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Two-layer particle filter for multiple target

detection and tracking
Ángel F. García-Fernández, Jesús Grajal, Mark R. Morelande

Abstract

This paper deals with the detection and tracking of an unknown number of targets using a Bayesian

hierarchical model with target labels. To approximate the posterior probability density function, we

develop a two-layer particle filter. One deals with track initiation, and the other with track maintenance.

In addition, the parallel partition method is proposed to sample the states of the surviving targets.

Index Terms

Two-layer particle filter, parallel partition method, detection, tracking, target labels.

NOMENCLATURE

Pk Vector that contains the positions of all tracks at time k

pk
j,i ith position particle of track j at time k

pk
j Position vector of track j at time k

Rk Augmented multitrack state vector j at time k

rkj Augmented state vector of track j at time k

Xk+1
(
Sk
)

Multitrack state vector of the targets whose labels are in set Sk at time k + 1
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xk+1
(
skj
)

State vector of the target whose label is skj at time k + 1

Xk Multitrack state vector at time k

xk
j State vector of track j at time k

xk
j,i Rao-Blackwellised ith particle of track j at time k

z1:k Sequence of measurement vectors from time 1 to k

zk Measurement vector at time k

bk Number of targets that are born at time k

dk Number of targets that die at time k

Ik Set of labels at time k

Nk Set of labels of the targets that are born at time k

Sk Set of labels of the targets that survive from time k to k + 1

tk Number of tracks at time k

I. INTRODUCTION

The random finite set (RFS) framework has emerged as a natural way to perform multiple target

detection and tracking from the Bayesian point of view [1]. In the RFS framework, the multitarget

state is a set whose elements are single target state vectors. Densities within the RFS framework are

manipulated using rules analogous to those which are applied in vector-based approaches [2]. Thus, the

(unnormalised) RFS posterior density can be found using an RFS analog of the Chapman-Kolmogorov

equation followed by multiplication of the result by an RFS version of the likelihood. Importantly, this

framework permits the development of rigorous metrics for algorithm performance assessment [3], [4].

In the usual case of RFS, the state vectors do not include identifying labels and, therefore, we estimate

the target number and target states without connecting these estimates, instant to instant, into temporally

connected tracks [5].

The joint multitarget probability density (JMPD) [6]–[8] is another framework to estimate the target

number and target states without building temporally connected tracks. The JMPD is a vector-based

approach in which the quantity of interest is a hybrid state formed by the target number and a multitarget

state, which is a vector formed by concatenating the single target state vectors. This hybrid state does not

include identifying labels. This results in the impossibility of the JMPD to build temporally connected

tracks. In [6]–[8], the (unnormalised) JMPD is found by the usual Bayesian filtering recursion involving

evaluation of the Chapman-Kolmogorov equation followed by the multiplication of the result by the

likelihood. This simplifies the calculation of the posterior in comparison with the RFS framework mainly

due to the use of vector integrals rather than set integrals. However, the JMPD approach is only sound if

1st November 2012 DRAFT



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 3

the posterior remains unchanged under target permutations [9, Appendix B]. This leads to a theoretical

inconsistency since the Bayesian filtering recursion for vector-valued variables does not generally provide

the required symmetry [10]. Rather, this symmetry must be imposed. The resulting JMPD actually ends

up being equivalent to the RFS posterior but is not satisfying theoretically. As such, the RFS framework

should be used if individual target states are not labelled.

The essential task of linking target state estimates along time to form tracks can be done if a unique

label is added to each single target state in both approaches. Labels differ from the usual kinematic

parameters in two important ways: they are unique (no two tracks can have the same label) and they

are fixed in time. Track construction through labelling has been proposed in several papers, although

usually with ad hoc approaches. In [7] labels are added in the particle filter (PF) approximation to the

JMPD but they are not included in the Bayesian model. The same happens in the PF approximation

to the probability hypothesis density (PHD) filter, which is an approximation to the full RFS posterior,

proposed in [11]. As labels are included in the target state, a principled approach must take them into

account directly in the Bayesian model not in an approximation to a theoretically unlabelled density. An

example of this principled approach to track labelling within the RFS framework can be found in [12]. It

is important to note that the two distinguishing characteristics of the labels imply some important changes

with respect to the unlabelled target case. As pointed out in [9, Appendix B], now there is a bijection

between the multitarget RFS and a hybrid state formed by the target number and a multitarget state vector

with labels. Therefore, because of this one-to-one correspondence, both representations lead to the same

results and, importantly, they are equally sound. Additionally, this one-to-one correspondence implies

that any metric defined in an RFS framework can be equivalently defined in this framework. Since a

vector-based approach with labels conveys the same information as an RFS approach with labels we will

pursue the former approach because some parts of this paper are clearer this way. Nevertheless, this paper

could have been written using RFS notation as they are equivalent. We note that hierarchical models of

the type used here have been previously used in multitarget tracking in [13] and, more generally, are

commonly used in Bayesian inference [14]–[16].

This paper is concerned with PF approximations to the posterior PDF using the above-mentioned

hierarchical model with labels. In this context, timely and reliable detection of targets and accurate

target state estimation require an importance density that efficiently samples both target states and the

number of targets. Although careful design of the importance density is necessary for any importance

sampling approximation, the potentially high dimension of the multitarget state, which is composed of

all the individual target states, make this especially crucial in multitarget tracking [17]. The following
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paragraphs discuss existing work on these problems and summarise how the proposed methods address

the limitations of these approaches.

An important property of the measurement model commonly used in multitarget tracking is the

approximate factorisation of the likelihood. This factorisation depends on the measurement model but

usually applies for widely separated targets. As a result of this property only the states of targets which

form clusters based on proximity need to be sampled jointly. This effectively reduces the dimensionality

of the sampling problem. This idea was first exploited for sequential importance sampling in [18] and

also used in [6]–[8], [19]–[21]. Although distant targets can be ignored it is desirable that samples of

targets within a cluster be sampled jointly. This was achieved in [7] by jointly sampling clusters of target

states from the optimal importance density (OID) [22]. The OID is not universally applicable because it is

generally intractable although approximations to the OID using a bank of extended or unscented Kalman

filters have been proposed [22], [23]. However, jointly sampling from the OID, or an approximation,

can be computationally expensive, even for relatively small clusters of targets. The aim is therefore to

construct an importance density which considers the presence of neighbouring targets in a computationally

efficient manner. The proposed parallel partition (PP) method achieves this aim by a simple modification

of the independent partition (IP) method of [6]. PP is a general method in the sense that it does not rely on

a specific measurement model that is intended to improve the efficiency of sampling of the target states,

especially when the number of particles is low and a fast algorithm is required under the assumption that

tracks are a priori independent. In addition, we show that what the well-known IP method really does is

sampling an auxiliary vector, therefore, providing more insight into multiple target tracking using PFs.

Efficient sampling of the target number is also vital in multitarget tracking. The simplest possibility

is to draw the target number from an assumed prior [24]. This is highly inefficient as it removes and

adds targets regardless of what the measurements suggest is appropriate. The notion of using a secondary

approximation to the posterior to construct an importance density for sampling target number was used

in [7], [25]. There, an existence grid was used to determine both regions likely to contain new targets

and existing targets which are likely to be false. This approach has the advantage of using the available

measurements rather than relying on a prior but does not incorporate target dynamics and is therefore

inappropriate for even moderately rapid targets. In this paper a PF approximation, referred to as the

pre-track filter, is used to construct an importance density for the addition of new tracks. Sampling of

target number is performed via likelihood ratio tests (LRTs) on the pre-tracks and existing tracks. LRTs

are commonly used for track scoring in the well known multiple hypothesis tracking (MHT) [26]. The

LRT for the pre-tracks governs the addition of new targets, effectively transforming a pre-track to an
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existing track if appropriate, while the LRT for the existing tracks determines target removal. Then, the

PF developed in this paper has a two-layer scheme in which the posterior density of one layer is used to

specify the importance density of the other layer to sample newborn target states. A similar idea, although

not in the context of importance sampling, is used in the integrated probabilistic data association filter

(IPDAF) and its generalisations where a target existence probability is used to determine the track status

[27]. Nevertheless, the idea of using an subsidiary PF to sample the newborn target states is a new idea

developed in this paper.

The rest of the paper is organised as follows. In Section II, we address the joint multitrack probability

density (JMKPD) and describe the models of targets and measurements. In Section III, we explain the

PP method for fixed and known number of targets. The two-layer PF for variable and unknown number

of targets is presented in Section IV. Numerical examples examining the filter performance are provided

in Section V. Finally, conclusions are drawn in Section VI.

II. JOINT MULTITRACK PROBABILITY DENSITY

This section deals with the JMKPD [28], the target model and the sensor model. Basically, the JMKPD

corresponds to the approach used in [13] but augmenting each target state with a unique label so that the

tracks are perfectly identified along time. Adding the unique labels to each track enables us to use an

equivalent representation in which the dimension of the state is governed by the number of elements of

a set that includes the labels so that the required PDFs are written in a more compact form. As noted in

the Introduction, and shown in [9, Appendix B], the JMKPD is equivalent to the RFS posterior density

of the multitarget state with labels.

We assume there are tk tracks at time k. The state of track j at time k is described by vector

xkj =
[
xkj ,

.
x
k
j , y

k
j ,

.
y
k
j

]T
∈ R4 where pkj =

[
xkj , y

k
j

]T
is the position vector, vkj =

[
.
x
k
j ,

.
y
k
j

]T
is the

velocity vector and superscript T means transpose. The augmented state of track j is described at time

k by vector rkj =

[(
xkj

)T
, ikj

]T
∈ R4 × N where ikj is the label of track j. It is imposed that ik1 <

ik2 < ... < iktk to ensure unique labelling of the tracks. The augmented multitrack state vector is formed

by stacking the individual augmented track state vectors into one vector Rk =
[(

rk1
)T
, ...,

(
rktk
)T ]T

=[(
xk1
)T
, ik1, ...,

(
xktk
)T
, iktk
]T

. Since the number tk of targets is unknown, the variable(
Rk, tk

)
∈
∞⋃
t=0

(
R4 × N

)t × {t} : ik1 < ik2 < ... < ikt .

Following [13], [29], the set R0 = {θ} where θ is a symbol for no target. A similar convention is

used for N0. This is a Bayesian hierarchical model where tk determines the model (in our case the target
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number) of the multitarget state [14]–[16].

The state at time k is observed through the measurement vector zk. In a Bayesian framework, estimation

of
(
Rk, tk

)
based on the sequence of measurements z1:k =

(
z1, z2, ..., zk

)
up to time k is achieved by

the recursive computation of the posterior PDF p
(
Rk, tk

∣∣z1:k ) = p
(
tk
∣∣z1:k ) p (Rk

∣∣z1:k, tk ) which is

normalised such that
∞∑
tk=0

p
(
tk
∣∣∣z1:k) ∞∑

ik1=1

...

∞∑
ik
tk
=ik

tk−1
+1

ˆ
dxk1...dxktkp

(
Rk
∣∣∣z1:k, tk) = 1 (1)

The explanation for the normalisation given in (1) is the following. In a Bayesian hierarchical model,

firstly, we sum over all the models tk ∈ {0} ∪ N and then we integrate the state for that model. As the

labels are discrete variables a sum is performed rather than a integral. In addition, the sum over the labels

in (1) takes into account that ik1 < ik2 < ... < iktk , which ensures unique labelling.

The posterior is calculated recursively in two phases: prediction and update [30]. The prediction phase

makes use of the Chapman-Kolmogorov equation:

p
(
Rk, tk

∣∣∣z1:k−1)
=

∞∑
tk−1=0

∞∑
ik−1
1 =1

...

∞∑
ik−1

tk−1=i
k−1

tk−1−1
+1

ˆ
dxk−11 ...dxk−1tk−1p

(
Rk, tk

∣∣∣Rk−1, tk−1
)
p
(
Rk−1, tk−1

∣∣∣z1:k−1) (2)

The explanation about why (2) has this form is the same as for (1). The update equation is obtained

by Bayes’ rule:

p
(
Rk, tk

∣∣∣z1:k) ∝ p(zk
∣∣∣Rk, tk

)
p
(
Rk, tk

∣∣∣z1:k−1) (3)

It should be noted that PFs only require the posterior PDF up to a normalising constant [30]. Therefore,

the normalisation constant is not included in (3) as it is not necessary in the PF implementation explained

in the rest of the paper. When tk−1 = 0, Rk−1 can only take the value θ, thus, it is a discrete state so

the integrals in (2) come down to a substitution of the probability mass of that state.

In the following, we introduce an equivalent notation that simplifies the writing of the necessary PDFs

involved in (2) and (3). Let us define the variable
(
Xk, Ik

)
where Xk =

[(
xk1
)T
, ...,

(
xktk
)T ]T ∈ R4tk

is the multitrack vector and Ik =
{
ik1, i

k
2, , ..., i

k
tk

}
is the set of labels. Now, it is the size of Ik that

governs the dimensionality of Xk. It is shown in [9, Section 4.2] that there is a one-to-correspondence

between
(
Xk, Ik

)
and

(
Rk, tk

)
. This implies that computing p

(
Xk, Ik

∣∣z1:k ) is equivalent to calculating

p
(
Rk, tk

∣∣z1:k ). Additionally, there is also a bijection with an equivalent RFS with labels [9, Appendix

B]. Table I indicates the quantities of interest in each one of the equivalent notations. Because of the

equivalence among these notations, the paper could have been written using any of them taking into
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Table I – Equivalent notations for multitarget tracking with labels

Notation Quantity of interest

Hierarchical model with labels [13]
(
Rk, tk

)
=

([(
xk
1

)T
, ik1 , ...,

(
xk
tk

)T
, iktk

]T
, tk
)

JMKPD [28]
(
Xk, Ik

)
=

([(
xk
1

)T
, ...,

(
xk
tk

)T ]T
,
{
ik1 , i

k
2 , , ..., i

k
tk

})
RFS with labels [2]

{[(
xk
1

)T
, ik1

]T
, ...,

[(
xk
tk

)T
, iktk

]T}

account that the RFS notation uses set densities and set integrals [2]. Nevertheless, this paper is written

using the JMKPD for two reasons: using sets for the labels enables us to write the transition PDFs in a

more compact form than using the hierarchical model in [13] and using vectors for the multitarget state

enables us to describe the PP method in Section III in a more compact form than using sets.

Our aim is to compute p
(
Xk, Ik

∣∣z1:k ) recursively. To this end, we need to calculate (2) and (3) using

a target transition PDF p
(
Xk, Ik

∣∣Xk−1, Ik−1
)

and the PDF of the measurement given the multitarget

state p
(
zk
∣∣Xk, Ik

)
, which are analogous to their representation using the variable

(
Rk, tk

)
and can be

also written in the RFS framework. These are explained in the following subsections.

A. Multitrack model

This model is mainly the one in [28]. The model takes into account the births, deaths and motions of

the targets. We assume that the a priori evolution of the number of targets in track is modelled by an

M/M/∞ birth-death process [31] with parameters, λ, the a priori arrival rate of targets, and 1/µ, the

average life of a target. The a priori arrival rate of targets λ is taken to be proportional to the area AS

of the surveillance region, λ = λAAS , where λA would denote the prior arrival of targets per area unit.

According to this model, the probability that bk new targets appear at time k:

p
(
bk
)

=
e−λτ (λτ)b

k

bk!
(4)

where τ is the sampling interval [32]. The probability that a target dies in a sampling interval is:

pd = 1− e−µ·τ (5)

We define the sets: Sk =
{
sk1, s

k
2, ..., s

k
tk−dk

}
the set of labels of the targets that survive from time k

to k+1 where dk is the number of targets that die at time k and Nk+1 =
{
nk+1
1 , nk+1

2 , ..., nk+1
bk+1

}
the set

of labels of the targets that are born at time k+ 1 so Ik+1 = Sk ∪ Nk+1. We use Xk+1
(
Sk
)

to denote

the components of the vector Xk+1 that correspond with the set of tracks in Sk. That is, Xk+1
(
Sk
)

=[(
xk+1

(
sk1
))T

, ...
(
xk+1

(
sktk−dk

))T ]T where xk+1
(
skj

)
=
[
xk+1

(
skj

)
, ẋk+1

(
skj

)
, yk+1

(
skj

)
, ẏk+1

(
skj

)]T
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represents the state of a target whose label is skj at time k + 1 and sk1 < sk2 < ... < sktk−dk to ensure

unique ordering.

Therefore:

p
(
Xk+1, Ik+1

∣∣∣Xk, Ik
)

= p
(
Xk+1

(
Sk
)
, Sk, Xk+1

(
Nk+1

)
, Nk+1

∣∣∣Xk, Ik
)

(6)

Equation (6) comes from the fact that each component of Xk+1 is either in Xk+1
(
Sk
)

or Xk+1
(
Nk+1

)
and Ik+1 = Sk ∪ Nk+1. Using the same procedure as in [28], equation (6) can be written as:

p
(
Xk+1, Ik+1

∣∣∣Xk, Ik
)

= p
(
Nk+1

)
p
(
Sk
∣∣∣Ik) p(Xk+1

(
Nk+1

) ∣∣∣Nk+1
)
p
(
Xk+1

(
Sk
) ∣∣∣Xk, Sk

)
(7)

Now we give the expressions for all the probabilities in (7) and explain their meaning. The first

probability indicates how the new labels are assigned. To this end, let us partition the surveillance area

V ⊂ R2 into M cells of the same size V1, V2, . . . , VM . Assume that at most one target can appear in a

given cell at a given sample time. The target appearing in the jth cell at the kth time is given the label

j + (k − 1)M . Let F k = {(k − 1)M + 1, . . . , kM} denote the set of all possible labels that can be

assigned at time k. Then

p
(
Nk+1

)
∝

 p
(
bk+1

)
if Nk+1 ⊆ F k+1

0 otherwise
(8)

where we should recall that
∣∣Nk+1

∣∣ = bk+1. It should be noted that we also use a grid on M sensors

in the measurement model to be described in Section II-B. However, this does not imply that this way

of assigning the target labels can only be applied to this kind of measurement model. In general, for

any measurement model, we can partition the surveillance area such that only one target can appear in

a given region at a given time step.

The second probability in (7) indicates the set of labels of the targets that survive time k:

p
(
Sk
∣∣∣Ik) =


∏tk

j=1

[
χSk

(
ikj

)
(1− pd) +

(
1− χSk

(
ikj

))
pd

]
if Sk ⊆ Ik

0 otherwise
(9)

where χS (B) = 1 if B ⊆ S and zero otherwise and it has been assumed that each target dies with a

probability pd independently from the rest.

The third probability in (7) indicates the a priori state of the targets that are born at time k. We assume

that the states of newborn targets are independent and target nkj appears in cell Vnk
j

with an initial position

uniformly distributed in this cell and an initial velocity distributed following a PDF pv0 (·). Therefore

p
(
Xk
(
Nk
) ∣∣∣Nk

)
=

bk∏
j=1

UVnk
j

(
xk
(
nkj

)
, yk

(
nkj

))
· pv0

(
ẋk
(
nkj

)
, ẏk

(
nkj

))
(10)
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where UVnk
j

(x, y) is a uniform random variable in the cell Vnk
j
, whose area is Ank

j
= AS/M (AS is the

area of the surveillance region), evaluated at (x, y).

The fourth probability in (7) is the dynamic model, a nearly constant velocity model [33]:

p
(
Xk+1

(
Sk
) ∣∣∣Xk, Sk

)
=

tk−dk∏
j=1

N
(
xk+1

(
skj

)
; Fxk

(
skj

)
, Q
)

(11)

F = I2 ⊗

 1 τ

0 1

 (12)

Q = σ2uI2 ⊗

 τ3/3 τ2/2

τ2/2 τ

 (13)

where it is assumed that the targets move independently, N (x; x, Q) is the Gaussian PDF evaluated at

x with mean x and covariance matrix Q, Im is the m × m identity matrix, ⊗ is the Kronecker product

and σ2u is the continuous-time process noise intensity [33].

B. Measurement models

We consider two measurement models. The first model is the pixellised image model commonly used in

track-before-detect algorithms, where each pixel (sensor) corresponds to the received power in a particular

spatial location [3], [6], [7], [34]. This model is used to compare our algorithm with the existence grid

[7], [25] as to the creation and deletion of tracks. The other is a centralised sensor network in which

the sensors are deployed in a surveillance area, measure the received power from emitting targets and

transmit its value to a fusion centre, which carries out detection and tracking tasks [35]. Both models

only differ in how the signal-to-noise ratio SNR at each sensor/pixel is calculated.

For the pixellised sensor model, the signal-to noise ratio produced by a target with coordinates [x, y]T

in a pixel (sensor) is [7]:

SNR (x, y, xs, ys) =

 SNR |x− xs| ≤ lx/2 and |y − ys| ≤ ly/2

0 otherwise
(14)

where [xs, ys]
T are the coordinates of the sensor and [lx, ly]

T is the size of the pixels.

In the second model, the signal-to-noise ratio produced by a target depends on the distance r from the

target to the sensor following a piecewise linear function. The function is defined with N + 1 intervals

whose endpoints and values are {r0 = 0, r1, ..., rN , rN+1 =∞} and SNRr,i i ∈ {1, ..., N + 1},
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respectively. Therefore:

SNR (r) =



SNRr,1 0 ≤ r < r1

... ...

SNRr,N rN−1 ≤ r < rN

0 r ≥ rN

(15)

which can approximate any isotropic propagation model as accurately as possible.

For both models we assume that there are M sensors located in the surveillance area with the vector

zk =
[
zk1 , z

k
2 , ..., z

k
M

]T containing the measurements from each sensor which are independent in each

sensor. We assume Rayleigh-distributed measurements. This distribution corresponds to envelope-detected

signals under a Gaussian model. This model has been used in radar systems [26] and radio signal

propagation [36]. Then, the PDF of the measurement at sensor j conditioned on the current multitarget

state depends on the total signal-to-noise ratio at sensor j, SNRj , which is the sum of the signal-to-

noise ratios produced by each target [37], calculated using (14) or (15) depending on the sensor model.

Therefore:

p
(
zk
∣∣∣Xk, Ik

)
=

M∏
j=1

p
(
zkj |SNRj

)
(16)

where the dependency of SNRj on Xk is not given explicitly. The PDF of the measurement for sensor

j for non-thresholded data is:

p
(
zkj |SNRj

)
=

zkj
1 + SNRj

exp

−
(
zkj

)2
2 (1 + SNRj)

 (17)

In the numerical simulations in Section V, we also analyse the effect of thresholding the data on

performance as in [6], [7]. This binary data (detections) is obtained using threshold Γ:

Γ =
√
−2 lnPfa (18)

where Pfa is the false alarm probability per sensor. Then, the PDF of the measurement for sensor j for

binary data is:

p
(
zkj |SNRj

)
= P

1/(1+SNRj)
fa δ

(
zkj − 1

)
+
(

1− P 1/(1+SNRj)
fa

)
δ
(
zkj

)
(19)

where δ (·) denotes the Dirac delta. It should be noted that if we use any other measurement model

instead of (16), it does not affect the development of the main novelties of the paper: the PP method of

Section III and the two-layer PF of Section IV. These measurement models have been used to analyse

the performance of the algorithms in Section V.
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III. PARTICLE FILTER IMPLEMENTATION FOR A FIXED AND KNOWN NUMBER OF TRACKS

In this section, we present a PF to approximately solve (2) and (3) when the number of tracks is fixed

and known. We will generalise the algorithm for a variable and unknown number of tracks in the next

section. In this case, the number of tracks over time is constant tk = t, Ik = I = {1, ..., t} the set

of labels of the surviving tracks coincides with the labels at the previous step Sk = I and no tracks

are born at any time Nk = Ø. Therefore, the JMKPD comes down to estimating p
(
Xk
∣∣z1:k ) as the

labels are implicit in the ordering of the multitarget state vector Xk. In addition, as nonlinearity in our

tracking model enters in the relationship between the measurements and the positions of the tracks and the

relationship between the velocities and the positions is linear and Gaussian, the posterior of the velocity

elements can be computed exactly using a Kalman filter conditional on the trajectory of the targets. This

technique, known as Rao-Blackwellisation, improves the filter performance for a given sample size [7],

[38]. Then, the Rao-Blackwellised PF approximation to the JMKPD at time k is approximated as [9]

p
(
Xk
∣∣∣z1:k) ≈ Npar∑

i=1

wki δ
(
Pk −Pk

i

) t∏
j=1

p
(
vkj

∣∣∣p0:k
j,i

)
(20)

where

p
(
vkj

∣∣∣p0:k
j,i

)
= N

(
vkj ; vkj,i, Σk

j,i

)
(21)

and Npar is the number of particles, wki is the normalised weight of particle i at time k, Pk is the vector

that contains the positions of all tracks at time k, Pk
i is the ith particle at time k, and vkj,i and Σk

j,i are the

posterior mean and covariance matrix of the velocity elements conditional on the trajectory of positions

for the ith particle and jth track p0:k
j,i . At time k, what we need to store is the Rao-Blackwellised particles

Xk
i =

(
Pk
i , vk1,i, Σk

1,i, ...v
k
t,i, Σk

t,i

)
for i = 1, ..., Npar.

The PF approximation of the posterior density of the positions at time k + 1 using Bayes’ rule and

(11) in (20) and integrating out the targets’ velocities at time k + 1 is [9]:

p
(
Pk+1

∣∣∣z1:k+1
)
∝ p

(
zk+1

∣∣∣Pk+1
)Npar∑
i=1

wki

t∏
j=1

p
(
pk+1
j

∣∣∣xkj,i) (22)

where xkj,i is the Rao-Blackwellised ith particle of track j at time k and p
(
pk+1
j

∣∣∣xkj,i) is Gaussian with

mean pkj,i + τvkj,i and covariance matrix τ2Σk
j,i + Qp where Qp is the process noise covariance matrix

for the position elements according to (13).

Then, the PF approximation of the posterior needs to obtain samples that are distributed according to

(22). There are a lot of ways to approximate (22) using importance sampling, each one defining a PF.
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We propose an importance density constructed using a method called parallel partition (PP). The method

developed here is a convenient, fast way to propagate particles in multitarget situations.

A. Parallel Partition method

Here, we propose the PP method as a modification of the well-known IP method and provide a detailed

mathematical explanation on how both methods work via auxiliary sampling. IP and PP methods make

the following assumption:

Assumption 1. Tracks are a priori independent with evenly distributed weights, wki = 1/Npar, so that

p
(
Pk+1

∣∣∣z1:k) ∝ t∏
j=1

Npar∑
i=1

p
(
pk+1
j

∣∣∣xkj,i) (23)

The proof of (23) under Assumption 1 can be found in the Appendix. Under Assumption 1, the posterior

PDF becomes:

p
(
Pk+1

∣∣∣z1:k+1
)
∝ p

(
zk+1

∣∣∣Pk+1
) t∏
j=1

Npar∑
i=1

p
(
pk+1
j

∣∣∣xkj,i) (24)

We should note that getting weights evenly distributed at time k can be done by performing a resampling

step of the particles at time k [30].

Then, what we propose is to sample an auxiliary variable for each track such that the posterior is:

p
(
Pk+1, a

∣∣∣z1:k+1
)
∝ p

(
zk+1

∣∣∣Pk+1
) t∏
j=1

p
(
pk+1
j

∣∣∣xkj,aj ) (25)

where a = [a1, ..., at]
T ∈ {1, ..., Npar}t and aj indicates that we are choosing the component aj for

track j on the mixture given by the prior, see equation (24). The idea of sampling in a higher dimension

has traditionally been used, for instance, in the auxiliary PF, and can provide a lot of benefits [22], [30],

[39]. We should note that integrating out the auxiliary variables in (25), we get the PDF of (24) so this

definition of auxiliary variables is sound. If we draw a sample from the joint density (25) and then discard

the part of the sample that corresponds with a, then we are producing a sample from (24) as required.

If we draw Pk+1
i , ai =

[
ai1, . . . , a

i
t

]T from an importance density q1 (·) for i = 1, . . . , Npar, the

updated weights are calculated as:

wk+1
i ∝

p
(
zk+1

∣∣∣Pk+1
i

)∏t
j=1 p

(
pk+1
j,i

∣∣∣xkj,aij )
q1

(
Pk+1
i , ai |z1:k+1

) (26)

The importance density in the PP filter is taken to be:

q1

(
Pk+1, a

∣∣∣z1:k+1
)

=

t∏
j=1

bj

(
pk+1
j

)
p
(
pk+1
j

∣∣∣xkj,aj ) (27)
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where

bj

(
pk+1
j

)
∝ p

(
zk+1

∣∣∣p̂k+1|k
1 , . . . , p̂

k+1|k
j−1 ,pk+1

j , p̂
k+1|k
j+1 , . . . , p̂

k+1|k
t

)
(28)

and p̂
k+1|k
j is the predicted position of track j averaged over all the particles. We call bj

(
pk+1
j

)
the

first-stage weights. In contrast, we want to indicate that the IP method uses bj
(
pk+1
j

)
∝ p

(
zk+1

∣∣∣pk+1
j

)
rather than (28).

Substituting (27) and (28) into (26), the unnormalised particle weights, second-stage weights, are:

wk+1
i ∝

p
(
zk+1

∣∣∣Pk+1
i

)
∏t
j=1 bj

(
pk+1
j,i

) (29)

The computational expense of evaluating (28) and then (29), can be lowered if we separate the tracks

into s ≤ t clusters Ck+1
1 , . . . , Ck+1

s such that
⋃s
l=1C

k+1
l = I and ∀l ∈ {1, . . . , s}, ∀i ∈ Ck+1

l∥∥∥p̂k+1|k
i − p̂

k+1|k
j

∥∥∥ ≤ Γc → j ∈ Ck+1
l (30)

where Γc is a threshold. Equation (30) is a mathematical way to indicate that if the distance between the

predicted positions of two tracks is below Γc, then, these tracks belong to the same cluster1. Using the

same reasoning as in [7], for a sufficiently large value of Γc, we can write (28) as:

bj

(
pk+1
j

)
∝ p

(
zk+1

∣∣∣Ĉk+1|k
l−{j} , pk+1

j

)
(31)

where Ĉ
k+1|k
l−{j} are the predicted positions of the tracks that belong to cluster l, in which track j is also

included, except the position of track j averaged over all the particles.

In the rest of the section, we explain how we draw samples from (27) and provide a discussion about

the proposed method.

1) Sampling from the importance density: Here, we explain how IP and PP draw samples from (27)

recalling that the only difference between both methods is the definition of bj
(
pk+1
j

)
. We can write

q1

(
Pk+1, a

∣∣∣z1:k+1
)

=

t∏
j=1

q1,j

(
pk+1
j , aj

∣∣∣z1:k+1
)

=

t∏
j=1

bj

(
pk+1
j

)
p
(
pk+1
j

∣∣∣xkj,aj ) (32)

where q1,j (·) is the importance density to draw positions and indices for track j. It should be noted

that it is generally not possible to sample directly from q1,j (·). Instead, we use the approximate method

sampling/importance resampling in [40] to get samples from q1,j (·).

1A track can belong to only one cluster and the computational burden of clustering is almost negligible in the algorithm.
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a) General algorithm: According to [40], we can define a “first-pass approximation” of

q1,j

(
pk+1
j , aj

∣∣z1:k+1
)

called h
(
pk+1
j , aj

∣∣z1:k+1
)

. Then, we draw Mpar samples from

h
(
pk+1
j , aj

∣∣z1:k+1
)

, which are denoted by p∗j,p, a
∗
j.p for p = 1, ...,Mpar, and we evaluate

r
(
p∗j,p, a

∗
j.p

)
∝
q1,j

(
p∗j,p, a

∗
j.p

∣∣z1:k+1
)

h
(
p∗j,p, a

∗
j.p |z1:k+1

) (33)

Finally, we draw Npar values of
(
pk+1
j , aj

)
from the distribution defined by

(
p∗j,p, a

∗
j.p

)
for p =

1, ...,Mpar with probability proportional to r
(
p∗j,p, a

∗
j.p

)
. The resulting particles are samples from q1,j (·)

[40].

b) Application to IP and PP: In both IP and PP methods, h (·) is

h
(
pk+1
j , aj

∣∣∣z1:k+1
)
∝ p

(
pk+1
j

∣∣∣xkj,aj ) (34)

and IP and PP sample from h (·) via stratified sampling [41]. The sample space of
(
pk+1
j , aj

)
is Ω = R2×

{1, ...Npar}. Then, we can define Npar disjoint subregions
{

D1, ...,DNpar

}
such that Di = R2×{i} and

Ω =
⋃Npar

i=1 Di. From (34), the probability that a sample belongs to region Di is 1/Npar, i.e., the regions

are equally probable. Then, assuming we want Mpar samples from h (·), there are Mi samples in region

Di such that
∑Npar

i=1 Mi = Mpar. Since the variance in these regions is the same, the optimal way to assign

Mi is Mi = Mpar/Npar [41] . In the IP and PP method Mpar = Npar, so Mi = Npar/Npar = 1 although

it can be easily generalised for Mpar > Npar. This implies that sampling from h
(
pk+1
j , aj

∣∣z1:k+1
)

can

be done going through all the regions (i.e. indices of the particles), drawing one position per each region

(particle), noting that in each region the index is deterministic.

Once we have Mpar samples from (34), we draw Npar values of
(
pk+1
j , aj

)
from the empirical

distribution defined over the values
(
p∗j,p, a

∗
j.p

)
for p = 1, ..., Npar with probabilities proportional to

r
(
p∗j,p, aj.p

)
= bj

(
p∗j,p

)
getting samples from q1,j (·). These are the steps shown in Table II. We

should mention that in [18] and [6] they also sample following the steps in Table II but they do not

justify why.

2) Discussion about the PP method: The important features of the PP method are subparticle crossover

and the way the first-stage weights are chosen. By “subparticle” we refer to the part of a particle that

represents a single track. Therefore, a particle is made up of the subparticles of all the tracks. Then, by

sampling an auxiliary variable for each track, a in (27), what we are doing is that a particle at time step k

is formed by the propagation of subparticles that belonged to different particles at time k− 1, see Figure

1. For example, a certain ai =
[
ai1, . . . , a

i
t

]T indicates that to form particle i we are using subparticle

ai1 for target one, ai2 for target two and so on, therefore, mixing them and doing subparticle crossover.
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Table II – Independent and Parallel Partition Subroutines

IP and PP subroutines for track or pre-track j with Rao-Blackwellisation

• For each particle i = 1, ..., Npar (Region Di):

– Get a sample for the position p∗j,i v p
(
pk+1
j

∣∣xk
j,i

)
using (11).

– Calculate the mean and covariance matrix of the velocity using a Kalman filter v∗j,i y Σ∗j,i.

– IF we are using IP

∗ Calculate bj
(
p∗j,i
)
= p

(
zk+1

∣∣p∗j,i ) using (16).

– ELSE (we are using PP)

∗ Calculate bj
(
p∗j,i
)
= p

(
zk+1

∣∣∣p∗j,i, Ĉ
k+1|k
l−{j}

)
using (16) where l is the cluster of track j.

• Normalise bj
(
p∗j,i
)

to sum to one over i = 1, ..., Npar .

• Resampling step for each track. For each particle i = 1, ..., Npar:

– Sample an index p from the distribution defined by bj
(
p∗j,l
)

over l = 1, ..., Npar .

– Set xk+1
j,i =

{
p∗j,p, v̄∗j,p, Σ∗j,p

}
and the parent’s index aij = p.

Time k-1 Time k

Particle i

Particle j

Track 1

Track 2

Track 3

Track 1

Track 2

Track 3

Figure 1 – Subparticle crossover for three tracks: A particle at time k can be made up of the propagation of

the tracks that belonged to different particles at time k − 1. The circles inside each subparticle stand for the

first-stage weight of the subparticle, see (31). At time k, we tend to form particles with subparticles that have

a high first-stage weight. In this case, ai = [i, i, j]
T and aj = [i, j, j]

T .

Subparticle crossover is also included in the IP method [6], [8], [19]. In fact, as we indicated, the IP

method is equivalent to the PP method if the first stage weights are given by bj
(
pk+1
j

)
∝ p

(
zk+1

∣∣∣pk+1
j

)
rather than (31). However, IP method performance plummets when there are several targets in close

proximity. This loss of performance is due to the way the first-stage weights are chosen as only one

target is considered. This leads to the selection of subparticles that are appropriate for representing one

target because the likelihood for that subparticle considering one target is high. Nonetheless, this does

not imply that a particle formed by stacking good subparticles for representing one target will have a
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high likelihood when considering all the targets together.

It should be noted that Assumption 1, which is required for subparticle crossover, does not necessarily

hold for a group of closely spaced tracks as their positions conditioned on the measurements could

be dependent. However, assumptions of this kind are quite common in multitarget tracking algorithms.

For instance the well-known joint probabilistic data association filter (JPDAF) [42] assumes a priori

independence of the target states as does the Monte Carlo approximation to the JPDAF proposed in [23].

These methods have been shown to work very well despite the occasional invalidity of this assumption.

Using Assumption 1 when it is not satisfied can be interpreted as a way of trading-off bias and variance.

In particular, we argue that the bias incurred in assuming a priori independence when it does not actually

exist is less than the variance which results by the joint sampling of several track states, particularly

when tracks states are sampled from the prior and the number of particles is relatively small. This was

proved in [43] for the case of a Gaussian posterior.

We also want to highlight that the PP method can be used for any measurement model as it only

requires Assumption 1, which is independent of the measurement model. Here, PP has been explained

using Rao-Blackwellisation but this is not an essential part of the algorithm. As in Bayesian filtering the

likelihood p
(
zk+1

∣∣Xk+1
)

is always available, PP can always be used as it only requires to sample from

the prior and evaluate the likelihood as indicated previously.

IV. PARTICLE FILTER IMPLEMENTATION FOR A VARIABLE AND UNKNOWN NUMBER OF TRACKS

In the previous section we presented the PP method as a way to propagate particles in a multitarget

tracking set-up when the number of targets is fixed and known. In this section, we present a two-layer

PF to deal with the problem of tracking a variable and unknown number of targets. One layer deals

with the termination of the tracks and the tracking itself while the other deals with track initiation. Both

layers are PFs on their own, therefore, they are called track PF and pre-track PF, respectively. This idea

is illustrated in Figure 2.

Firstly, we describe the importance density for the track PF. The importance density is chosen so that

it factorises as:

q
(
Pk+1, Ik+1, a, c

∣∣∣z1:k+1
)

= qp

(
Pk+1

(
Sk
)
, Sk, a

∣∣∣z1:k+1
)
q3

(
Pk+1

(
Nk+1

)
, Nk+1, c

∣∣∣z1:k+1
)

(35)

where a = [a1, ..., atk ]T is the auxiliary vector of the PP method and, c = [c1, ..., cbk+1 ]T ∈ {0, ..., Npar}b
k+1

is an auxiliary vector used to create new tracks. The use of the variable c is explained in Section IV-B. The
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Track Particle Filter

Pre-Track Particle Filter

Measurements

Pre-tracks

Tracks

Figure 2 – Two-layer PF diagram. The measurements update the two layers simultaneously. When the pre-

tracks are considered tracks, they pass to the upper layer. In the area where there is a track, we do not initiate

pre-tracks.

importance density qp (·) propagates the labels of the surviving targets and their states. The importance

density q3 (·) proposes the positions of the tracks that are born at time k + 1 and assigns their labels.

The importance density qp (·) is taken to be:

qp

(
Pk+1

(
Sk
)
, Sk, a

∣∣∣z1:k+1
)

= q1

(
Pk+1, a

∣∣∣z1:k+1
)
q2

(
Sk
∣∣∣Pk+1, a, z1:k+1

)
(36)

where q1 (·) is the importance function of the PP method for known number of targets, equation (27),

that only depends on the particles at time k, and q2 (·) determines the survival targets at time k and is

defined as:

q2

(
Sk
∣∣∣Pk+1, a, z1:k+1

)
=

tk∏
j=1

[
q2,j

(
ikj,aj ∈ S

k
∣∣∣pk−Nd+2:k+1

1,a1
, ...,pk−Nd+2:k+1

tk,atk
, zk−Nd+2:k+1

)
χSk

(
ikj,aj

)
+

(
1− q2,j

(
ikj,aj ∈ S

k
∣∣∣pk−Nd+2:k+1

1,a1
, ...,pk−Nd+2:k+1

tk,atk
, zk−Nd+2:k+1

))(
1− χSk

(
ikj,aj

))]
(37)

where q2,j
(
ikj,aj ∈ S

k
)

represents the probability that track ikj,aj survives, pk−Nd+2:k+1
j,aj

represents the

trajectory of particle aj of target j from time k − Nd + 2 to k + 1. Thus, Nd is the number of past

time steps that we use to decide if a track survives. We make q2 (·) dependent on several time instants

so that we take into account the target’s dynamics to remove targets. In Section IV-A, we explain this

importance function thoroughly.

Finally, the importance density for sampling the states of newborn tracks q3
(
Pk+1

(
Nk+1

)
, Nk+1, c

∣∣z1:k+1
)

does not depend on previous targets’ positions and we use another PF to draw samples from it, i.e., it is

the second layer of the overall PF. In Section IV-B, we address this importance density.
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A. Importance density for removing tracks

The removal of a track in a particle is performed via a likelihood ratio test (LRT) [44] based on Nd

time instants as indicated by (37). The decision to remove a track considers several time instants so that

we take into account target dynamics. The two hypotheses for the test are H1: the track ikj is alive and

H0: the track ikj is dead. In [28], the algorithm considered each target alone in the surveillance area but

that is a simplification because the decision to remove a track should take into account nearby targets.

Due to the fact that the importance density has to be non-zero wherever the prior is, we need to define

an acceptance probability for the result of the test:

q2,j

(
ikj ∈ Sk

∣∣∣Pk−Nd+2:k+1, zk−Nd+2:k+1
)

=

 Pa Λd = H1

1− Pa Λd = H0

(38)

where Pa is the probability of accepting the hypothesis given by the test2 and Λd is the LRT [44],

assuming that track ikj belongs to cluster lk at time k:

∏Nd−2
l=−1 p

(
zk−l

∣∣∣Ck−l
lk−l

)
∏Nd−2
l=−1 p

(
zk−l

∣∣∣∣Ck−l
lk−l−{ikj}

) Λd = H1

≷

Λd = H0

ηd (39)

where ηd is a threshold, Ck
lk represents the positions of the tracks in cluster lk at time k and Ck

lk−{ikj}
represents the positions of the tracks in cluster lk at time k except the position of track ikj .

B. Importance density for sampling newborn track states. Pre-track particle filter

As we stated previously, the importance density for sampling the states of the newborn tracks, q3 (·) in

(35), is built by means of a subsidiary PF. This PF is referred to as pre-track PF because it deals with the

initialisation of tracks. The pre-track PF approximates p
(
X̃k, Ĩk

∣∣z1:k) where X̃k and Ĩk stand for the

multitrack state vector and set of labels of the pre-tracks. Based on an LRT, it is decided which of these

pre-tracks are real and, consequently, are used to build the importance density q3 (·). As it is another PF,

we must specify the a priori model, the measurement model and the importance density of the pre-tracks

as done with the tracks in Section II. The measurement model and the state evolution model are the same

as in Section II except for the births and deaths of pre-tracks, equations (4) and (9). This is explained in

the following.

2We mainly use Pa for theoretical reasons but we actually accept the output of the LRT in the simulations. This could be

interpreted as Pa ≈ 1.
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1) Birth and death of pre-tracks: The initialisation of pre-tracks in a sensor region is done as follows.

First, that sensor and its neighbours must not have tracks or pre-tracks in their area of influence (area in

which a target produces an SNR above zero). Second, if we are using binary sensors, there has to be a

detection in that sensor or if we are using non-thresholded data sensors, the measurement in that sensor

has to be higher than the threshold in (18) given Pfa. In this subsection, we name these two events as

false alarms for the sake of clarity. Hence, for non-thresholded and binary data, Pfa is the probability of

initiating a pre-track in a sensor which does not have any targets in its surroundings. It should be noted

that if we do not use a grid-type measurement model as the ones used in this paper, we could devise a

similar procedure to initiate pre-tracks using the regions for labelling described in Section II.

A pre-track can be initiated because of two independent events: the arrival of a real target, modelled

by (4) and the occurrence of a false alarm. The probability mass function of the number of false alarms

nPfa
in each sampling period is a binomial distribution that, under the assumption that Pfa � 1 and

M � 1, where M is the number of sensors, can be approximated by a Poisson random variable [28]:

p
(
nPfa

)
≈
e−M ·Pfa (M · Pfa)nPfa

nPfa
!

(40)

Then, the number of arrivals of pre-tracks in a time interval τ is the sum of two independent Poisson

random variables, given by (4) and (40). The result is another Poisson random variable whose parameter

is the sum of the parameters. Therefore, the probability that there are b̃k births of pre-tracks is

p
(
b̃k
)
≈
e−λ̃

(
λ̃
)b̃k

b̃k!
(41)

where λ̃ = λ · τ +M · Pfa.

It is considered for simplicity that the pre-tracks have a deterministic life equal to Nb instants of time.

2) Importance density for the pre-track PF: As with the track PF, the importance density of the pre-

track PF is split into three independent parts: dynamics, births and deaths of pre-tracks. We make the

following assumption:

Assumption 2. Newly appearing targets are well separated.

Due to Assumption 2, we use the IP method as the importance density for the evolution of the model

q̃1 (·). In view of the deterministic life of a pre-track, there is no need to define an importance density

q̃2 (·) because the pre-tracks are simply removed from the pre-track filter when they have lived for Nb

time instants. The importance density q̃3 (·) used for the births of new pre-tracks works as follows: every

time there is a detection in a cell and this cell and its neighbouring cells are not occupied by a track
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or a pre-track, a new pre-track is initiated with a position drawn from a uniform PDF in the area of the

cell and the target velocity is initiated in a similar way as in Section V.C of [7]: When a pre-track is

added to a particle of the pre-track layer, we draw two integers η1, η2 such that P (ηi = j) = 1/2 for

j ∈ {−1, 1} i ∈ {1, 2} and then select the initial distribution of the velocity to be Gaussian with mean

[η1, η2]
T and covariance matrix 9I2.

3) Importance density for newborn tracks: Once a pre-track has lived for Nb time instants, an LRT

is carried out for each subparticle of that pre-track to decide whether it is a real track or not. The two

hypotheses are H1: the pre-track is a real track and H0: the pre-track is a false track. Under Assumption

2, this test becomes: ∏Nb−2
l=−1 p

(
zk−l

∣∣∣H1, x̃k−l
(
ĩkj

))
∏Nb−2
l=−1 p (zk−l |H0 )

Λb = H1

≷

Λb = H0

ηb (42)

where ηb is the threshold and x̃k−l
(
ĩkj

)
denotes the state of the pre-track of label ĩkj at time k − l.

Recall from (35) that sampling the states of the newborn tracks requires an auxiliary variable

c = [c1, ..., cbk+1 ]T ∈ {0, ..., Npar}b
k+1

where bk+1 is the number of pre-tracks in which at least one

subparticle has passed the test (42) at time k + 1. The variable cj = 0 if the jth pre-track is discarded

and cj 6= 0 indicates which subparticle from the pre-track PF is used to sample the state of a newborn

track in the track PF.

The importance density q3 (·) is taken to be:

q3

(
Pk+1

(
Nk+1

)
, Nk+1, c

∣∣∣z1:k+1
)

=

bk+1∏
j=1

q3,1

(
cj

∣∣∣z1:k+1
)
q3,2

(
pk+1
j

∣∣∣z1:k+1, cj

)
q3,3

(
nk+1
j

∣∣∣pk+1
j

)
(43)

where

q3,1

(
cj = i

∣∣∣z1:k+1
)

=

 dj,i/Npar i 6= 0

1−
∑Npar

i=1 dj,i/Npar i = 0
(44)

q3,2

(
pk+1
j

∣∣∣z1:k+1, cj

)
∝ p

(
zk+1

∣∣∣pk+1
j

)
p
(
pk+1
j

∣∣∣x̃kj,cj ) cj > 0 (45)

where x̃kj,i is the ith Rao-Blackwellised particle for pre-track j and dj,i is the output of LRT (42) for

pre-track j and particle i, i.e., dj,i = 1 if Λb = H1 or dj,i = 0 otherwise. When cj = 0, it means that

no target is born and, thus, q3,2 (·) assigns pk+1
j = θ, where θ is the symbol for no target [13]. Once we

have sampled cj for all the particles, the position of the new born target is sampled from q3,2 (·) using the

approximation in [40], i.e., via the IP method in Table II. In addition, q3,3 (·) assigns the labels of these

newborn tracks. We should note that according to the prior, see (8), the label of a target is deterministic
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and depends on the position of the new born target and the time index. Therefore, q3,3 (·) corresponds

with the prior assuming that the target positions in all the particles lie in the same cell so that the target

has the same label in all the particles.

One should note that the probability of transferring pre-track j to a particle in the track PF is

q3,1
(
cj > 0

∣∣z1:k+1
)

=
∑Npar

i=1 dj,i/Npar = npass/Npar where npass is the number of particles that

have passed the test (42). Therefore, the more particles there are that pass the test, the more likely it is

to initiate a track. In addition, the mean and covariance matrix of the initial velocity of a track are given

by a Kalman filter that uses the past positions of the corresponding pre-track.

Then, using the prior model of evolution of targets and the measurement model in Section II and

employing (35), (36), (38) and (43), the updated particle weights of the track PF are:

wk+1
i ∝

p
(
zk+1

∣∣∣Pk+1
i

)
p
(
Ski
∣∣Iki ) p(Nk+1

i

)
p
(
Pk+1
i

(
Nk+1
i

) ∣∣∣Nk+1
i

)
q2
(
Ski
)
q3

(
Pk+1
i

(
Nk+1
i

)
, Nk+1

i , ci

)∏tki
j=1 bj

(
pk+1
j,i

) (46)

where the conditioning of the importance densities q2 (·) and q3 (·) has been removed to simplify the

notation and Ski and Nk+1
i are the sets that contain the labels of the surviving targets and the new born

targets of particle i, respectively. One should note that the prior PDF of initial target positions, given by

(10), is inversely proportional to Ab
k+1

S . On the other hand, p
(
Nk+1
i

)
∝ Abk+1

S , recalling from Section II

that λ = λAAS . Then, both factors cancel each other out and the update of the weights is independent of

the area of the surveillance region. Finally, a summary of the integrated detection and tracking algorithm

is given in Table III.

V. SIMULATION RESULTS

In this section, we compare the proposed algorithm with other methods available in the literature. Firstly,

we compare the PP method to other importance densities in the tracking part of the filter. Secondly, we

compare the two-layer PF to other methods as for the estimation of the number of targets.

A. Tracking performance

The PP method is compared with other methods available in the literature: the above-mentioned IP, the

adaptive proposal method that uses IP when the targets are far from each other and the coupled partition

method (CP) when they are in close proximity3 [6], [8], a jointly auxiliary PF (JA) [39], [45], an adaptive

auxiliary PF (AA) and the unscented Kalman filter (UKF) [46]. By JA, we denote the traditional auxiliary

3In this paper, we denote by CP the adaptive proposal that makes use of the clusters in [6].
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Table III – Proposed algorithm for detection and tracking of multiple targets

• Separate the tracks into clusters using (30).

• For each track, sample the multiple track state using the PP method assuming all the targets survive, see Table II.

• Calculate the quotient of the LRT for the tracks using (39).

• For each pre-track, sample the multiple pre-track state using the IP method, see Table II.

• Calculate the quotient of the LRT for the pre-tracks using (42).

• For all the pre-tracks that have lived Nb time instants, evaluate the test (42).

– If there are pre-tracks that pass the test, sample the states of the newborn tracks using (43).

• For each particle in the track PF:

– Remove the tracks by evaluating the importance density (38).

– Update the weights of the particles using (46).

• Add pre-tracks to the pre-track PF according to q̃3 (·), see Section IV-B.

• Update the weights of the particles in the pre-track PF, see Section IV-B.

• Perform resampling to obtain an evenly weighted particle set for both layers.

PF, i.e., at each time step we predict the multitarget state at the following time step, we compute the

first-stage weights, we perform resampling and sample the multitarget state, see [39], [45] for details.

JA never performs subparticle crossover. By AA, we denote an auxiliary PF that works by clustering

of closely-spaced targets as in PP. Then, for each cluster we draw the particles using an auxiliary PF.

Therefore, AA performs subparticle crossover for targets that are far, i.e., they do not belong to same

cluster, and does not for targets that are in the same cluster. The properties of the importance densities

of these PFs can be found in Table IV. The implementation of CP in our simulations uses R = 10

possible realisations of the future state as in [6]. The PFs have been implemented following the steps

in Table III. The only part that changes is the importance density for sampling the surviving targets’

states. Our implementation of the UKF also makes use of the clusters. When the targets are isolated,

we update their states and covariance matrices independently and when they belong to the same cluster

we update all of them jointly. Thus, the number of sigma points that are needed to match the first two

moments [46] is 8Nc + 1 where Nc is the number of targets in the cluster4. A more detailed explanation

of how the UKF can be used for the kind of measurement model we use in this paper is given in [45].

Our UKF implementation applies the LRT to the mean for track creation and removal. In addition, we

have also implemented the algorithm described in [3], in which the posterior is approximated using

4The dimension of the state of a target is 4. Consequently, the dimension of the state of a cluster is 4Nc and therefore the

number of sigma points is 2 · 4Nc + 1.
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Table IV – Properties of the importance densities

Subparticle crossover (far) Subparticle crossover (near) Considers nearby targets

IP
√ √

×

CP
√

× ×

PP
√ √ √

AA
√

×
√

JA × ×
√

Table V – Simulation parameters

A priori model

λA 1/ (100 · τ ·AS)

1/µ (133 · τ)

σu 5 m/s3/2

Filter (binary)

Nd 4

ηd 5 · 10−3

Nb 3

ηb 107

Filter (non-

thresholded)

Nd 4

ηd e−10

Nb 3

ηb e7

multi-Bernoulli random finite sets (MBRFS). The implementation of MBRFS in our simulations removes

targets with existence probabilities below 0.001 and the initial existence probability for a target is 0.005.

Note that other methods for multiple target tracking can only deal with thresholded measurements that

require a data association step such as the algorithms given in [23], [47]–[51]. These algorithms cannot be

directly applied to the measurement models described in Section II-B and, therefore, we do not provide

comparisons with them.

The scenario used to evaluate the performance of the algorithms consists of four targets whose

trajectories cross at the same time, see Fig. 3. The sampling period of the trajectories is τ = 0.5 s

and there are l = 130 time steps in the simulation. The targets appear at different times. The parameters

used in the simulations are shown in Table V. The surveillance area is a rectangle whose dimensions are

5000 m × 2500 m. In this area, the sensors are arranged forming a grid of 50 × 25 sensors whose side

is 100 m. Each cell of the grid is one of the regions V1, ..., VM defined in Section II-A. The SNR of a

sensor produced by one target is approximated by a piecewise linear function:

SNR (r) =


20 dB r < 60 m

10 dB 60 m ≤ r < 80 m

0 r ≥ 80 m

(47)

where r is the distance from the target to the sensor. We also use Pfa = 2 · 10−5.
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Figure 3 – Simulation scenario: (a) target trajectories and (b) the largest cluster size for the true target positions

plotted against time for a clustering threshold Γc = 200 m. In (a), each target is identified at the beginning of

its trajectory by a number and there is an arrow to indicate the target position every ten time steps. Target one

appears at time step 1, targets two and four at time step 3 and target three at time step 4. The targets do not

disappear until the end of the simulation. Black dots indicate the sensor positions.

We evaluate the tracking performance calculating the root mean square (RMS) of the position error

by a Monte Carlo simulation with m = 50 realisations. To assess the tracking performance, we make a

Track-to-truth Assignment Table [26] in which each track is associated with one target or with none at

each time step depending on the distance from the track to the real position of the target and a threshold

that is taken to be Λ = 120 m. If the distance from a track to a target exceeds that threshold, the track

cannot be associated with that target. The threshold for forming the clusters is Γc = 200 m. In addition,

a track is assumed to be active if at least 70% of the particles contain it.

Let p̂ki (j) , i = 1, . . . , tk, k = 1, . . . , l, j = 1, . . . , m denote the position estimate of the ith target

on the jth Monte Carlo realisation at time k, eki (j) =
∥∥pki − p̂ki (j)

∥∥
2

denote the position error of the

ith target on the jth Monte Carlo realisation at time k and χi, j, k = 1 if eki (j) < Λ and zero otherwise.

The variable χi, j, k indicates if the ith target is in track at time k on the jth Monte Carlo realisation.

The time-averaged RMS position error E is then calculated by

E =

√√√√∑m
j=1

∑l
k=1

∑tk

i=1

(
eki (j)

)2 · χi, j, k∑m
j=1

∑l
k=1

∑tk

i=1 χi, j, k
(48)

To assess the performance of the algorithms, each Monte Carlo run has a different sequence of

measurements but the jth Monte Carlo run for all the algorithms uses the same sequence [33]. The

time-averaged RMS position error using non-thresholded data for all the algorithms is shown in Fig. 4
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(a). JA performs more poorly because it does not perform subparticle crossover when the targets are

far apart. Therefore, this PF acutely suffers from the curse of dimensionality that consists of a drop

in performance when the dimension of the state increases [17]. The UKF does not perform properly

either. It is better than all the PFs when there are only 100 particles but its performance is far from

the performance of PP when the number of particles is high because the measurement model is highly

non-linear. Nevertheless, as pointed out in [45], the UKF has much better performance than JA in a

multiple target tracking scenario. CP performs better than IP as expected [6] but much worse than PP.

This is due to the fact that IP and CP draw subparticles of the targets without taking into account the

other targets. This is of crucial importance when we use non-thresholded data and there is a crossing

in the targets’ trajectories. Moreover, as AA does not perform subparticle crossover when the targets

are in the same cluster, its performance is not as good as PP’s because it is difficult to find particles in

which all subparticles are good for representing the multitarget state when the number of particles is low.

Nevertheless, when the number of particles increases, the importance of subparticle crossover decreases

as it is easier to have particles in which all subparticles are appropriate for the multitarget state and the

difference between AA and PP becomes smaller. On the other hand, MBRFS performance is far from

PP, AA and CP performances. This was expected as MBRFS using non-thresholded data was developed

under the assumption that the targets are far from each other [3]. We should clarify that we have not

used the K-means algorithm for partition sorting in the PFs as suggested in [6]. K-means is an enforced

method to speed up the removal of the multimodality of the posterior PDF after a target crossing [52] to

facilitate target state estimation. Thus, including it would depart from the Bayesian perspective we want

to follow in this paper. Nevertheless, we have also implemented it and, for this scenario, its effects are

negligible as targets cross with different speeds so there are very few partition swappings [6].

The time-averaged RMS position error using binary data for all the algorithms is shown in Fig. 4 (b).

The use of binary data implies a higher error as there is less information available. We can draw the

same conclusions about the algorithms as when using non-thresholded data. However, as the number of

particles increases, the difference between AA and PP is lower than before. This means that subparticle

crossover is not so important with binary sensors. This can be attributed to the severe quantisation of the

measurements making it is easier to find full particles that agree with the measurement.

Further insight into the behaviour of the various algorithms can be gained by plotting the RMS position

error and the estimated number of targets against time. These plots are shown in Fig. 5 for non-thresholded

data using 500 particles for the PFs. We divide the simulation into two intervals to explain the plots:

• First interval: Before time step 85. The four targets are far from each other: IP, CP, PP have the
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Figure 4 – Time-averaged RMS position error using non-thresholded data (a) and binary data (b). PP method

outperforms the rest of the PFs because it performs subparticle crossover and considers nearby targets.

same performance as they are indeed the same PF when the targets are far from each other. AA

has high performance as well because it also uses subparticle crossover when the targets are not in

the same cluster. MBRFS also provides good estimates as the targets are not close. On the contrary,

JA does not work properly because it does not use subparticle crossover. The UKF does not work

properly either because the measurement model is highly nonlinear.

• Second interval: From time step 85 to 130. There are targets in close proximity. PP is the algorithm

with the highest performance in RMS error and estimating the number of targets because it takes

into account nearby targets and it also performs subparticle crossover. AA and UKF are roughly

the algorithms with the second highest performance as they also take into account nearby targets.

Conversely, IP and CP performances slump because they do not take into account targets in close

proximity to propagate the particles. MBRFS does not perform well either because the targets are

close to each other.

We have analysed the RMS error and the number of targets of the algorithms using different metrics

to show how the algorithms perform for these two different aspects. However, the optimal subpattern

assignment (OSPA) metric can assess both performances simultaneously [4]. Therefore, for the sake of

completeness, we also show the mean OSPA (MOSPA) position error per time step in Figure 5 (c). The

MOSPA error has been calculated with parameters c = 120 m and p = 2 [4]. The same conclusions can

be drawn as with the previous metrics although MOSPA error does not indicate what part of the error

corresponds to target number and to position error. At the beginning of the simulation, all the algorithms

have a MOSPA error of c = 120 m as no targets have been added yet.
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Figure 5 – RMS position error (a) and estimated number of targets (b) using non-thresholded data per time step

with 500 particles (c) MOSPA position error. Before time step 85, IP, CP, PP, AA and MBRFS have roughly

the same performance because the targets are far from each other. When the targets get closer, PP outperforms

the rest.
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Figure 6 – Number of surviving subparticles using 500 particles. PP has the highest survival rate.

Table VI – Execution times in seconds for 500 particles

IP CP PP AA JA UKF MBRFS

Non-thresholded 32.7 35 34.3 37.4 39.2 0.5 5.5

Binary 29.8 30.5 30.2 30.1 32.1 0.5 5.4

We also show the number of surviving subparticles per time step in Figure 6. We should note that the

implemented PFs perform a resampling stage after each time step. Then, the subparticles at time k are

based on only some subparticles at time k−1 (the surviving subparticles) because the rest have not been

selected because of their low weight. The higher the number of surviving particles, the most likely there

are particles that represent the posterior well. A survival rate of between 30–80% is generally seen as

acceptable [18]. Before time step 85, IP, CP, PP and AA have the same number of surviving subparticles.

However, when the targets get closer, PP has the highest number of surviving subparticles and is able to

maintain an acceptable survival rate. Before time step 4, all the algorithms have 100% survival rate as

no targets have been added yet.

In Table VI, we show the execution times of the algorithms implemented in Matlab with C-MEX

subroutines on a Pentium IV with a 2.4-GHz processor. The UKF is the fastest algorithm as it only

approximates the first two moments of the posterior. In addition, processing non-thresholded data takes

more time than processing binary data as the likelihood is faster to evaluate with binary data, see (17)

and (19). For this scenario, computational time increases roughly linearly with the number of sensors

and the number of particles.

Lastly, we show the number of particles that are needed to obtain a certain performance in a scenario

with an increasing number of targets in Table VII. In the considered scenario, the number of targets

whose trajectories cross at the same time is half the total number of targets and they do it in groups of
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Table VII – Required number of particles to obtain an RMS position error lower than 25 m

Number of targets

Method 4 8 12 16 20 24 28 32

PP 300 300 300 500 500 800 800 900

MBRFS 8700 8700 8700 8700 8700 8700 8700 8700

IP >10000 >10000 >10000 >10000 >10000 >10000 >10000 >10000

CP 600 8300 >10000 >10000 >10000 >10000 >10000 >10000

AA 400 1600 2800 6200 >10000 >10000 >10000 >10000

two targets. More details of this scenario are given in [9]. For a given error, MBRFS is able to track 32

targets with the same, albeit large, number of particles as with 4 targets because of its nonoverlapping

assumption. This suggests that MBRFS would be the most suitable algorithm for tracking large numbers

of targets. This conclusion is true only if targets remain well-separated. If several targets move in close

proximity then the performance of MBRFS deteriorates, as seen in Figures 4 and 5. On the other hand, the

proposed method (PP) provides a favourable trade-off between performance and computational expense.

It is not limited to the case of well-separated targets and the required sample size increases by only three

times as the number of targets is increased from 4 to 32. The remaining PFs fare much worse.

B. Estimation of the number of targets

Now, we compare our algorithm to the existence grid, whose details can be found in [7], [25], and the

MBRFS with regard to the creation and deletion of tracks. The existence grid is a method to construct

the importance densities governing target addition q2 (·) and removal q3 (·) based on partitioning the

surveillance area into cells that form a rectangular grid. The pixelised sensor model is used in this

section because the existence grid was designed to deal with this sensor model [7].

The existence grid provides a measure of the chances that a target is located in a cell, denoted as gk
j

in cell j at time k [7]. It is updated sequentially according to the measurement, the prior probability of

adding a target in a cell α and the prior probability of removing a target β. In our simulations, rather

than using the equation of the importance density to remove targets using the existence grid, equation

(53) in [7], which permits a target removal probability exceeding one5, we use the following probability

5This happens for instance when there are two targets, gk1 = 0.99, gk2 = 0.001 and β = 0.6, then τk2 = 1.188 which is not

correct as it is a probability.
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Figure 7 – Trajectories of the targets used to analyse the estimation of the number of targets

of removing target i:

τki =
β ·
(

1− gk
vki

)
∑tk−1

l=1

(
1− gk

vkl

) (49)

where vki denotes the cell occupied by the ith target at time k. In (49), the division of the denominator

by the number of targets, which appears in (53) of [7], has been removed. The resulting target removal

probability is at most β. The existence grid does not take into account targets’ dynamics because the

equation that models them, equation (11), is not used and, besides, it does not account for the possibility

that a target might move to another cell. Then, the performance of the existence grid is much lower than

the performance of our two-layer PF, especially when the targets move fast. In this case, performance

mainly refers to the ability of the filter to create and delete tracks in a timely manner.

The scenario we use is shown in Fig. 7. The prior parameters are the same as in the previous example,

see Table V, but with σu = 10 m/s3/2. The parameters of the two-layer PF are Nb = 3, ηb = e7, Nd = 5,

ηd = e−2 for the two-layer PF. The parameters for the existence grid are α = 2 · 10−15 and β = 0.9. The

surveillance area is a square whose side is 5000 m long. This region is divided into 50 × 50 cells and

each cell scans a 100 m × 100 m area.

The estimated number of targets using non-thresholded data with 500 particles is shown in Fig. 8.

Firstly, we should note that the existence grid does not work for targets that move fast. It properly

creates tracks but fails to delete them. MBRFS has trouble detecting target 4 as it is in close proximity

to target 5 at time 80 because it cannot deal with targets in close proximity. With low SNR, MBRFS

does not detect target 4. MBRFS clearly overestimates the number of targets at around time 110 when

targets 1 and 6 cross. The two-layer PF estimates the number of targets better than the other methods. Its

main problem is that there is a slight delay in the creation and deletion of tracks but clearly controlled

by Nb and Nd.
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Figure 8 – Estimated number of targets: (a) Two-layer PF. (b) MBRFS. (c) Existence grid. The two-layer PF

works better than the rest.

As the SNR increases, MBRFS and the two-layer PF are able to estimate the number of targets faster

and more accurately. The main difference between the performances at 10 dB and 20 dB are the speeds

with which tracks are initiated and deleted. The delayed track initiation at low SNR can be attributed

to two factors. First, the creation of pre-tracks is often delayed because the probability of receiving a

sufficiently strong measurement is lower at low SNR. Second, fewer pre-tracks are transferred to the

Track PF because, at low SNR, tracking is more difficult and the likelihood ratio (42) tends to be lower.

The difficulty of tracking and the decrease in the likelihood ratio also explain the slower track deletion

seen at low SNR.

VI. CONCLUSIONS

We have developed a new method for the detection and tracking multiple targets adding unique labels

to the target states. The labels allow the construction of tracks based on target estimates over time when

the number of targets is unknown and changes with time. Importantly, the labelling of the tracks, which
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is necessary to maintain the correspondence of target states over time, is done within the equations of

the filter without any ad hoc methods. The use of the labels implies that, in principle, we are able to

determine the probability that a target state estimate corresponds with a given target. This was done for

a two-target case in [53] and [9, Section 5.3]. We have used two kinds of sensor models to assess the

performance of the PP method and the two-layer PF. Nevertheless, the PP method and the two-layer PF

are general algorithms and could be used for any measurement model, they do not rely on a specific

sensor model. In addition, the novelties introduced by the PP method and the two-layer PF also apply in

the RFS framework because of the equivalence between the posterior density of the labelled multitarget

state in the vector and set formulations.

The PP method has been devised to sample the posterior PDF of the multitrack state of the surviving

tracks. It has a low computational burden compared to other PF methods that aim to approximate the

posterior of the multitrack state and outperforms a variety of algorithms previously proposed in the

literature. The benefits of the PP method are more important if the number of targets in close proximity

is high and the number of particles is low. As for sampling the number of targets, we have created a

two-layer PF in which a subsidiary PF is used to build the importance density that samples the state of

the new born tracks. This enables us to take target dynamics into account to initiate tracks. The current

form of the two-layer PF creates and deletes tracks based on LRTs independently for each track. While

this approach has a low computational burden, it could be useful to use multiple hypothesis tests on the

whole multitarget state [54]. This would need much more computational resources but it is expected to

improve detection performance in even more challenging scenarios. Besides, rather than using fixed time

lags and thresholds to evaluate the LRTs, we could use variable time lags and thresholds using sequential

detection [54].

APPENDIX

This appendix provides the proof of (23) under Assumption 1. As can be seen in (22), the Rao-

Blackwellised PF approximation to the prior at time k + 1 is

p
(
Pk+1

∣∣∣z1:k) =

Npar∑
i=1

wki

t∏
j=1

p
(
pk+1
j

∣∣∣xkj,i) (50)

Under Assumption 1, the weights are evenly distributed, so (50) can be written as

p
(
Pk+1

∣∣∣z1:k) =

Npar∑
i=1

1

Npar

t∏
j=1

p
(
pk+1
j

∣∣∣xkj,i) (51)
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The marginal posterior density of the position of the jth target is obtained by integrating out the

positions of the rest of the targets in (51)

p
(
pk+1
j

∣∣∣z1:k) =

Npar∑
i=1

1

Npar
p
(
pk+1
j

∣∣∣xkj,i) (52)

Under Assumption 1, the tracks are a priori independent so the multitarget state prior PDF can be

written as the product over the marginals:

p
(
Pk+1

∣∣∣z1:k) =

t∏
j=1

Npar∑
i=1

1

Npar
p
(
pk+1
j

∣∣∣xkj,i) (53)

This completes the proof of (23).
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