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Abstract—The integration of observations issued from a
satellite-based system (GNSS) with an Inertial Navigation System
(INS) is usually performed through a Bayesian filter such as
the Extended Kalman Filter (EKF). The task of designing
the navigation EKF is strongly related to the inertial sensor
error modeling problem. Accelerometers and gyroscopes may
be corrupted by random errors of complex spectral structure.
Consequently, identifying correct error-state parameters in the
INS/GNSS EKF becomes difficult when several stochastic pro-
cesses are superposed. In such situations, classical approaches
like the Allan variance or PSD analysis fail due to the difficulty
of separating the error-processes in the spectral domain. For
this purpose, we propose applying a recently developed estimator
based on the Generalized Method of Wavelet Moments (GMWM)
which was proven to be consistent and asymptotically normally
distributed. The GMWM estimator matches theoretical and
sample based wavelet variances, and can be computed using
the method of indirect inference. This article mainly focuses
on the implementation aspects related to the GMWM, and
its integration within a general navigation filter calibration
procedure. Regarding this, we apply the GMWM on error
signals issued from MEMS-based inertial sensors by building
and estimating composite stochastic processes for which classical
methods cannot be used. In a first stage, we validate the resulting
models using (Allan) variance and PSD analyses and then, in a
second stage, study the impact of the resulting navigation filter
design in terms of final positioning accuracy. We demonstrate that
the GMWM-based calibration framework enables to estimate
complex stochastic models in a few seconds only, and that these
models are relevant in terms of the resulting navigation accuracy.

Index Terms—Inertial navigation, Kalman filter, Allan vari-
ance, error modeling, stochastic processes, estimation methods,
MEMS.

IMPORTANT NOTATIONS AND CONVENTIONS

Conventions
H(·) refers to a function
{hl} refers to a sequence of values indexed by integer l
{h?l } refers to a simulated sequence indexed by integer l
hl refers to the lth value of a sequence
h vector containing {hl}
Yk refers to a random variable indexed by integer k
yk refers to a realization of Yk indexed by integer k

Important Notations

f frequency of a sinusoid
{hl} DWT filter
{h̃l} MODWT filter
F (θ) data generating model parameterized by θ
k unitless index

N sample size
N (·, ·) Gaussian distribution function
Rp space of real-valued p dimensional vectors
SY (·) power spectral density function of {Yk}
{Yk} time series or portion of a stochastic process
ν(τj) wavelet variance at scale τj
ν̂(τj) unbiased MODWT estimator of wavelet variance
ν theoretical wavelet variance vector containing {ν(τj)}
ν(θ) wavelet variance implied by θ assuming that F (θ)

corresponds to the true data generating process
ν̂ estimated WV based on MODWT estimator
ρXY (τ) cross-covariance sequence between {Xk} and {Yk}

at lag τ
σ2
Ȳ (τ) true Allan variance of signal {Yk} at scale τj
σ̂2
ȳ(τ) Sample-based (estimated) Allan variance of signal

{Yk} at scale τj
τj dyadic wavelet/Allan variance scale (τj = 2j−1)
θ parameter vector such that θ ∈ Θ ⊂ Rp

I. INTRODUCTION

The estimation of a vehicle’s position, velocity and attitude in
space in a precise and reliable way, at any time, with and without
reception of satellite signals, is an important issue for many applica-
tions. To this end, navigation by means of Global Navigation Satellite
Systems (GNSS) is nowadays a standard approach for performing
localization in outdoor environment. Conditions where satellite sig-
nals are partially or completely unavailable severely degrade the
performance of such systems. Moreover, GNSS sensor bandwith
(typically below 10 Hz) may be too low for some applications
and the tracking of satellites is difficult to maintain in vibrating
conditions. Also, no information on attitude (e.g. sensor orientation)
is provided by GNSS. A well accepted and largely proven approach
for improving navigation in such situations is to integrate GNSS
with inertial sensors. A conventional strapdown Inertial Measurement
Unit (IMU) is composed of a triad of usually orthogonally mounted
accelerometers and gyroscopes observing specific force and angular
rate or change, respectively. After initialization, these signals are
integrated with respect to time to yield velocity, position and attitude
at high rate (typically, higher than 50 Hz). This procedure is the core
of a strapdown Inertial Navigation System (INS). The combination of
inertial navigation with GNSS is usually performed through Bayesian
techniques among which the most popular is the Extended Kalman
Filter (EKF). During periods of poor GNSS signal quality or the
total absence of its reception, inertial navigation operates in coasting
mode, i.e. the navigation states are determined independently from
GNSS data. In such case, the overall navigation performance becomes
strongly dependent on the errors corrupting inertial signals. These
errors are integrated in the INS and their impact consequently grows
with time. Correct error modeling and estimation of their systematic
part is thus very important for improving as well as correctly
predicting its quality.
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Inertial sensors are corrupted by errors (e.g. scale factors, biases,
drifts) of deterministic and stochastic nature. Large part of the
deterministic errors (e.g. axes misalignment, temperature effects) is
compensated through physical models during calibration procedures.
These error types and their calibration were investigated in many
works (see e.g. [1, 2]) and will not be treated in this study. On
the other hand, the stochastic errors contain components which
have random behavior (e.g. dynamics-dependent errors) or are too
complicated to model deterministically (e.g. environmental changes,
internal sensor noise). These types of errors are modeled using
stochastic processes in the augmented part of the navigation filter (for
details on state space augmentation, see e.g. [3]). The questions of
which stochastic processes to use for best describing the random part
of the inertial sensors behavior and the determination of the process
parameters are tasks of the challenging navigation filter design. The
problem of estimating the stochastic process model (from noisy data)
is the main objective of this paper, and will be referred to herein as
the stochastic modeling problem.

The rest of the paper is organized as follows. In Sec. II, we
precisely state the problem handled in this article by providing
a general description of the navigation filter design problem and
the major drawbacks of the conventional methods. Our work is
based on the Generalized Method of Wavelet Moments (GMWM,
[4]) estimator, for which we provide the theoretical background in
Sec. III. Important implementation issues related to the GMWM-
based calibration procedure are commented in Sec. IV. An example
of calibration of a MEMS-based IMU is done in Sec. V before
moving to Sec. VI which further analyses the impact of the resulting
EKF design with the previously estimated model parameters on the
final navigation performance. Sec. IV-B provides conclusions and
perspectives.

II. PROBLEM STATEMENT

Consider the sequence {yk : k = 1, . . . , N} representing
the observed one-dimensional noncompensated error signal of an
accelerometer or a gyroscope. This sequence is assumed to be
a realization of an univariate Gaussian time series {Yk : k ∈
Z} that is stationary1 and to which the conditional distribution
F (Yk|Yk−1, Yk−2, . . . ,θ) with parameters θ ∈ Θ ⊆ Rp is asso-
ciated. Therefore,

Yk ∼ F (Yk|Yk−1, Yk−2, . . . ,θ) . (1)

Navigation filter design is an iterative process that can be represented
as a loop (see Fig. 1) aiming in answering three questions which may
have significant impact on navigation performance:

1) Which processes should be considered for building F (·) that
best describes the underlying dynamics of the observed sensor
error sequence {yk}? This question refers to the model building
problem, which aims to find a plausible model to be estimated.
In the filter design context, the tradeoff between the accuracy
of the model with respect to the application as well as the
increased computational load involved by the augmented states
must be taken into account by the designer at this stage.

2) How can the parameters θ of the resulting model F (θ) be ac-
curately estimated? This question tackles the model estimation
problem, which becomes nontrivial when multiple processes
are mixed. At this stage, a model estimation algorithm together
with a cost function must be chosen in order to select a model
from the set and estimate its parameters.

3) How can the model be validated? The model validation step
is a very challenging task in inertial navigation for several
reasons. First, only one realization of the trajectory is generally
observed, making any statistical analysis difficult or even
impossible. Second, influence of environmental conditions (e.g.

1{Yk} can also be non-stationary but with stationary backward differences
of order d. The first order backward difference of Yk is Y (1)

k = Yk − Yk−1

and the backward difference of order d is Y (d)
k = Y

(d−1)
k − Y (d−1)

k−1 .

Fig. 1. The filter design loop. In this work, the main focus is set on the
elements enclosed by the dashed line (adapted from [6]).

temperature changes or vibrations) may largely affect the
behavior of the sensors and thus change the underlying error
dynamics. Finally, an inadequate set of observations {yk}
and/or too many states in F (·) may result in a problem referred
to as the observability problem. Although the system dynamics
and the observation models should reflect the real navigation
situation by including a representative number of states, the
interrelationships within the dynamic model as well as the
external observations may affect the observability of these
states [5]. In our study, we validate models at observation level
by comparing the noise structure between observed signals and
synthetic signals generated under F (θ̂) (this can be seen as
the cost function of Fig. 1), and at state level by analysing
navigation performance with respect to a reference when
inertial navigation is operating in coasting mode.

Within the scope of our work, the problem of modeling and estima-
tion focuses on the stochastic error components affecting accelerom-
eters and gyroscopes. Further, we restrict the set of possible models
F (·) to composite models that we define as linear combinations of
independent stochastic processes which are usually used within the
navigation filters: Gaussian White Noise (WN), Random Walk (RW),
Random Ramp (RR), Quantization Noise and especially first-order
Gauss-Markov processes (GM) for approximating a bias instability
process and more generally flicker noise. All these processes are
defined in Tab. II in the Appendix. As already mentioned, issues
like computational load or observability must be taken into account
when designing an EKF. We believe that this set of model structure
is fairly general to be used with a large class of sensors. In particular,
combinations of multiple GM processes are of interest since they can
approximate many random processes [7–9].

Although GM processes are very commonly used in inertial sensor
models, the estimation of their parameters θ = {β, σ2

GM} is a non-
trivial task if the error structure is mixed with other types of noise.
Such an estimation may be attempted by computing and interpreting
Power Spectral Density (PSD) or Allan Variance (AV) plots [10].
The later is probably the most commonly used method for model
identification and sensor calibration, together with other metrics
such as the Hadamard or the Total variance [11–14]. As an IEEE
standard [15], the AV is a well established method for identifying
stochastic processes affecting the output of a sensor. It can also be
used to estimate the parameters of some model that is believed to
describe the stochastic processes of interest. Although this method
was originally intended for studying the stability of oscillators, it has
been successfully applied to problems dealing with different types of
sensors, among which stands the modeling of inertial sensor errors
[16–21]. The AV at scale τ (denoted as σ2

Ȳ (τ)) is defined as:

σ2
Ȳ (τ) =

1

2
E
[(
Ȳk(τ)− Ȳk−τ (τ)

)2] (2)

where Ȳk(τ) is the sample average of τ consecutive observations, i.e.
Ȳk(τ) = 1

τ

∑τ−1
j=0 Ȳk−j . The AV can be expressed in the frequency

domain through the relationship between σ2
Ȳ (τ) and the PSD, SY (f),

of the intrinsic processes [19] which links the parameter vector
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θ to σ2
Ȳ (τ). This relationship is due to the known form of the

PSD function characterizing different noise processes and enables
to express θ as a function of σ2

Ȳ (τ) (a detailed discussion on how to
express this link can be found in [18]). In general, only the processes
listed in Tab. II excepting GM are considered with the AV. These
processes correspond to linear regions in a “σ̂ȳ(τ) v.s. τ” log-log plot.
Therefore, θ is usually estimated by performing linear regressions
with slope β of (visually) identified linear regions in such plots2.
Unfortunately, this methodology suffers from sever drawbacks:

• The AV method works reasonably well only for processes which
are clearly identifiable and separable in the spectral domain and
not subject to spectral ambiguity [22]. However, it does not
allow to directly read out the parameters of a GM process as
large values of β make this process similar to WN, while small
values of β approximate a RW.

• Inference about the estimated parameters is in many cases im-
possible. Indeed, the system parameters are indirectly estimated
through functions of coefficients estimated by linear regression
(say β̂). The standard solution for deriving the (asymptotic)
distribution of θ̂ from the distribution β̂ is achieved through a
first-order approximation. In statistics, this approach is called
the delta method (see [23] for details). In order to apply this
method, it is required that the function β 7→ θ is one-to-one and
that β̂ is a consistent estimator. Unfortunately, this is generally
not the case here. Consequently, deriving the (asymptotic)
distribution of θ̂ is not possible in general.

• The conventional AV methodology is limited to models com-
posed of processes characterized by linear regions in a “σ̂ȳ(τ)
v.s. τ” log-log plot and therefore this approach is far from being
general.

• In [24] we showed that the AV approach leads in general
to inconsistent estimators for signals comprising at least two
processes.

As an alternative to the AV approach, [25] proposed estimating θ̂ by
maximizing the log-likelihood of the state space model associated to
F (·) using the EM algorithm [26]. This approach is more general than
the AV approach and works very well with relatively simple models.
Unfortunately, when the model complexity increases, this methodol-
ogy becomes numerically challenging as it becomes very sensitive
to the initial approximation of parameters and the convergence to
global minimum is not guaranteed. In practice, composite models
comprising GM processes are estimated through ad-hoc tuning, by
using available sensor specifications, or by experience [27]. Recent
investigations like [21] have studied this type of models and proposed
a methodology in which GM processes are used to overbound the
sensor error. But the success of this methodology was quite limited
in our experience. For all these reasons, we propose employing the
GMWM framework for such purpose. GMWM has been developed
for the estimation of composite stochastic processes and is excepted
from the previously mentioned inconveniences. The theoretical basis
of this estimation approach was first introduced in [4] and its practical
use validated and demonstrated by the use of simulation studies in
[28]. This method relies on Wavelet Variances (WVs) which can be
seen a generalization of the AV.

III. THE GENERALIZED METHOD OF WAVELET MOMENTS

A. The Wavelet Variance

As pointed out by [29], the WV can be interpreted as the variance
of a process after it has been subject to an approximate bandpass
filter. The WV can be built using wavelet coefficients issued from
a modified Discrete Wavelet Transform (DWT) [30, 31] called the
Maximal Overlap DWT (MODWT) [31, 32]. The wavelet coefficients
are built using wavelet filters {h̃j,l : j = 1, . . . , J} which for j = 1

2Note that the PSD function can be used with the same methodology.

and for the MODWT satisfy

L1−1∑
l=0

h̃1,l = 0,

L1−1∑
l=0

h̃2
1,l =

1

2
and

∞∑
l=−∞

h̃1,lh̃1,l+2m = 0 (3)

where h̃1,l = 0 for l < 0, l ≥ L1, L1 is the length of h̃1,l, m is a
nonzero integer. Considering the transfer function of h̃1,l as

H̃1(f) =

L1−1∑
l=0

h̃1,le
−i2πfl, (4)

the jth level wavelet filters {h̃j,l} of length Lj = (2j−1)(L1−1)+1
can be obtained by computing the inverse discrete Fourier Transform
of

H̃j(f) = H̃1(2j−1f)

j−2∏
l=0

ei2π2lf(L1−1)H̃1( 1
2
− 2lf). (5)

The MODWT filter is actually a rescaled version of the DWT filter
hj,l, i.e. h̃j,l = hj,l/2

j/2. Filtering an infinite sequence {Yk; k ∈ Z}
using the filters {h̃j,k} yields the MODWT wavelet coefficients

W j,k =

Lj−1∑
l=0

h̃j,lYk−l, k ∈ Z. (6)

We define the WV at dyadic scales τj = 2j−1, as the variances of
the {W j,k} sequences, i.e.

ν(τj) = var
[
W j,k

]
. (7)

Note that the WV are assumed not to depend on time. The
condition for this property to hold is that the integration order d
for the series {yk} to be stationary is such that d ≤ L1/2 and {h̃j,l}
is based on a Daubechies wavelet filter (see [33] and [31], Chapter
8). This is due to the fact that Daubechies wavelet filters of width
L1 contain an embedded backward difference filter of order L1/2. In
such a case, the series of wavelet coefficients {W j,k} is stationary
with PSD SWj (f) = |H̃j(f)|2SFθ (f), where | · | is denoting the
modulus, and Fθ = F (θ). This means that the variance of wavelet
coefficient series is equal to the integral of its PSD [34], i.e.

ν(τj) =

∫ 1/2

−1/2

SWj (f)df =

∫ 1/2

−1/2

|H̃j(f)|2SFθ (f)df. (8)

Hence, there is an implicit link between the WV and the parameters
of the data generating model F (θ). We exploit this connection when
defining an estimator for θ, namely by matching a sample estimate
of ν(τj) together with the model-based expression of the WV given
by Eq. (8). For WVs based on Haar wavelet filters (see Eq. (18)
below) and for the processes considered in this work, the integral
in Eq. (8) can be solved (see [4] for their expression), based on the
results of [35]. WVs for other models can be computed using the
same methodology3.

For a finite (observed) process {yk : k = 1, . . . , N}, the MODWT
WV estimator given by

ν̂(τj) =
1

Mj

N∑
k=Lj

W 2
j,k (9)

with Wj,k =
∑Lj−1

l=0 h̃j,lyk−l, k ∈ (Lj ;N) and Mj = N−Lj+1, is
a consistent estimator for ν(τj). With this respect, [34] also show that
under suitable conditions,

√
Mj (ν̂(τj)− ν(τj)) is asymptotically

normal with mean 0 and variance

SWj (0) = 2

∫ 1/2

−1/2

S2
Wj

(f)df = 2

∫ 1/2

−1/2

|Hj(f)|4S2
Fθ

(f)df. (10)

3However, as it will be shown only later in Sec. III-C, the possibility
of expressing these error models analyticaly in the space of WVs is not a
necessary prerequisite for applying the new estimator.
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Eq. (10) can be estimated by means of

ŜWj (0) =

Mj∑
τ=−Mj

 1

Mj

N∑
k=Lj

Wj,kWj,k+|τ |

2

(11)

and the asymptotic properties of Eq. (11) are given in [31], page 312.
These results were extended to the multivariate case in [4] were we
demonstrated that under some regularity conditions, the asymptotic
distribution of ν̂ is given by

√
N (ν̂ − E{ν}) D7−−−−→

N→∞
N (0,Vν̂) (12)

where

ν = [ν(τj)]j=1,...,J and ν̂ = [ν̂(τj)]j=1,...,J . (13)

The matrix Vν̂ has size (J × J) and is given by

Vν̂ =

 σ2
1,1 · · · σ2

1,J

...
. . .

...
σ2
J,1 · · · σ2

J,J

 . (14)

The elements of Vν̂ can be obtained through

σ2
ml = 2πSWmWl(0), for m, l = 1, . . . , J (15)

where

SWmWl(f) =
1

2π

∞∑
τ=−∞

ρWmWl(τ)e−ifτ . (16)

and ρWmWl(τ) = cov [Wm,k,Wl,k+τ ] is the cross-covariance func-
tion. The estimation of σ2

ml is in general not straightforward. In [4],
we show that under the assumption of a Gaussian process for {yk},
a suitable estimator is given by

σ̂2
ml =

1

2

M(Tml)∑
τ=−M(Tml)

 1

M(Tml)

∑
k∈Tml

Wm,kWl,k+τ

2

+
1

2

M(Tml)∑
τ=−M(Tml)

 1

M(Tml)

∑
k∈Tml

Wm,k−τWl,k

2
(17)

where Tml is the smallest set of time indices containing both the
indices in Tm and Tl (see Eq. (9)), and M(Tml) their number.
Alternatively, when the process is not Gaussian or when the sample
size is very large as it is the case with the dataset analysed in
[28] for which the computation of Eq. (17) was infeasible, one can
use a parametric bootstrap to estimate cov [ν̂(τm), ν̂(τl)]. In such a
scheme, Q samples of size N are simulated from F (θ̂) on which Q
sequences, {ν̂q(τm)} and {ν̂q(τl)} for q = 1, . . . , Q are computed,
and σ2

ml estimated by their empirical covariance.
A particular choice for the wavelet filter is given by the Haar

wavelet filter which first DWT filter (j = 1) is

{h1,0 = 1/
√

2, h1,1 = −1/
√

2} (18)

with length L1 = 2. If the process is stationary with backward
differences of order d > 1 one can use other wavelet filters such
as Daubechies wavelet filters [33]. When the WV is evaluated with
Haar wavelet filters, it is actually equal to half the AV.

B. GMWM estimator
We saw in Eq. (8) that the variance of a wavelet coefficient

sequence is equal to the integral of its PSD. Therefore, there exist a
mapping

θ 7→ ν(θ). (19)

Such a mapping defines the theoretical WV implied by the parametric
model F (θ). We exploit the connexion between the WV and θ to
define an estimator for θ by trying in some sense to inverse the

relationship given in Eq. (19). This inverted map is used to compute
the estimator θ̂ = θ(ν̂) where ν̂ is the estimated WV. Finding
explicitly an inverse mapping is in general impossible since this
mapping is in most cases implicit. However, it is possible to inverse
the map in a specific point such as ν̂ by calibrating the value of θ
in order to match ν(θ) with its empirical counterpart ν̂.

Therefore, we propose to estimate the model’s parameters using
an estimator which combines on the one hand the WV and on the
other hand the Generalized Least-Squares (GLS) principle, using the
relationship given in Eq. (8). More precisely, we propose to find
θ̂ such that the WV implied by the model, say φ(θ), match the
empirical WV, say φ̂, and solve the following GLS optimization
problem:

θ̂ = argmin
θ∈Θ

(
φ̂− φ(θ)

)T
Ω
(
φ̂− φ(θ)

)
(20)

in which Ω, a positive definite weighting matrix4, is chosen in a
suitable manner (see below). Eq. (20) defines the GMWM estimator.
The vector φ(·) = [φj(·)]j=1,...,J is a binding function between θ
and ν such that φ(θ) = ν, and φ̂ = ν̂ and φ(θ̂) are two estimators.

As already mentioned, we proved in [4] that θ̂ is consistent for
WN, QN, RW, RR and sums of AR(1) (i.e. GM) processes. Hence,
θ̂ has the following distribution:

√
N
(
θ̂ − θ

)
D7−−−−→

N→∞
N (0,Vθ̂) (21)

where
Vθ̂ = BVφ̂BT (22)

and
B =

(
DTΩD

)−1

DTΩ. (23)

The matrix D is given by

D =
∂φ(θ)

∂θT
(24)

and Vφ̂ = Vν̂ . When Ω = I, then

Vθ̂ =
(
DTD

)−1

DTVφ̂D
(
DTD

)−1

. (25)

The most efficient estimator is obtained by choosing Ω = V−1

φ̂
,

leading then to

Vθ̂ =
(
DTV−1

φ̂
D
)−1

. (26)

In practice, the matrix D is computed at θ̂.
Obviously, the number of scales J should be J ≥ p, with p

the dimension of θ, but at the same time, a too large J introduces
variability in the estimator. In [24], we propose a method for selecting
the scales J which minimize the determinant of Vθ̂ and propose a
method to remove the finite sample bias of θ̂ using a simulation based
approach. Note that when J > p, i.e. the number of WV is greater
than the dimension of the parameter vector θ, the goodness-of-fit of
the model F (θ) to the data can be assessed by testing the hypotheses
H0 : E

[
φ̂− φ(θ)

]
= 0, H1 : E

[
φ̂− φ(θ)

]
6= 0 using the χ2-test

statistic

N
(
φ̂− φ(θ̂)

)T
V−1

φ̂

(
φ̂− φ(θ̂)

)
D7−−−−→

N→∞
χ2
J−p (27)

under H0 (see [36]) and provided that p < J <∞.

C. From the Generalized Method of Moments to Indirect
Inference

The analytical expressions of ν(θ) used in Eq. (20) using the
Haar wavelet filter defined in Eq. (18) can be computed for several

4Ω has to be positive definite in order to ensure the convexity of Eq. (20).
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well known models such as the ones listed in Tab. II, as well as
AR(·), sums of AR(·), ARMA(·,·) and others [4] using the general
results of [35] on the AV. In addition, the analytical WV of sums of
independent processes correspond to the sum of the WV of individual
processes within the model. Indeed, for composite processes, i.e.
Yk =

∑
m(Ym)k, Eq. (8) can be expanded to

ν(τj) =

∫ 1/2

−1/2

|H̃j(f)|2
(∑

m

SYm(f)

)
df =

∑
m

νm(τj) (28)

with SYm(·) the PSD and νm(τj) the WV at scale τj of {(Ym)k}.
Therefore, when an analytical expression for ν(θ) is available, the
estimator defined in Eq. (20) can be seen as a Generalized Method
of Moments estimator [36].

As a possible extension of the GMWM when analytical expres-
sions for φ(θ) in Eq. (20) are too complicate to compute, one can
resort to simulations to compute φ(θ) and hence place the GMWM
in the framework of indirect inference [37–39]. Basically, given a
sample of observations {yk : k = 1, . . . , N} and an hypothetical
model F (θ), we can define φ̂j as the WV ν̂(τj) estimated from the
sample using Eq. (9), and φ̂?j (θ) as the WV estimate ν̂?(τj) computed
on a simulated series

{y?k (θ) : k = 1, . . . , R ·N} , R ≥ 1 (29)

from F (θ). Then φ̂ = [φ̂j ]j=1,...,J and φ̂?(θ) = [φ̂?j (θ)]j=1,...,J are
used in Eq. (20) to obtain an estimate θ̂ of θ, which properties are
described in e.g. [39]. In particular, for R sufficiently large, Vθ̂ ≈
BVφ̂BT . In that case, B can be computed numerically.

D. Inference on PSD v.s. Wavelet Variance
Note that one could wonder why using WVs instead of making

inference directly on the PSD for which a similar estimation proce-
dure could be used. We believe that the wavelet-based approach is
more suitable for the following reasons that we mentioned also in
[4]:
• The computation of empirical WV is more straightforward

than nonparametric PSD. For example, the periodogram is
an inconsistent estimator of SY (·) and can be badly biased
even for large samples sizes (because of the frequency leakage
effects). Therefore, more sophisticated PSD estimators and/or
smoothing techniques such as prewhitening or tapering shall be
employed with a hope to approach the consistency provided by
the GMWM estimator.

• Inference on the PSD would make the optimization of a least-
squares type measure (between the empirical and model based
PSD) more difficult to solve when the PSD has large variability
over very narrow frequency bands. As shown in [31], the
wavelet coefficient at scale τj is associated with frequencies
in the interval [1/2j+1, 1/2j ] and Eq. (8) can be approximated
by

ν2(τj) ≈ 2

∫ 1/2j

1/2j+1

SY (f)df. (30)

This means that the WV summarizes the information in the PSD
using just one value per octave frequency band. This property is
particularly useful when the PSD is relatively featureless within
each octave band. In the case of the widely used pure power
law processes (SY (f) ∝ |f |α) for example, from Eq. (30) one
gets ν(τj) ∝ τ−α−1

j , meaning that no information is lost when
using the “PSD summary” given by the WV. According to [31],
as the width L of the wavelet filter {h̃l} used to form {h̃j,l}
increases, the approximation expressed in Eq. (30) improves
because {h̃j,l} then becomes a better approximation to an ideal
band-pass filter. Therefore, by making the assumption that L
is chosen such that Eq. (30) is a reasonable approximation, it
is possible to estimate SY (·) using a function S̄Y (·) that is
piecewise constant over octave bands

[
1

2j+1∆t
, 1

2j∆t

]
for j =

Fig. 2. Comparison of octave band PSD estimates for the XSens MTi-G
gyroscope (left panel) and accelerometer (right panel) error signal based on
the periodogram, a multitaper PSD estimate and Haar and D(6) WV estimates.

1, . . . , J . Then, when 1
2j+1∆t

< f ≤ 1
2j∆t

, we assume

S̄Y (f) = Cj (31)

where Cj is a constant defined such that [31]∫ 1/(2j∆t)

1/(2j+1∆t)

SY (f)df =

∫ 1/(2j∆t)

1/(2j+1∆t)

S̄Y (f)df =
Cj

2j+1∆t
.

(32)
From Eq. (30), we have

ν(τj) ≈
Cj

2j∆t
(33)

and hence we can use Ĉj = 2j ν̂(τj)∆t to estimate PSD levels.
The panels of Fig. 2 show estimated PSD levels Ĉj plotted
as a constant line over each octave band for an XSens MTi-G
MEMS-based gyroscope and accelerometer error signal (we will
study these sensors latter in Sec. V), respectively. The full line
corresponds to the Haar-based estimate, while the dashed line
represents the estimate using a higher order Daubechies wavelet
filter (D6). In this case, there is good agreement between the two
PSD estimates over all frequencies, meaning that the use of the
Haar filter is sufficient. The well-known frequency leakage phe-
nomenon was also mentioned in the previous point. Therefore,
we also plotted PSD estimates based upon the leakage-prone
periodograph (circles) and a multitaper estimator (asterisks)
which should be relatively free of leakage (for more details on
periodogram and multitaper PSD estimators, see [31]). In order
to obtain the periodogram and multitaper PSD estimates, we
averaged the PSD estimates obtained at each Fourier frequency
fk = k

N∆t
, k = 1, 2, . . . (gray line corresponding to the

multitaper PSD estimate) over octave frequency bands, meaning
that each of the octave band averaged estimates is plotted
versus the average of the Fourier frequencies associated with
the estimates. In this case, the Haar-based PSD estimate does
not suffer from frequency leakage which should be visible at the
low power portion of the estimated PSD (at high frequencies).

• The PSD of two important processes in sensor error models,
namely the RR (drift) and the RW, cannot be distinguished (both
have slope of −2 in a log-log representation of the PSD).

• The MODWT on which the WV computation is based requires
a number of multiplications of order N log2 N , which is the
same order as the widely used fast Fourier transform algorithm.
For this reason, the employment of WV does not increase the
computational burden.

IV. IMPLEMENTATION

A. Optimizer Initialization
The core of the GMWM estimation is in solving the optimization

problem defined by Eq. (20). Sensitivity to initial values at which
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Fig. 3. Estimated variances of ν̂ with bootstrap (with B = 1000) and
asymptotic (theoretical) approaches as well as the variances implied by an
homoscedastic model (adapted from [28]).

the optimizer starts is therefore a classical issue. We shortly describe
the implemented strategy to overcome numerical issues related to
convergence.

The GMWM minimization problem can be geometrically inter-
preted as a minimization of the distance between the φ̂ and φ(θ̂)
curves, considering weights Ω. However in cases were φ̂ has strong
variations over all scales τ , the optimizer rapidly converges and
matches well the left part of the curve φ. This is due to the weighting
matrix Ω which puts more importance on WV at small scales. A
simple geometrical reformulation of Eq. (20)

θ̂(0) = argmin
θ∈Θ

(
1− φ(θ)

φ̂

)T (
1− φ(θ)

φ̂

)
(34)

“flattens” the curves φ(·) and φ̂ and significantly decreases the
convergence time. Note that during initialization, Ω can safely be
omitted. Using such strategy, only few iterations are necessary to
solve the original problem of Eq. (20).

B. Note on the Estimation of the Wavelet Variance Covariance
Similarly to [28], we present a small simulation study to demon-

strate how “far” the matrix Vν̂ is in reality from σ2
ε I with σ2

ε the
uncertainty in the linear regression performed in the log-log “σȳ(τ)
v.s. τ” plot which is a common assumption in the standard AV
methodology. Indeed, B sequences of WN processes, say {w(i)

k :
k = 1, ..., 1000, i = 1, ..., B} with unit variance were generated.
The WV of each process, denoted as ν̂(i), were estimated. Then, the
empirical covariances (and correlations) of ν̂ were computed using

Σ̂B =
1

B − 1

B∑
i=1

(
ν̂(i) − ν̄

) (
ν̂(i) − ν̄

)T (35)

where ν̄ is the mean of the ν̂(i). For large B, the matrix Σ̂B is a
fairly good approximation of Vν̂ and corresponds to the (parametric)
bootstrap estimator of cov [ν̂]. Fig. 3 shows the variances of ν̂ (i.e.
the diagonal of Vν̂ ) estimated using the asymptotic formula version
defined in Eq. (17) and the bootstrap estimator Σ̂B of Eq. (35). The
variance (i.e. σ̂2

ε ) implied by the model σ2
ε I is also depicted. As

expected, the bootstrap and asymptotic estimators are very close and
practically demonstrate, at least in this example, the validity of Eq.
(17). In addition, these two estimates are very far from σ̂2

ε which
illustrates the fact that standard regression approach used in the AV
methodology is unsuitable in terms of efficiency.

Fig. 4 presents the correlations estimated with the bootstrap and
the asymptotic estimators which are also very close. Note also that the

Fig. 4. Comparison between the WV correlations estimated using a bootstrap
approach with B = 1000, on the left part, and theoretical correlations
computed using Eq. (17), on the right part (adapted from [28]).

WV are highly correlated between neighboring scales. This confirms
the inadequacy of the implicit model σ2

ε I.

V. STUDY OF STOCHASTIC ERRORS IN MEMS-BASED IN-
ERTIAL SENSORS

In [28], we firstly demonstrated (mainly through simulations) that
the GMWM estimator is able to handle complex error models for
which the AV-based estimation failed and the EM algorithm did not
converge. In this section, we further investigate its applicability in the
context of the design of an INS mainly based on low-cost MEMS
sensors that are widely spread in many aerospace as well as terrestrial
applications.

A. Error Signal Construction
Static data were collected from a MEMS-based IMU (XSens MTi-

G) sampling at 100 Hz during 4 hours. The device operated under
constant temperature and stationary conditions. After mean removal,
the observed sequence {yk : k = 1, . . . , N} with N = 2′057′424′

samples at hand contain measurement errors driven by stochastic
processes issued from an unknown model F (θ). First, the GMWM
estimator will be applied on accelerometer and gyroscope error sig-
nals. Second, the obtained models are validated by simulating twenty
realizations under θ̂, computing their Haar WV, and comparing them
to the Haar WV of the signal under study. Note that exactly the same
conclusion could be drawn when comparing the AV curves because
of the linear relationship between the Haar WV and the AV. For each
error signal under study, we also mention the result obtained by the
commonly used AV calibration procedure in order to demonstrate its
limits.

B. Model Building
Computation of the Haar WV (or AV) curve on one (X-axis)

gyroscope error signal (see black curve in the upper left panel of Fig.
5) and one (X-axis) accelerometer error signal (see upper right panel
of Fig. 5) reveals the presence of correlated and uncorrelated noise.
For both signals, we use the following composite process F (θ):

Yk =

M∑
m=1

(YGM,m)k +Wk, for k ∈ Z. (36)

where M was determined empirically by going several times through
the filter design loop (see Fig. 1). In each loop, the value of M was
changed and the final model was accepted as a compromise between
the model complexity and the matching quality (the goodness-of-fit).
In this case, a value of M = 2 was chosen for the gyroscope, and
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Fig. 5. Result of the XSens MTi-G accelerometer and gyroscope error
modeling. The upper panels depict the WV of the X-axis gyroscope (left
panel) and accelerometer (right panel) error signal (black circles) with
associated 95% confidence interval, the WV resulting from the estimated
model (gray triangles), and the WV of 20 synthetic signals issued from the
estimated model (gray lines). The black lines in the lower panels show the
PSD of the gyroscope (left panel) and accelerometer (right panel) error signals,
and the gray lines correspond to the PSD of the estimated models.

M = 3 for the accelerometer model, respectively. Hence, we have
the following parameters to estimate:

θ =
{
σ2
WN , βm, σ

2
GM,m

}
m=1,...,M

(37)

from the observed gyroscope and accelerometer error signal {yk}.

C. Model Estimation
The estimated parameter values for the gyroscope and accelerom-

eter error models are listed in Tab. I. The quality of the fit can be
judged with the gray line with triangle markers in the upper left panel
of Fig. 5. Despite the slight deviation from the first WV point of the
signal with respect to the model, the estimated model still corresponds
well to the observed signal. Note that despite the difficulty to
compare models, the angular RW provided by the manufacturer is
0.05 deg/s/

√
Hz [40]. For the accelerometer, the velocity RW PSD

level indicated by the manufacturer is 0.002 m/s2/
√

Hz [40] which
is slightly higher that our estimated σ̂WN value of 8.55 · 10−4

m/s2/
√

Hz. Similarly to the gyroscope, the short-term noise structure
is quite complex and none of the considered models in this work
could easily approximate this.

D. Model Validation
In Fig. 5, the PSD of one realization issued from F (θ̂) is

depicted as a gray line superposed to the signal PSD (black line)
for both, the MTi-G gyroscope (lower left panel) and the MTi-G
accelerometer (lower right panel). The quality of the matching shows
that the spectral noise structure generated by both models correctly
reproduces the sensors’ noise shapes.

Until now, we assumed a unique model for all three sensors
composing an IMU. To verify this assumption, we modeled separately
each of the three gyroscopes and accelerometers composing the MTi-
G unit. Fig. 6 depicts the three Haar WV curves corresponding to

Fig. 6. Result of the GMWM modeling for the XSens MTi-G accelerometer
and gyroscope error signals. For each IMU axis, the WV sequences estimated
on the original error signals are drawn as black circles (together with the 95%
confidence intervals). The WV sequences resulting from the estimated models
are drawn as gray lines with triangles. Note that the confidence intervals
associated to the model-based WV are not drawn for readibility reasons.

TABLE I
RESULT OF THE GYROSCOPE AND ACCELEROMETER ERROR MODEL

ESTIMATION BY MEANS OF THE GMWM.

Gyroscope Accelerometers

θ Value Units Value Units

σ̂WN 0.032 deg/s/
√

Hz 85.5 µg
√

Hz
β̂1 0.024 Hz 25.8 Hz
σ̂GM,1 7.63 · 10−4 deg/s/

√
Hz 143 µg/

√
Hz

β̂2 9.03 · 10−4 Hz 0.04 Hz
σ̂GM,2 8.64 · 10−4 deg/s/

√
Hz ‘ 103 µg/

√
Hz

β̂3 - - 2.32 · 10−4 Hz
σ̂GM,3 - - 900 µg/

√
Hz

the error signals of the gyroscopes (left panel) and the accelerometers
(right panel) from the MTi-G as black lines. In the same figure, the
gray lines represent the Haar WV issued from the GMWM estimation.
Since the error structure is similar among each sensor type, the use
of one single model per sensor type in the filter design is relevant in
this case. Nevertheless, its parameters should be estimated separately.

VI. INFLUENCE ON THE EKF SOLUTION

A. Testing Models
As already mentioned in Sec. II, validating and comparing dif-

ferent models on the state level basis is extremely tricky. Issues
like observability, non-modeled parasite signals generated from the
dynamics, or variations of the environmental conditions may affect
the error signal structure as well as the output of the EKF. Therefore,
a statement telling that one model is in general more accurate than
another must be considered with caution. In this work, we chose
to construct models on signals sampled in static conditions and to
validate them using tools such as WV (or AV) and PSD on the
observation level. This means that the built model is valid for the
conditions at hand during calibration.

A navigation filter designer may be interested in analysing the
effect of a constructed model on a trajectory, independently from any
unmodeled effects which were not experienced during the calibration
phase. In this way, the model can be tested under the chosen dynamics
and typical operation duration. Although the GMWM estimator
opens the door to the estimation of complex composite models
such as sums of GM processes, their parameters are not necessarily
observable under all dynamical conditions. Moreover, the duration of
the trajectory may be too short to estimate some processes with large
correlation time. These two reasons may justify choosing a simplified
version of the model, i.e. removing some of the GM processes, or
lumping them together.
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Fig. 7. Emulated trajectory issued from an ALS flight. The left panel shows the reference trajectory with the three articial GNSS-free periods. The right
panel provides a close view on the third GNSS-free period, together with the estimated trajectory using Model 3.

Simulation provides a mean for performing such an analysis. In
this respect, we use the following procedure:

1) An accurate navigation solution for a given trajectory is
computed using signals from high-grade sensors (typically
tactical/navigation-grade IMUs, L1/L2 carrier-phase differen-
tial GNSS positioning).

2) The real error signals acquired by the sensor under static
conditions are added to synthetic inertial signals emulated
along the reference trajectory (note that the synthetic signal
matches the chosen reference perfectly; hence it contains no
errors at all).

3) Artificial outages in GNSS position/velocity observations are
added to the dataset which is subsequently processed by
INS/GNSS integration implementing a closed-loop EKF.

4) The qualily of the model is judged by analysing the actual
navigation error as well as the EKF-predicted accuracy during
inertial coasting mode (i.e. periods with no external aiding).

B. Example: Low-cost MEMS-based IMU operating on a
Flying Platform

In this example, we assume the XSens MTi-G IMU, for which a
model was constructed in Sec. V, to operate on a light flying platform
such as an unmanned air vehicle. The target application is mapping
via remote sensing sensors which must be accurately georeferenced
using the integrated inertial and differential phase and code GNSS
observations. Typical mission durations are between 5 to 30 minutes.
We are interested in studying the behavior of the EKF operating in
the aimed context with the given set of navigation sensors used for
georeferencing.

The left panel of Fig. 7 shows an extract of a trajectory issued from
a helicopter flight performing airborne laser scanning [41]. There,
the laser data were georeferenced using a trajectory obtained by
integrating observations from a tactical-grade Litton LN-200 IMU and
a Javad Legacy L1/L2 GNSS receiver (rover). The centimeter-level
accurate GNSS solution was obtained by carrier-phase differential
post-processing of the rover observation with a base GNSS receiver
(Topcon Hiper Pro). Finally, the smoothed integrated navigation
solution provided the trajectory which will serve as a reference as well
as a base for emulation. We then emulated synthetic specific force and
angular rate observations along this trajectory, and corrupted them
with the real error signal observed in static conditions (see Sec. V).

We are now interested in comparing subversions of the constructed
model expressed by Eq. (36), i.e.
• Model 1: Yk = Wk, k ∈ Z. This model is computationaly the

most efficient but does not account for any correlated errors.
• Model 2: Yk =

∑M
m=1(YGM,m)k + Wk, k ∈ Z, m =

1, . . . ,M with M = 1 for the gyroscopes, and M = 2 for
the accelerometers. This model accounts for correlated errors
with the correlation time of ∼ 40 seconds for the gyroscopes,
and ∼ 25 seconds for the accelerometers.

• Model 3: complete model, i.e. with M = 2 for the gyroscopes
and M = 3 for the accelerometers. This model accounts for er-
rors with short and long correlation times, but is computationaly
more demanding.

We introduce three artifical GNSS-free periods, each of 60 seconds
duration. The first outage occurs approximately 7 minutes after
mission start, the second after 11 minutes and the third after 15
minutes. The error growth during each outage can be visualized in
Fig. 8. Although not clearly visible on the figure, a general view
reveals that Model 2 performs only slightly better than Model 1.
All models perform similarly during the first outage, meaning that
some of the model parameters could not yet be correctly estimated
at that time. However, after being longer in mission, Model 3 clearly
outperforms the two others. Regarding planimetric positioning error
(upper left panel), the improvement of Model 3 compared to Model
1 (and 2) is more than 30% for the second outage, and raises to
around 60% at the third outage. The right panel of Fig. 7 shows a
close view on the trajectory during this third GNSS-free period. With
respect to altimetric error, the upper right panel of Fig. 8 indicates
that Model 3 always performed significantly better than Model 1 and
2. The lower left and right panels show the North-axis velocity (East
and vertical velocity have similar behavior) and the roll angle errors
(pitch and heading angles have similar behavior), respectively. The
same conclusion as for the planimetry can also be drawn for the
accuracy of velocity and attitude.

Beside navigation, evaluating the commited errors in the EKF-
estimated covariance matrix Pk, k ∈ Z needs to be evaluated for
each model. Fig. 9 depicts the true latitude error and North-axis
velocity error, considering that similar conclusions can be made from
the other state variables. The estimated state variables during the third
outage period are depicted as thick black (Model 3) and lightgray
(Model 1 and 2) lines, surrounded by their estimated 3-σ error bounds
(thiner lines with same color) extracted from the diagonal of Pk. The
true state is drawn as the thickest gray line. From both panels it can be
seen that the estimated precision encompasses the true error only for
the complete model, i.e. Model 3, while it is clearly underestimated
with the two other models.

At this stage, the filter can be designed with the following
recommendations:
• The first GM process, i.e. (YGM,1)k, can safely be neglected,

since it brings no significant improvement over Model 1.
• If Model 1 or Model 2 is chosen, the suppression of the model(s)

accounting for long-term correlated errors, i.e. (YGM,1)k and/or
(YGM,2)k, may be compensated by augmenting the WN level
in Wk. This will improve the correspondance between the
estimated filter precision with the real error.

Again, interpreting the comparison of models on the basis of a single
realization shall be taken with caution. Nevertheless, it provides first
indications on the correctness of models provided by the GMWM
estimator.
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Fig. 8. Navigation performance achieved by an XSens MTi-G device operated on an emulated trajectory with three GNSS-free periods. The upper panels
show planimetric (left) and altimetric (right) positioning errors, while the lower panels depict North-axis velocity error (left) and roll angle error (right) for
three tested models.

Fig. 9. Estimated Latitude (left panel) and North-axis velocity (right panel) using three subversions of the constructed model, together with the estimated
3-σ confidence levels.

VII. CONCLUSION

In this research, we proposed and tested a new methodology for
estimating the parameters when modeling inertial sensor errors. Its
importance in terms of final navigation accuracy has been proved
using real data sets. The limitations of the commonly adopted method
for modeling stochastic errors, i.e. the AV (or PSD) analysis, have
been highlighted and the use of a new (consistent) estimator, the
GMWM, proposed in this respect. The implemented new calibration
framework enabled to analyse long error sequences and rapidly (in
a few seconds) estimate very complex models such as composite
stochastic processes. Moreover, if required, confidence intervals can
be computed for each estimated parameter using this approach.
The obtained models were then validated at observation level by
comparing the real data Haar WV (or AV) and PSD estimates with
their counterparts computed on simulated signals issued from the
estimated model. Finally, the impact on the accuracy of the EKF
solution implementing the estimated sensor models was evaluated by
means of emulated specific forces and angular rates corrupted by

the real error signals. This enabled to eliminate dynamics-dependent
effects which may not have been present during the calibration phase
(e.g. platform vibrations). The main conclusions from the tested
case are that, according to the application for which the filter is
designed, the use of more complex models may introduce a significant
improvement in terms of navigation accuracy.

Of course, as stated above, the encountered dynamics might also
affect the sensor error behavior and, by extension, the final filter
accuracy. To that end, error signals must be properly constructed
under dynamical conditions and precisely studied with respect to
dynamics (e.g. angular and linear acceleration, jerk). If some depen-
dency can be observed, individual sensor error models should account
for dynamics. However, the construction of such error signals as well
as the process of building models encounting for dynamics is far from
being trivial and therefore left to future research.
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Ẋ
2
(t

)
=

0
c R
R

=
X

2

X
1
,k

+
1

=
X

1
,k

+
X

2
,k
·∆

t
X

2
,k

+
1

=
X

2
,k


	Introduction
	Problem Statement
	The Generalized Method of Wavelet Moments
	The Wavelet Variance
	GMWM estimator
	From the Generalized Method of Moments to Indirect Inference
	Inference on PSD v.s. Wavelet Variance

	Implementation
	Optimizer Initialization
	Note on the Estimation of the Wavelet Variance Covariance

	Study of Stochastic Errors in MEMS-based Inertial Sensors
	Error Signal Construction
	Model Building
	Model Estimation
	Model Validation

	Influence on the EKF Solution
	Testing Models
	Example: Low-cost MEMS-based IMU operating on a Flying Platform

	Conclusion
	References

