
{
λ
∣∣Mt

k,M
c
k

}
Pr {M c

k}Pr
{
Mt

k

∣∣Yk−1
}
,

(59)

where Mt
k =

[
M t
k,1 . . . M t

k,Ngk

]T
and Ng

k is number of
groups. As M c

k is assumed to be Poisson distributed, we have

Pr {M c
k} = (µV )M

c
kexp(−µV )/M c

k !. (60)

Furthermore, Pr
{
λ
∣∣Mt

k,M
c
k

}
is found using combinatorics,

Pr
{
λ
∣∣Mt

k,M
c
k

}
=

Mg
k∏

n=1

(
Mk −

∑n−1
m=1M

t
k,m

M t
k,n

)−1
. (61)

Finally, the probability of the total number of target detections,

Pr
{
Mt

k

∣∣Yk−1
}

=

Ngk∏
n=1

Pr
{
M t
k,n

∣∣Yk−1
}

(62)

where Pr
{
M t
k,n

∣∣Yk−1

}
is approximated using estimated

expected signal amplitude, σ̂k|k−1 in (30).

D. Measurement update

To perform the measurement update defined by (34) - (35),
we first need to construct the included entities. The predicted
mean and covariance are already given in Section IV-A and
ŷλ
k|k−1 and Pλ

yy are given by (56) and (58), respectively.
However, the cross covariance Pλ

zy needs to be estimated.

Using the sigma point sets in (41) and (42), Pzr =
Cov

{
zk, rk

∣∣Yk−1
}

can be estimated as

Pzr ≈
∑
i

uik
(
Zik − ẑk|k−1

) (
Ri
k − r̂k|k−1

)T
. (63)

From (63), Pλ
zy is calculated in three steps. First, approximat-

ing the relation between reflectors and clusters as in (21) we
find

Pcc,n
zcl

=

N∑
i

w̄liP
li
zr, (64)

where li lists all reflectors in cluster l in cluster constellation
cc. Using (64) and (28), it is easy to find

Pn
zg =

1

N cc
n

Nccn∑
cc=1

Lccn∑
l=1

qccn,lP
cc,n
zcl

, (65)

from which we can finally construct the sought cross covari-
ance, Pλ

zy, as

Pλ
zy =

[
Pλ(j1)

zg , . . . ,Pλ(jm)
zg

]
, (66)

for {j1, . . . , jm} = {j : λ(j) 6= 0}.
The posterior mean and covariance estimates under data

association hypothesis, λ, are found through inserting (56),
(66) and (58) into (34)-(35). The posterior density (33) is a
weighted sum of the posterior densities for all λ weighted
by (54). The mean and covariance of a Gaussian mixture
model are readily calculated though moment matching, see e.g.
[3]. This concludes the derivation of the filter framework for
estimating the position of vehicles using possible unresolved
radar detections.

V. EVALUATION

In this section we compare the proposed extended target
model, denoted M1, with that of a point source model
(basic model), M2, similar to those presently used in the
automotive industry. The evaluation is performed in two steps,
First, we compare the ability the models to explain radar
observations. Second, we compare the estimation error, eik =∥∥E
{
zik|Yk,Mn

}
− zik

∥∥
2
, of the tracking system derived in

Section IV with one based on M2. The evaluation is limited

to single target vehicle scenarios, i.e. zk =
[(

zhk
)T
,
(
z1k
)T ]T

.
For both evaluations, radar observations are collected from

three sensors, one long-range radar at 77 GHz (denoted s1)
and two medium-range radars at 24 GHz (denoted s2 and s3),
mounted on the host vehicle as illustrated in Fig. 6. Sensor s1
has an update rate of 10 Hz, a field of view of 16o and a detec-
tion range of approx. 150 m, whereas s2 and s3 cover a 150o

field of view up to approx. 70 m using 13 independent receive
beams, each delivering detections every 40ms. The resolution
cell for the two types of sensors are, ∆s1

d = [2m, .5m/s, 3.5o]
and ∆

s2,3
d = [2m, 6m/s, ∞], respectively, where ∆

s2,3
d is

used to describe the resolution in each of the receive beams of
s2 and s3. The corresponding measurement noise covariance
for a point target is specified as Ws1

k = diag
([
.4, 2, 1π

180

])2
and W

s2,3
k = diag

([
.4, .5, 1.2π

180

])2
. Target vehicle reference
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s2

s3

s1
t = 6.2 s

t = 5 s

t = 0 s

Figure 6. Host vehicle equipped with three radar sensors, one mechanically
scanned 77 Ghz long range radar, denoted s1, and two medium range 24 GHz
radars looking to the right and left, denoted s2 and s3, respectively. In the
evaluated tracking scenario the host vehicle is traveling at constant speed at
a straight path. The target vehicle drives at a crossing path stopping in front
of the host vehicle before making a left turn.

position, zik, and host vehicle position measurements are
acquired using accurate DGPS measurements. We proceed by
introducing the point source model, then explain the two
comparisons and their results respectively.

A. Point source model

To evaluate the tracking performance gained in terms of es-
timation error by considering the vehicles as extended objects,
we compare our tracking system with one based on a point
source model. To make the comparison as fair as possible, we
use the same state parametrization and both models exploit
knowledge regarding the physical dimension of the observed
vehicle. Given z1k the model compensates for offset errors
by positioning the expected target measurement, ŷ1

M2
, on the

intersection between the line of sight between the radar sensor
and

(
ζ1x,k, ζ

1
x,k

)
and the vehicle frame. Using this model we

design a probabilistic data association filter (PDAF) [28], where
only one measurement may originate from the target and the
presence of multiple measurements are modelled as clutter
described by a homogeneous Poisson process.

B. Sensor model comparison

The ability to explain a set of given observations can be
compared by evaluating the log-likelihood ratio

`(yk, zk) = log

(
p
(
yk
∣∣ zk,M1

)
p
(
yk
∣∣ zk,M2

)) (67)

where the model specific likelihood functions can be parti-
tioned as

p
(
yk
∣∣ zk,Mi

)
=

∑
λk∈ Lk

p
(
yk
∣∣λk, zk,Mi

)
P
{
λk
∣∣ zk,Mi

}
.

(68)

In the following sections, we present expressions for
p
(
yk
∣∣λk, zk,Mi

)
and P{λk

∣∣ zk,Mi} for the different mod-
els as well as the evaluation of (67) for radar measurements
from two types of radar sensors.

1) Likelihood function: The likelihood ratio test is com-
monly used to compare hypotheses, in this case which model is
more likely to have produced the radar measurements. The test
is reasonable if the number of tuning parameters are the same
for the compared models. For our proposed sensor model,
M1, (68) is given by (55) and (59), with the minor difference
that we do not have to integrate over zk. The corresponding
densities for M2 are obtained similarly as

p
(
yk
∣∣λk, zk,M2

)
=

{
N (yjk; ŷ1

M2
,Wk)( 1

V )M
c
k : M t

k = 1

( 1
V )M

c
k : M t

k = 0

Pr
{
λk
∣∣ zk,M2

}
=


PD
Mk

e−µV (µV )M
c
k

Mc
k !

: M t
k = 1

(1− PD) e
−µV (µV )M

c
k

Mc
k !

: M t
k = 0.

The probability of detection is modelled in the same way for
both models and the clutter intensity, µ, is estimated from data
using nonparametric PDA [29]. Note that the same parameters
are used for tuning both models, i.e., the measurement noise
covariance and the probability of detection. All other param-
eters are taken directly from the sensor specification.

2) Results: The log-likelihood ratio (67) is evaluated using
radar measurements from two sensors of different types, s1
and s2. The data is collected while the host vehicle drives
straight towards the target vehicle at an angle of 18o (offset
from the side of the vehicle) starting at a distance of 40m. A
scatter plot of the collected data is illustrated in Fig. 7a.

Figures 7b and 7c display (67) evaluated for measurements
delivered by sensor s1 and s2, respectively. Both figures show
a clear advantage in favour of our proposed model. This is
especially clear for sensor s1 which has higher resolution
than sensor s2 and where we often receive multiple detections
neatly concentrated to the front and rear wheel housings, see
Fig. 7a. For sensor s2, the detections are spread along the
side of the target vehicle (some even positioned outside the
vehicle frame). This behavior is also modelled in M1 but the
advantage is not as dominant as in the case of sensor s1.

C. Tracking filter comparison

The tracking filters based on M1 and M2 are evaluated
using data from s1, s2 and s3 in the scenario depicted in
Fig. 6. This particular scenario is chosen, both because it
is a relevant scenario for active safety systems addressing
intersection accidents [30] and because it is challenging for
a radar based tracking system.

In the evaluation, both filters are initiated in the reference
state, z10, provided by the DGPS system with initial covari-
ance P0 = diag([1, 1, 3π

180 , .5, .001, 1.5])2 and use the same
process noise parameters, σ2

v̈ = 9 and σ2
ċ = 1

70 . The filter
implementation for our proposed model is given in Section IV
and for the point source model we employ a standard UKF.

The result of the comparison is shown in Fig. 8 in terms of
absolute longitudinal and lateral positioning error, ex and ey ,
in the reference vehicle coordinate frame as well as absolute
velocity error, ev , and heading angle error, eψ , in the global
coordinate frame. The result indicates a clear advantage for
M1 in terms of accurate and stable positioning of the target
vehicle, as well as velocity and heading estimates. Worth
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(a) Scatter plot of the evaluated target measurements from the s1 (red) and s2
(blue) radars.
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Figure 7. Log-likelihood ratio comparison between our model, M1, and the
simpler point source model, M2.

noting is the later part of the scenario, t ∈ [7, 10]s, where
the two vehicles are close and many of the features on the
reference vehicle are resolved. In this part of the scenario
the target vehicle starts to turn, something that confuses the
simpler point source model while our model still manages to
position the vehicle well. Additionally, the jump in the heading
estimation error at t ≈ 9.8s is explained by the filters only
receiving measurements from the rear part of the vehicle for
some updates. As measurements again appear from the front
of the vehicle, it is clear that our proposed model is able to
take more advantage of the new information to deduce the
heading of the vehicle more accurately than the point source
model.

VI. CONCLUSION

In this paper we have proposed an accurate and tractable
radar sensor model capable of describing both multiple detec-
tions from a vehicle and their relation to the limited sensor
resolution. Furthermore, we have developed a framework for
tracking vehicles based on this model. The evaluation of the
sensor model shows that our model is clearly better than the
reference model at describing the vehicle radar detections from
the two evaluated sensors. Additionally, the evaluation of the
tracking performance indicates substantial benefits using our
model compared to the reference model.

The reference model is notably simpler than the proposed
one, and clearly penalized in the evaluation when multiple
features are resolved. However, it is presently used in many
systems and our comparison show that a widely used family
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Figure 8. Comparison of the absolute estimation error from our tracking
framework (solid blue) and the point source model (dashed red) for longitu-
dinal and lateral positioning error in the reference vehicle coordinate frame,
ex and ey , as well as absolute velocity error, ev , and heading angle error,
eψ , in the global coordinate frame.

of tracking frameworks can be adapted to incorporate the new
measurement model, with improved performance as a result.

By formally including sensor resolution in the model, it can
be used for a wide range of sensors and targets by changing
appropriate parameters according to the sensor specification.
This feature is of most importance to the automotive industry
as it allows for sensors to be more easily replaced or updated.

APPENDIX A
REFLECTOR MAPPING

The reflector mapping is divided into two parts; first the
reflector is positioned in the observation space, second, the
the expected signal amplitude is modelled.

A. Reflector position
Assuming that point reflector with index i is positioned at

xi = (xi, yi) in a local coordinate system with the origin in the
center of target vehicle j. The global position of the reflector
is then given by[

ζj,ix
ζj,iy

]
=

[
ζjxk
ζjyk

]
+ R(ψjk)

[
xi
yi

]
(69)

where R(·) is a 2x2 rotational matrix. Similarly, assuming
that sensor, s, is mounted on the host vehicle at xs = (xs, ys)
and with an angle of ψs, the global position of the sensor is
defined as [

ζsx
ζsy

]
=

[
ζhxk
ζhyk

]
+ R(ψhk )

[
xs
ys

]
(70)

Additionally, we define the relative angle between reflector i
and sensor s according to

αi,s = arctan

(
ζj,iy − ζsy
ζj,ix − ζsx

)
(71)
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Using these relations, the mapping zk
Ri(·)−−−→ ri is defined as

ri =
√

(ζj,ix − ζsx)2 + (ζj,iy − ζsy)2 (72)

ṙi =
(
vjk cos(ψlk − αi,s) + vj⊥ cos

(π
2

+ arg(xi)− αi,s
))

−
(
vhk cos(ψhk − αi,s) + vh⊥ cos

(π
2

+ arg(xs)− αi,s
))

(73)

φi = αi,s − ψhk − ψs (74)

where vj⊥ = vjkc
j
k‖xi‖ and vh⊥ = vhkc

h
k‖xs‖ are the velocity

component due to rotation of the target and host vehicle,
respectively.

B. Signal amplitude

The signal power of the sensor is characterized by two
functions, the reciprocal antenna gain pattern, Aa(φ), and the
signal attenuation, Ar(r). Associated with each reflector is a
visibility function, νiσ(αi,s, ψ

j
k) dependent on the relative angle

between the observing sensor and the reflector and the heading
of the target vehicle. Using these models, the expected return
amplitude of reflector i is calculated as,

σi = Aa(φi)Ar(ri)ν
i
σ(αi,s, ψ

j
k). (75)

APPENDIX B
GAUSSIAN CLUSTER DENSITY APPROXIMATION

In this section we derive the gaussian approximation of the
cluster density in (21) and (22). Let a cluster i consist of N
reflectors positioned at r1, r2, . . . , rN in measurement space.
According to (18) the signal component of the cluster is given
by

ci =

N∑
n=1

wn rn,

where in this case the reflector positions, rn, are known
whereas the weights, wn, are stochastic. The weights are
expressed in terms of the received signal amplitudes of each
reflector, An,

wn =
An∑N

m=1Am
.

where

An ∼ Rayleigh(σn).

To find a Gaussian approximation of cluster density we need
to find the first two moments of ci.

A. Mean approximation

The mean of ci is

c̄i = E {ci} =

N∑
n=1

w̄nrn. (76)

where w̄n = E {wn} is not trivial to express. However, monte-
Carlo simulations indicate that the approximation

w̄n ≈
Ān∑N

m=1 Ām
(77)

where

Ān = E {An} = σn

√
π

2
, (78)

yields a reasonable approximation of (76).

B. Covariance approximation

The remaining difficulty is to approximate the covariance
matrix of ci,

Ci = E
{

(ci − c̄i) (ci − c̄i)
T
}

(79)

The first aim is to find a representation which more robust to
approximations. For notation, set ∆rn = rn− c̄i and ∆wn =
wn − w̄n. In the following, we will use the relations

N∑
n=1

wn = 1, (80)

which follows from the definition of wn, and
N∑
n=1

w̄n∆rn = 0, (81)

which is clear due to E {r− r̄} = 0. These relations and
notations yield

Ci = E


(

N∑
n=1

wn(rn − r̄)

)(
N∑
n=1

wn(rn − r̄)

)T
= E


(

N∑
n=1

wn∆rn

)(
N∑
n=1

wn∆rn

)T
= E


(

N∑
n=1

∆wn∆rn

)(
N∑
n=1

∆wn∆rn

)T
=

N∑
n=1

N∑
m=1

∆rn∆rTmE {∆wn∆wm} . (82)

Recall that the matrices ∆rn∆rTm are known for all indices n
and m. Hence, we will now strive to find approximations for
the scalar factors

Cov {wn, wm} = E {∆wn∆wm} . (83)

To this end, we use the Taylor approximation

wn =
An
Si

≈ Ān
S̄i

+
An − Ān

S̄i
− (Si − S̄i)Ān

S̄2
i

=
Ān
S̄i

+
An
S̄i
− SiĀn

S̄2
i

(84)

where Si =
∑N
m=1Am and

Ān = E {An} (85)

S̄i = E

{
N∑
m=1

Am

}
. (86)
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Thus, we get

Cov {wn, wm} ≈ E
{(

An
S̄i
− SiĀn

S̄2
i

)(
Am
S̄i
− SiĀm

S̄2
i

)}
=
E {AnAm}

S̄2
i

− E {AnSi} Ām
S̄3
i

− E {AmSi} Ān
S̄3
i

+
E
{
S2
i

}
ĀnĀm

S̄4
i

. (87)

To evaluate (87), we essentially only need the relations

E {An} = σn
√
π/2 (88)

Ā2
n = E

{
A2
n

}
= 2σ2

n (89)

E {AnAm} =

{
E
{
A2
n

}
if n = m

E {An}E {Am} otherwise.
(90)
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