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Spaceborne synthetic aperture radar (SAR) imaging enters an

era where increasingly short revisit times, or large swath widths,

respectively, and high spatial resolutions are requested. These

requirements impose contradicting constraints on conventional

SAR systems using analog beamforming technology. The

development for future radar satellites is therefore towards

digital beamforming (DBF) systems where the analogous receiver

hardware is replaced by digital components. Concerning the SAR

antenna the innovative concept of a parabolic mesh reflector in

conjunction with a digital feed array is becoming a promising

architecture for this new SAR system generation. These antennas,

already a mature technique for communication satellites, have the

potential to outperform planar array antennas in terms of gain

at a moderate hardware effort. This article provides a hardware

concept study based on a design in X-band. Focus is put on DBF

algorithms adopted to the SAR case and important performance

figures are derived.
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I. INTRODUCTION

Radar remote sensing is a technique which has

been vastly exploited in spaceborne Earth observation

applications in the last decades. With synthetic

aperture radar (SAR) systems information about

the reflectivity of distant objects can be retrieved.

Those imaging radar systems typically consist of a

transmitter which illuminates a certain part of the

Earth surface, the footprint, and a receiver which

collects the scattered electromagnetic energy. This

signal is digitized and downlinked to a ground station.

Future applications like Earth system dynamics

monitoring [1] require a short revisit time which

in turn rises the need of large swath widths. At the

same time operators and investigators are interested

in a high information content of the SAR signal.

This is traditionally achieved by increasing the signal

bandwidth resulting in a higher resolution of the SAR

images. Large swath widths and high resolutions are

contradicting requirements for conventional SAR

systems. Since spaceborne SAR systems demand

a very high isolation between the transmit- and

receive-channel, they cannot be implemented as CW

radars on a single platform. This technical constraint

leaves as the only option pulsed radar systems

which are subject to a stringent timing of transmit

and receive events. Aiming at high resolutions a

broad footprint or, respectively, a broad antenna

beam is required. In order to sample the received

signal adequately, a sufficiently high pulse repetition

frequency (PRF) has to be used. The high PRF in turn

limits the swath width.

One possibility to overcome this restriction is to

transmit a signal using a broad beam and to record

with multiple receivers. These individual receiver

signals are then processed in order to reconstruct

the high resolution image. In terms of system theory

such a SAR configuration would be a single input

multiple output (SIMO) system. Classical approaches

employ planar array antennas where the aperture

is split on receive into multiple subapertures [2].

The performance for a spaceborne SAR system

consisting of several formation-flying small satellites

and the implications on signal processing have been

investigated in [3]. The novel concept of combining a

reflector antenna with a feed array, where the signal

is digitized almost immediately after the receiver,

was first proposed in [4] and further investigated in

[5]—[10]. It was demonstrated that such systems have

the potential to outperform conventional planar SAR

systems. Reflector antenna based systems are already

a mature technique for communication satellites.

Generally reflector antennas inherently generate

a shaped beam due to the mechanical molding of

the reflector dish. That means for any given feed

position only a certain solid angle can be illuminated.

Therefore a set of multiple feed elements is required
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in order to cover the complete region of interest.

By moving the analog-to-digital converters (ADCs)

closer to the RF front end, it is possible to form

beams by means of digital signal processing avoiding

a costly analog receiver chain. It is the objective

of this article to present a detailed analysis of this

innovative hardware concept in the context of SAR

and to discuss the performance of such systems.

Emphasis is laid on digital beamforming (DBF)

procedures which improve or balance the system

performance.

The article is organized as follows. Starting with

an overview of the system hardware concept in

Section II-A, the reflector antenna design with feed

array is presented in Section II-B and the system

operation is outlined in Section III. Based on the

SAR signal model presented in Section IV-A the

DBF concepts are divided in elevation and azimuth.

The corresponding DBF algorithms are derived

in Sections IV-B and IV-C, respectively. These

beamforming procedures are demonstrated by means

of numerical simulations in Sections V-A and V-B.

Conclusions are presented in Section VI.

II. THE SAR SYSTEM

In the following sections the basic hardware

concepts of multi-channel reflector SAR systems are

presented. In more detail the idea of combining a

reflector antenna with a digital feed array, based on

a design in X-band, is discussed.

A. Hardware Architecture

SAR systems employing a parabolic reflector

antenna in conjunction with a feed array are an

interesting alternative to conventional planar array

antenna concepts. Parabolic reflector antennas differ

from planar arrays insofar as they focus an incident

plane wave in a compact zone, while planar arrays are

illuminated homogeneously. Consequently, depending

on the incidence angle of the wave, the energy has

to be collected by means of a feed array. The main

advantage over planar array antennas is the fact that

high gain antennas can be easily realized by means of

large light-weight foldable mesh reflectors. Figure 1

shows the basic concept of such a reflector-based

SAR system [4]. The sensor flight direction is

associated with the azimuth dimension in SAR

coordinates. The elevation direction is in the paper

plane associated with slant range. The lower part of

the image shows the feed array. Every feed element,

connected with a transmit/receive (T/R) module on

transmit (Tx), illuminates, after reflection from the

reflector, a certain slightly overlapping angular domain

in elevation. The received signals ui are digitized with

ADCs and further processed in the DBF unit. Here

hardware components such as low noise amplifiers

(LNAs), T/R modules, mixers, filters, etc. are not

Fig. 1. Architecture for reflector system; some components such

as LNAs, T/R modules, mixers, filters etc. are not shown to

maintain clear representation.

shown. In order to facilitate DBF techniques in the

azimuth dimension, with the goal of high resolution

SAR imagery, the feed array is extended in both range

and azimuth. This means that the feed array hardware

is in principle repeated for every azimuth channel.

The overall number of channels is then the number

of elevation channels Nx times the number of azimuth

channels Ny.

B. Reflector Antenna and Feed Array Design

The antenna design presented in this article is for

an X-band SAR system with a center frequency of

9.65 GHz orbiting 785 km above the Earth surface.

The swath width X is 100 km starting at an incidence

angle μi of 30:5
± with an azimuth resolution ¢y better

than 1 m. The reflector design is of parabolic shape

combined with a planar feed array with the parameters

listed in Table I. The reflector patterns have been

simulated using the reflector antenna analysis software

TICRA GRASP9 [11]. Figure 2 shows the geometrical

alignment of the reflector and the feed array. The

diameter D refers to the orthogonal projection of the

reflector rim in the x0r-y
0
r-plane of the local reflector

coordinate system [x0r,y
0
r,z

0
r]. The focal length of

4.9 m results in an F over D ratio of 0.7 and the

offset is the distance between the axes z0r and zr,
where zr is the rotational axis of the paraboloid.

In contrast to the local antenna coordinate system

[x0r,y
0
r,z

0
r] the coordinate system [xr,yr,zr] only serves
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Fig. 2. Reflector and feed array geometry.

TABLE I

Reflector and Feed Design Parameters

Parameter Symbol Value

diameter D 7 m

focal length F 4.9 m

offset O 0.5 m

elevation feed element spacing ¢x 0:6¸

azimuth feed element spacing ¢y 0:6¸

no. of elevation feed elements Nx 27

no. of azimuth feed elements Ny 6

for the definition of the parabolic reflector with its

minimum in the origin of this coordinate system. The

element spacing within the planar feed array is in

multiples of the wavelength ¸ at the center frequency

of 9.65 GHz. The feed element patterns are modeled

as Gaussian beams with an edge taper of ¡12 dB. The
feed array has an overall length in the xf-direction

of approximately 0.5 m and a width in the azimuth

direction of 0.1 m in the local feed coordinate system.

In order to illuminate the reflector properly the feed

array is tilted to the center of the local reflector

coordinate system.

To cover the ground swath of 100 km the antenna

beamwidth on transmit in elevation is approximately

5:2± while the azimuth resolution requires an azimuth
half power beamwidth of 0:89±. The polar gain pattern
plot, where all feed elements are activated, is depicted

in Fig. 3 showing a distinct rectangular shape.

Fig. 3. Gain pattern on transmit.

As examples the gain patterns on receive for a

center feed element and an off-focus element are

presented in Fig. 4 and in Fig. 5, respectively. Clearly

the off-focus feed element produces a broader pattern

with slightly reduced gain compared with the center

element. Additionally the sidelobe level increases,

which results in a degraded azimuth performance.

This can especially be observed in the corresponding

cut plots in Fig. 6 and Fig. 7. An interesting effect

can be observed in Fig. 6 on the most left pattern,

where the sidelobes have an asymmetric level. These

sidelobes are called coma lobes [12] and have been
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Fig. 4. Gain pattern on receive for center element.

Fig. 5. Gain pattern on receive for off-focus element.

investigated for an off-focus reflector antenna for

example in [13]. For radar systems without DBF

coma lobes can be critical, because the system

might become sensitive to spatial interference.

However, with DBF interferences can be suppressed.

Interpreting the channel patterns as spatial filters, the

typical bandpass character in the case of reflector

antennas becomes obvious. This means every channel

sees a different part of the spatial spectrum, which

is in contrast to planar array antennas, where all

channels see the same spectral domain. Another

important feature of reflector antennas is the low

peak-to-sidelobe ratio varying between 13 dB for

the off-focus elements and 30.5 dB for the center

elements.

III. SYSTEM OPERATION

On transmit, all feed elements are active in order

to illuminate the complete swath as indicated by the

yellow beam in Fig. 8. The emitted waveform is a

chirp signal of duration ¿p. When the pulse hits the

ground it moves from the near to the far end of the

Fig. 6. Cut for 27 channel patterns in elevation.

Fig. 7. Cut for 6 channel patterns in azimuth in center of array.

swath. This requires the receive beam to follow the

echo on ground. This mode of operation is known as

SCORE, first suggested by [14] and further developed

by [15]—[17].

Since the chirp signal is a linearly modulated

waveform, different spectral parts, symbolized by the

rainbow colors in Fig. 8, will arrive at different time

instances at the sensor. This peculiarity asks for more

sophisticated beamforming techniques, where not only

spatial DBF methods but also temporal beamforming

approaches have to be taken into account. This is

elaborated in detail in the next sections.

IV. DIGITAL BEAMFORMING CONCEPTS

The next sections cover the digital signal

processing strategies based upon a SAR signal

model. The beamforming techniques are separated in

elevation and azimuth.

A. SAR Signal Model

Essential for the following studies is the

underlying physical SAR system model. SAR imaging
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Fig. 8. System operation.

is an electromagnetic scattering problem which is

covered by the Helmholtz equation. The solution

based on Green’s law in the context of SAR is known

as imaging equation. This solution adapted to the

SIMO problem for a monostatic setup for the ith

receive channel can be expressed according to (1).

Here the received SAR raw data signal is denoted by

ui as a function of the sensor location vector rs, as

indicated in Fig. 9, and time t. Commonly the sensor

position variable is associated with azimuth and time

with elevation or range. Within the first integrand on

the right side f is the target reflectivity as a function

of the target location vector r= [x0 y0 z0]T. ai denotes
the complex two-way amplitude pattern as given

in (2) as a function of the spherical variables (#,')

(see Fig. 2) in the local antenna coordinate system. g

given in (3) is the product of the transmitted signal of

amplitude pTx and the Green’s function describing

the expansion of the waveform from the sensor

location rs = [x y z]
T to the target and back to the

receiver. Here ¿ is the delay time as defined in (7),

¿p is the pulse duration, and B denotes the signal

bandwidth. The sum of integrals in (1), subscripted

by j, describes the contributions of preceding

and succeeding pulses which are known as range

ambiguous returns. The raw signal is superimposed

by bandlimited thermal receiver noise vi.

ui(rs, t) =

Z Z Z
r

f(r)ai(#,')g(rs,r, t)dr+

1X
j=¡1
j 6=0

Z Z Z
rj

f(rj)ai(#j ,'j)g(rs,rj , t)drj + vi(t) (1)

ai(#,') = gTx(#,')gRx,i(#,')

r
¸2

4¼
(2)

g(rs,r, t) = pTxrect

Ã
t¡ ¿ ¡ ¿p=2

¿p

!
exp[ j¼(B=¿p)(t¡ ¿ ¡ ¿p=2)2]| {z }

transmitted waveform

e j2¼fc(t¡¿ )

(4¼)2krs¡ rk2| {z }
Green’s function

: (3)

Clearly the task of DBF in this paper is not the

reconstruction of the SAR reflectivity function f. The

DBF concepts derived here try to combine the raw

data channels ui to a single output signal in a way that

classical SAR focusing routines can be applied.

Principally all elevation and azimuth channels

could be downlinked and processed on ground.

Nevertheless the limiting factor is the data rate R,

which can be written for a multi-channel system as

R =Nchan ¢ 2 ¢fs ¢Nb ¢EWL ¢PRF (4)

where Nchan is the number of digital channels, fs is the

sampling frequency, Nb is the number of bits used for

quantization and, EWL is the echo window length.

The factor 2 accounts for in-phase and quadrature

channel after complex demodulation.

Therefore it is crucial to perform as much of

digital signal processing onboard the spacecraft

as possible. The feed array architecture suggests a

separation in elevation and azimuth. In order to avoid

large onboard mass memories a good compromise

is to perform DBF in elevation on board and to

downlink the resulting azimuth channel signals.

B. Digital Beamforming in Elevation

For pulsed radar systems the time interval between

two succeeding pulses is pulse repetition interval

(PRI). Consequently all digital signal processing
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Fig. 9. Imaging geometry for reflector SAR system.

in elevation takes place in a time smaller than this

interval. Even for simple beamforming algorithms the

computational power required may exceed those of

software based processors. Commonly for broadband

applications field programmable gate arrays (FPGA)

are used. In contrast to stationary systems, the filters

to be implemented are time variant since the signal

of interest varies its direction of arrival (DOA) over

time as the pulse travels over ground (see Fig. 8). It

is important to mention that the DOA for a specific

target is constant. But since there are many targets

making up the swath, the beamformer has to be

adjusted to every target during one PRI. These

time-variant filter coefficients can be read from a

lookup table. The continuous time domain output of

the digital beamformer at a fixed azimuth position can

then be written as

uDBF(rs, t) =
X
i

Z
t0
ui(rs, t¡ t0)hi(t, t0)dt0 (5)

with ui(rs, t) from (1). Important for the derivation

of the filters hi is the fact that there exists a unique

functional relationship between the target reflectivity

coordinates r, the antenna angle #, and the delay

time ¿ . Note, here # refers to elevation in the

context of elevation beamforming ('= 0±). The
target coordinates are related to the antenna angle

according to

cos#=
nTs (r¡ rs)

knsk ¢ kr¡ rsk
(6)

with k:k the 2-norm. Here the antenna normal
vector ns is associated with the z

0
r-axis of the local

reflector coordinate system (see Fig. 2). Here the

target position r is assumed to be known, since the

problem of DOA estimation is out of the scope of

this paper. In practice the knowledge of the orbit

as well as a coarse digital elevation model (DEM)

would be helpful or even required. The impact of

imprecise DOA knowledge has been analyzed in [6]

and adaptive DBF techniques in the frame of SAR

have been studied in [18]. The delay time ¿ is related

to the target coordinates r via

¿ = 2krs¡ rk=c (7)

with c the velocity of light. Even more important for

the filter design is the characteristic of the transmitted

waveform. Using a chirp signal the instantaneous

frequency f depends linearly on the time t

f = (B=¿p)(t¡ ¿ ¡ ¿p=2)+fc: (8)

The reason why temporal beamforming is required

can be clarified with Fig. 10. Consider two point

targets received at different time instances, but

partially overlapping in time domain, in the ith

elevation channel. Consequently these two point

targets are also seen under different aspect angles

and therefore weighted with different parts of the

pattern. Clearly the problem is now that at any time

instance in the temporal overlap the beamforming can

only match one point target or the other. A possible

solution to discriminate the two targets is to expand

the signal into the time-frequency domain as shown in

Fig. 10. Now the two targets can be weighted properly

in the beamforming process.

With the above identities the basic idea of the

filtering approaches presented here is to decompose

the received signal into multiple frequency bands and

to apply a specific filter on each of these individual
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Fig. 10. Time-frequency domain representation of ith raw data signal divided into subbands.

Fig. 11. FIR filter with time-variant coefficients.

subbands as sketched in Fig. 10. To each subband

a bandpass filter (see (15)) and a weight is applied

which is derived from its corresponding channel

pattern. These individual bandpass filters are then

combined to a single filter (see (10)) as presented in

Fig. 11.

The time discrete (t! n) beamformer output,

dropping the azimuth position rs, writes

uDBF(n) =
X

i2Zact(n)

Ncoef¡1X
n0=0

ui(n¡ n0)hi(n,n0) (9)

with

hi(n,n
0) =

M¡1X
m=0

wi(n,m)h̄(n
0,m): (10)

Zact(n) is the set of activated channels. Typically, this

set comprises neighboring feed elements. Ncoef is

the number of filter coefficients for a finite impulse

response (FIR) filter of order Ncoef¡ 1 and M is

the number of subbands. Figure 11 shows a block

diagram of such a filter with delay elements denoted

by the clock period T = 1=fs. The filter design for h̄

is based on a Fourier analysis of a bandpass transfer

function of rectangular shape with cutoff frequencies

−c1 and −c2. Then the Fourier series coefficients are

h̄(n,m) =
1

2¼

Z −c2

−c1

e jn−d−, − = 2¼
f

fs
(11)

resulting in

h̄(n,m) =
−c2¡−c1
2¼

¢ sinc
μ
n
−c2¡−c1

2

¶
£ exp

·
jn(−c1 +−c2)

2

¸
: (12)

Dividing the design bandwidth B̄ into M subbands of

equal width, the cutoff frequencies are given as

−c1 = 2¼

μ
m

M
¡ 1
2

¶
B̄

fs
,

m 2 [0,M ¡ 1] (13)

−c2 = 2¼

μ
m+1

M
¡ 1
2

¶
B̄

fs
,

m 2 [0,M ¡1]: (14)
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Fig. 12. FIR filter bank with nine subbands and after ideal

reconstruction (constant curve).

The resulting filter coefficients equate

h̄(n,m) =
B̄

Mfs
¢ sinc

Ã
n¼

B̄

Mfs

!

£ exp
"
jn¼((2m+1)=M ¡ 1)B̄

fs

#
: (15)

For the filter bank design it has to be ensured that

the signal after combining the single filter outputs

reconstructs the input signal. From (10) with the

above definitions it can be shown that

M¡1X
m=0

wi(n,m)h̄(n,m) =
B̄

fs
sinc

Ã
n¼
B̄

fs

!
(16)

assuming unity weights wi(n,m). In order to avoid

aliasing, the sampling frequency fs must be equal or

larger than the signal bandwidth B. Consequently it

would be sufficient to restrict the design bandwidth

B̄ to the signal bandwidth. However, setting B̄ to fs
offers

B̄

fs
sinc

Ã
n¼
B̄

fs

!
= sinc(n¼) = ±(n): (17)

From this result it can be concluded that the

reconstruction is ideal and independent from the

number of filter coefficients Ncoef for wi(n,m) = 1.

Figure 12 shows the transfer functions for a filter

bank with nine subbands and 31 coefficients, which

are used in the performance analysis in Section V-A.

The constant curve represents the transfer function

after ideal reconstruction given by (17). The low

signal bandwidth of 40 MHz has been chosen in order

to reduce the computational load.

Due to the linear time-frequency relationship

of chirp signals every subspectrum enters a feed

element at a defined time for a given direction. Since

the chirp spectrum is divided into M subbands the

time-dependent weights are taken at the center of each

subspectrum. Introducing the subband specific delay

nm the weights in (10) can be rewritten as

wi(n,m) = wi(n¡ nm) (18)

with

nm = nint

½
2m+1

2M
¿pfs

¾
(19)

with nintf:g the nearest integer function.
Another important issue, which is only briefly

addressed, has been analyzed in [19] for an L-band

reflector antenna. The patterns show a strong

dependency on the transmitted frequency. That means

the signal is modulated over the frequency band of

interest. This can be accounted for in the time-variant

beamforming approach, simply by using the

corresponding patterns for the individual subbands.

The weights wi(n,m) would then additionally become

a function of the frequency wi(n,m,f). However, in

the frame of the following investigations the patterns

are assumed to be constant over the frequency band

under consideration.

Having derived the time-variant filters, in the

following the most important performance figures

for different beamforming approaches are discussed.

The fundamental performance parameter for any

radar system is the signal-to-noise ratio (SNR).

Assuming zero mean circular complex Gaussian

random processes for the backscatter as well as for

the noise, the discrete time-dependent expression for

the SNR can be shown to be (see the Appendix)

SNR(n)¼

¯̄̄Pn+Np
n

p
Ps(n)

¯̄̄2
Pn+Np
n Pv(n)

(20)

with the signal power

Ps(n) = ¾
2
f(#)jaT(#)

X
n0
g(#,n¡ n0)h(n,n0)j2 (21)

and the noise power

Pv(n) =
X
n0
hT(n,n0)Rv(n¡ n0)h¤(n,n0) (22)

where (:)¤ means conjugate complex. Here Np =
nintf¿p ¢fsg is the number of samples per pulse. The
backscatter radar cross section represented by ¾2f is

the product of the backscatter coefficient ¾0 and the

resolution cell Acell. a(#) = [a1(#) a2(#) ¢ ¢ ¢aNx(#)]T
is the antenna steering vector, which contains the

individual complex element patterns. The term

g(#,n¡ n0) uses (6) to substitute rs and r (compare
with left side of (3)). Important to mention is that in

this SNR formula the so-called azimuth compression

gain is not taken into account. Nevertheless (20)

serves as basis for the comparison of different

beamformers which are presented in the following.

The most rudimental beamforming approach is

simply to turn on those channels which receive signal
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power from the pulse traveling over ground. In the

reflector case this implies that only a subset of feed

elements Nact is activated at a time instance. For a

single band filter (M = 1) the filter impulse response

vector h(n,n0) is

h(n,n0) =w(n)±(n0): (23)

The weight vector w at a time instance n would, for
example, look like this:

w(n) = [0 1 1 1 0 ¢ ¢ ¢0]T (24)

where the number of activated elements is three in this

example. The corresponding SNR analogous to (20) is

then

SNR(n) =

¯̄̄P
Np

q
¾2f(#)jg(#,n)j2jaT(#)w(n)j2

¯̄̄2
P
Np
wT(n)Rv(n)w

¤(n)
:

(25)

Assuming Rv(n) = ¾
2
v (n)I, with I the identity matrix, it

becomes clear that the SNR for this beamformer drops

proportional to the number of activated channels Nact.

SNR(n) =

¯̄̄P
Np

q
¾2f(#)jg(#,n)j2jaT(#)w(n)j2

¯̄̄2
P
Np
¾2v (n)Nact

:

(26)

This is due to the fact that most channels contribute

only with noise on receive. Nevertheless this

beamformer is justified by the fact that it is technically

easy and cost effective to implement. Moreover this

beamformer is robust in terms of coefficient stability,

because no filter design incorporating knowledge of

the complex amplitude antenna pattern is required.

Beamformer (24) is denoted as unity beamformer

throughout this article. In the following the variables #

and n are dropped for notational simplicity.

A second class of beamformers is known as

minimum variance distortionless response (MVDR)

beamformer [20] which is based on Capon’s method

[21]. This method preserves the signal of interest

while minimizing contributions to the beamformer

output due to interference from other directions than

the direction of interest and noise. This approach

can be understood as a spatial matched filter. It is

optimal with respect to the SNR. The cost function

of minimizing the variance of the beamformer output

subject to the constraint writes

minimize wTRuw
¤ (27)

subject to aTw= 1: (28)

Since the noise covariance matrix Rv is typically

unknown it is replaced by the channel covariance

matrix Ru. The optimum conjugate complex weight

vector w¤ in closed form is given as

w¤ =
R¡1u a
aHR¡1u a

(29)

with Ru to be estimated from N recently received

samples.

Ru(n) =
1

N

nX
n0=n¡N+1

u(n0)uH(n0) 2 CNact£Nact (30)

where (:)H means conjugate transpose (Hermitian).

Again for a single band filter (M = 1) and Ru
assumed to be ¾2uI and Rv = ¾

2
v I the SNR for the

MVDR beamformer according to (20) yields

SNR=

¯̄̄P
Np

q
¾2f jgj2

¯̄̄2
P
Np
¾2v (a

Ta¤)¡1
: (31)

In principle the MVDR beamformer allows to activate

all channels on receive simultaneously. Those channels

contributing predominantly with noise are quasi

nulled with small magnitude weights. Since the

signals are also combined according to their phase,

the high receive gain can be reconstructed at every

time instance. However it is advisable to restrict the

activated feed elements to those where the complex

amplitude pattern is accurately known. Otherwise the

spatial filter is mismatched and the SNR will degrade

slightly. This also applies to the beamformer presented

in the following.

Pulsed SAR systems generally suffer from

preceding and succeeding pulse echoes arriving at

the same time at the sensor as the signal of interest.

Those echoes are called range ambiguities since they

enter the system under different elevation angles. One

possibility to suppress those ambiguous directions is

by means of a spatial filter. A method known as linear

constraint minimum variance (LCMV) beamforming

[20] provides an analytic solution to this problem. The

problem is stated as follows

minimize wTRuw
¤ (32)

subject to ATw= c (33)

with the array response matrix

A= [a(#) ¢ ¢ ¢a(#¡1) a(#1) ¢ ¢ ¢] 2 CNact£Ndir (34)

and the constraint vector c= [1 0 ¢ ¢ ¢0]T 2 CNact£1. Ndir
denotes the number of directions under consideration.

The closed-form solution is

w¤ =R¡1u A(A
HR¡1u A)

¡1c: (35)

Equation (35) represents the least squares solution to

a quadratic optimization problem. The key step in the

numerical evaluation of (35) is the computation of

the inverse of AHR¡1u A. Even if the channels are well
balanced (R¡1u » I) and the number of directions to
be suppressed is lower than the number of channels,

this matrix can become ill posed quickly. This is

because of the strong focussing effect of the reflector

pattern where every channel illuminates a different

solid angle. That means that one or more directions
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only contribute with small magnitudes and the matrix

becomes rank deficient. A possible way to solve

such an inversion problem is by means of eigenvalue

thresholding techniques [22]. In analogy to the

previous beamformers the SNR can be computed

using (25) and (35).

The performance figure measuring the amount of

ambiguous signal power superimposing the signal of

interest is the range-ambiguity-to-signal ratio (RASR).

This quotient can be expressed for a point target

according to

RASR(n) =
Pa(n)

Ps(n)
(36)

with the signal power Ps(n)

Ps(n) = ¾
2
f(r)

jaT(#)w(n)j2
krs¡ rk3 sinμi

(37)

and the ambiguous power Pa(n)

Pa(n) =

1X
j=¡1
j 6=0

¾2f(rj)
jaT(#j)w(n)j2
krs¡ rjk3 sinμi,j

: (38)

The distance from the sensor to the ambiguous

regions rj is

krs¡ rjk= krs¡ rk+ j
c

2PRF
: (39)

C. Digital Beamforming in Azimuth

Conventional pulsed SAR systems, specifically

single-channel systems, are inherently restricted with

respect to their imaging capability. With these systems

it is not possible to achieve a large swath width and a

high azimuth resolution at the same time [23]. A high

resolution requires a broad beam, which needs a large

PRF in order to sample adequately (Nyquist). The

high PRF in turn limits the swath width. The swath

width X and the azimuth resolution ¢y can be shown

to be related [24] according to

X

¢y
· c

2v sinμi
(40)

where c and v are the velocities of light and the

sensor, respectively, and μi is the incidence angle

(see Fig. 9). This quotient only depends on physical

constants except for the imaging geometry.

One possibility to overcome this restriction is to

transmit a signal using a broad beam and to collect the

scattered signal with multiple receivers. The individual

signals are then processed in order to reconstruct the

high resolution image. A simple way to implement

such a system using a reflector antenna is to extend

the digital feed array in the azimuth dimension [4, 5].

DBF in azimuth principally applies in the same

way as it does in elevation. A set of channels in

azimuth is used to reconstruct a single high gain

signal subject to certain constraints.

The underlying signal model is again based on

(1), (2), and (3), except that the time dependence

is ignored and the equations are evaluated over the

spatial azimuth variable y, which is contained in the

sensor flight trajectory rs(y). Equation (3) is then

simply

g(rs(y)) =
e¡j2¼fc¿

(4¼)2krs¡ rk2
: (41)

The spherical antenna coordinate # now refers to the

azimuthal plane ('= 90±) (see Fig. 2).
A compact way to relate space, represented

by #, and Doppler frequency fy is by means of

wavenumbers. The azimuth wavenumber ky can be

written for a monostatic setup and a linear flight

trajectory as

ky =¡2k sin#, k =
2¼

¸
(42)

with ¸ the wavelength. The Doppler frequency fy
and the PRF are related to the Doppler wavenumber

ky and the sampling wavenumber Ky , respectively,

according to

ky = 2¼
fy

v
, Ky = 2¼

PRF

v
: (43)

The DBF approach presented here is based on a

wavenumber analysis of the azimuth signal. That

means any DBF algorithms are applied in the

wavenumber domain. The ith azimuth channel raw

signal in the continuous wavenumber domain writes

Ui(ky) =
1

v

Z 1

¡1
ui(y)e

¡jkyydy: (44)

Since the azimuth signal is naturally a discrete signal,

sampled with Ky or PRF, respectively, the problem

of aliasing arises. As stated before it is the aim

to achieve a high azimuth resolution and a large

swath width. Since the data rate imposes a stringent

constraint, Ky has to be chosen as low as possible.

However, the minimum possible Ky is determined by

what is called in [2] the diffraction limit. This means

that in the DBF process a minimum beamwidth can

be reconstructed which is determined by the physical

length of the antenna. For small azimuth half power

beamwidths #3dB ¼ 1:22¸=D [12] the lower bound for

Ky can be shown to be

Ky ¸ 4k sin
μ
#3dB
2

¶
¼ 1:224¼

D
(45)

with D the reflector antenna diameter. This means that

every azimuth channel is undersampled and therefore

subject to aliasing. The azimuth processing approach

can therefore be characterized as a two-stage process.

First, in order to form the high resolution image, the

individual azimuth channels have to be reconstructed

on a common grid with a high sampling rate K 0y. And
secondly beamforming concepts have to be applied

to suppress the aliased azimuth signal energy. The

3482 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 48, NO. 4 OCTOBER 2012



Fig. 13. Wavenumber domain representation of sampled signal.

approach presented here is based on the discrete

version of (44) over a finite domain

Ui(m¢ky)

=
¢y

v

N¡1X
n=0

ui(y(n¢y))exp[¡jky(m¢ky)y(n¢y)]

(46)

with the wavenumber sampling increment ¢ky

¢ky =
2¼

Y
=

2¼

M¢y0
=
K 0y
M
, ky 2

·
¡K

0
y

2
,
K 0y
2

¸
(47)

and

N =
Y

¢y
, M =

Y

¢y0
: (48)

Here Y is the complete integration path length. N is

the number of samples of the undersampled channel

signals and M is the number of samples of the high

resolution signal. ¢y and ¢y0 are the corresponding
spatial sampling increments. Figure 13 illustrates the

evaluation of (46). In the upper part the magnitude of

the ith azimuth signal ui(y) is depicted. The shape is

due to the two-way channel pattern described by (2).

By taking the discrete Fourier transform according

to (46) not only the principal interval, restricted to

§Ky=2, becomes visible but also additional replicas of
the spectrum beyond the baseband as can be observed

in the lower part of Fig. 13. Here the first left and first

right ambiguous spectrum is plotted (dashed curves).

In fact (46) is evaluated over the desired wavenumber

domain §K 0y=2. Evidently this procedure can be
implemented in a computationally more efficient way

by using the fast Fourier transform (FFT), where the

spectra are juxtaposed and limited to the bandwidth

K 0y. From an information theoretical point of view it

is enough to just use the principal Doppler band Ky ,

because no new information is generated.

The second step in the azimuth processing is the

combination of the individual channel spectra Ui(ky)

by means of weights

UDBF(ky) =w
T(ky)U(ky): (49)

Again an SNR expression as function of the azimuth

variable y0 for a point target similar to (20) can be
derived as

SNR(y0) =

¯̄̄R
K 0y
jwT(ky)s(y0,ky)jdky

¯̄̄2R
K 0y
wT(ky)Rv(ky)w

¤(ky)dky
(50)

with the point target signal spectrum

s(y0,ky) =
1

v

Z 1

¡1
f(y0)a(#)g(y¡ y0)e¡jkyydy (51)

¼ 1
v
f(y0)a(#)

Z 1

¡1
g(y¡ y0)e¡jkyydy: (52)

Here an azimuth compression filter of rectangular

shape is assumed. Remember that y is related to # via

(6). The approximation in (52) is justified by the fact

that the phase of the integrand is determined by the

high frequency Doppler signal g(y¡ y0). The antenna
pattern a(#) can therefore be regarded as constant and
drawn in front of the integral.

The choice of the weight vector w is restricted
to the beamforming approaches already presented in

Section IV-B.

The DBF method according to (24) can be adapted

to the azimuth case by putting a “1” to the channel of

interest and setting every other channel to zero, giving

for example

w(ky) = [1 0 : : :0]T: (53)

This is repeated for every azimuth wavenumber

ky. Consequently the azimuth signal spectrum is

modulated according to the envelope of the azimuth

patterns, as presented in Fig. 24. Of course this

spectrum is superimposed by the ambiguous signal

spectra. Considering this approach it makes no

sense to use more than one channel since the other

channels would contaminate the signal of interest with

ambiguous signal power for low azimuth sampling

wavenumbers Ky.
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The second method is the MVDR beamformer

according to (29)

w¤(ky) =
R¡1u (ky)a(#)

aH(#)R¡1u (ky)a(#)
: (54)

The angle # is related to the azimuth wavenumber

ky via (42). This beamformer minimizes the additive

noise contributions over the wavenumber spectrum

generating therefore the optimal SNR. However,

since this beamformer only considers the direction

of interest, the ambiguous spectra are not suppressed.

In the worst case they might even be amplified.

As indicated by the vertical dotted line in Fig. 13

at a certain wavenumber not only the signal of interest

is present but also ambiguous signals. A possible

way to suppress these ambiguities is the LCMV

beamformer (35) as a function of the wavenumbers

w¤(ky) = (R
¡1
u A(A

HR¡1u A)
¡1c)(ky): (55)

The ambiguous directions #j are dictated by the

integer multiples of the sampling wavenumber Ky

ky + jKy =¡2k sin#j , j 2 Z n f0g: (56)

The number of constraints is limited to the number of

feed elements in azimuth.

The performance figure quantifying the aliasing

effect is the so-called azimuth ambiguity to signal

ratio (AASR). This quotient relates ambiguous signal

power to signal power according to

AASR(Ky) =

P
j2Znf0g

R K 0y=2
¡K 0y=2(jwTsj2)(ky + jKy)dkyR K 0y=2

¡K 0y=2(jwTsj2)(ky)dky
:

(57)

The ambiguity expression is independent from the

azimuth position on ground y0, since the reflectivity
function f(y0) cancels out. Often in the literature a
version of the AASR is presented where the signal

spectrum s(ky) is replaced by the antenna pattern a(ky)
[25]. This can be done if the denominator in (41) is

neglected. Therefore, this approximation is a worst

case estimate for the AASR.

V. SYSTEM PERFORMANCE

The following sections are dedicated to the

performance analysis in elevation and in azimuth. The

analysis is based on the reflector system presented in

Section II-B utilizing the DBF algorithms described in

Section IV. The graphs presented in this article are the

results of numerical simulations.

A. Elevation Performance

The main performance figure in elevation is the

SNR according to (20) for the three DBF approaches,

that are the unity weighting method (24), the MVDR

beamformer (29), and the LCMV algorithm (35). In

Fig. 14. DBF gain pattern on receive in elevation for three active

elements at time instance versus scan angle.

Fig. 15. DBF gain pattern on receive in elevation for six active

elements at a time instance.

principle two sources for SNR degradation in the

beamforming process can be identified. The first

source is spatial mismatch which basically occurs

with the unity beamformer (24). What this means

can be observed in Fig. 14 and Fig. 15. Here the

gain on receive after DBF is presented. Note that μ

in the plot is the same as the scan angle #. In Fig. 14

for the unity approach as well as for the MVDR

method always three feed elements are active at a

time instance. Only the LCMV beamformer requires

all available channels in order to suppress range

ambiguities properly. The difference between the

LCMV curve and the MVDR curve or the unity

beamformer curve can be regarded as SNR loss

due to spatial mismatch. Clearly when activating

more channels at a time, as shown in Fig. 15, the

unity beamformer SNR drops proportional to the

number of activated feed elements as predicted by

(26). This is because only two or three channels

contribute with signal power at a time instance. The

additional channels contain noise. In contrast the
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Fig. 16. Unity beamformer output spectrum for point target at

swath center.

Fig. 17. MVDR beamformer output spectrum for point target at

swath center.

MVDR beamformer gains in SNR since more signal

power is combined coherently, while noise-only

channels are damped with small magnitude weights.

In Fig. 15 the LCMV curve overlays the MVDR

curve because using more than six elements at a time

does not improve the gain significantly more. The

discontinuities in the curves for the unity beamformer

are a consequence of the channel switching in order

to follow the pulse on ground. This analysis shows

that for infinitesimal short pulses the SNR loss for the

unity approach is on the order of 0.7 dB assuming

Nact = 3.

The second source of SNR degradation is temporal

mismatch. Any real waveform is extended in time in

order to emit the available energy. Neglecting this fact

by using Dirac-like filters (23) will have a significant

impact especially on long duration pulses. Figure 16

and Fig. 17 show the simulated beamformer output

spectra of a point target in the swath center (#= 0±).
Due to the linear time-frequency dependency of chirp

signals the channel switching can be clearly observed

Fig. 18. MVDR beamformer output spectrum using a FIR filter

with nine subbands and 31 coefficients.

TABLE II

SNR Loss for the DBF Approaches

DBF Method Dirac-Like Filter FIR Filter

unity 4.014 dB 0.679 dB

MVDR 4.497 dB 0.005 dB

LCMV 4.554 dB 0.001 dB

in the spectra. The spatial weights w are matched

to the pulse center. The loss of signal power is even

more severe with the MVDR approach as well as the

LCMV beamformer since the low and high frequency

parts of the spectra are weighted with small weights.

Generally the SNR loss is affected by both error

sources, spatial and temporal mismatch. Table II lists

the total SNR losses for the three DBF approaches

for the Dirac-like filtering in the middle column and

for a FIR filter architecture with M = 9 subbands and

Ncoef = 31 coefficients in the right column. The pulse

length ¿p is 50 ¹s. The loss is relative to the maximum

SNR, which is produced by the MVDR beamformer

using all channels. The numbers suggest that the SNR

loss is mainly driven by temporal mismatch. Using an

appropriate FIR filter structure allows to reduce the

SNR loss as can be seen in Fig. 18. A slight ripple

with nine bumps on the signal spectrum caused by the

partition into subbands can be observed. This might

be mitigated to a certain degree by increasing the

number of subbands. But this will require filters with

more coefficients which in turn results in a poorer

resolution of the frequencies in time domain. This

effect is covered by the uncertainty principle

¢t ¢¢f ¸ 1: (58)

Increasing the bandwidth ¢f results in a finer time

domain resolution ¢t and vice versa. The uncertainty

principle in the space-wavenumber domain is

¢y ¢¢ky ¸ 2¼: (59)
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Fig. 19. Upper left: focused point target using MVDR beamformer with Dirac-like filter. Upper right: focused MVDR output using

FIR filter with nine subbands and 31 coefficients. Lower row: corresponding simulation to upper row with two adjacent point targets.

The ripple on the signal spectrum could be avoided

completely by range compressing the signal prior

to spatial weighting. However this approach is

computationally most intensive, since filters with

thousands of coefficients would be required. But

already filters with a relatively low number of

coefficients and subbands generate a signal output

with consistent gain as demonstrated in Fig. 18.

Figure 19 shows point target simulations using

the MVDR beamformer. In the upper left plot a

focused point target, with the corresponding spectrum

shown in Fig. 17, applying no temporal filtering, is

depicted. Clearly the broadening of the mainlobe and

the decrease of the sidelobes due to the taper can

be observed. In the upper right image a FIR filter

with nine subbands and 31 coefficients was used.

The corresponding point target spectrum is shown in

Fig. 18. In the lower row the simulation results for

two point targets in close vicinity are presented. In

the lower left image the point targets can hardly be

discriminated.

Another important performance measure for a

SAR system in elevation is the RASR (36). Since

the reflector is quite large in diameter the sidelobes

drop quickly moving away from the main beam.

This means such a reflector system will inherently

have a very good range ambiguity suppression.

Therefore it is possible to relax the requirements in

the antenna design. For example the elevation height

of the antenna could be reduced by employing an

elliptical reflector. In the following figures the RASR

as a function of the PRF and over the elevation scan

angle for the three DBF approaches is presented. Here

timing issues are neglected, since emphasis is laid on

the beamformer performance. In a real application

the timing constraints will display certain PRFs and

certain scan angles inaccessible. Figure 20 shows the

RASR for the unity beamformer revealing the typical

discontinuities in elevation due to the switching. The

dynamic range is roughly between ¡8 dB and ¡88 dB
for most PRFs. The MVDR method, depicted in

Fig. 21, amplifies range ambiguities for certain scan

angles and PRFs. Comparing the MVDR RASR to

the unity beamforming result, the shape of the plot

seems to be preserved. However the RASR for the

LCMV method is improved substantially as can be

seen in Fig. 22. This becomes evident in the DBF

receive pattern plot shown in Fig. 23. Here a high
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Fig. 20. RASR for unity beamformer.

Fig. 21. RASR for MVDR beamformer.

PRF of 13.5 kHz is chosen in order to demonstrate

the capabilities of the LCMV beamformer. There is of

course an absolute limit where the LCMV beamformer

will work, that is the minimum beamwidth to be

generated with this antenna. Ambiguous directions

cannot be suppressed if they enter the main beam.

The scan angle for the signal of interest, marked by

the vertical dashed line, is 1:36±. At this angle the
RASR for the unity beamformer as well as the MVDR

approach is relatively poor. The ambiguous directions,

indicated by the vertical solid lines in Fig. 23 are

damped quite well with the LCMV method while the

gain loss is negligible.

In some cases the range ambiguities are not

suppressed well. This is a result of an improper

selection of the aforementioned eigenvalue threshold

parameter.

B. Azimuth Performance

The performance in azimuth is characterized by

the SNR given with (50) and the AASR defined in

(57). The SNR is evaluated in the same manner as

in the elevation case. A point target was simulated

Fig. 22. RASR for LCMV beamformer.

Fig. 23. DBF receive pattern in elevation for the three

beamformers with position of signal (vertical dashed line) and

position of the range ambiguities (vertical solid lines).

TABLE III

SNR Loss for DBF Approaches

DBF Method SNR Loss

unity 3.06 dB

MVDR 0.00 dB

LCMV 1.39 dB

in the swath center and processed using the three

DBF approaches. Beamforming in azimuth is

simpler insofar as no temporal filtering is required.

Table III summarizes the SNR losses with respect

to the optimal beamformer, which is the MVDR

beamformer. Since the unity beamformer uses only

one channel per Doppler wavenumber, which is

basically the channel with the highest gain, the loss

is 3 dB. This can be clarified via the channel patterns

in Fig. 24 at wavenumber zero. Only one of the

two center beams is used which means a signal loss

of 3 dB. From this plot the maximum achievable

azimuth resolution can be found with (59) to be on
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Fig. 24. Azimuth channel pattern versus wavenumber.

the order of 0.67 m using the full 3 dB bandwidth

of 9:4 m¡1. However for this simulation a processed
azimuth bandwidth By of 10 kHz, corresponding

to K 0y = 8:4 m
¡1, was used, yielding a resolution of

approximately 0.75 m. Figure 25 shows the results of

Fig. 25. Upper left: focused point target using unity DBF. Upper right: focused point target using MVDR DBF. Lower image: focused

point target using LCMV DBF.

point target simulations for the three beamformers. All

DBF approaches result in the typical sinus cardinalis

shape of the point target response with the predicted

resolutions.

The azimuth bandwidth impacts directly the

AASR. Figure 26 shows the AASR as a function

of the PRF. The curve for the LCMV beamformer

starts at a PRF of ca. 2.6 kHz, since for lower

PRFs the azimuth ambiguities enter the main beam.

Obviously the MVDR beamformer amplifies azimuth

ambiguities for a wide range of PRFs. This effect

can be observed in the corresponding pattern plot in

Fig. 27. The signal, marked by the vertical dashed

line, is at Doppler frequency zero. The ambiguous

Doppler frequencies, indicated by the vertical solid

lines, occur at multiples of the PRF away from the

signal frequency. The unity beamformer uses a single

channel receiving the main amount of ambiguous

signal power from the Doppler frequency 3 kHz.

The MVDR beamformer produces the highest gain

at the cost of ambiguous signal power from Doppler

frequency §3 kHz. Only the LCMV beamformer is
able to suppress both ambiguities efficiently.

3488 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 48, NO. 4 OCTOBER 2012



Fig. 26. AASR for the three DBF approaches versus PRF taken

at swath center.

Fig. 27. Rx gain pattern in azimuth Doppler frequency domain

with position of signal (vertical dashed line) and position of

azimuth ambiguities (vertical solid lines).

VI. CONCLUSION

In the frame of SAR imaging a detailed analysis

of the innovative concept of combining a parabolic

reflector with a digital feed array was presented. The

inherent focusing capabilities of reflector antennas

provide an excellent performance especially in

elevation. However in order to operate such systems

with long duration pulses, more sophisticated

beamforming approaches are of vital importance.

It was shown that with FIR filter structures in

conjunction with spatially matched coefficients,

that is the MVDR beamformer, the SNR loss can

be drastically reduced. In the presence of range

ambiguities the LCMV beamformer offers the

opportunity to improve the SAR image quality further.

The LCMV beamformer shows its full potential

when going for high azimuth resolution imagery. The

AASR, being the main source of degradation, was

improved significantly.

The investigations in this article are based on

perfect knowledge of all parameters involved in the

beamforming concepts. The most important parameter

is definitely the complex antenna pattern. Since the

DOA is only known to a certain degree and the

pattern measurements are subject to various error

sources, the performance can be expected to degrade.

Therefore in future investigations the impact of these

error sources will be investigated with the goal of

improving the robustness of potential beamforming

methods.

APPENDIX. SIGNAL-TO-NOISE RATIO

The SNR is derived in time domain with the

discrete time variable n. Rewriting the beamformer

output for a point target gives

uDBF(n) =
X
i

X
n0
ui(n¡n0)hi(n,n0) (60)

=
X
i

X
n0
f(#)ai(#)g(#,n¡ n0)hi(n,n0)

+
X
i

X
n0
vi(n¡ n0)hi(n,n0): (61)

Note that f as well as vi are complex random

processes. If we assume uniform and independent

Gaussian random variables for the real part and the

imaginary part with zero mean, respectively, the

processes are characterized by their variances ¾2f
and ¾2vi . Assuming uncorrelated noise and signal, the

power of the beamformer output is

PuDBF (n) =EfjuDBF(n)j2g (62)

=E

8<:
¯̄̄̄
¯̄X

i

X
n0
f(#)ai(#)g(#,n¡ n0)£ hi(n,n0)

¯̄̄̄
¯
2)

+E

8<:
¯̄̄̄
¯X

i

X
n0
vi(n¡ n0)hi(n,n0)

¯̄̄̄
¯
2
9=; (63)

= Ps(n) +Pv(n) (64)

with Ef:g the expectation operator. In principle
the SNR can already be computed. However this

expression is difficult to interpret in the traditional

sense of DBF. Exchanging the summation between n0

and i the signal power Ps(n) can be written in vector

notation as

Ps(n) = E

8<:
¯̄̄̄
¯̄X
n0
f(#)g(#,n¡ n0)£ aT(#)h(n,n0)

¯̄̄̄
¯
2)
(65)

= ¾2f(#)jaT(#)
X
n0
g(#,n¡ n0)h(n,n0)j2: (66)
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Similarly the noise power Pv(n) can be expressed as

Pv(n) = E

8<:
¯̄̄̄
¯X
n0
hT(n,n0)v(n¡n0)

¯̄̄̄
¯
2
9=; : (67)

In order to account for all combinations when

evaluating the squared expression j:j2 in (67) another
variable m0 2 [0,Ncoef¡ 1] is introduced. This gives

Pv(n) =
X
n0

X
m0
hT(n,n0)Efv(n¡n0)

£ vH(n¡m0)gh¤(n,m0) (68)

=
X
n0

X
m0
hT(n,n0)

£Rv(n¡n0,n¡m0)h¤(n,m0): (69)

A simplification can be introduced if one assumes

that the samples of the random processes are mutually

independent. Then the covariance matrices become the

zero matrices for n0 6=m0 and the noise power is
Pv(n) =

X
n0
hT(n,n0)Rv(n¡ n0)h¤(n,n0): (70)

For a Dirac impulse response function hi(n,n
0) =

wi(n)±(n
0) this is the well-known expression of the

noise power for a multi-channel beamformer. Finally

this expression can be further simplified, if channels

with cross powers zero are assumed, yielding

Pv(n) =
X
i

¾2vi

X
n0
jhi(n,n0)j2: (71)

The SNR for the compressed SAR signal can then be

computed as

SNR(n)¼

¯̄̄Pn+Np
n

p
Ps(n)

¯̄̄2
Pn+Np
n Pv(n)

(72)

substituting (66) for the signal power and either (69),

(70), or (71) for the noise power.

It is important to mention that the SNR expression

(72) is only valid if the sampling frequency fs
is smaller than the signal bandwidth B. If the

sampling frequency is larger than the bandwidth

the noise samples become dependent and combine

therefore coherently as is the case for the signal

samples. Principally the SNR cannot be improved by

oversampling.
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