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Abstract

In this contribution a new approach to ambiguity resolution for Global Navigation Satellite System-based attitude

estimation applications is discussed and tested. This approach enhances the observation model by means of additional

linear constraints. These constraints are implicitly derived by applying an affine transformation to the unknown real-

valued parameters, and largely aid the integer ambiguity estimation through an improved float estimation. The new

method is characterized by a lower computational complexity than a rigorous nonlinearly-constrained GNSS attitude

model, and at the same time it guarantees higher performance than unconstrained, and therefore weaker, models.

The ambiguity resolution performance of the affine-constrained approach is tested through a series of simulated as well

as actual data-sets, demonstrating the validity and usefulness of the proposed approach for multi-antenna GNSS-based

attitude determination applications.

Index Terms

GNSS Attitude Determination - Carrier Phase Ambiguity Resolution - Multivariate Integer Least Squares -

Orthonormality-Constrained Attitude Model - Affine-Constrained Attitude Model.

I. INTRODUCTION

GNSS-based attitude determination is a viable alternative to methods based on different sensing equipment, such as

gyroscopes or star-trackers. Although the accuracy of a stand-alone GNSS attitude system might not be comparable

with the one provided by other modern attitude sensors, a GNSS-based system presents several advantages. It is

inherently driftless, a GNSS receiver has low power consumption, it requires minor maintenance, and it is not as

expensive as other high-precision systems, e.g., laser gyroscopes [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
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[12], [13], [14], [15], [16], [17].

In order to achieve highly precise attitude estimations, GNSS carrier phase data are employed, whose measurement

noise is two orders of magnitude lower than the code (pseudorange) measurement error. However, each carrier

phase reading is ambiguous by an unknown number of whole cycles, since only the fractional part of the locked

GNSS signal is detected by the tracking loop. The process of resolving this unknown to its correct integer value

for each tracked GNSS signal goes under the name of ambiguity resolution. Several methods have been discussed

in literature for the purpose of ambiguity resolution, falling in different classification categories. A first category

includes those methods that take advantage of the time-varying relative receiver-to-satellite geometry to correctly

estimate the integer ambiguities. These motion-based methods inherently require some time in order to be effective,

and thus do not provide instantaneous solutions. A second category is the one of search-based methods. These

methods extensively search for the unknown ambiguities by evaluating admissible sets of potential integer-valued

candidates. Thus search-based methods can in principle be used for instantaneous ambiguity resolution, since the

presence of motion is not required. The method presented in this work belongs to the class of search-based methods.

Further means of classification are given in [11], [18], [19], and references therein.

GNSS-based attitude applications usually can benefit from additional information: the antennas relative geometry

has to be precisely known in order to estimate the orientation of the platform. If correctly accounted for, this

information can be used to strengthen the functional modeling and to achieve very high performance in terms of

reliable ambiguity estimation. A rigorous modeling of the GNSS-based attitude problem is given in [20], where the

observation model is formulated in terms of the unknown integer ambiguities and an unknown orthonormal rotation

matrix. This model, hereafter referred to as the Orthonormality-Constrained Attitude Model (OC-AM), includes the

whole set of nonlinear geometrical constraints given by the a-priori knowledge of the local antenna coordinates,

i.e., the positions of the antennas in a frame integral with the platform are assumed completely known, and the

global baseline coordinates can be derived by means of a rigid rotation. This approach yields very high ambiguity

resolution performance, as demonstrated in [9], at the cost of having an inherently complex search algorithm due

to the nonlinear nature of the given constraints.

Recently, an alternative functional model was introduced [21]: the Affine-Constrained Attitude Model (AC-AM).

By disregarding the orthonormality of the rotation matrix, the baseline coordinates are re-parameterized by means

of an affine transformation. Under certain conditions that will be stated, this transformation yields linear constraints

that aid the ambiguity estimation process. The AC-AM is weaker than its orthonormality-constrained counterpart,

but at the same time it guarantees higher performance than what is achieved by applying unconstrained models, in

which the geometrical information is completely disregarded.

The new AC-AM is particularly apt for multi-antenna ambiguity resolution, as its strength generally increases with

the number of baselines employed. It is the objective of this work to present empirical evidence of the performance

of the new affine-constrained ambiguity resolution method.
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The structure of this contribution is as follows. Section II introduces the models that will be discussed and compared:

the unconstrained, the orthonormality-constrained and the affine-constrained formulations of the GNSS-based attitude

model. Section III addresses the multivariate integer least-squares (ILS) solution of each model, highlighting the

different properties that characterize each formulation. Finally, section IV presents experimental results obtained by

applying the discussed ambiguity resolution methods to simulated and actual GNSS observations data sets.

II. THE GNSS ATTITUDE MODELS

A. The Unconstrained Model

Consider a platform equipped with r + 1 GNSS antennas. If these simultaneously track the same s + 1 GNSS

satellites on the same f frequencies, the following linear(ized) system of double-differenced (DD) observation

equations for the set of 2fsr code and carrier phase DD measurements can be formulated [20][22],

E(Y ) = MX +NZ ; D(vec(Y )) = QY Y

Z ∈ Zfs×r;X ∈ R3×r

(1)

with E(.) and D(.) the expectation and dispersion operators, respectively, and where Y is the 2fs× r matrix whose

columns contain the DD code and phase observations from each baseline, X is the 3 × r matrix of real-valued

baseline coordinates, Z is the fs× r matrix of integer ambiguities, M is the 2fs× 3 matrix of DD unit line-of-

sight vectors, and N is the 2fs × fs matrix containing the carrier wavelengths. Under the assumption of short

baseline separations between antennas - which is a valid assumption for attitude determination applications, since

the dimensions of platforms rarely exceed hundreds of meters - the deviations between the different line-of-sight

vectors from each antenna are discarded, and hence the same line-of-sight vectors are used in matrix M . Also,

under the same assumption of short-baselines, the atmospheric offsets are eliminated by the differencing operations.

In order to define the variance-covariance (v-c) matrix of the matrix of observables Y , the vec operator is applied.

This stacks the columns of the 2fs× r matrix Y into the vector vec(Y) of order 2fsr, whose dispersion is then

described by the 2fsr × 2fsr v-c matrix QY Y .

In the following, it will be assumed that the baselines are formed by differencing with respect a common main

antenna. Thus, the v-c matrix QY Y can be expressed as

QY Y = P ⊗Qyy (2)

with Qyy the v-c matrix that describes the dispersion of each set of baseline observations, and P the r×r matrix that

introduces correlation between baseline observations due to the common antenna used to form the DD observations.

For the properties of the vec operator and the Kronecker product, we refer to e.g. [23], [24]. With a set of r baselines

formed as illustrated in Figure 1, matrix P is obtained as P = 1
2 (Ir + ere

T
r ), with er an order-r vector of ones.

Further details regarding model (1) are given in [21].

Note that model (1) linearly relates the observation matrix Y to the unknown matrix parameters X and Z , and
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Fig. 1. Baselines are formed by differencing with respect to the same Main antenna.

that the only matrix constraint is the one imposed on the ambiguity matrix Z , whose entries are integer-valued.

Therefore, model (1) will be referred to as the Unconstrained Attitude Model (UC-AM).

B. Attitude Determination

The attitude of a rigid body (or platform) is described by the orientation of its body frame with respect to a

reference frame. Let the body frame baseline coordinates of the r + 1 GNSS antennas be collected in the 3 × r

matrix B and let the corresponding, GNSS determined, reference frame coordinates of these baselines be collected

in the 3× r matrix X . Then the two matrices X and B are related as

X = RB ; X ∈ R
3×r , B ∈ R

3×r , R ∈ O
3×3 (3)

with O denoting the class of orthonormal matrices. The orthonormality constraints imply that the columns of R are

all of lenght one (normality) and that each scalar product between any two of its columns is zero (orthogonality).

Relation (3) can be used to estimate the attitude matrix R from given X and B. In case of GNSS attitude

determination, B is assumed known, while X is estimated from GNSS data. For example, following the solution

of model (1), a precise matrix estimate X̌ of X becomes available, and R can be least-squares estimated as

Ř = arg min
R∈O3×3

∥∥vec(X̌ −RB)
∥∥2
Q

(4)

where the weighted squared norm reads ‖·‖2
Q = (·)TQ−1(·). This nonlinear least-squares problem can be solved

by means of iterative descent methods, like e.g. the Newton method. If Q turns out to be diagonal, or may be

approximated as such, then very fast methods have been devised to find the minimization point, as shown in [25].

An overview of available means of solving (4) is given in [26].

However, not every 3 × r body frame baseline matrix B can be used to estimate a 3 × 3 rotation matrix. For

example, configurations of r baselines obtained by lining up r+1 antennas cannot be used to estimate the complete

platform attitude. One rotation angle would remain ambiguous, since it would not be possible to determine the

rotation about the antennas alignment direction. This limitation can be formalized as in [21]: a full (3× 3) rotation

matrix R cannot be estimated if the span of the baselines is not at maximum, i.e., if q = rank(B) < min(3, r).

Therefore, we generalize relation (3) to

X = RB ; X ∈ R
3×r , B ∈ R

q×r , R ∈ O
3×q (5)
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The minimization problem (4) is then generalized accordingly by replacing the constraints R ∈ O
3×3 by R ∈ O

3×q.

C. The Orthonormality- and Affine-Constrained Models

Attitude determination based on the unconstrained model (1) implies that relation (5) is only used after one

has solved for the baseline matrix X . Hence, such baseline solution will not benefit from the known body frame

geometry of the antenna-configuration. An alternative approach is to make use of relation (5) from the start. By

substituting (5) into (1), we obtain the model

E(Y ) = MRB +NZ ; D(vec(Y )) = QY Y

Z ∈ Zfs×r;R ∈ O3×q

(6)

This is the Orthonormality-Constrained Attitude Model (OC-AM) as introduced in [20], see also [27], [9]. It has

the body frame antenna-geometry incorporated into the system from the start. The model is now parametrized in

the orthonormal attitude matrix R ∈ O
3×q , instead of in the baseline matrix X ∈ R

3×r. The incorporation of

these orthonormality constraints results in a stronger model and therefore also in improved ambiguity resolution

performance. However, since the orthonormality-constraints are nonlinear, the ambiguity objective function increases

significantly in complexity (i.e. the ambiguity search space is not ellipsoidal anymore, see e.g. [28]) and the search

for its integer minimizer requires a higher computational load.

A model of intermediate strength is obtained if one disregards the orthonormality constraints,

E(Y ) = MRB +NZ ; D(vec(Y )) = QY Y

Z ∈ Zfs×r;R ∈ R3×q

(7)

This is the Affine-Constrained Attitude Model (AC-AM). It is a linear model that avoids the complexity of OC-AM.

By replacing the nonlinear constraints R ∈ O3×q with R ∈ R3×q , one effectively assumes that X and B are related

through the affine transformation X = RB. This relation imposes a set of r − q linear constraints if r > q, i.e.

if the number of baselines is larger than their span. In [21] the ILS-solution of the AC-AM is developed with the

affine constraints given in implicit as well as explicit form.

III. MULTIVARIATE INTEGER LEAST-SQUARES THEORY

A. Three Different Minimizers

Each of the models (1), (6) and (7) can be solved by making use of the principles of multivariate integer least-

squares estimation [20], [21], [29]. The three ILS minimization problems that we will address in this contribution

are therefore the ones for the UC-AM model (1),
⎧⎨
⎩
Žuc

X̌uc

⎫⎬
⎭ = arg min

Z∈Zfs×r , X∈R3×r
‖vec (Y −MX −NZ)‖2P⊗Qyy

(8)
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the AC-AM model (7), ⎧⎨
⎩
Žac

Řac

⎫⎬
⎭ = arg min

Z∈Zfs×r , R∈R3×q
‖vec (Y −MRB −NZ)‖2P⊗Qyy

(9)

and the OC-AM model (6),⎧⎨
⎩
Žoc

Řoc

⎫⎬
⎭ = arg min

Z∈Zfs×r , R∈O3×q
‖vec (Y −MRB −NZ)‖2P⊗Qyy

(10)

Since one can order the strength of the three attitude models as UC ≤ AC ≤ OC, the probabilities of correct

integer estimation (or ambiguity success-rates) of the three integer ambiguity estimators can be ordered as

P(Žuc = Z) ≤ P(Žac = Z) ≤ P(Žoc = Z) (11)

In the following sections we will show by how much one can expect these success-rates to differ. First, however,

we give the intermediate steps for computing the three different ambiguity objective functions.

B. The Unconstrained Float Solution

Without the integer constraints Z ∈ Zfs×r, the minimization problem (8) results in the so-called float solution
⎧⎨
⎩
Ẑuc

X̂uc

⎫⎬
⎭ = arg min

Z∈Rfs×r , X∈R3×r
‖vec (Y −MX −NZ)‖2P⊗Qyy

(12)

Its system of normal equations is given as

S1 ·
⎛
⎝ vec(X̂uc)

vec(Ẑuc)

⎞
⎠ =

⎡
⎣ P−1 ⊗MTQ−1

yy

P−1 ⊗NTQ−1
yy

⎤
⎦ vec(Y )

S1 =

⎡
⎣ P−1 ⊗MTQ−1

yy M P−1 ⊗MTQ−1
yy N

P−1 ⊗NTQ−1
yy M P−1 ⊗NTQ−1

yy N

⎤
⎦

(13)

from which the unconstrained least-squares float solution follows as

X̂uc =
[
M̄TQ−1

yy M̄
]−1

M̄TQ−1
yy Y

Ẑuc =
[
NTQ−1

yy N
]−1

NTQ−1
yy

[
Y −MX̂uc

] (14)

with M̄ = [I −NN−]M and N− =
[
NTQ−1

yy N
]−1

NTQ−1
yy . The v-c matrices that characterize the dispersion of

X̂uc and Ẑuc follow from applying the variance propagation law to (14) as

QX̂ucX̂uc
= P ⊗ [M̄TQ−1

yy M̄
]−1

QẐucX̂uc
= −P ⊗

[
N−M

[
M̄TQ−1

yy M̄
]−1
]
= QT

X̂ucẐuc

QẐucẐuc
= P ⊗ [N̄TQ−1

yy N̄
]−1

(15)

with N̄ = [I −MM−]N and M− =
[
MTQ−1

yy M
]−1

MTQ−1
yy . Note that expressions (14) and (15) are independent

of the actual antenna placement on the platform, since no geometrical information is exploited in the formulation

of the UC-AM.
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C. The Affine-Constrained Float Solution

Without the integer constraints Z ∈ Zfs×r, the minimization problem (9) results in the affine-constrained float

solution ⎧⎨
⎩
Ẑac

R̂ac

⎫⎬
⎭ = arg min

Z∈Rfs×r , R∈R3×q
‖vec (Y −MRB −NZ)‖2P⊗Qyy

(16)

Its system of normal equations is given as

S2 ·
⎛
⎝ vec(R̂ac)

vec(Ẑac)

⎞
⎠ =

⎡
⎣ BP−1 ⊗MTQ−1

yy

P−1 ⊗NTQ−1
yy

⎤
⎦ vec(Y )

S2 =

⎡
⎣ BP−1BT ⊗MTQ−1

yy M BP−1 ⊗MTQ−1
yy N

P−1BT ⊗NTQ−1
yy M P−1 ⊗NTQ−1

yy N

⎤
⎦

(17)

from which the affine-constrained least-squares float solution follows as

R̂ac =
[
M̄TQ−1

yy M̄
]−1

M̄TQ−1
yy [Y ]P−1BT

[
BP−1BT

]−1

Ẑac =
[
NTQ−1

yy N
]−1

NTQ−1
yy

[
Y −MR̂acB

] (18)

with v-c matrices
QR̂acR̂ac

=
[
BP−1BT

]−1 ⊗ [
M̄TQ−1

yy M̄
]−1

QẐacR̂ac
= −BT

[
BP−1BT

]−1 ⊗
[
N−M

[
M̄TQ−1

yy M̄
]−1

]

= QT

R̂acẐac

QẐacẐac
=

[
Q−1

ẐucẐuc
+

PSP
−1 ⊗NTQ−1

yy M
[
MTQ−1

yy M
]−1

MTQ−1
yy N

]−1

(19)

where PS = I − P−1BT (BP−1BT )−1B. The last expression of (19) clearly shows how the affine constraints

improve the precision of the ambiguity float solution, Q ẐacẐac
< QẐucẐuc

, with the latter variance matrix inequality

stating that the variance of any linear function of Ẑac is smaller than the variance of the same function of Ẑuc.

Matrix PS is a projector of rank r − q that projects onto the nullspace of the body frame baseline matrix B, see

[21]. This matrix reduces to the zero-matrix if the null space is empty, i.e., when q = r.

D. Integer Ambiguity Resolution

Following [21], the above float solutions can be used to formulate the three different ILS ambiguity solutions as

Žuc = arg min
Z∈Zfs×r

∥∥∥vec(Ẑuc − Z
)∥∥∥2

QẐucẐuc

(20)

Žac = arg min
Z∈Zfs×r

∥∥∥vec(Ẑac − Z
)∥∥∥2

QẐacẐac

(21)
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Žoc = arg min
Z∈Zfs×r

(∥∥∥vec(Ẑac − Z
)∥∥∥2

QẐacẐac

+ min
R∈O3×q

∥∥∥vec(R̂ac(Z)−R
)∥∥∥2

QR̂ac(Z)R̂ac(Z)

) (22)

where
R̂ac(Z) = R̂ac −QR̂acẐac

Q−1

ẐacẐac

(
Ẑac − Z

)
QR̂ac(Z)R̂ac(Z) = QR̂acR̂ac

−QR̂acẐac
Q−1

ẐacẐac
QẐacR̂ac

(23)

Since the ambiguity objective functions of both Žuc and Žac are quadratic forms in the entries of Z , both

minimization problems (20) and (21) can be solved by means of the standard LAMBDA method [29]. This is

not the case with the ambiguity objective function of (22). Due to the nonlinear orthonormality constraint, the

presence of the second term on the right-hand side of (22) makes this ambiguity objective function nonquadratic

in Z . The solution of this orthonormality-constrained ILS problem (22) is analyzed and tested in [9], [27], and it

involves novel search approaches to efficiently extract the integer minimizer. The implementation of these novel

strategies has been coined the MC-LAMBDA (Multivariate Constrained-LAMBDA) method. It is shown in [9] that

the application of the MC-LAMBDA method is characterized by much higher ambiguity resolution performance as

compared to the unconstrained methods. This is due to the presence of the second term on the right-hand side of

(22). This term adds complexity to the integer minimization, but also gives Žoc a much higher success-rate than

Žuc.

E. Impact of the Affine-Constraints

We use the Ambiguity Dilution of Precision (ADOP) to get a first impression of the impact of the affine-

constraints. The ADOP was introduced in [30] as an easy-to-compute scalar diagnostic to measure the intrinsic

model strength for successful ambiguity resolution. The ADOP has been used in [31], [32] and [33] to analyze the

benefits to ambiguity resolution of integrating INS with GPS, whereas in [34], the ADOP was used to study the

effect the stochastic model has on ambiguity resolution.

The ADOP is defined as the square-root of the ambiguity variance matrix’ determinant taken to the power one

over the number of DD ambiguities. Thus for the ADOP of the affine-constrained model, we have

ADOPac =
√

|QẐacẐac
|

1
fsr

[cycle] (24)

The ADOP has the important property that it is invariant against the choice of ambiguity parametrization. Since all

admissible ambiguity transformations can be shown to have a determinant of one, the ADOP does not change when

one changes the definition of the ambiguities. It therefore measures the intrinsic precision of the ambiguities. In

fact, it measures the average ambiguity precision, since the ADOP equals the geometric average of the sequential

conditional ambiguity standard deviations.

Another important property of the ADOP is its relation to the volume of the ambiguity confidence ellipsoid and the

ambiguity search space. The volume of the fsr-dimensional ellipsoid [vec( Ẑac−Z)]TQ−1

ẐacẐac
[vec(Ẑac−Z)] ≤ χ2
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Fig. 2. The gain factor ζ as function of the number of baselines r and number of tracked satellites (s+ 1). The variance ratio is assumed to

be σ2
p/σ

2
φ ≈ 104 and q = min(3, r).

is given as Vfsr = χfsrUfsrADOPfsr
ac where Ufsr is the volume of the fsr-dimensional unit sphere [35]. Thus

if the ADOP gets smaller, the confidence ellipsoid gets smaller and the multivariate PDF of the float ambiguity

matrix gets more peaked.

To describe the impact of the affine-constraints, we consider the ratio of the unconstrained ADOP and its affine-

constrained counterpart,

ζ =
ADOPuc

ADOPac
=

√
|QẐucẐuc

|
|QẐacẐac

|

1
fsr

(25)

This ratio describes the gain that is experienced due to the affine-constraints. Following the ADOP rule-of-thumb

developed in [21], this gain factor ζ can be expressed analytically, for the single-epoch, single-frequency case, as

ζ =

(
1 +

σ2
p

σ2
φ

) 3(r−q)
2sr

(26)

in which σ2
p/σ

2
φ denotes the variance ratio of code and phase.

For r = q, the ratio ζ is always equal to one, since the two model formulations UC-AM and AC-AM are then

equivalent. When r > q, a steep increase of the gain factor can be observed. Assuming the variance ratio to be

σ2
p/σ

2
φ ≈ 104, which is typical for GPS, the gain factor is

ζ

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

= 1 for r = q ≤ 3

≈ 10
3
2s for r = 4 , q = 3

≈ 10
12
5s for r = 5 , q = 3

≈ 10
3
s for r = 6 , q = 3

(27)

Note that

lim
r→∞ ζ = 10

6
s (28)

which is the maximum gain obtainable when tracking s+1 satellites. Figure 2 shows the gain factor ζ as function

of the number of baselines, per number of satellites tracked. For r > q, the ambiguity resolution performance of

AC-AM is always better than that of UC-AM and it improves with the number of baselines employed. Note that
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this improvement is more significant for weaker models, i.e., when fewer satellites are tracked.

IV. EXPERIMENTAL ANALYSES AND RESULTS

In this section the three integer ambiguity estimators (20), (21) and (22) are tested and compared using simulated

as well as actual experimental data. Their performances are compared in terms of ambiguity success rates. For the

simulation experiments, four different types of success-rate are computed: (1) the actual ILS success-rate based on

Monte Carlo simulation, (2) a bootstrapped-based lower-bound P LB of the ILS succes-rate, (3) an ADOP-based

upper-bound PUB, and (4) an ADOP-based approximation to the ILS success rate, PApp. The bootstrapped-based

lower bound is given as [36],

PLB =

fsr∏
i=1

(
2Φ

(
1

2σi|I

)
− 1

)
(29)

with Φ(x) =
∫ x

−∞
1√
2π

exp− 1
2v

2dv and σi|I (i = 1, . . . , fsr) the sequential conditional standard deviations of the

decorrelated ambiguities. The ADOP-based approximation and the ADOP-based upper-bound [37] are given as

PApp ≈
(
2Φ

(
1

2ADOP

)
− 1

)fsr

(30)

and

PUB = P

(
χ2(fsr, 0) ≤ Cfsr

ADOP 2

)
(31)

where χ2(fsr, 0) denotes the central Chi-square distribution with fsr degrees of freedom and C fsr =(
fsr
2 Γ

(
fsr
2

)) 2
fsr

/π, with Γ the gamma-function.

For all the experiments, the success-rate analyses are done for the single-epoch, single-frequency case, as this is

considered the most challenging scenario. The dependence on model strength is analyzed by varying the number

of tracked satellites, the measurement noise and the number of baselines employed.

A. Simulated antenna array

Simulated data are useful to test the proposed models in an error-controlled environment. The simulation set-up

is described in Table I. With the geometry of the GNSS satellites visualized in the Skyplot of Figure 3, several

scenarios are simulated with different DD code observation noise (σp = 60 / 30 / 10 cm) and DD carrier phase

observation noise (σφ = 12 / 6 mm). The data are generated for three to five baselines according to model (1).

As discussed in the previous section, the body frame baseline matrix B plays an important role in the estimation

process when employing both the OC-AM and the AC-AM. The consequences are twofold. First, when the number

of baselines is higher than their span, the ambiguity success-rates of (20) and (21) differ. In such cases the AC-

AM provides a more precise ambiguity float solution than the one obtained in the UC-AM approach, which in

turn increases the probability of correct integer estimation. Second, ambiguity resolution is also affected by the

chosen antenna-array geometry. Poorer baseline configurations yield poorer float solutions, thereby reducing the

probability of correct integer estimation. Examples of poor baseline geometries are configurations of baselines with
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TABLE I

SIMULATION SET UP.

Date and time 22 Jan 2008 00:00
Location Lat: 50◦ , Long:3◦

GPS week 439
Frequency L1

Number of Satellite (PRNs) PDOP
5 (8,10,15,26,28) 4.192

6 (8,10,15,26,28,18) 2.142
7 (8,10,15,26,28,18,9) 1.917

8 (8,10,15,26,28,18,9,21) 1.811
DD code noise σp [cm] 60 / 30 / 10
DD phase noise σφ [mm] 12 / 6

Wavelength λf = 0.19029 m

small angular separations. To analyse the impact of the antenna-array geometry, we show results for two different

baseline matrices, one having a good geometry, B1, and one having a much poorer geometry, B 2:

B1 =

⎡
⎢⎢⎢⎣
2 1 1 −1 −2

0 1 0 −1 2

0 0 2 −1 2

⎤
⎥⎥⎥⎦ [m]

B2 =

⎡
⎢⎢⎢⎣
2 1.9 1.9 1.8 1.8

0 0.1 −0.1 0 0.1

0 0 0.1 0.1 0.1

⎤
⎥⎥⎥⎦ [m]

We start with B1. Next to the five-baseline case, we also consider the three- and four-baseline configurations. They

are obtained by taking the first three or four columns of B 1, respectively.

Figures 4 - 5 visualize the single-epoch, single-frequency success-rates obtained as function of the number of

baselines, the noise levels and the number of tracked satellites, for each of the three integer ambiguity estimators

Žuc (cf. 20), Žac (cf. 21) and Žoc (cf. 22). It is clear that the orthonormality-constrained model outperforms the

other two models. It achieves a one hundred per cent success-rate in each of the simulated data sets. But note that

the AC-AM success-rates increase considerably when passing from three to four and to five-baseline configurations,

respectively. Noticeably, it even achieves a one hundred per cent success-rate in one of the five-satellite scenarios.

This clearly demonstrates the advantages of the proposed low-complexity affine-constrained GNSS attitude model.

Also note that in most of the data sets the bounds and the approximation show a fairly good match with the UC-AM

and the AC-AM ILS success rates. This is particularly true for the bootstrapped-based lower bound. However, this

is not true anymore, for the success-rates of the MC-LAMBDA method, since the used bounds do not capture all

the properties of the orthonormality-constrained attitude model.

Table II compares the single-epoch, single-frequency success-rates for the same scenarios described afore and one

with a DD phase observation noise set to 12 mm. The performance of the AC-AM estimator are affected somewhat,
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with lower success rates, whereas the OC-AM success rates remain unchanged (100% fixed epochs in all the cases

simulated, not reported in the table). The success rate differences between same scenarios with different carrier

phase noise increase for weaker models, i.e., lower number of satellites and lower number of baselines employed.

The affine-constrained method still achieves a 99% success-rate in one of the five-satellite scenarios.
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Fig. 3. Skyplot as seen from 50◦ latitude, 3◦ longitude, on 22 January 2008, 00:00.

The second aspect analyzed is how ambiguity resolution is affected by the geometry of the antenna-array. Compare

Figures 6 - 7 for B2 with Figures 4 - 5 for B1. First, it is observed that the MC-LAMBDA method is relatively

insensitive to bad geometrical distributions by virtue of a very strong underlying model. Also the LAMBDA method

applied to the UC-AM does not show any variation, since it applies to a model that does not depend on the geometry

of the antenna-array. Instead, the LAMBDA method applied to the AC-AM shows a significant dependence on this

geometry. Poorer configurations, i.e., smaller angular separations, provide worse results. For example, the four-

baseline scenario with five satellites tracked and 15 mm code noise shows a largely reduced success rate when

using configuration B2 (7%), compared to the 61% marked with configuration B 1. It is thus important to carefully

consider the antenna placement onboard the given platform. One should always aim for high angular separations.

This would not only improve ambiguity
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Fig. 4. Success rate as function of the DD noise level combination (indicated along the horizontal axis, first two digits denoting the DD

pseudorange observation noise in cm, and the following digits denoting the DD carrier phase noise level in mm) and number of baselines

employed, for each of the approaches analyzed. Body frame baseline matrix B1; 5 and 6 satellites.
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(a) 7 satellites.
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Fig. 5. Success rate as function of the DD noise level combination (indicated along the horizontal axis, first two digits denoting the DD

pseudorange observation noise in cm, and the following digits denoting the DD carrier phase observation noise level in mm) and number of

baselines employed, for each of the approaches analyzed. Body frame baseline matrix B1; 7 and 8 satellites.
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(a) 5 satellites.
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(b) 6 satellites.

Fig. 6. Success rate as function of the DD noise level combination (indicated along the horizontal axis, first two digits denoting the DD

pseudorange observation noise in cm, and the following digits denoting the DD carrier phase observation noise level in mm) and number of

baselines employed, for each of the approaches analyzed. Body frame baseline matrix B2; 5 and 6 satellites.
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(a) 7 satellites.
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(b) 8 satellites.

Fig. 7. Success rate as function of the DD noise level combination (indicated along the horizontal axis, first two digits denoting the DD

pseudorange observation noise in cm, and the following digits denoting the DD carrier phase observation noise level in mm) and number of

baselines employed, for each of the approaches analyzed. Body frame baseline matrix B2; 7 and 8 satellites.
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TABLE II

SUCCESS RATE AS FUNCTION OF THE DD NOISE LEVEL COMBINATION, NUMBER OF SATELLITES AND NUMBER OF BASELINES EMPLOYED,

FOR THE AC-AM APPROACH AT DIFFERENT NOISE LEVELS. BODY FRAME BASELINE MATRIX B1 .

3 baselines 4 baselines 5 baselines

σp [cm] 60 30 10 60 30 10 60 30 10

# Sat
AC-AM, DD carrier phase noise set to 6 mm

AC-AM, DD carrier phase noise set to 12 mm

5
0.00 0.02 0.85 0.05 0.61 0.99 0.26 0.94 1.00

0.00 0.01 0.59 0.02 0.30 0.96 0.21 0.87 0.99

6
0.04 0.51 0.97 0.77 0.99 0.99 0.97 1.00 1.00

0.00 0.10 0.75 0.34 0.78 0.97 0.92 0.99 0.99

7
0.22 0.69 0.99 0.88 0.99 1.00 0.99 1.00 1.00

0.04 0.25 0.95 0.66 0.94 0.99 0.96 1.00 1.00

8
0.79 0.92 1.00 0.99 0.99 1.00 1.00 1.00 1.00

0.26 0.69 0.99 0.93 0.99 1.00 0.99 1.00 1.00

resolution with the affine-constrained attitude model, but also reduce the computational load for MC-LAMBDA

because of the improved float solution.

B. Observed antenna array

In addition to the simulated experiment of the previous section, we also designed a multi-antenna experiment

to test the ambiguity resolution performance of the affine-constrained attitude model with actual GNSS data. Two

’platforms’, each carrying five antennas, have been set up by placing ten Trimble receivers (nine R7 models and

one SSI model) on top of as many tripods, grouped as depicted in Figures 8a. The receivers AA and AB were

connected to Zephyr Geodetic antennas, whereas all the other receivers were connected to Zephyr antennas. The

data were collected in the proximity of the Delft University of Technology campus, in Delft, The Netherlands. Each

of the receivers was limited to track at most nine GPS satellites during a time span of about one and half hour,

for a total of 5400 data-epochs (zero cut-off angle, 1 Hz sampling), between 08:30 and 10:30 UTC, 6th September

2010. Figure 8b reports the number of (common) tracked satellites for the whole set of antennas and corresponding

PDOP values, and Figure 8c gives the skyplot for the duration of the experiment. In order to vary the number of

available observations, different subsets of the available GNSS satellites have been used, as summarized in Table

III. Table IV reports the single-epoch, single-frequency success-rates per number of baselines and per number of

tracked satellites. The number of baselines varies from three to nine. Their body frame coordinates are given by
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TABLE III

STATIC DATA-SET: NUMBER AND PRN OF GNSS SATELLITES USED.

#SV PRNs

4 9 - 12 - 15 - 17

5 9 - 12 - 15 - 17 - 27

6 12 - 15 - 18(epochs 1-2878) - 14(epochs 2879-5400) - 22

28(epochs 1-1096) - 25(epochs 1097-5400) - 26(epochs 1-2387)

30(epochs 2388-5400)

7 12 - 15 - 17 - 18(epochs 1-2878) - 14(epochs 2879-5400) - 22

28(epochs 1-1096) - 25(epochs 1097-5400) - 26(epochs 1-2387)

30(epochs 2388-5400)

8 9 - 12 - 15 - 17 - 18(epochs 1-2878) - 14(epochs 2879-5400) - 22

28(epochs 1-1096) - 25(epochs 1097-5400) - 26(epochs 1-2387)

30(epochs 2388-5400)

9 9 - 12 - 15 - 17 - 27 - 18(epochs 1-2878) - 14(epochs 2879-5400) - 22

28(epochs 1-1096) - 25(epochs 1097-5400) - 26(epochs 1-2387)

30(epochs 2388-5400)

the columns of the baseline matrix B:

BT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.201 0 0

1.790 1.249 0

2.475 0.186 0.088

0.482 0.951 −0.116

1.124 −19.967 1.464

2.406 20.080 1.448

3.551 −20.192 1.581

1.955 −21.276 1.518

3.195 −21.012 1.609

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[m]

For each data set, the LAMBDA method is applied to both the UC-AM and the AC-AM. Results relative to the

MC-LAMBDA method are not reported, since the orthonormality-constrained model is already so strong that it

always yielded a hundred per cent success rate, in every data set analyzed. For sake of clarity, Figure 9 gives a

graphical representation of the results reported in Table IV.

For each of the seven antenna configurations, the number of tracked satellites varies from 4 to 9. The UC-AM

success-rates show a tendency to get smaller as the number of baselines gets larger. This effect is more pronounced

when fewer satellites are tracked. This can be explained as follows. If the number of baselines gets larger, the

dimension of the ambiguity space gets larger, thus reducing - in the absence of constraints - the probability of

correct integer estimation. This reduction gets counteracted however, if more satellites are tracked, which increases

the model strength.

The table shows that the AC-AM success-rates are generally significantly larger than the UC-AM success-rates,
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(a) Local baseline geometry.
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(c) Skyplot.

Fig. 8. Static data-set: test set-up.

especially when the number of satellites is small. The exception is of course the triple baseline case for which

q = r ≤ 3. In that case, UC-AM and AC-AM have the same performance, because of the absence of affine-

constraints.

The inclusion of more baselines in the AC-AM steadily increases the success-rate, achieving higher than 99%

success-rates with any number of satellites when ten antennas are employed. This is a noteworthy result: it

demonstrates that it is possible to achieve reliable multi-antenna ambiguity resolution employing low-complexity

integer search methods, as those of the LAMBDA method. Specifically, when the number of baselines increases,

it is possible to achieve reliable results with very few tracked satellites. It is then thus possible to compensate

for the ‘lack of tracked satellites’ by using more antennas in the array. This compensation of a lack of ‘external’

information by ‘local’ information confirms the analytical findings of [21].

V. CONCLUSION

In this contribution a new affine-constrained approach to the problem of ambiguity resolution for attitude

determination applications was tested. Its performance was compared to the performances of the unconstrained
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TABLE IV

STATIC DATA-SET: UNAIDED SINGLE-EPOCH, SINGLE-FREQUENCY SUCCESS-RATES (%) FOR THE LAMBDA METHOD APPLIED TO UC-AM

AND AC-AM, PER NUMBER OF TRACKED SATELLITES AND PER NUMBER OF USED BASELINES.

Baseline configurations # SV LAMBDA LAMBDA

UC-AM AC-AM

A4-AB-A5-A6

4 0.1 0.1

5 1.2 1.2

6 10.6 10.6

7 57.5 57.5

8 93.9 93.9

9 99.8 99.8

A4-AB-A5-A6-G1

4 0 0.6

5 0.1 18.9

6 4.2 75.9

7 58.0 99.3

8 94.3 100

9 99.9 100

A4-AB-A5-A6-G1-8

4 0 35.5

5 0 80.9

6 2.3 97.8

7 53.7 99.3

8 94.0 100

9 99.9 100

A4-AB-A5-A6-G1-A8-AA

4 0 82.2

5 0 95.4

6 1.5 99.0

7 50.4 99.9

8 93.0 100

9 99.9 100

A4-AB-A5-A6-G1-A8-AA-A7

4 0 89.9

5 0 97.1

6 1.1 99.4

7 48.9 99.9

8 93.3 100

9 99.1 100

A4-AB-A5-A6-G1-A8-AA-A7-A9

4 0 98.0

5 0 98.8

6 0.9 99.7

7 45.5 100

8 92.7 100

9 99.6 100

A4-AB-A5-A6-G1-A8-AA-A7-A9-A10

4 0 99.1

5 0 99.5

6 0.6 99.7

7 44.2 100

8 92.5 100

9 99.9 100

and the orthonormality-constrained GNSS attitude models.

The affine-constrained approach exploits the geometrical information about the antenna configuration in a novel

fashion. The unknown real-valued baseline coordinates are parameterized in terms of an affine transformation, thus
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Fig. 9. Static data-set: single-epoch, single-frequency success rate for the LAMBDA method applied to the UC-AM or to the AC-AM, per

number of satellites and number of baselines included in the model.

leading to a dimensional reduction in the unknown set of variables whenever the number of baselines exceeds their

span. This approach avoids the computational complexity of the nonlinear orthonormality-constrained approaches,

since only linear constraints are used. Hence, standard methods of ambiguity resolution, like the LAMBDA method,

can be directly applied.

The strength of the affine-constrained attitude model was tested through simulations and actual experimental data.

It was shown that very high, single-frequency, single-epoch success-rates can be achieved.

The strength of the model depends on the number of baselines employed, the number of satellites tracked and

the observational noise levels. For the affine-constrained attitude model, it was found that for a DD code-phase

noise of 60cm-12mm, single-epoch successful ambiguity resolution is possible when tracking seven satellites with

six antennas, while for 30cm-6mm this already becomes possible with six satellites and 5 antennas. Hence, the

affine-constrained approach allows one to achieve a reliable ambiguity resolution performance by compensating

with additional local antennas/receivers any weakness of the given observational model, like e.g., small number of

tracked satellites or large measurement noise.

Also, various easy-to-compute success-rate bounds were computed and evaluated. The bootstrapped-based bound

was found to be a sharp and easy-to-compute lower bound for the AC-AM success rate.
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