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ABSTRACT 

Synthetic aperture radar (SAR) images are often blurred by phase perturbations induced by uncompensated 

sensor motion and /or unknown propagation effects caused by turbulent media. To get refocused images, 

autofocus proves to be useful post-processing technique applied to estimate and compensate the unknown 

phase errors. However, a severe drawback of the conventional autofocus algorithms is that they are only 

capable of removing one-dimensional azimuth phase errors (APE). As the resolution becomes finer, residual 

range cell migration (RCM), which makes the defocus inherently two-dimensional, becomes a new challenge. 

In this paper, correction of APE and residual RCM are presented in the framework of polar format algorithm 

(PFA). First, an insight into the underlying mathematical mechanism of polar reformatting is presented. Then 

based on this new formulation, the effect of polar reformatting on the uncompensated APE and residual RCM 

is investigated in detail. By using the derived analytical relationship between APE and residual RCM, an 

efficient two-dimensional (2-D) autofocus method is proposed. Experimental results indicate the effectiveness 

of the proposed method. 

Key words: synthetic aperture radar; polar format algorithm; 2-D autofocus; azimuth phase error; residual 

range cell migration 

 

 



I.   Introduction 

Synthetic aperture radar (SAR) is a coherent imaging system, which can provide high azimuth resolution 

by coherently processing multiple echo pulses. The coherent processing requires accurate measurements of the 

relative geometric relationship between radar’s flight path and the scene being imaged. This geometry 

information can be typically provided by motion sensor such as inertial measurement unit (IMU) and global 

positioning system (GPS). However, these sensors can be very expensive and often difficult to provide very 

accurate measurements to support the ultra-high resolution imaging. To make matters worse, signal 

propagation through turbulent media will become another critical limiting factor as the resolution becomes 

finer [1]. Consequently, signal based motion compensation, i.e., autofocus algorithm, is often indispensable, 

and provides a necessary supplement to the IMU/GPS device, especially for very fine resolution airborne SAR 

processing.  

The range measurement error imposes two effects on the echoes, i.e., it introduces azimuth phase error 

(APE) and residual range cell migration (RCM). The APE makes image defocused in the azimuth dimension, 

while residual RCM introduces 2-D defocus. In the phase history domain, there exists a simple linear 

relationship between these two error terms. That is, the APE is the multiplication of residual RCM by4 /p l  

(wherel is the wavelength). For radar operated with submeter wavelength (4 /p l has a large value), APE 

will always have much more serious impact on image formation than residual RCM does. When the range 

measurement error is relatively small, e.g., within a range resolution cell, residual RCM effect can be neglected, 

and then only the APE is necessary to be compensated. This is the general presumption for almost all the 

existing autofocus algorithms, such as Mapdrift (MD) [2-3], Phase Difference (PD) [4], Phase Gradient 

Autofocus (PGA) [5-6], Eigenvector Method [7], Rank One Phase Estimate (ROPE) [8] and etc. However, as 

the SAR resolution becomes finer, the increased synthetic aperture length makes the accumulated range 



measurement error become large. On the other hand, range resolution cell becomes smaller. Therefore, residual 

RCM exceeding range resolution cell will become inevitable in future ultra-high resolution SAR system [9]. In 

this situation, to get a refocused image, not only APE, but also residual RCM, should be estimated and 

compensated.  

To correct for the APE and residual RCM, two alternative strategies are possible. One is to estimate and 

compensate for the two error terms in parallel [10-13], where the APE can be extracted using conventional 

autofocus method, and RCM can be estimated by pulse or subaperture correlation. These two processes are 

performed independently. The other one works in cascaded mode [9], which is to estimate one of the error 

terms firstly, and then calculate the other error term from the estimated term by exploiting their analytical 

relationship. Typically, one can estimate the APE, and then compute the residual RCM. Compared with the 

first method, the latter one possesses two obvious advantages. First, the direct computation of RCM makes it 

more computationally efficient since no additional RCM estimation process is required. Second, the accurate 

estimate of APE obtained by existing autofocus method can make sure that the computed residual RCM has 

extreme accuracy. Due to these reasons, the cascaded correction method will be more popular in actual 

application. 

In the cascaded correction method, a key problem is the derivation of the analytical relationship between 

APE and residual RCM. It is well known that there is linear relationship between APE and residual RCM in 

the phase history domain. However, after image formation, this simple linear relationship often doesn’t exist 

anymore. Instead, it becomes a more complicated nonlinear mapping relationship, whose analytical expression 

depends on the specific image formation algorithm. In SAR literatures, many image formation algorithms have 

been proposed to process the raw spotlight SAR data, e.g., polar format algorithm (PFA) [14-16], chirp scaling 

algorithm (CSA) [17], range migration algorithm (RMA) [18-19] and backprojection algorithm (BPA) [20]. 



However, little work, except for works in [9, 21], has been done to analyze the uncompensated motion error 

after processing by image formation algorithms. Literatures [9, 21] investigated the effect of polar format 

resampling in PFA on uncompensated motion error, and make the cascaded correction become possible. 

Nevertheless, these analyses still rely upon some specific assumptions, e.g., [9]’s analysis, to simplify the 

derivation, uses some approximations and can only operates in broadside spotlight SAR mode, while [21] 

assumes that the error terms are quadratic. As a consequence, these analyses are limited to some specific 

applications. 

In this paper, we provide a further insight into the underlying mathematical mechanism of polar 

reformatting in PFA. Based on this understanding, we analyze the effect of range and azimuth resampling on 

the uncompensated phase error, and get an accurate and more general analytical relationship between APE and 

residual RCM. Using this relationship, an accurate 2-D autofocus method, which can compensate for the APE 

and residual RCM simultaneously, is proposed. 

 This paper is organized as follows. In Section II, a further insight into the range and azimuth resampling 

of PFA is provided. Based on this new formulation approach, analysis on the residual errors in the framework 

of PFA is detailed in Section III. In Section IV, a 2-D autofocus method which exploits the analytical 

relationship between APE and residual RCM is proposed. Finally, in Section V, experimental results 

demonstrate the effectiveness of the proposed new autofocus approach. Section VI is the concluding remarks. 

II. Analytical Formulation of Polar Format Algorithm 

For PFA, almost all the efforts are focused on the implementation of polar format transformation. 

However, in this paper, instead of the implementation, we will exploit the analytical formulation in detail. The 

simple motivation of this choice is to benefit our analysis in the next section. 

A.  Signal Model 



Consider a spotlight-mode SAR operating with the geometry depicted by Fig.1. The coordinate of a 

generic stationary target in the illuminated scene in XOY is ( )p p,x y . Let t represent the slow time. The 

distance between the antenna phase center (APC) and the scene center (Point O) is ( )cr tºcr , which along 

with the instantaneous squint angle ( )tqºθ  and the incidence angle ( )tjºφ  determines the 

instantaneous coordinate ( ) ( ) ( ) ( )[ ]t,zt,ytx aaaºaaa z,y,x  of the APC. Note that the bold face 

variables in this paper are all functions of slow time t. Denote refq  as the reference squint angle, and refj  the 

reference incidence angle. The equations in the paper can be simplified by defining 0=t  when refq=θ . 
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Fig.1.  Spotlight SAR data collection geometry. 

To proceed with the PFA, the radar echoes must be converted into the range frequency domain. The 

conversion method can vary with the operating modulation type. If the linear frequency modulated (LFM) 

signal is transmitted, the deramp technique effectively transforms the echoes into the range frequency domain 

at the receiver and meanwhile lowers the requirement on A/D sampling rate. Alternatively, Fourier 

transforming the directly sampled range signal does this job, which can be applied to any modulation type. The 

discussion following is based on the Fourier transform approach, but can be conveniently transplanted to the 

deramp one.  



After matched filtering and motion compensation with respect to the scene center, the 2-D SAR signal 

can be expressed as 

( ) ( )r 0 r

4
, exp jS f t A f f

c
pì ü= × +í ý

î þ
ΔR                          (1) 

where c is the speed of propagation, 0f is the radar center frequency, rf is the range frequency, A includes the 

nonessential factors of transmitted pulse envelop and azimuth antenna pattern, and ΔR is the differential range 

( ) ( )cr t r t= - º -Δ cR r r                              (2) 

where ( )r tºr  is the instantaneous distance between the APC and the target located on ( )p p,x y .  

 The derivation of PFA is based on planar wavefront assumption. Under this approximation, the 

differential range can be simplified as 

( ) ( ) ( )p p p ref p refsin cos sin sin sin cosx y x θ y θé ù= + = - + -ë ûΔR φ θ θ φ θ θ           (3) 

where 

p pref ref

p pref ref
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cos sin

x xθ θ
y yθ θ

-é ù é ùé ù
=ê ú ê úê ú
ë ûë û ë û

                         (4) 

are the rotated version of coordinates( )p p,x y . 

By inserting (3) into (1), the 2-D signal can be rewritten as 

( ) ( ) ( ) ( )r 0 r p ref p ref

4
, exp j sin sin cosS f t A f f x θ y θ

c
pì üé ù= × + - + -í ýë ûî þ

φ θ θ .         (5) 

Equation (5) shows that the phase history data are essentially a polar raster slice of the Fourier transform 

of the terrain reflectivity. To form the image, only 2-D discrete Fourier transform (IDFT) is required. To 

implement efficient Fourier transform, the fast Fourier transform (FFT) is often a popular choice. 

Unfortunately, the 2-D FFT requires uniformly spaced samples on a rectangular grid. Thus, to exploit the 

efficiency of 2-D FFT, the acquired polar samples of phase history must be resampled to a rectangular grid, and 

this is just what is done in PFA. In order to lower the computational burden, the 2-D resampling is usually 



decomposed into two tandem 1-D operations designated by the range and azimuth resampling, respectively. 

From the viewpoint of range migration correction, we know that the range migration is due to the 

coupling between range frequency and azimuth time in phase history domain. Then the polar reformatting can 

also be interpreted as a decoupling procedure.  

B.  Range Resampling 

The range resampling is dedicated to eliminating the coupling between range frequency and azimuth time 

in the coefficient of py , making the coefficient only a linear function of range frequency. This procedure can be 

implemented in expression by performing an azimuth time dependent change-of-variable on range frequency 

in (5), i.e., setting ( )r r r ;f f tJ= , where rf is the new range frequency variable. This change-of-variable should 

make sure that the following decoupling transformation is achieved:  

( ) ( ) ( ) ( )r r r ;
0 r ref 0 r refsin cos     sinf f tf f θ f fJ j=+ - ¾¾¾¾® +φ θ .               (6) 

From (6), we can easily get 

( ) ( )r r r 0; 1f t f fJ = + -r rδ δ                              (7) 

where 
( )

ref

ref

sin
sin cos

j
q

=
-rδ φ θ

. Equation (7) shows that the range resampling is in essence a range 

frequency scaling transformation (scaling factor is  rδ ) with an offset ( )0 1f -rδ . This scaling transformation 

can be typically implemented by interpolation. As illustrated by Fig.2, the squares, equally spaced with 

interval FD , represent the original samples in the range frequency. After resampling, if we hope that the 

samples in new range frequency are equally spaced with interval 'FD , then the interpolation positions, 

illustrated by the  triangle, can be determined by the scaling mapping: ( )r r 0 1f f f= + -r rδ δ . 
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Fig.2.  Illustration of range resampling in PFA. 

 Undergoing the above change-of-variable, the echo signal becomes 

( ) ( ) ( ) ( )R r r r 0 r ref p ref p

4
,  ; ,  exp j sin tanS f t S f t t A f f x θ y

c
pJ jì üé ù é ù= = × + - +í ýë ûë û î þ

θ .        (8) 

In (8), there has been no coupling between the new range frequency rf and the azimuth time variable t in 

the coefficient of py term. 

C.  Azimuth Resampling 

Similarly to range resampling, the azimuth resampling is dedicated to eliminating the coupling between 

azimuth time and range frequency in the coefficient of px in (8), making the coefficient only a linear function of 

azimuth time. This procedure can be implemented in expression by performing a range frequency dependent 

change-of-variable on azimuth time, which can be denoted as ( )a r;t t fJ= . This change-of-variable should 

make sure that the following transformation is achieved: 

( ) ( ) ( )a r; 
0 r ref 0tan     t t ff f θ f tJ=+ - ¾¾¾¾® Wθ                        (9) 

whereW is a constant determined by this azimuth resampling process. If the APC travels ideally in parallel 

with OX (thus ay equals a constant ay ) at constant forward velocity Xu , W can be typically set as 

2
X ref

a

sinu
y
q

W = . 



 Without loss of generality, we assume that the radar platform flies at an arbitrary path. In this situation, 

only the numerical relationship between ( )reftan θ - θ  and  t , rather than the analytical one, can be provided 

at hand. Thereby it will be a difficult task to derive an analytical solution of ( )a r;t fJ from (9). To benefit our 

analysis in the next section, we divide the azimuth resampling formulated as ( )a r;t fJ into two cascaded 

resampling procedures, which are expressed as ( )a1 t̂J  and ( )a2 r ;t fJ , respectively. Then (9) can be 

equivalently implemented as following 

( ) ( ) ( ) ( ) ( )a2 ra1 ˆˆ  ; 
0 r ref 0 r 0

ˆtan      t t ft tf f θ f f t f tJJ ==+ - ¾¾¾® + W ¾¾¾¾¾® Wθ .           (10) 

Firstly, a range-frequency-independent azimuth time transformation, i.e., ( )a1
ˆt tJ= , is performed to 

implement the linearization of ( )reftan θ - θ . Such a procedure in this paper is referred to as RCM 

linearization. Its implementation can be illustrated in Fig.3. For uniformly spaced time instants of t represented 

by the squares on the horizontal axis, the corresponding values of ( )reftan θ - θ  are in general non-uniformly 

spaced for realistic motion of the APC. However, the range resampled signal in (8) can be interpolated on 

specific time instants represented by the triangles, on which ( )reftan θ - θ progresses arithmetically.  
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Fig.3.  Illustration of RCM linearization in PFA. 

With the linearization process the ( )ref tan θ - θ term in (8) can be replaced by a linear function of ˆ t . 



Therefore, after RCM linearization, ( )R r ,S f t  in (8) becomes 

( ) ( ) ( ) ( )L r R r a1 0 r ref p p

4ˆ ˆ ˆ,  ,  exp j sinS f t S f t A f f x t y
c
pJ jì üé ù= = × + W +í ýë û î þ

.          (11) 

From (11), we can see that the coefficient of px is still range frequency dependent. Therefore the 

completely decoupling is not yet achieved.  

 The second resampling procedure, formulated as ( )a2 r ;t fJ , is a range frequency dependent azimuth 

time resampling. Consulting (10), we can easily get 

( ) 0
a2 r

0 r

 ;
f

t f t
f f

J =
+

.                               (12) 

This is the well-known keystone transform (KT), which is used for bulk correction of arbitrary linear RCM 

through decoupling azimuth time and range frequency [22-23]. 

 After KT, the signal in (11) becomes 

( ) ( ) ( )KT r L r a2 r ref p 0 p r

4
,  ,  ; exp j sinS f t S f t f A x f t y f

c
pJ jì üé ù= = × W +í ýë û î þ

%           (13) 

where ref
p

4 sin
exp jA A y

p j
l

æ ö= × ç ÷
è ø

% is a constant. 

D.  2-D Fourier Transform 

In (13) there has been no coupling between azimuth time t and range frequency rf . The residual 2-D 

sinusoid can be converted into a focused target response via the 2-D Fourier transform with respect to t and rf , 

which is expressed as the product of two sinc functions:  

( ) ref ref
KT r r p a p

2sin 2 sin
,  sinc sinc tS f t A y f x

c
j jt

l
Wæ ö æ öé ù = × - × -ç ÷ ç ÷ë û è ø è ø

F %           (14) 

where [ ]×F represents the 2-D Fourier transform, tf is the azimuth Doppler frequency, t is the range time, 

( )asinc × and ( )r sinc × are azimuth and range sinc functions, respectively, which are defined by 

( ) ( ) ( )
( ) ( ) ( )

a d d

r τ τ

sinc sin πB / πB

sinc sin πB / πB

u u u

u u u

=

=
                            (15) 



where dB and τB are the azimuth signal bandwidth and range signal bandwidth, respectively. 

Equation (14) is the target’s impulse response (IPR) function of the PFA with far-field approximation. 

Now it is rather clear that the azimuth resampling procedure in PFA is essentially the combination of RCM 

linearization and KT. The analytical expression of ( )a1 t̂J may not be obtained under arbitrary radar flight path, 

but this will not affect our analysis. We will show, in the next section, that only the KT contributes to the 

derivation of analytical relationship between APE and residual RCM. Although we divide the azimuth 

resampling into two individual procedures to facilitate our analysis, it should be noted that in the practical 

implementation of PFA, still only one interpolation is required to accomplish both procedures of RCM 

linearization and KT. 

III. Effect of Polar Format Resampling on Uncompensated Phase Error 

In the above development of PFA, we assumed that the relative range between radar and target scene is 

accurately known. However in practical situation, due to inaccurate motion measurement or deleterious 

atmospheric effects, range errors are often inevitable. Therefore, the actual differential range should be 

expressed as  

( ) ( )p ref p ref Esin sin sin cosx θ y θé ù= - + - +ë ûΔR φ θ φ θ R                (16) 

where ( )E ER tºR represents all the range errors. 

 Inserting (16) into (1), we can get the actual echo signal  

( ) ( ) ( ) ( )r 0 r p ref p ref E

4
, exp j sin sin sin cosS f t A f f x θ y θ

c
pì üé ù= × + - + - +í ýë ûî þ

φ θ φ θ R .    (17) 

 Comparing this actual signal with the expected signal of (5) in PFA, we can get the error phase term 

( ) ( ) ( ) ( )r 0 r E 0 1 r

4
,f t f f t t f

c
pf f f= + = +R                      (18) 

where ( )0 E

4
t

pf
l

= R is the APE, and ( )1 E

4
t

c
pf = R is related to the residual RCM. Clearly, at this moment, 



the APE and residual RCM have a simple linear relationship. 

From the previous section, we have known that the range resampling in PFA is essentially a scaling 

transform in range frequency defined in (7). Therefore, after this range resampling, the signal in (17) can be 

expressed as 

( ) ( ) ( ) ( )0 r ref
R r r r p ref p

4 sin
,  ; ,  exp j tan

f f
S f t S f t t A x θ y

c

p j
J

ì ü+ï ïé ù é ù= = × - + +í ýë ûë û
ï ïî þ

θ ε    (19) 

where ( )E

refsin
te

j
= ºrδ R

ε . 

 Consulting (19) and (17), we can find that the range resampling also performs effects on the phase error. 

The resulted phase errors are 

( ) ( ) ( ) ( )0 r
r E 0 1 r

4
,

f f
f t t t f

c

p
f f f

+
= = +rδ R                      (20) 

where ( )0 E

4
t

pf
l

= rδ R is the APE, and ( )1 E

4
t

c
pf = rδ R is related to the residual RCM. Apparently, the 

linear relationship between APE and residual RCM still holds. 

The second step of PFA is azimuth resampling. To faciliate the following analysis, we have divided it into 

two cascaded resampling procedure, i.e., RCM linearization and KT, in the previous section. RCM 

linearization is a range-frequency-independent azimuth time resample formulated as ( )a1
ˆt tJ= . After this 

RCM linearization, the signal in (19) becomes 

( ) ( ) ( ) ( )L r R r a1 0 r ref p p

4ˆ ˆ ˆ,  ,  exp j sinS f t S f t A f f x t y
c
pJ jì üé ù= = × + W + +í ýë û î þ

η        (21) 

where ( ) ( )a1
ˆ ˆt te J hé ù= ºë ûη is the residual error corresponding to a 2-D phase error term 

 ( ) ( ) ( ) ( )r 0 r ref 0 1 r

4ˆ ˆ ˆ, sinf t f f t t f
c
pf j f f= + = +η                   (22) 

where ( )0 ref

4ˆ sint
pf j
l

= η  and ( )1 ref

4ˆ sint
c
pf j= η  are the APE and residual RCM, respectively. 

Compared with the corresponding terms before RCM linearization, it is clearly that both of APE and residual 



RCM undergo a change, but in a synchronous style. Thereby their linear relationship keeps on. 

The final step is to perform KT on (21), which results in  

( ) ( ) ( ) ( )KT r L r a2 r ref p 0 p r r

4
,  ,  ; exp j sin ,  S f t S f t f A x f t y f f t

c
pJ j fì üé ù= = × W + +í ýë û î þ

%        (23) 

where ref
p

4 sin
exp jA A y

p j
l

æ ö= × ç ÷
è ø

% is a constant, and ( ) ( )0 r ref 0
r

0 r

4 sin
,

f f f
f t t

c f f

p j
f h

+ æ ö
= ç ÷+è ø

 is the 

2-D phase error after KT. To facilitate the analysis of error effect, Taylor series expansion of phase error with 

respect to range frequency is performed 

( ) ( ) ( ) ( ) 2
r 0 1 r 2 r,f t t t f t ff f f f= + + +L                       (24) 

where the first term in the right hand is the APE term, the second term is related to the residual RCM [the 

residual RCM is ( )14
c

tf
p

], and these two terms are the main limiting factors to target focusing. Higher order 

terms in general are not significant in most radar specific applications and often ignored. By simple derivation, 

the first two Taylor coefficients in (24) can be derived as following 

( ) ( ) ( )
r

ref
0 r 0

4 sin
, ft f t t

p j
f f h

l== =                           (25) 

( ) ( ) ( ) ( )
r

r ref
1 0

r

d , d4 sin
d df

f t t
t t t

f c t

f hp j
f h=

é ù
= = - ×ê ú

ë û
.             (26) 

Consulting (25) and (26), it is easy to get the analytical relationship between ( )0 tf and ( )1 tf : 

( ) ( ) ( )0
1 0

0

d1
d

t
t t t

f t

f
f f

ì ü
= - ×í ý

î þ
.                             (27) 

If we let ( )Er t represent the residual RCM and ( )E tf the APE, then their analytical relationship is 

( ) ( ) ( )E
E E

d

4 d

t
r t t t

t

fl f
p
ì ü

= - ×í ý
î þ

.                            (28) 

From the above analysis, we can know that both range resampling and RCM linearization perform 

synchronous changes on the structure of APE and residual RCM, thus they can keep the linear relationship 

between APE and residual RCM all the time. However, unlike the above two procedures, KT imposes different 



effects on the APE and residual RCM. It makes the intrinsic linear relationship don’t exist any more. Instead is 

a nonlinear relationship, which has been shown in (28). Fortunately, this nonlinear relationship is flight path 

independent. This makes possible an efficient cascaded correction of APE and residual RCM.  

IV. Autofocus Correction of APE and Residual RCM in PFA Imagery 

From analysis in the previous section, we know that there exists a flight-path-independent analytical 

relationship between APE and residual RCM in the defocused PFA imagery. Consequently, once one of the 

two error terms has been estimated, then the other term can be computed directly by exploiting their analytical 

relationship. Typically, we can estimate the APE firstly, and then compute the residual RCM from this 

estimated APE. The motivation of this choice is twofold. First, almost all the efforts in SAR autofocus 

literatures are focused on the APE estimation, and there have been many established APE estimation 

algorithms which can provide phase estimation with high accuracy. Secondly, compared with the APE, the 

residual RCM is much less sensitive to error source. Therefore, if the accuracy of APE estimation can satisfy 

the requirement of phase compensation, then the computed residual RCM will definitely possess a high 

accuracy with respect to RCM correction.  

Based on the above consideration, an autofocus method used for cascaded estimation and compensation 

of APE and residual RCM is proposed, whose processing flow is illustrated in Fig.4. This cascaded correction 

method includes two key parts, i.e., APE estimation and residual RCM computation. 
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Fig.4.  Flow diagram of 2-D autofocus algorithm in the framework of PFA. 



A. APE Estimation 

APE estimation can typically be implemented using conventional autofocus algorithm. But a necessary 

modification will be required when residual RCM exceeds range resolution cell, since this is not taken into 

account in conventional autofocus method. To solve this problem, at least two alternative strategies at hand can 

provide this capability. 

The most straightforward way is to perform a preprocessing on the data to reduce the range resolution, 

thereby keeping the residual RCM not to exceed a coarse range resolution cell. After this preprocessing, APE 

can be estimated by conventional autofocus techniques such as PGA. However, this resolution-reduction 

preprocessing will also incur an inherent drawback, that is, the number of independent range samples used to 

estimate APE is decreased. The larger the residual RCM is, the fewer the independent range samples are. 

When the reduced independent range sample number is not large enough, the APE estimation will suffer from 

performance degradation. 

 In such situation, subaperture autofocus method may be more appropriate. In subaperture method, the 

long coherent processing interval (CPI) can be first divided into several subapertures. As long as the length of 

each subaperture is small enough, the residual RCM in subaperture will always be negligible. Therefore, in 

each subaperture, traditional autofocus method, e.g., PGA in this paper, can be used to extract the subaperture 

phase error (SPE). However, subaperture autofocusing also incurs the problem of coherent SPE combination, 

arising from the fact that traditional autofocus method fails to reconstruct the linear component of SPE. 

Although the linear phase error has no impact on the focal quality of subaperture image, its variation in 

inter-subapertures will prohibit the coherent combination of SPE. For example, we assume a phase error in the 

full aperture is illustrated in Fig.5(a). We divide it into five subapertures. Generally, there are different linear 

phase terms in different subapertures, and this can be seen in Fig.5(b). If the linear phase error term in each 



subaperture is eliminated, then a direct combination of residual subaperture phase errors will result in Fig.5(c), 

from which we can see a distinct discontinuity in the boundary of subaperture. To combine the SPE coherently, 

an additional estimation of linear phase error, or at least the relative linear phase error (RLPE) between 

subapertures will be required.  
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Fig.5. Combination of subaperture phase error (a) full-aperture phase error; (b) linear phase term in each subaperture;  

(c) high order phase terms in each subaperture. 

It is well-known that linear phase error induces an azimuth shift in the image domain. Therefore, if we 

can detect the relative azimuth shift between subaperture images, then the RLPE can be estimated. Typically, 

relative azimuth shift can be estimated via cross-correlating the subaperture image pair in azimuth dimension. 

Using the RLPE estimate, the SPE can then be combined coherently. Fig.6 shows this APE estimation method 

in detail (Its performance analysis can be seen in [24]). 
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Fig.6.  Flowchart of the subaperture autofocus method. 



B. Residual RCM Computation 

The second key part is the computation of residual RCM, which is based on exploiting the analytical 

relationship between APE and residual RCM. Although it is well known that the azimuth phase and RCM 

have a linear relationship in the echo data (also referred to as phase history domain), after image formation 

processing (polar format transformation in this work), this simple relationship between APE and residual RCM 

doesn’t exist anymore. Instead, a more complicated nonlinear relationship, e.g., eq. (28) in PFA, is present. 

Fortunately, from (28) we can see that the mapping from APE to residual RCM is one-to-one and flight-path 

independent. Thereby, once the APE is estimated, the corresponding residual RCM can be calculated from the 

estimated APE directly. This direct computation of residual RCM eliminates an additional independent 

estimation process, thereby possessing a high computational efficiency.  

C. Effect of APE Estimation Error on Computed Residual RCM 

Since the residual RCM is computed from the estimated APE, then the estimation error of residual RCM 

will depend on not only the analytical relationship between residual RCM and APE, but also the estimation 

error of APE. For APE estimation, there are mainly two error sources which should be taken into account. One 

is the linear phase error, which is inherent in traditional autofocusing methods since they are aimed at 

refocusing the defocused image caused by high order phase error. Although linear term in APE has no impact 

on the refocus of image, it has the possibility to introduce additional migration into the computed residual 

RCM. The second is the high frequency random error. This error is relatively small, and often incurs a 

negligible sidelobe effect. However, if not eliminated, it will perform a more serious impact on the computed 

residual RCM, and this will be clearly seen in the following discussion.  

To analyze the effect of linear error in APE on the computed residual RCM, without loss of generality, we 

assume that the linear term ( )linear
ˆ t atf = , where a is an arbitrary constant. Consulting (28), the corresponding 



computed residual RCM is 

( ) ( ) ( )linear
linear linear

ˆdˆˆ 0
4 d

t
r t t t

t

fl f
p

ì üï ï= - × =í ý
ï ïî þ

.                (29) 

This is an exciting conclusion, which shows that no additional migration will be introduced into the computed 

residual RCM even if APE has a linear phase offset. This important benefit is due to the underlying keystone 

transform in polar reformatting. 

 To analyze the effect of random phase error in APE on the computed residual RCM, it is convenient to 

express the analytical relationship between APE and residual RCM in discrete form, i.e.,  

( ) ( ) ( ) ( ){ }E E E E
ˆ ˆ ˆˆ 1 ,   

4 2 2
M M

r m m m m m m
l f f f
p

é ù= - × - - - £ <ë û          (30) 

wherem is azimuth time index and M is the aperture length. 

We assume that the APE estimation has a white-noise error, whose magnitude is identified by the variance 

of APE, i.e., ( )2
Êvar mfs fé ù= ë û . Then from (30), we can derive that the variance of the computed residual 

RCM is  

( ) ( ) ( )
2

2 2 2
Êvar 1 2 2 ,      

4 2 2r

M M
m r m m m mf

ls s
p

æ ö= = - + - £ <é ù ç ÷ë û è ø
.    (31) 

Unlike the variance of APE, we can see from (31) that the variance of computed residual RCM is dependent 

on the azimuth time. At the edge of aperture (where m is large), the variance becomes large. To show this 

effect intuitively, a numerical simulation is performed. We assume that a relatively small white-noise phase 

error is added into the APE. Fig. 7(a) shows the APE with and without phase noise, respectively. By exploiting 

(30), we can compute the corresponding residual RCM, which is shown in Fig.7 (b). From this figure, it can be 

clearly seen that the random error is enlarged in the computed residual RCM, especially at the place far from 

aperture center. Apparently, this contaminated RCM has to be improved when used to correct for residual 

RCM in PFA imagery. 
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Fig.7.  Effect of phase noise on (a) the APE and (b) the corresponding residual RCM. 

 Fig.8 (a) and (b) show the frequency spectrum of the APE and residual RCM, respectively. Fortunately, in 

the frequency domain, the random phase noise is mainly related to the high-frequency components. While in 

most cases, the residual RCM we are concerned about often has low-frequency property. Therefore, to reduce 

the effect of random phase noise on the computed residual RCM, low-pass filtering can be performed on the 

APE and/or the computed residual RCM. In this example, we perform low-pass filtering on the APE. After this 

filtering, the computed residual RCM and its frequency spectrum are illustrated in Fig.9 (a) and (b), 

respectively. It is clear that the effect of phase noise has been reduced to a tolerable level, i.e., the residual range 

perturbation is less than a range resolution cell. 
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Fig.8.  Spectrum of APE and computed residual RCM. 
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Fig.9.  Results after low-pass filtering of APE. (a) residual RCM; (b) spectrum of residual RCM. 

D. Iteration 

 From the above analysis, we know that the estimation of APE and that of residual RCM are mutually 

interacting. That is, accurate measurement of APE is limited by the residual RCM because the error energy is 

spread across several range resolution cells, while estimation error of APE, on the contrary, also performs 

impact on residual RCM estimation since the residual RCM in our method is calculated from the APE 

estimation. Although some schemes, e.g., reduction of range resolution, low-pass filtering of the APE, and etc., 

can be used to attenuate these interactions, there still exist the cases where residual interaction can’t be ignored. 

In this situation, it may be necessary to execute the estimation and correction of APE and residual RCM in an 

iterative manner. That is, after the image is corrected using the initial estimation of APE and residual RCM, the 

entire process is repeated on this refocused image. Our experience has shown that 2-3 iterations will provide 

satisfactory results. 

V.  Experimental Results 

A.  Simulation Example 

Simulation experiment is performed to verify the theoretical analysis in Section III. Table I lists the main 

parameters used in the simulation. The low center frequency, short slant range, and large integration angle are 



very unlikely to occur simultaneously in reality, but are herein assumed in order to clearly identify the variation 

of APE and RCM trajectory in the different processing stages of the PFA. 

Table I PARAMETERS FOR THE SIMULATION 
 
 
 
 

 

 

 

A nominal linear flight path is assumed in the polar format image formation. But in reality, deviations 

from this nominal linear trajectory in Y and Z direction are introduced, which are shown in Fig.10. A ground 

point target is assumed to be located in the scene center. Therefore after motion compensation to the scene 

center, all the phase terms in the echo signal are related to the errors induced by the radar’s maneuver. 
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Fig.10.  Deviations of radar platform from the nominal flight path. 

Polar format transform is essentially a resampling procedure. We know that resampling satisfies the 

property: ( ) ( )rr ,,e e f tf t ff é ùë ûé ù =ë û
PP , where [ ]×P  represents the resample operator and ( )r ,f tf  is the 2-D 

phase. Thus, to get the effect of polar format transform on the 2-D echo phase, we can also perform polar 

Parameter Description Value 

Radar wavelength 0.6 m 

Bandwidth of transmission signal 500 MHz (range resolution 0.3 m ) 

Azimuth integration angle 57.3 deg (azimuth resolution 0.3 m ) 

Scene center range at aperture center 5000 m 

Platform altitude 3000 m 

Nominal radar forward velocity 100 m/s 

Reference squint angle 75 deg 

Point target location (0 m, 0 m) 



format transform directly on the phase terms of echo signal, instead of the echo signal itself. This change will 

facilitate our analysis on the APE and residual RCM. For example, the APE can be directly obtained by 

evaluating 2-D error phase term ( )r ,f tf  at r 0f = , and residual RCM by 
( )

r

r
0

r

d ,

4 d f

f tc
f

f
p = , since no 

phase unwrapping is required. Using this method, the measured APE and residual RCM in the different 

processing stages of the PFA are depicted in Fig.11(a) and Fig.11(b), respectively. Comparative analysis on 

these two figures shows that a linear relationship between APE and residual RCM exists in all stages before KT. 

However, the KT breaks down this simple relationship. To verify the correctness of their analytical relationship 

shown in (28), we also give, in Fig.11(b), the residual RCM computed from APE by using (28). It can be 

clearly seen that the computed residual RCM matches quite well with the measured residual RCM. 
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Fig.11.  Illustration of (a) APE and (b) residual RCM in different processing stages of PFA. 

B.  Real Data Results 

Real data collected by an experimental airborne SAR is applied to demonstrate the effectiveness of the 

proposed autofocus methods. The experimental radar operates in spotlight mode at X-band. Its transmitted 

signal has a bandwidth of 1.2GHz, corresponding to 0.13m theoretical range resolution. The processed 

synthetic aperture length is about 2300m, hence the nominal azimuth resolution would be 0.067m. Because no 



motion sensor data is available in hand, we assume that the radar platform flies at a constant velocity in image 

formation. Fig.12 (a) and (b) give the range compressed image (to show residual RCM clearly, magnified local 

image including strong scatterers is presented) and full compressed image, respectively, using PFA processing 

without any autofocus procedure applied. Although deterministic range migration has been compensated by 

polar format transformation, residual RCM is still large enough to exceed several range resolution cells. It can 

be clearly seen that the image suffers from severely 2-D defocus, i.e., the image exhibits smearing not only in 

the azimuth direction, but also in the range direction due to residual RCM. In this situation, conventional 

autofocus algorithm can’t completely compensate for the errors. Residual degradation in image is still 

substantial. This can be clearly seen in Fig.12(c), which is produced by PFA with PGA applied. 

 

(a) 



 

(b)  

 

(c) 

Fig.12. Images produced by PFA (a) range compressed image; (b) full compressed image; (c) refocused image by PGA. 



To get a well focused image, both of the APE and residual RCM should be eliminated. For the APE 

estimation, we use the proposed subaperture autofocus approach in this example since the residual RCM is 

very large. The estimated APE is shown in Fig.13 (a). Based on this APE estimate, residual RCM is directly 

computed by using (28), and is presented in Fig.13 (b). The result also shows that low-pass filtering of the APE 

is necessary before using it to compute residual RCM.  
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Fig.13. Error extracted from the PFA image. (a) APE estimate; (b) residual RCM computed from APE estimate. 

Applying the above estimated APE and residual RCM to compensate for the defocused image, we get the 

range compressed image and the full compressed image, which are shown in Fig.14 (a) and (b), respectively. 

The reconstructions exhibit excellent quality. 



 

(a) 

 

(b) 

Fig.14. Corrected image by the proposed method. (a) range compressed image; (b) full compressed image. 



VI.  Conclusions 

Conventional autofocus algorithms apply one-dimensional azimuth phase error correction, while ignoring 

the effect of residual range cell migration, to the degraded image to refocus the targets. As the resolution 

increases, however, residual range cell migration exceeding a range resolution cell would become 

commonplace, or even inevitable. This makes the autofocus technique become inherently two-dimensional. In 

this work, the analytical relationship between APE and residual RCM in the framework of PFA is investigated. 

Based on this derived relationship, a 2-D autofocus scheme, which can compensate for the APE and residual 

RCM simultaneously, is proposed. The new approach possesses two obvious merits. First, its computational 

efficiency is relatively high since the residual RCM can be directly computed instead of additional estimation 

process. Second, the accurate estimator of APE obtained by existing autofocus method can make sure that the 

computed residual RCM has sufficient accuracy. 

  Nevertheless, the analysis and correction of residual errors in this work operate only in the framework of 

PFA. They can’t be directly applied to other image formation algorithms, such as CSA and RMA, since 

different image formation algorithms have different effects on the uncompensated motion errors. However, it 

should be possible to derive the analytical relationship between APE and residual RCM after image formation 

by other algorithms, and this will be our future effort. 
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