

Publication information

Title	New Evolutionary Search for Long Low Autocorrelation Binary Sequences
Author(s)	Mow, Wai Ho; Du, Ke-Lin; Wu, Wei Hsiang
Source	IEEE Transactions on Aerospace and Electronic Systems , v. 51, (1), January 2015, p. 290-303
Version	Pre-published version
DOI	https://doi.org/10.1109/TAES.2014.130518
Publisher	IEEE

Copyright information

Copyright © 2015 IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of The Hong Kong University of Science and Technology's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Notice

This version is available at HKUST Institutional Repository via <u>http://hdl.handle.net/1783.1/67532</u> If it is the author's pre-published version, changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published version.

http://repository.ust.hk/ir/

1

New Evolutionary Search for Long Low Autocorrelation Binary Sequences

Ke-Lin Du, Senior Member, IEEE, Wai Ho Mow, Senior Member, IEEE, and Wei Hsiang Wu

Abstract

Binary sequences with low aperiodic autocorrelation levels, defined in terms of the peak sidelobe level and/or merit factor, have many important engineering applications, such as radars, sonars, spread spectrum communications, system identification and cryptography. Searching for low autocorrelation binary sequences (LABS) is a notorious combinatorial problem, and has been chosen to form a benchmark test for constraint solvers. Due to its prohibitively high complexity, an exhaustive search solution is impractical, except for relatively short lengths. Many suboptimal algorithms have been introduced to extend the LABS search for lengths of up to a few hundreds. In this paper, we address the challenge of discovering even longer LABS by proposing an evolutionary algorithm with a new combination of several features, borrowed from genetic algorithms, evolutionary strategies and memetic algorithms. The proposed algorithm can efficiently discover long LABS of lengths up to several thousands. Record-breaking minimum peak sidelobe results of many lengths up to 4096 have been tabulated for benchmarking purpose. In addition, our algorithm design can be easily adapted to tackle various extensions of the LABS problem, say, with a generic sidelobe criterion and/or for possibly nonbinary sequences.

Index Terms

Low autocorrelation binary sequences, peak sidelobe level, merit factor, evolutionary algorithm

I. PROBLEM STATEMENT

Searching for low autocorrelation binary sequences (LABS) is a classical computational problem that raises a challenge to all kinds of search methodologies. LABS are widely used in pulse compression radars and sonars, channel synchronization and tracking, spread spectrum and code-division multiple-access communications, and cryptography [1].

This work was supported by the Hong Kong Research Grants Councils (GRF Project number 616512). The majority of this work was conducted when the authors were with the Hong Kong University of Science and Technology.

Ke-Lin Du is with Xonlink Inc., Ningbo, China. Wai Ho Mow and Wei Hsiang Wu are with the Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong S.A.R., China. E-mail: kldu@ieee.org, w.mow@ieee.org. For a binary sequence of length L, $\mathbf{a} = a_1 a_2 \dots a_L$ with $a_i = \{-1, +1\}$ for all i, its autocorrelation function (ACF) is given by

$$C_k(\mathbf{a}) = \sum_{i=1}^{L-k} a_i a_{i+k}, \quad k = 0, \pm 1, \dots, \pm (L-1).$$
(1)

For k = 0, the value of ACF equals L and is called the peak, and for $k \neq 0$, the values of ACF are called the sidelobes. The peak sidelobe level (PSL) of a binary sequence a of length L is defined as

$$PSL(\mathbf{a}) = \max_{k=1,\cdots,L-1} |C_k(\mathbf{a})|.$$
⁽²⁾

The minimum peak sidelobe (MPS) defined for all possible binary sequences of length L is defined as

$$MPS(L) = \min_{\mathbf{a} \in \{-1,+1\}^L} PSL(\mathbf{a}).$$
(3)

For length L, the MPS is known to be upper-bounded by $\sqrt{2L \ln L}$ [2]. A binary sequence with PSL at most $\sqrt{2L \ln(2L)}$ for every length L > 1 was constructed in [3]. It was empirically shown therein that its PSL actually grows like $0.9\sqrt{L \ln(\ln L)}$, which is still far larger than best known PSL results obtained by well-designed computer searches.

The merit factor F of a binary sequence a is defined as [4]

$$F(\mathbf{a}) = \frac{L^2}{2\sum_{k=1}^{L-1} C_k^2(\mathbf{a})}.$$
(4)

The sum term in the denominator is called the sidelobe energy of the sequence. It is conjectured in [4] that for the best binary sequences in the sense of achieving the maximum possible merit factor, we have $F \rightarrow 12.3248$ as $L \rightarrow \infty$.

Roughly speaking, there are two versions of LABS searches in the literature: one targets at low PSL and the other targets at high merit factor (or equivalently, low sidelobe energy). In this paper, our key focus is to search for long LABS with low PSL, which is more challenging because of the non-analytical maximum operator in its definition.

The rest of this paper is organized as follows. Section II provides a literature survey on previous works and results on the LABS problem. Section III summarizes the key features of major evolutionary algorithms and then present our proposed design. Section IV presents the search results on LABS using our proposed evolutionary algorithm and compare them with other benchmarking results. Finally, Section V contains the concluding remarks.

II. LITERATURE SURVEY

Both versions of the LABS problem are hard since the search space grows exponentially with the sequence length and there are numerous local minima, as well as many optima. For example, a full search for L = 64 yields 14872 optimal binary sequences achieving MPS 4, though these sequences have a wide variability of merit factors [5]. The conventional gradient-based and common search approaches are almost always trapped in some poor local minima. In order to find optimal sequences of length L, the brute-force exhaustive search requires to examine 2^{L} binary sequences. The branch-and-bound enumeration algorithm requires a runtime complexity of $O(1.85^{L})$ in order to find optimal merit factors for all $L \leq 60$ [1], [6]. A state-of-the-art exhaustive search algorithm for MPS binary sequences was reported in [5]. The method integrates combinatoric tree search techniques, the use of PSL-preserving symmetries, data representations and operations for fast sidelobe computation, and partitioning for parallelism. The PSL-preserving operations applied to any binary sequence **a** (i.e., negation of **a**, reversal of **a**, and sign alternation of **a**, and their combinations) can preserve its PSL. Consequently, the entire set of binary sequences can be represented by a subset of less than half of its original size [5]. To find all MPS binary sequences, it suffices to search over this subset. This method has a runtime complexity of roughly $O(1.4^{L})$ [5], [7].

Some of the known exhaustive search results can be summarized as follows (c.f. [3]):

- 1) MPS(L) = 1 for L = 2, 3, 4, 5, 7, 11, 13; (These optimal MPS sequences are known as *Barker sequences*.)
- 2) $MPS(L) \leq 2$ for $L \leq 21$;
- 3) $MPS(L) \le 3$ for $L \le 48$ [1];
- 4) $MPS(L) \le 4$ for $L \le 70$ [5];
- 5) $MPS(L) \le 4$ for $71 \le L \le 82$ [8];
- 6) $MPS(L) \le 5$ for $83 \le L \le 105$ [8].

Barker sequences with PSL being 1 are known only for lengths 2, 3, 4, 5, 7, 11 and 13. It has been long conjectured that longer Barker sequence does not exist. The Barker condition that PSL ≤ 1 has been extended for polyphase sequences defined over K-th roots of unity of the form $a_i = e^{2\pi n_i \sqrt{-1}/K}$ with n_i being some integer between 0 and K - 1 for all *i*, where K represents the phase alphabet size. The list of known polyphase Barker sequences has been extended to length 77 [10], [9]. However, since practical applications do not favor large phase alphabets, another direction is to search for low autocorrelation quadriphase sequences, which have better PSL and MF over the best biphase codes [11].

For odd length L, the so-called skew-symmetric binary sequences has the property that $a_{(L+1)/2+i} = (-1)^i a_{(L+1)/2-i}$, for i = 1, ..., (L-1)/2. For these sequences, $C_k(\mathbf{a}) = 0$ for all odd k. Since the right half of the sequence is determined by the left half, searching the skew-symmetric sequences reduces the effect length of the sequence by a factor of two. Some good results were reported for skew-symmetric sequences, but not for all lengths [1].

To meet the need of longer LABS for practical applications, one approach to dramatically reduce the search complexity is to focus on some special classes of binary sequences. The maximal-length shift register sequences (also called the *m*-sequence) are pseudorandom sequences of length $L = 2^n - 1$ for n = 1, 2, ..., which have an ideal periodic autocorrelation function, and they can be easily generated by feedback shift registers [12]. The Legendre sequences are another class of pseudorandom sequences. By searching cyclically shifted variants of the Legendre sequences of prime lengths, low PSL results for prime lengths of up to a thousand were tabulated in [13]. For non-prime L, reasonably good results can be obtained by periodically extending good cyclically shifted Legendre sequences of prime lengths. A numerical investigation was presented for the PSL of Legendre sequences, m-sequences, and Rudin-Shapiro sequences in [7]. The maximum asymptotic merit factor of an optimally cyclically shifted Legendre sequences is 6, and that of an m-sequences is 3, that of a Rudin-Shapiro sequence, as well as its mate, is 3. Besides, in [7], the variation of the PSLs of the Legendre sequences of the first 3500 prime lengths (i.e., $L \leq 32609$), as well as those of the m-sequences of lengths up to n = 20 (i.e., $L = 2^{20} = 1048575$) were also given. It can be seen that the Legendre sequences are far superior to the m-sequences and the Rudin-Shapiro sequences in terms of both PSL and MF.

In [14], a systematic way to apply local search strategies to optimize the PSL and MF of a sampled and binarized version of various linear frequency modulated chirp signals, which has been widely used as radar signals, were introduced. LABS of selected lengths up to 4096 with good PSL were tabulated.

In [15], an integer programming formulation of the LABS problem for any L was given. The values of PSL and the merit factor F (for L = 71 to 100) of the sequences were obtained by using a Mixed-Integer Linear Programming (MILP) solver on the Network-Enabled Optimization System (NEOS) server, which uses the sequential quadratic programming technique. Overall speaking, the PSL results obtained therein are no better than those obtained by an evolutionary algorithm (EA) [21], and a lower PSL value of 5 was obtained only for L = 74.

Very recently, a signal processing-style computational framework in [16] was proposed to tackle the LABS problem and its various extensions. The essence of the framework is an alternating projection algorithm based on an iterative twisted approximation, which is a merit factor maximizer that can yield solutions depending on initialization. However, the method does not have an effective way to get out of local optima and is unlikely to outperform a well-designed stochastic search.

Some stochastic search methods, such as simulated annealing and EAs, can be applied for escaping local minima. In [17], a stochastic method with a runtime complexity of $O(1.68^L)$ was reported. Compared with the Kernighan-Lin solver [18] having a runtime complexity of $O(1.463^L)$, the searches based on evolutionary strategies (ES) for optima may require significantly less samples on average and have a runtime complexity of $O(1.397^L)$ [6].

Popular EAs include the genetic algorithm and the memetic algorithm, in addition to the ES. A recent review on the LABS problem was given in [19]. Generally speaking, the performance of EAs are superior to other stochastic search algorithms [19]. In fact, the EAs have attained the best results so far [6]. There are quite a few works on applying EAs to the LABS problem [6], [20], [21], [22], [23], [24], [25], [26].

In [21], the genetic algorithm is applied. The method first generates a population of size N_P , then generates some offspring

by one-point or two-point mutation, and others by one-point crossover. Unlike the classical genetic algorithm that uses a proportional probabilistic selection mechanism, elitism is applied. Namely, offspring of size N_P with the best fitness are then selected as the parents in the next generation. The fitness function is selected as

$$f_1(\mathbf{a}) = \frac{\alpha}{PSL(\mathbf{a})} + \beta F(\mathbf{a}) \tag{5}$$

where α and β are scaling factors. When $\alpha = 0$ and $\beta \neq 0$, the fitness function corresponds to the minimum PSL. When $\alpha \neq 0$ and $\beta = 0$, it corresponds to the maximum merit factor F. A list of sequences of lengths 49 to 100 are given. The obtained PSL values are the same or better than those obtained in [34], where the Hopfield neural network was used for finding good binary sequences. In [22], the method first generates N_P parents, and then generates offspring of size N_O by one-point crossover; the $N_P + N_O$ individuals compete and the N_P best individuals survive as the next generation; one-point or two-point mutation is applied only when some of the N_P best individuals have the same fitness, i.e., PSL. In [20], ES was used to search for LABS with locally optimal merit factor F, and a preselection operation was applied to the individuals created from mutation.

The memetic algorithm was used for the LABS problem in [23], [24]. In [23], an ES was used as the EA, and a local search was implemented by flipping each bit of the string. The fitness function is selected as

$$f_2(\mathbf{a}) = \frac{F(\mathbf{a})}{PSL(\mathbf{a})} \tag{6}$$

The obtained F is greater that that of [21] for L = 71 to 100, but the PSL is typically worse. In [24], the bit-flipping or tabu search was used as the local search for maximizing F. The memetic algorithm with tabu search is more effective in finding the optimal merit factor F than the Kernighan-Lin solver and the memetic algorithm with bit climber, from the experiment for $L \leq 60$. The memetic algorithm with tabu search is an order of magnitude faster than the pure tabu search with frequent restarts [35]. The latter is roughly on par with the Kernighan-Lin solver for the LABS problem [6].

Some important real-world applications require the search criterion or fitness function of the LABS to be generalized in various ways in order to find (possibly non-binary) sequence sets with a good tradeoff (defined in some sense) between low crosscorrelation levels and low autocorrelation sidelobe levels. In general, it is not too difficult to adjust the EA to accommodate a new fitness function. In [25], a multi-objective EA was used to generate complex spreading sequences with good crosscorrelation and autocorrelation properties. In [26], the genetic algorithm was used for finding good training sequences for multiple antenna (spatial multiplexing) systems.

III. EVOLUTIONARY ALGORITHM DESIGN FOR LABS

From our literature survey in the previous section, EAs are found to be well-suited for the long LABS problem. In this section, the design and pseudocode of our proposed evolutionary algorithm will be presented after summarizing the key features of the three type of evolutionary algorithms, namely, genetic algorithms, evolutionary strategies and memetic algorithms. The latter are inspirations of our proposed design.

A. Introduction to Evolutionary Algorithms

Evolutionary algorithms (EAs) are a class of general-purpose stochastic optimization algorithms under the universally accepted neo-Darwinian paradigm. The neo-Darwinian paradigm is a combination of the classical Darwinian evolutionary theory, the selectionism of Weismann, and the genetics of Mendel [27]. EAs are currently a major approach to adaptation and optimization.

EAs and similar population-based methods are simple, parallel, general-purpose, global optimization methods. They are useful for any optimization problem, particularly when conventional optimization techniques are invalid. They are active and efficient global optimization methods.

1) EA Procedure: In EA, individuals in a population compete and exchange information with one another. There are three basic genetic operations, namely, *crossover* (also called *recombination*), *mutation*, and *selection*. The procedure of a typical EA is given by Algorithm-EA.

Algorithm-EA

Procedure

```
Initialization:
```

Set t := 0.

Randomize initial population $\mathcal{P}(0)$.

Repeat:

Evaluate fitness of each individual of $\mathcal{P}(t)$.

Select individuals as parents from $\mathcal{P}(t)$ based on fitness.

Apply search operators (crossover and mutation) to

parents, and generate $\mathcal{P}(t+1)$.

Set t := t + 1.

until the termination criterion is satisfied.

End Procedure

In Algorithm-EA, the initial population is usually generated randomly, while the population of other generations are generated from some selection/reproduction procedure. Both crossover and mutation are considered the driving forces of evolution. Crossover occurs when two parent chromosomes, normally two homologous instances of the same chromosome, break and then reconnect but to different end pieces. Mutations can be caused by copying errors in the genetic material during cell division and by external environment factors.

Selection embodies the principle of *survival of the fittest*, which provides a driving force in EA. Selection is based on the fitness of the individuals. From a population $\mathcal{P}(t)$, those individuals with strong fitness have a higher probability of being selected for reproduction so as to generate a population of the next generation, $\mathcal{P}(t + 1)$.

The search process of an EA terminates when a certain termination criterion is met. Otherwise a new generation is produced and the search process continues. The criterion can be selected as a maximum number of generations, or the convergence of the genotypes of the individuals. Phenotypic convergence without genotypic convergence is also possible.

2) *Some Terminologies:* Some terminologies that are used in the EA literature are described here. These terminologies are an analogy to their biological counterparts.

Population. A set of individuals in a generation is called a *population*, $\mathcal{P}(t) = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_{N_P}\}$, where \vec{x}_i is the *i*th individual, and N_P is the size of the population.

Chromosome. Each individual \vec{x}_i in a population is a single *chromosome*. A chromosome, sometimes called a *genome*, is a set of parameters that define a solution to the problem under consideration. Biologically, a chromosome is a long, continuous piece of DNA, that contains many genes, regulatory elements and other intervening nucleotide sequences. Chromsomes encode a biological organism.

Gene. In EAs, each chromosome \vec{x} comprises of a string of elements x_i , called *genes*, i.e., $\vec{x} = (x_1, x_2, ..., x_n)$, where n is the number of genes in the chromosome. Each gene encodes a parameter of the problem into the chromosome. A gene is usually encoded as a binary string or a real number. In biology, genes are entities that parents pass to offspring during reproduction.

Allele. The biological definition for an *allele* is any one of a number of alternative forms of the same gene occupying a given position called a *locus* on a chromosome. The gene's position in the chromosome is called locus (pl. loci). In EA terminology, the value of a gene is indicated as an *allele*.

Genotype. A *genotype* is biologically referred to the underlying genetic coding of a living organism, usually in the form of DNA. The genotype of each organism corresponds to an observable, known as a *phenotype*. In EAs, a genotype represents a coded solution, that is, a chromosome.

Phenotype. Biologically, the *phenotype* of an organism is either its total physical appearance and constitution or a specific manifestation of a trait. Each individual has a phenotype that is the set of all its traits (including its fitness and its genotype). A phenotype is determined by genotype or multiple genes and influenced by environmental factors. The concept of phenotypic plasticity describes the degree to which an organism's phenotype is determined by its genotype. The mapping of a set of genotypes to a set of phenotypes is referred to as a *genotype–phenotype map*. In EAs, a phenotype represents a decoded solution.

Fitness. *Fitness* in biology refers to the ability of an individual of certain genotype to reproduce. The set of all possible genotypes and their respective fitness values is called a *fitness landscape*. Fitness function is a particular type of objective function that quantifies the optimality of a solution, i.e., a chromosome, in an EA. Fitness is the value of the objective function for a chromosome \vec{x}_i , namely $f(\vec{x}_i)$. After the genotype is decoded, the fitness function is used to convert the phenotype's parameter values into the fitness. Fitness is used to rate the solutions.

Natural Selection. *Natural selection* is believed to be the most important mechanism in the evolution of biological species. It alters biological populations over time by propagating heritable traits affecting individual organisms to survive and reproduce. It adapts a species to its environment. Natural selection is concerned with those traits that help individuals to survive the environment and to reproduce. It causes traits to become more prevalent when they contribute to fitness.

3) EA Methods: EAs can be broadly classified into genetic algorithms [28], evolution strategies (ES) [29], genetic programming [30], differential evolution [31], and estimation of distribution algorithms [32]. Evolution itself can be accelerated by integrating learning, yielding memetic algorithms [33]. Today, the differentiations among different EA paradigms are getting blurred, since they try to improve the performance by borrowing ideas from one another [27].

The genetic algorithm is coded in binary strings, and crossover is its primary operation and mutation is also used. It employs a probabilistic selection scheme for the parents for mating, according to their fitness. The binary nature of the LABS problem is especially suited for the binary representation of the genetic algorithm.

On the other hand, the ES usually codes variables as real numbers, and mutation is the only genetic operation used. It typically takes the form of either (μ, λ) or $(\mu + \lambda)$ scheme, where μ is the number of children generated and λ is the number of individuals selected as parents for the next generation. The (μ, λ) scheme selects λ individuals from the μ generated children as the parents for the next generation, while the $(\mu + \lambda)$ scheme selects λ individuals from the pool of μ generated children and the λ parents as the parents for the next generation. Unlike the genetic algorithm, the ES always selects the λ best individuals as a population (i.e., the elitist strategy), and each individual in the population has the same mating probability.

Differential evolution is featured by the elitist strategy and multiparent reproduction. Each individual in the current generation

is allowed to breed through mating with other randomly selected individuals from the population. Specifically, for each individual at the current generation, three other random distinct individuals are selected from the population to form a parent pool of four individuals in order to breed an offspring.

In estimation of distribution algorithms, there is no crossover or mutation operation. A probabilistic model is induced from some of the individuals in population $\mathcal{P}(t)$, and then the next population $\mathcal{P}(t+1)$ is obtained by sampling this probabilistic model.

The memetic algorithm, also called the cultural algorithm, is inspired by the propagation of human ideas and Dawkins' notion of *meme* [27]. The memetic algorithm may be implemented as an EA followed by a local search, and is also known as a genetic local search. The use of the local search can substantially reduce the total number of fitness function evaluations.

B. Our Proposed Evolutionary Algorithm

We now present our design of an EA for the LABS problem. Binary coding is a natural coding scheme for this problem. Each chromosome is encoded by a string. The classical genetic algorithm is inefficient due to the probabilistic selection/reproduction mechanism and probabilistic crossover/mutation operations. Some ideas from the ES and memetic algorithm are used to improve the search efficiency. Our proposed EA adopts the following features:

- Crossover operation is not applied. Since there are many optima as well as numerous local minima in different regions of the fitness landscape, the crossover of two such individuals only leads to nowhere. Typically, two selected individuals for crossover are likely in different regions, and crossover degrades to random search.
- 2) Selection is elitic. The $(\mu + \lambda)$ ES scheme is applied. In the real-coded ES, the mutation strategies are evolved automatically by encoding them into the chromosome. In the binary-coded case, it is not very efficient to evolve the mutation strategies.
- 3) Two-point mutation is employed. Since we plan to apply a bit-climber (to be explained next) on the mutated individual, two-point mutation is applied. The two-point mutation operator changes two bits at two randomly specified positions of the string. We have two reasons for selecting the two-point mutation. First, one-point mutation flips one randomly specified bit at a time, which may be reset by the bit-climber. Second, the two-point mutation operation controls the variations within a certain range, which avoids the genetic search to be degenerated into a random search.
- 4) The bit-climber is applied as a local search step. The bit-climber is implemented in this way: One bit of the chromosome string is flipped at a time, and the fitness is computed for the new string; if the fitness is better than its earlier value, the new string replaces the current string; repeated until all the *L* bit flips are performed.
- 5) Partial restart is implemented to improve the genetic diversity of the population to prevent premature convergence, since the elitism selection strategy and the two-point mutation (which has very limited variation) may restrict the individuals

to some regions with local minima and premature convergence may occur. Partial restart introduces some randomly generated individuals into the population to increase the diversity of the population. Partial restart can be implemented by a fixed number of generations, or implemented when premature convergence occurs.

By representing binary sequences a_i 's as ± 1 -valued bit strings, the pseudocode of the proposed EA_for_LABS algorithm is given as follows.

Algorithm EA_for_LABS

Procedure Main

```
Initialization:
```

Set population size N_P ,

number of children N_O ,

number of generations for each restart G_{RS} ,

maximal number of generations G_{\max} ,

population size for partial restart N_{RS} .

```
t := 0.
```

Randomize $\mathbf{a}_i, i = 1, \ldots, N_P$.

for i := 1 to N_P ,

 $\mathbf{a}_i := \text{bit_climber}(\mathbf{a}_i)$, with fitness $f_P(i)$.

end for

 $\mathcal{P} := \{ (\mathbf{a}_i, f_P(i)) | i = 1, \dots, N_P \}.$

```
for t := 1 to G_{\max},
```

```
if (t \mod G_{RS} = 0),
```

Randomize $a_i, i = N_P + 1, ..., N_P + N_{RS}$.

for $i := N_P + 1$ to $N_P + N_{RS}$,

 $\mathbf{a}_i := \text{bit_climber}(\mathbf{a}_i)$, with fitness $f_P(i)$.

end for

$$\mathcal{P} := \mathcal{P} \bigcup \{ (\mathbf{a}_i, f_P(i)) | i = N_P + 1, \dots, N_P + N_{RS} \}.$$

end if

for i := 1 to N_O ,

Randomly select \mathbf{a}_k from \mathcal{P} .

Mutate \mathbf{a}_k by two-point mutation.

 $\mathbf{b}_i := \text{bit_climber}(\mathbf{a}_k)$, with fitness $f_O(i)$.

end for

 $\mathcal{O} := \{ (\mathbf{b}_i, f_O(i)) | i = 1, \dots, N_O \}.$

Rank $\mathcal{P} \bigcup \mathcal{O}$ in descending fitness order.

Take the first N_P individuals as \mathcal{P} .

end for

End Procedure

Procedure Bit_Climber

Input **a** with fitness $f(\mathbf{a})$.

for i := 1 to L,

 $a_i := -a_i$.

Evaluate the fitness $g(\mathbf{a})$.

if $g(\mathbf{a}) > f(\mathbf{a})$, $f(\mathbf{a}) := g(\mathbf{a})$. else $a_i := -a_i$. end if Return \mathbf{a} with fitness $f(\mathbf{a})$.

End Procedure

The evaluation of the fitness function takes $O(L^2)$ operations for calculating $C_k(\mathbf{a})$'s. For the bit-climber, for each bit flip at a_i , $C_k(\mathbf{a})$ can be calculated from its previous value $C'_k(\mathbf{a})$ by the update equation

$$C_{k}(\mathbf{a}) = \begin{cases} C_{k}'(\mathbf{a}) - 2a_{i}a_{i+k}, & 1 \leq i \leq k \\ & \text{and } i \leq L - k; \\ C_{k}'(\mathbf{a}) - 2a_{i}(a_{i-k} + a_{i+k}), & k+1 \leq i \leq L - k; \\ C_{k}'(\mathbf{a}) - 2a_{i-k}a_{i}, & L-k+1 \leq i \leq L \\ & \text{and } i \geq k+1; \\ C_{k}'(\mathbf{a}), & \text{otherwise.} \end{cases}$$
(7)

This reduces the complexity for updating all $C_k(\mathbf{a})$'s to O(L). The resultant saving is significant, especially because each mutated or randomly generated individual is subject to L bit flips and fitness evaluations. For example, compared to direct calculation of C_k 's, the computing time of the EA is reduced by a factor of 4 when calculating C_k 's for L = 31 by (7).

IV. RESULTS

Before applying the proposed algorithm for finding long LABS with low PSL, we first address the problem of which fitness function is most suitable for the task at hand.

For the sake of completeness, we also consider the sidelobe measure that generalise PSL and F first introduced in [36] and

is defined as

$$f_3(\mathbf{a}) = \frac{1}{\sum_{k=1}^{L-1} (C_k(\mathbf{a}))^{\gamma}}, \quad \gamma \in \{1, 2, \dots\}.$$
(8)

This fitness function considers all sidelobes $C_k(\mathbf{a})$, k = 1, 2, ..., L - 1, but gives priority to the largest sidelobes. By setting $\gamma = 2$, $f_3(\mathbf{a})$ is equivalent to the merit factor $F(\mathbf{a})$. By setting a large value of γ , $f_3(\mathbf{a})$ has a similar effect as $1/PSL(\mathbf{a})$. In the LABS problem, many $C_k(\mathbf{a})$'s may have the same maximum value. The PSL criterion only considers this maximum value but ignores the number of peak sidelobes. In general, a different tradeoff between the PSL and the merit factor can be achieved by choosing a different value of γ . In the subsequent, $\gamma = 4$ is selected for generating all search results associated with the criterion f_3 .

We set $N_P = 4L$, $N_O = 20L$, $G_{RS} = 5$, $G_{max} = 100$, $N_{RS} = 10L$. Four different fitness functions, i.e., PSL, F, f_2 and f_3 , for 5 random runs of the proposed EA are evaluated on a Linux system with Intel's Core 2 Duo processor. The results for L = 3 to 120 are plotted in Fig. 1. The results of Deng *et al.* [21] are also plotted for comparison.

From Fig. 1, one can arrive at the following observations on the selection of fitness function. When PSL is selected as the fitness function, the F performance is the poorest. In contrast, when F is selected as the fitness function, the PSL performance is poorest. Better tradeoffs are achieved by the fitness functions f_2 and f_3 . In particular, f_2 achieves the best tradeoff between the achieved PSL and F. It is interesting to note from Fig. 1 that f_2 is an even more effective fitness function than PSL, even if PSL is the objective to be minimized. This may be due to the fact that like most other optimization methods, the EA is more effective when applied to a smooth fitness landscape, and the resultant gain may outweigh the loss incurred by approximating the PSL criterion by f_2 . Our PSL results for the interval $L \in [49, 100]$ are better than those of Deng *et al.* [21] for L = 57, 72, 75, 89, 92, 93, 94, 97, and 99. Generally speaking, compared with existing methods, our proposed algorithm with the fitness function f_2 is more effective in finding improved or optimal solutions for the LABS problem. As will be shown subsequently, this holds true even for much longer sequences.

In Fig. 2, our PSL results are compared with the latest results of [16] and the optimal results in [5] for $5 \le L \le 69$. The results were obtained based on 5 random runs with the parameters given above. It can be seen that our results are much closer to the optimal results than those of [16].

Based on our survey on the LABS literature, there are only two papers [14], [13] reported useful LABS results for lengths beyond a few hundreds. This reflects how challenging the long LABS problem is. Therefore, the results found by our proposed EA are compared with best known PSL results in [14], [13] for $L \ge 106$. The PSL results for lengths 106 to 300 are listed in Table I. To discover longer LABS, our proposed EA was applied for some chosen lengths between L = 303 and 4096 for generating Tables II to III. Each result listed therein is the best among 3 random runs of our program.

(b)

Fig. 1. Best binary sequences of lengths $L \leq 120$ with respect to two criteria: (a) PSL; (b) merit factor F.

Fig. 2. Comparison of our PSL results with those given in [16] that are produced by the recent ITROX-AP algorithm and the optimal PSL results in [5] for $5 \le L \le 69$. Both the results of our proposed evolutionary algorithm and those of the ITROX-AP algorithm were obtained from the lowest PSL values returned from five random runs of the corresponding algorithms.

To reduce the computing time, the population and children sizes for longer lengths are decreased. For L = 303 to 1000, we set $N_P = L$, $N_O = 2L$, $G_{RS} = 5$, $G_{max} = 200$, $N_{RS} = L$. The results are listed in Table II. When L > 1000, we set $N_P = N_O = 1000$, $G_{RS} = 5$, $G_{max} = 200$, $N_{RS} = 1000$. The results for L = 1019 to 4096 are listed in Table III. Our record-breaking PSL results in Tables I to III are marked in bold and their associated lengths are marked with an asterisk.

For the sake of benchmarking, the best PSL results reported from the locally optimized cyclically shifted Legendre sequences in [13] and the systematic search in [14] are also listed side by side with our results in Tables I to III. From the tables, it can be seen that for the prime lengths considered, our PSL results are comparable to those obtained from the Legendre sequences in [13]. Notably, our PSL results in the tables are better for prime lengths L = 109, 137, 149, 181, 239, 241, 281, and 353. From the tables, it can also be observed that our PSL results are generally better than those in [14], especially for long sequences. Specifically, our PSL results in the tables are better for lengths L = 300, 304, 450, 500, 512, 550, 600, 650, 750, 800, 850, 900, 950, 1000, 1024, 1500, 2000, 2048, 2197, 3000 and 4096. In fact, the results therein are always no better than ours and it is very likely that their search algorithm is also far slower than our EA.

As an indication of the runtime complexity of our EA, the computing time is 58009 seconds or 16.1136 hours for L = 1019. For lengths up to 4096, the computing time required empirically shows a seemingly quadratic growth with L. Note however that we claim no rigorous complexity analysis results. In particular, the parameters have been adjusted to trade the performance for the search complexity, in case of long sequences. This flexible tradeoff is in fact one of the key advantages of the proposed algorithm.

V. CONCLUDING REMARKS

We have proposed an EA for tackling the problem of discovering long LABS with low PSL. The proposed EA design incorporates several features, including ($\lambda + \mu$) ES-like scheme, two-point mutation, a bit-climber used as a local search operator, partial population restart, and a fast scheme for calculating autocorrelation. The results for using several different objectives or fitness functions were compared in terms of both PSL and merit factor. Our algorithm can effectively find optimal or near-optimal PSL results for LABS of lengths up to 69, and significantly outperforms the recently introduced ITROX-AP algorithm in [16].

LABS of selected lengths up to 4096 searched by our algorithm have been tabulated in detail, and they have lower PSL values for many lengths than the previous records reported in [13] and [14], which are the only known papers addressing the long LABS challenge, to our knowledge. Our PSL results are often better (and no worse) than those reported in [14], especially for large lengths. The effectiveness of our algorithm is comparable to that based on the Legendre sequences in [13]. Yet our PSL results still provide lower PSL for many lengths. It is noteworthy that unlike [13], our algorithm is not restricted to prime

lengths and its effectiveness does not heavily depend on having a good sequence construction (e.g. Legendre sequences [13] or quantized chirp signals [14]) as its initial guess. Hence it can readily be adapted to tackle various extensions of the LABS problem. It is not only effective for the long LABS problem, but is also promising for handling generic sidelobe criteria, sequence sets with low cross- and auto-correlation levels, etc. In addition, it is convenient to control the required search time by adjusting the parameters of the proposed algorithm so as to achieve a flexible tradeoff between quality of search results and available computing resource.

REFERENCES

- [1] S. Mertens, "Exhaustive search for low-autocorrelation binary sequences," J. Phys. A: Math Gen, vol. 29, pp. L473–L481, 1996.
- [2] N. Alon, S. Litsyn, and A. Shpunt, "Typical peak sidelobe level of binary sequences," IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 545–554, Jan. 2010.
- [3] K.-U. Schmidt, "Binary sequences with small peak sidelobe level," IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 2512–2515, Apr. 2012.
- [4] M. J. E. Golay, "The merit factor of long low autocorrelation binary sequences," IEEE: Trans. Inf. Theory, vol. 28, no. 3, pp. 543–549, May 1982.
- [5] G. Coxson and J. Russo, "Efficient exhaustive search for optimal-peak-sidelobe binary codes." *IEEE Trans. Aerosp. Electron. Syst.*, vol. 41, no. 1, pp. 302–308, Jan. 2005.
- [6] F. Brglez, X. Y. Li, M. F. Stallmann and B. Militzer, "Reliable cost predictions for finding optimal solutions to LABS problem: Evolutionary and alternative algorithms," in Proc. 5th Int. Workshop on Frontiers in Evolutionary Algorithms (FEA'2003) under JCIS'2003, Cary, NC, USA, Sep. 2003.
- [7] J. Jedwab and K. Yoshida, "The peak sidelobe level of families of binary sequences," IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2247–2254, May 2006.
- [8] C. J. Nunn and G. E. Coxson, "Best-known autocorrelation peak sidelobe levels for binary codes of length 71 to 105," *IEEE Trans. Aerosp. Electron. Syst.*, vol. 44, no. 1, pp. 392–395, Jan. 2008.
- [9] P. Borwein and R. Ferguson, "Polyphase sequences with low autocorrelation," IEEE Trans. Inf. Theory, vol. 51, no. 4, pp. 1564–1567, Apr. 2005.
- [10] C. J. Nunn and G. E. Coxson, "Polyphase pulse compression codes with optimal peak and integrated sidelobes," *IEEE Trans. Aerosp. Electron. Syst.*, vol. 45, no. 2, pp. 41–47, Apr. 2009.
- [11] W. H. Mow, "Best quadriphase codes up to length 24," *Electron. Lett.*, vol. 29, no. 10, pp. 923–925, May 1993.
- [12] S. W. Golomb, Shift Register Sequences, San Francisco: Holden-Day Inc., 1967.
- [13] K. V. Rao and V. U. Reddy, "Biphase sequence generation with low sidelobe autocorrelation function," *IEEE Trans. Aerospace Electron. Syst.*, vol. 22, no. 2, pp. 128–133, Mar. 1986.
- [14] A. Dzvonkovskaya and H. Rohling, "Long binary phase codes with good autocorrelation properties," In Proc. 2008 Int. Radar Symp., Wroclaw, Poland, May 2008, pp. 1–4.
- [15] M. A. Ferrara, "Near-optimal peak sidelobe binary codes." In Proc. IEEE Conf. on Radar, Apr. 2006, pp. 400-403.
- [16] M. Soltanalian and P. Stoica, "Computational design of sequences with good correlation properties," *IEEE Trans. Signal Process.*, vol. 60, no. 5, pp. 2180–2193, May 2012.
- [17] S. Prestwich, "A hybrid search architecture applied to hard random 3-SAT and low-autocorrelation binary sequences." In Proc. 6th Int. Conf. on Principles and Practice of Constraint Programming, LNCS 1894, Springer-Verlag, 2000, pp. 337–352.
- [18] B. W. Kernighan and S. Lin, "An efficient heuristic procedure for partitioning graphs," Bell Syst. Tech. J., vol. 49, no.1, pp. 291–307, 1970.
- [19] H. D. Schotten and H. D. Luke, "On the search for low correlated binary sequences," Int. J. Electron. Commun. (AEÜ), vol. 59, pp. 67-78, 2005.
- [20] B. Militzer, M. Zamparelli, and D. Beule, "Evolutionary search for low autocorrelated binary sequences," *IEEE Trans. Evol. Comp.*, vol. 2, no. 1, pp. 34–39, Apr. 1998.

- [21] X. Deng and P. Fan, "New binary sequences with good aperiodic autocorrelations obtained by evolutionary algorithm," *IEEE Commun. Lett.*, vol. 3, no. 10, pp. 288–290, Oct. 1999.
- [22] A. E. Kocabas and A. Atalar, "Binary sequences with low aperiodic autocorrelation for synchronization purposes," *IEEE Commun. Lett.*, vol. 7, no. 1, pp. 36–38, Jan. 2003.
- [23] S. Wang and X. Ji, "An efficient heuristics search for binary sequences with good aperiodic autocorrelations," In Proc. IEEE Int. Conf. on Wireless Communications, Networking and Mobile Computing (WiCom'07), Sep. 21-25, 2007, Shanghai, China, pp. 763–766.
- [24] J. E. Gallardo, C. Cotta, and A. J. Fernandez, "A memetic algorithm for the low autocorrelation binary sequence problem," In Proc. 9th Annual Conf. on Genetic and Evolut. Computat., London, England, 2007, pp. 1226–1233.
- [25] B. Natarajan, S. Das, and D. Stevens, "An evolutionary approach to designing complex spreading codes for DS-CDMA," *IEEE Trans. Wireless Commun.*, vol. 4, no. 5, pp. 2051–2056, Sep. 2005.
- [26] T. Koike and S. Yoshida, "Genetic designing of near-optimal training sequences for spatial multiplexing transmissions," In Proc. 10th Asia-Pacific Conf. on Commun. and 5th Int. Symp. on Multi-Dimensional Mobile Commun., 2004, pp. 474–478.
- [27] K.-L. Du and M. N. S. Swamy, Neural Networks in a Softcomputing Framework, Springer, London, 2006.
- [28] J. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor, Michigan: Univ of Michigan Press, 1975.
- [29] I. Rechenberg. Evolutionsstrategie–Optimierung Technischer Systeme Nach Prinzipien der Biologischen Information. Freiburg, Germany: Formman Verlag, 1973.
- [30] J. R. Koza, Genetic Programming, Cambridge, MA: MIT Press, 1993.
- [31] R. Storn, K. Price, Differential Evolution-A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces. Int. Comput. Sci. Inst., Berkeley, CA, Tech. Rep. TR-95-012, Mar. 1995.
- [32] P. Larranaga, J. A. Lozano (eds.), Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, Norwell, MA: Kluwer Academic Press, 2001.
- [33] P. Moscato, On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms, Tech. Report 826, Caltech Concurrent Computation Program, Caltech, Pasadena, CA, 1989.
- [34] F. Hu, P. Z. Fan, M. Darnell, and F. Jin, "Binary sequences with good aperiodic autocorrelation functions obtained by neural network search," *Electron. Lett.*, vol. 33, no. 8, pp. 688–690, Apr. 1997.
- [35] I. Dotu and P. van Hentenryck. "A note on low autocorrelation binary sequences." In F. Benhamou, editor, 12th Int. Conf. on Principles and Practice of Constraint Programming (CP 2006), Nantes, France, September 2006, Springer, LNCS vol. 4204, pp. 685–689.
- [36] U. Somaini and M. H. Ackroyd, "The peak sidelobe level of families of binary sequences," *IEEE Trans. Inf. Theory*, vol. 20, no. 5, pp. 689–691, Sep. 1997.

Ke-Lin Du (M'01-SM'09) received the PhD in electrical engineering from Huazhong University of Science and Technology, Wuhan, China, in 1998. He founded Xonlink Inc. in March 2014. He was Chief Scientist at Enjoyor Inc. from 2011 to 2014. He was on research staff at Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada from 2001 to 2010. Prior to 2001, he was on technical staff with Huawei Technologies, China Academy of Telecommunication Technology, and Chinese University of Hong Kong. He worked with Hong Kong University of Science and Technology in 2008. Dr. Du has coauthored three books (Neural Networks in a Softcomputing Framework, Springer, London, 2006; Wireless Communication Systems, Cambridge

University Press, New York, 2010; Neural Networks and Statistical Learning, Springer, London, 2014). He has also published over 50 papers, and has 4 U. S. patents and 14 Chinese patents. Currently, his research interests are signal processing, wireless communications, neural networks and machine learning. He is currently an Affiliate Professor at Department of Electrical and Computer Engineering, Concordia University. He has been on the editorial board or been Associate Editor of several journals, including IET Signal Processing and Circuits, Systems & Signal Processing. He also serves on the editorial board of the Chinese edition of IEEE Spectrum.

Wai Ho Mow (S'89-M'93-SM'99) received his M.Phil. and Ph.D. degrees in information engineering from the Chinese University of Hong Kong in 1991 and 1993, respectively. From 1997 to 1999, he was with the Nanyang Technological University, Singapore. He has been with the Hong Kong University of Science and Technology (HKUST) since March 2000. He was the recipient of seven research/exchange fellowships from five countries, including the Humboldt Research Fellowship. His research interests are in the areas of communications, coding, and information theory. He pioneered the lattice approach to signal detection problems (such as sphere decoding and complex lattice reduction-aided detection) and unied all known constructions of perfect roots-of-unity (aka

CAZAC) sequences (widely used as preambles and sounding sequences). He has published one book, and has coauthored over 30 led patent applications and over 160 technical publications, among which he is the sole author of over 40. He coauthored two papers that received the ISITA2002 Paper Award for Young Researchers and the APCC2013 Best Paper Award. He is currently the leader of the HKUST Barcode Group which won the Best Mobile App Award at ACM MobiCom'2013 by developing a novel picture-embedding barcode app, called PiCode. Since 2002, he has been the principal investigator of 16 funded research projects. In 2005, he chaired the Hong Kong Chapter of the IEEE Information Theory Society. He was the Technical Program Co-Chair of five conferences, and served the technical program committees of numerous conferences, such as ICC, Globecom, ITW, ISITA, VTC and APCC. He was a Guest Associate Editor for numerous special issues of the IEICE Transactions on Fundamentals. He was an industrial consultant for Huawei, ZTE, and Magnotech Ltd. He was a member of the Radio Spectrum Advisory Committee, Office of the Telecommunications Authority, Hong Kong S.A.R. Government from 2003 to 2008.

List of figure captions:

Fig. 1. Best binary sequences of lengths $L \leq 120$ with respect to two criteria: (a) PSL; (b) merit factor F.

Fig. 2. Comparison of our PSL results with those given in [16] that are produced by the recent ITROX-AP algorithm and the optimal PSL results in [5] for $5 \le L \le 69$. Both the results of our proposed evolutionary algorithm and those of the ITROX-AP algorithm were obtained from the lowest PSL values returned from five random runs of the corresponding algorithms.

19

TABLE I Some results between L=106 to 300, obtained from 3 random runs of the proposed algorithm.

107 7 7 7 13 8 13 8 14 8 15 8 16 7 8 13 7 65ATAPAPT 788 SIDD 9DC7 17 55A20 110 7 50A20 0.061 0.067 7 12.127.548 01801162371B 15502403 111 7 50A20 0.061 7.112.7548 01801162371B 15502403 113 7 7.133 A86 AA75540EDFD0011800CE 1550318 113 7 4.3729 7.220 7.3524430001162711B 136020011 114 7 4.3729 7.220 7.35244300011201190021 13702 137071145977 115 7 4.43729 7.220 7.352443000011201190021 13702 1200710133052201300011201190001120 116 7 4.43729 7.2235 2.05642 12002177901870120 1201277901970120 1201277901970120 1201277901970120 1201277901970120 1201277901970120 1201277901970120 1201279799701970120 120127979970197019799901970120 1201279	L	PSL	PSL	F	Hexadecimal form	
108 7 4.6057 9.7 9.7 9.7 9.8 9.7 9.8 9.7 9.8 9.7 9.8 9.7 9.8 9.7 9.8 9.7 9.8 9.7 9.8 9.7 9.8 9.7 9.7 7	106	7		5.0295	00	542ADD9C19B68C2D2471D4F60
100* 7 8 [13] 5.0429 0.042 100.0500 103.0500 111 7 5.0500 600 7979012.3085539187C6 111 7 7 [13] 4.8514 0.019179012.3085539187C6 113 7 7 [13] 4.8514 0.019179012.3085539187C6 113 7 7 [13] 4.8729 772012.757173224338851203C0 5612 116 7 4.3734 37664 37672012.573173224338851203C0 5612 116 7 4.3523 0.99710 0.102027904983980E012 119 7 4.5323 0.99710 0.102027904983980E012 120 7 4.6464 0.712973 5.64774604522041354271753 121 7 4.6465 0.712973 5.64774645827482179790403 122 7 4.6464 0.712973 5.64774645827482179790403 123 8 8 [14] 4.805 0.012973 6.7447037154764783 124 8 8 [13] 4.8027 7.674764932497359746126554733 125	107	7	7 [13]	5.1805	19	8F1C3FC4FF5C8B25D4D952529
110 7 5.6260 0 cor 7.1127-461.0881/FD92670 111 7 5.3153 A66 A7564/DEDFEND16871/DE 113 7 7 7 7 113 A66 A7564/DEDFEND16871/DE 114 7 4.814 0.0791 5559.861/DE 5559.861/DE <td< td=""><td></td><td></td><td></td><td>4.6957</td><td>В7</td><td>6DA4FA9F578883BD89DC75E14</td></td<>				4.6957	В7	6DA4FA9F578883BD89DC75E14
111 7 5.6260 600 DDT90123A853519167C6 113 7 7 13 4.8514 0.851 SAAD5415FDD10E37110 113 7 7 14.8514 0.851 SAAD5415FDD10E37110 115 7 4.8729 7720 S7537532845308C1C279 116 7 4.3741 37604 5537532845308C1C279 117 7 4.3535 0.99970 0.36207998419955ED75 120 7 5.8632 0.051976 0.35207991795127537532465308C7501743 121 7 4.4668 3.PF728 D82030CD4767434AC7C2 122 7 4.6668 3.PF728 D82030CD4767434AC7C2 123 8 4.6997 3.06727 C320137915375 124 8 4.9987 3.06727 C320137915375 125 8 7 13 4.0727 C320477673538463147147981002770247 126 8 8 141 4.0505 3.067277353846318432956 127 8			8 [13]			10CC60FF325305D1D306A9756
112 7 5.3153 A66 A75 A66 A75 114 7 14.414 1589 D005222.567 D00522.567 D0052.567 D0052.572 D0052.567 D0052.572 D0052.567 D0						
113 7 7 113 4.8514 0.0815 55538.06.11FTD0.319.0CC2 115 7 4.4729 772.0 367307532.84530.06.1279 143.947 115 7 4.4323 1F62.7 971.83.947 36700753.284530.06.1279 118 7 4.3355 0.099.97 803.650.255.01 199.97 120 7 5.6632 2C555 1894.668.25.979.988.700 133.85FFR27 121 7 4.6368 3FF72.8 D62.056.02.977.958.109.135.97F7.975.109.135.97F7.975.109.135.97F7.975.109.135.97F7.975.109.135.97F7.975.109.135.97F7.975.109.135.97F7.975.109.135.97F7.975.109.135.97F7.975.109.135.97F7.975.109.135.97F7.975.109.135.97F7.975.109.135.97F7.975.109.135.97F7.975.109.135.97F7.975.975.975.975.975.975.975.975.975.97						
114 7 4.414 158 7 158 7 4.4373 115 7 4.3974 3760 450822651304056127 116 7 4.3974 3760 450822651304056127 117 7 4.3335 0.9970 0362207936849958007.0565520 118 7 4.4325 0.2565 1884466422997595849302705265520 120 7 5.8632 0.05616 5.02726773446207 123 8 4.6897 Ac6425 YEDBLOSCOLD373510433551207 124 8 4.9987 Ac6425 YEDBLOSCOLD37356447384ACCC 125 8 4.6365 0.712973 E644.74626793100277634 126 8 50272 2228001746904425774344027774560447783440277 127 8 7113 4.9965 0.42382 11215470 Ac6515 127 8 71346387940277 76676007 51608465499020272024020599143102 128 8 144 4.9057 7263284721026556224 12525692248721025562248			7 [12]			
115 7 4.8729 772/0 36750753224350801.227 116 7 4.2832 117627 36750753224350801.257 118 7 4.3355 0.09370 0.09370 0.09370 0.09370 0.09370 0.09370 0.09370 0.09370 0.09370 0.09370 0.09370 0.09370 0.09370 0.09370 0.0031350772017522 120 7 5.66632 0.00213 0.0011350572017522 0.0011350572017527 121 7 4.4431 0.00163 0.002113505720135272013527201752 122 8 4.6897 A.00242 7020211632220138715376 123 8 4.0997 A.00242 70202103 0.001716392881014667 124 8 4.0997 A.00242 7020103 0.001716392881014310 127 8 7 (113) 4.8045 A.40272 22228001 74689599027.0028 128 8 1.043 4.0627 A.6680156 1.06277947817910566666666902 129 8 1.128 <t< td=""><td></td><td></td><td>/[13]</td><td></td><td></td><td></td></t<>			/[13]			
116 7 4.3974 3760 3760 3566 117 7 4.335 0.9970 0.0362DF9988489858057 119 7 4.7325 0.2056 1886486229F798048958057 120 7 5.8632 0.2056 1884686229F795048975005705 121 7 4.4421 0.08168 P02197511913351F2875 122 7 4.4308 38723 D02305204267733446207 123 8 4.6807 Ac6646 0.0718973 E647.473644720 125 8 4.5055 4.443DFC1 10.662270247036940277648 126 8 5.0272 2.228001734662897400277648 127 8 7 113 4.5055 4.443DFC1 10.66227024703694027784 129 8 4.505 4.443DFC1 10.662685603902 10.9922472 2.22559140581341 131 8 8 134 4.607 76.6049511798640 10.864699610000 133 8 4.4330 0.55004568 10.9922472						
117 7 4.3832 1 F627 991883P0430279C66527 118 7 4.4235 20565 120 7 5.6632 20565 121 7 4.4431 008168 PD2197581091385FED75 122 7 4.6368 33FF28 DP2207013522CP217526 123 8 4.0897 A6C643 ACD623 ACC042320A1387FED743013572F013537E013752 124 8 4.0997 ACD623 ACC0423720A13672CP315327 P90D470268 125 8 4.0687 ACD623 ACC0449805220A1387915376 A668156 1207163998D2702684 128 8 8.1141 4.8075 A688156 12082702A703694CPT3 128 8 8.1141 4.9055 A688156 1208298D2028416418 131 8 8.1134 4.9057 A688156 1208298D2088516418 132 8 4.1330 E4488364 1208298D2085616418 132 8 1414 300325777646374342957 133 8 14330 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
119 7 4.7235 2CC565 18546562259FF9088CC02 120 7 5.8632 CCF38 8.87472031532C7021352 121 7 4.6648 3FF282 B2C30AC54C7334ACCC 123 8 4.6897 Ac6648 7CDB7163598B1046697 124 8 4.9987 Ac6642 ACDB23 Ac6643 125 8 4.8646 0713973 E66473658F9980D27C38F 126 8 5.0772 2228001 736658F4417979004D3 129 8 8 [14] 4.8075 Ac6812 D1658F41817979004D3 129 8 8[13] 4.6328 1E1554170 D45866A390237C8E17 130 8 8[13] 4.6328 1E1554170 D45866A390237C8E17 133 8 134 Ac6328 1E1554170 D45866A390237C8E17 133 8 4.3430 E4803386 C2273377 F6403480387C8E17315376837443123870203 134 8 4.3430 O55002577056613798407073218 D357272105568228						
120 7 5.8632 CCFP3 B AFF720315022PD217522 121 7 4.4636 3FF720315022PD217522 123 8 4.6687 3FF7203153022PD217528 123 8 4.6687 3FF7203153022PD217528 124 8 4.9987 3FF7203153022PD217528 125 8 4.8646 0712973 664772687980027C8R 126 8 5.0072 22220017346532704817979040027C8R 127 8 7131 4.8655 423207277369404273 128 8 8 [14] 4.8075 Ac68127024770397 F460948980C208516418 129 8 4.330 E165470 T6476409 5180AE1897201021580248 131 8 4.3430 E46905 05928472 22735949401C81378400 132 8 4.4380 05507264273 2158072402057175816418 2158072402057175861378400 138 8 4.3410 0539926762 21580720102558628 416198047072031 138 9 9 131 4.2341	118	7		4.5355	099F0	E0362DF99884B985BED75D7AE
121 7 4.4421 0BEL68 FD2197B1D913B5EFE75 122 7 4.6368 3FF280 BD23020A57C73A4ACC 123 8 4.0897 AC623 ACCC431A37015.76 125 8 4.9987 AC623 ACCC432ACC 126 8 4.9987 AC623 ACCC432ACC 127 8 7 [13] 4.8965 4.431779500.473 128 8 8 [14] 4.0075 A63D165 162D1666.56A804CCA83 129 8 4.6328 1E1E54F0 A25F71F0666666664902 130 8 4.8905 CD32237F F46094938B0C2D831641E 132 8 4.6328 1E1E54F0 A25F71F05666666664902 133 8 4.6328 1E1E54F0 A25F71F05666666664902 134 8 4.534 2255941661837C030 135 8 4.3400 CD3222472 22559491465048769601002 134 8 4.4720 T339124F F1335066787804104977122582462 138						
122 7 4.6368 3FFF28 DB2C3DCAD54C7A3A4ACCC 123 8 4.9987 ACEE4A TCDDP1 6535EBD10466E9 124 8 4.9987 ACEE4A TCDDP1 6535EBD10466E9 125 8 4.8466 OTLE73 BC4A7AE6P990D27C3E4 126 8 5.0272 2228C01 73.663874AB179F90D403 127 8 7 [13] 4.8075 AABD156 ICDB1646A5A032708F719106666866A9902 129 8 4.6328 1E1E54F0 AE33711F7660946986674392 ISTA6A09 130 8 4.330 CD55DA0568 GE273357A651395420 ISTA6A09 132 8 4.4380 CD55DA0568 GE273357A651395420 ISTA676A9 134 8 4.4380 CD55DA0568 GE273357A651395420 ISTA676A9 137 8 9 [13] 4.2273 C730F3124F7135056C438F767212 ISTA6782092F70775F1 138 8 4.331 CD53926FA2 2D54D7465C438F707212 ISTA6782092F70775F1 138 9 [13]						
123 8 4.6897 ACC623 December 16 35 second 14 december 36 and 16 december 3						
124 8 4.9987 ACD623 DACF045220.138791376 125 8 4.646 071E973 E64A7A66F9980D27C3E 126 8 5.0272 2222801 73465B87A4B179F9004D3 127 8 7113 4.8075 443B7CE 10.6227027073894C2FA3 129 8 4.6328 1.E15470 AE35771F06666866A9902 130 8 4.330 2.8233771F66094989E022831641 131 8 813 4.9627 76A76A9 518DBAE899F33ED431C 132 8 4.4380 0.055DA0566 628273378A5828432925 133 8 4.6395 0.052E472 2.82559491261379420 134 8 4.4380 0.055DA0566 40A355CF078219 135 8 4.5134 43031 0.05129267077571 136 8 4.331 0.61329207 1.52470322092707754 1378 8 9.131 4.273 0.27384E1004 0.20386075A829 1378 8 9.131 4.609						
125 8 4.8646 071E973 E6A7AE6E7980D27C3B 126 8 7 [13] 4.8965 2228C017346E2772A103694CEA73 128 8 8 [14] 4.8075 A68D156 1CB10862702A703694CEA73 129 8 4.6328 1E1E5420 AE35P11E706665866A9902 130 8 4.8872 2273037F F4609489E90C2081641 131 8 4.4305 D09282472 22559491C6B138742025 133 8 4.4305 D09282472 22559491C6B13872002 134 8 4.4380 O55DA0564 40A5356C7P0E613794C0 135 8 4.341 O590267422102558428 1366 137* 8 9 [13] 4.273 O5902674212558428 136 8 4.3741 O61302927771272102558428 137* 8 [13] 4.6602 OFFA1313 138 4 4.344 O657939879 4F75847242244762244 140 8 4.3418 O627939879 4F7584724224476622447662244						
126 8 5.0272 2228C01 7346E3E74A8179F904D3 127 8 7 [13] 48965 430FCE 10662702A703694CAF33 128 8 8 [14] 48075 A68D156 1CB0186A85A083FC8E73 129 8 4.6328 1E1E54F0 A835F11E066686A990 2E73C37F F4609489E0C20851641E 130 8 4.8327 2E73C37F F4609489E0C20851641E 3E85E71E066686A990 132 8 4.4300 C655A05664 40A5356CF10E6137FC003 3E8D8AE5275863E3E3E295E 133 8 4.6995 OD9222472 2E25554916681387C003 3E972F102558228 134 8 4.4380 O55DA0564 40A5356CF10E613770A219 300001492E962C311584C 136 8 4.4320 730731247 F13506048796401002 30399026FAC 2D5407485C048707A219 138 8 4.3341 O5199026FAC 2D5407485C048707A219 148 4.1480 OE57393E87 4P558AF242254F6C2284 44789 141 8 4.130 OE57393E87 4P558AF22989AC7312392 144 8 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
127 8 7 [13] 4.8965 443DFCE 10.4622702A703694CAFX3 128 8 8 [14] 4.8075 A66015 1001666685A083FC8FT3 129 8 4.6328 10125470 A25571FD666686A0902 130 8 4.8872 22F3C37F F4609489BBDC2D851641E 132 8 4.3430 E48803AA 62E27357A683E432E295 133 8 4.6905 D02B2472 22E559491c6813872C02 134 8 4.4380 O55DA0564 40A3356C7FDE6137954C0 135 8 4.5134 O59022FA2C2D58A2A8 1001249E79210258A2A8 136 8 4.4720 730F3124F F1350D6C48F8F960100D2 137* 8 9 [13] 4.6600 00FAA19133 000149E5962CA31F8B4C 140 8 4.4380 0E579398E79 4F58AF242254F6C2E24 141 8 4.4180 0E579398E79 4F58AF242254F6C2E24 142 8 4.4789 27364E10AC 4203366C5FA9451482735446827357462082734542205687342420680573424706800C29A 144 8 4.2492 FA18E68220 FA18483742400680C29A						
128 8 8 14 4.8075 129 8 4.6328 1E1E540 AESTTIED66666A902 130 8 4.8872 2F3C397F F46094898B0C20851641B 131 8 8 [13] 4.9627 7677600 510BAEE99F33E7431EC 132 8 4.6995 0052E472 2E25595491C6B1387C003 513356720561375420 134 8 4.4380 055D0568 40.5356C770561375420 50596601002 135 8 4.5134 430D3ECCE13369722102558248 60162070752F 138 8 4.3341 0599026FAC 2D54D7485C048707A219 138 8 4.3341 0599026FAC 2D54D7485C048707A219 138 8 4.3341 0529026FAC 2D54D7485C048707A219 140 8 4.4180 0527939457457584724224576752E4 141 8 4.2492 F1E6F92F0 8F2A452652746C1244 142 8 4.4789 233842100AC 4203368C05FA98D149829 144 8 4.2492 F1E6F92F0 8F2A462989A73412433			7 [13]			
130 8 4.8872 2F3C397F F46094898B0C20851641E 131 8 8 [13] 49627 76A76A05 51BDAEE99783EDF431CD 132 8 4.4905 D92B2472 2E35595491C6E13874C03 133 8 4.4030 O55DA568 40A3556C7T0E61379E4C0 135 8 4.5134 0559026FAC 2D54874876030 136 8 4.4720 730P2124F 71350D6C48FF896010002 137* 8 9 [13] 4.2273 0599026FAC 2D54E07485C048707A219 138 8 4.3341 0613092301 152AC70322022F70775F 140 8 4.4009 14C51EFAB 5408721613984067 141 8 4.4180 0E57393E79 #F6409448172027BE44 142 8 4.4789 27384E10AC 40338227462284F602EA 143 8 4.5584 398F0733E38 81812448A17209278E44 144 4.42492 FALE67892F0 #F2544629984073412333 145 8 4.3003 D1CF74	128		8 [14]	4.8075	A68D156	1CB0186A85A083FC8EF732026
131 8 8 [13] 4.9677 132 8 4.3430 E448D3An.62B21355FA8D342A355 133 8 4.6995 0D92B2472 2B255954916B1387C003 134 8 4.4380 055DA0568 40A3356C7F0E61379F4C0 135 8 4.4130 055DA0568 40A3356C7F0E61379F4C0 136 8 4.4720 730F3124F F1350BC48F79501002 137* 8 9 [13] 4.2273 059902FA2 2554D7485C048707A219 138 8 4.3341 0613C9C3D1 152AC70322092F70775FF 139 8 8 [13] 4.6602 0BFAA19133<00D149E962CA31F8B4C	129	8		4.6328	1E1E54F0	AE35F71FD6666B66A9902B7C8
112 8 4.430 E448D3AA 62B27333FA632E43B29E 133 8 4.6995 0D92B472 22B2595491C6B1387C003 134 8 4.4380 055DA056 40A355C7D0E1379E4C03 135 8 4.5134 055DA056 40A355C7D0E1379E4C03 136 8 4.4720 730P3124F 71350D6C48FP89601000.2 137 8 9 [13] 4.2273 0599026FAC 2D54E07485C048707A219 138 8 4.3341 06130C301152AC7032209F70775FF 152AC7032209F70775FF 140 8 4.4009 14C91EFAAB 54087216139806878A47 141 8 4.4780 0E57392B79 #FF58AFF24224F6C5E24 142 8 4.4780 0E57392B79 #FF58AFF24224F6C5E24 144 8 4.4390 0E57392B79 #FF58AFF24224F6C5E24 144 8 4.4303 0BFC73B28 BAB1F2448A172092 144 8 4.3409 5922C6C97357 #E8CF184022739097 144 8 4.3409						
133 8 4.6995 009282472 22825954910C61387C002 134 8 4.4380 055Da0564 40A5356C7F0E61379E4C0 135 8 4.4720 730F3124F F1350D6C48F6F9601002 137* 8 9 [13] 4.2273 0559026FAC 2D542D7485C048707A219 138 8 4.3341 061302G3D1 152AC7032209277075FF 139 8 8 [13] 4.6009 14C91EFAAB 540B7216139806678A47 140 8 4.4180 0E57939879 4FF58AF742254F6C52A8 142 8 4.4789 2734E1D0AC 420338605FA9BD149829 143 8 4.2492 FA16F92F0 8F2A5462989A73412333 144 8 4.2492 FA16F92F0 8F2A5462989A73412333 145 8 4.4309 5922CE0F3537 HE82CFF82B02739037 146 8 4.633 5922CE0F3737 HE82CFF82B02739037 148 8 4.3703 D1A1CFF74837 787694056465C588A421 149** 8 9 [13] 4.703 D1A94E806E6732 AD641E1A82F78FA77746 <t< td=""><td></td><td></td><td>8 [13]</td><td></td><td></td><td></td></t<>			8 [13]			
134 8 4.4380 055DA0568 40A536CTPDE61379E4C0 135 8 4.5134 430D3E2DC CE1336972F120558A2A8 137 8 9 [13] 4.2773 0559026FAC 2D54D745C048707A219 138 8 4.3341 0613C9C3D1 152ACTD322092F0775F 139 8 [13] 4.6602 0EFAA1913<000D149E5962CA31F8B4C						
135 8 4.5134 43003E2DC CE1336972F2102558A2A8 136 8 4.4720 730F3124F F1350D6C4888F960100D2 137* 8 9 [13] 4.2273 0599026FAC 2554D7485C048707A219 138 8 4.3341 061329C3D1 152AC7D322092F70775FF 139 8 8[13] 4.6009 14C91EFAAB 540B7216139806878A487 140 8 4.4180 0557392B79 4FF58AFF242254F6CB22A 141 8 4.44789 27384E100AC 4203860578A9B149829 143 8 4.5584 398F073B238 B81F2448A1720927BED4 144 8 4.4292 FA1E6F892F0 8F25456298AC73123D3 145 8 4.4696 17842B8466 328533424D0680C29AA 146 8 4.6239 336196CB12C E31A5A943A8B5P9D5500 147 8 4.3703 D1A1CF74837 78694056455C5B8A4A2 149* 8 9 [13] 4.5531 1415F0E18FE1 0712275328421324CAC97 150 9 9 [14] 4.709 1994500CEAF3 83704CFB1E3D5F740530						
136 8 4.4720 73073124F F1350D6C48F9F9601002 137* 8 9 [13] 4.2273 0599026FAC 2054ED7485C048707A219 138 8 4.3341 06132092011 152AC70322092F7075FF 139 8 8 [13] 4.6602 0FFAN19133 000D149E5962C331F8BAC 140 8 4.4180 0257339E379 4FF56AF242254F6CE224 142 8 4.4789 27384D10AC 4203368C05FA9BD149829 144 8 4.4292 FA1E6F892F0 8F2A5462989AC734123D3 145 8 4.4606 17F42BB8466 3EB3E38342400680C29PAB 144 8 4.4292 FA1E6F892F0 8F2A5462989AC734123D3 145 8 4.4036 33619C6E1EC E31A5943BE09D5500 147 8 4.4292 FA1E6F892F0 8F2A5462989AC734123D3 144 8 4.2373 D1A1CFF74837<786940564555884421						
137* 8 9 [13] 4.2273 0599026FAC 2D54ED7485C048707A219 138 8 4.3341 0613C9C3D1 152AC7D322092F0775FF 139 8 8 [13] 4.6602 0BFAA19133 000149E962CA31F8B4C 140 8 4.6009 14C91EFAAB 540F7216139806878A487 141 8 4.4180 0E57939E879 4F758AFF242254F66B224 142 8 4.4789 2236805F73928879 4F758AFF242254F66B224 143 8 4.5584 398F073B238 BA81F2448A1720927BED4 144 8 4.2492 FA166F892F0 BF2A5462989AC734123D3 145 8 4.3409 5922CBC9757 4E86F786EEB4029739097 147 8 4.3309 5922CBC9757 4E86F88EEB4029739097 148 8 4.3703 D1A1CFF74837 78769405465C5B8A4A21 149* 8 9 [13] 4.5531 1415F0E18F14 07122F5328421324CAC97 150 9 9 [14] 4.7009 1994EB80C6EAF3 33704CEB1538A9						
138 8 4.3341 0613C9C3D1 152AC7D322092F0775FF 139 8 8 [13] 4.6602 0BFAA19133 000149EE962CA31F8B4C 140 8 4.6009 114C91EFAAB 540872A457 141 8 4.4180 0E57939E879 4FF58AFF242254F6CB2P4 142 8 4.4789 27384E1D0AC 420368C05FA9BD149829 143 8 4.4584 39BF073B228 BA81F2448A1720927BE14 144 8 4.4696 17E42BB4663 3EB538342400860C29AA 145 8 4.3009 5922CBC9F357 4BECFF8EEE4029739097 148 8 4.3703 D1A1CFF74837 78764056465C5B8A4A1 149* 8 9 [13] 4.5531 1415F0E18FE14 0712F75328421324CAC97 150 9 9 [14] 4.7209 1994ED80CEAF3 83704CFB1E3D5F2F40540 151 8 [13] 4.3663 6FE488566732C ADDC41E11AE2F78A77746 152 9 5.2509 208231DA2413C 9E873342052CA			9 [13]			
140 8 4.6009 14C91EFAAB 540B7216139806878A487 141 8 4.4180 0E57939B879 4FF58AFF242254FGCB2EA 142 8 4.4789 27384E1DAC 42033680C5FA9BD149829 143 8 4.5584 398F073B238 BA81F2448A1720927BED4 144 8 4.2492 FA1E6F892F0 8F2A5462989AC731412333 145 8 4.4696 11762B84666 SEB3E33424D0680C29AA 146 8 4.6239 336196CB12C E315A3424D0680C29AA 146 8 4.3703 D1A1CF74837 787694056465C5B8A421 149* 8 9 [13] 4.5531 1415F0E18EE14 0712E7532421324CAC97 150 9 9 [14] 4.7209 1994ED80CEAF3 837D4CFB1E3D5F240540 151 8 8 [13] 4.3663 6FB48568F32C ADD641E1AB2F78FA7746 152 9 5.2509 208231DA2413C 9EFC89FC495336A9CEC 155 153 9 4.8206 1750B45D32C2A B082DF810831BE7E6697 154 155 8 4.2704 02BA288BE30C1			, []			
141 8 4.4180 0E57939E879 4FF58AFF242254F6CB2E4 142 8 4.4789 27384E1D0AC 4203368C05FA9BD149829 143 8 4.4584 339F73B2B BA81F2448A1720927BED4 144 8 4.2492 FA1E6F892F0 8F2A5462989AC734123D3 145 8 4.4696 17F642B84666 3EB3E383424D0680C229A 146 8 4.46239 33619CE1E2E E31A5A9D43A8B9D95000 147 8 4.3703 D1A1CFF74837 787694056465C5B8A421 149* 8 9 [13] 4.3663 6FB488568732 AD641E1A82F78FA77746 151 8 8 [13] 4.3663 6FB488568732 AD641E1A82F78FA77746 152 9 5.2509 228231Da2413 9E87CF94536A9CE 155 153 9 4.8206 1750B45302C2A B082DF8180831BE7E6697 154 4.2517 0A14B8E8ABD389 F4022F71349C93B04FB8 155 8 4.2517 021B254304200CDC3335550F183920BE 158 9	139		8 [13]	4.6602	0BFAA19133	000D149EE962CA31F8B4C6B0B
142 8 4.4789 27384E1D0AC 4203368C05FA9BD149829 143 8 4.5584 398r073B238 BA81F2448A1720927BED4 144 8 4.2492 FA1E6F892F0 8F2A5629897C34123D3 145 8 4.4696 17E42B884666 3EB3E383424D0680C29AA 146 8 4.6239 336196CB1E2C E31A5A9D43A8BD995000 147 8 4.3409 5922CB0F357 4B88CF8EE4029739097 148 8 4.3703 D1A1CFF74837 787694056465C5B8AA21 149* 8 9 [13] 4.5531 1415F0E18FE14 0712E75328421324CAC97 150 9 9 [14] 4.7209 1994E080CEAF3 837D4CFB1E3D52F40540 151 8 8 [13] 4.3663 6FE48568F32C ADD641E1A82F78FA7746 152 9 5.2509 208231DA2413C 9E8FC89FC495336A9CECF 153 8 [13] 4.3663 6FE48568F32C ADD641E1A82F78FA77146 154 8 4.2517 0A14B8EABD389 FD2271349C380EF646732 B2271349C380EF64647338320146336 155 8 4.2704<	140				14C91EFAAB	540B7216139806878A4878B9A
143 8 4.5584 398F073B238 BA81F2448A1720927BED4 144 8 4.2492 FA1E6F892F0 8F2A5462989AC734123D3 145 8 4.4696 17E42B84666 3EB3E383424D0680C29AA 146 8 4.6239 336196CB1E2C E315A59D43A8BD9D5500 147 8 4.3703 D1A1CFF74837 787694056465C5B8A421 149* 8 9 [13] 4.5531 14155F018FE14 0712E75328421324CAC97 149* 8 9 [13] 4.5631 1157618FE14 0712E75328421324CAC97 150 9 9 [14] 4.709 1994E080CEAF3 837D4CFB1E3D5F2F40540 151 8 8 [13] 4.3663 6FE488568F32C ADE641E1AB2778FA77746 152 9 5.2509 208231DA2413C 98FC89FC49536A9CECF 153 9 4.8206 1750B45D32C2A B082DF8180831BE7E6697 154 8 4.2704 02DEA2BBE1CC1 49CE3721E654EAA16048 155 9 4.5986 2276F919A0F4F1 52DD15498B43AD14633C 157 9 8 [13] 4.6368 13						
144 8 4.2492 FA1E6F892F0 8F2A5462989AC734123D3 145 8 4.4696 17E42B884666 3EB3E383424D0680C29AA 146 8 4.6239 336196CB12C E31A5A9D43ABBD9D5000 147 8 4.3703 D1A1CFF74837 78769405645C5B8A4221 149* 8 4.3703 D1A1CFF74837 78769405645C5B8A4221 149* 8 9 [13] 4.5531 1415F0E18FE14 0712E75328421324CAC97 150 9 9 [14] 4.7209 1994D80CEAF3 8704CFB1E3D5F2F40540 151 8 8 [13] 4.3663 6FB488568F32C ADD641E1AB2F78FA77746 152 9 5.2509 208231DA2413C 9E8FC89FC495336A9CEGF 153 9 4.8206 1750B45D32C2A B082DF8180831BE7E6697 154 8 4.2704 02DB282BE1C1 49CE27212E654EAA16048 155 8 4.2704 02DBA28BE1C1 49CE27212E654EAA16048 157 9 8 [13] 4.668 32E0143AD90CC9 33535D6B79CF510587E 158 9 4.7396 32ED143AD90CC9						
145 8 4.4696 17E42BB84666 3EB3E383424D0680C29AA 146 8 4.6239 336196CB1E2C E31A5A9D43A8BD9D5000 147 8 4.3703 D5922CBC9F357 4BE8CFF8EEB4029739097 148 8 4.3703 D1A1CFF74837 787694056465c5584A21 149* 8 9 [13] 4.5531 1415F0E18FE14 0712E75328421324CAC97 150 9 9 [14] 4.7209 1994E080CEAF3 837D4CFB1E3D5F2F40540 151 8 8 [13] 4.3663 6FB488568732 ADD641E1A2F78FA77746 152 9 5.2509 208231DA2413C 9E8FC89FC495336A9CEF 153 9 4.8206 1750BB45D32C2A B082DF8180831BE7E6697 154 8 4.2517 0A14BE8ABD389 F4D22F71349C93B04F98E 155 8 4.25986 2276F919A0F4F1 52DD15498B483AD14633C 157 9 8 [13] 4.6368 13BCC89691AF69E DF81CCE2850F183920BE 158 9 4.8780 AD5A92659732430 <						
146 8 4.6239 336196CB1E2C E31A5A9D43A8BD9D5000 147 8 4.3409 5922CBC9F357 4B8CFF8EEB4029739097 148 8 9 [13] 4.5531 D1A1CFF74837 787694056465C5B8A4A21 149* 8 9 [14] 4.7209 D194ED80CEAF3 837D4CFB1B3D5F2F40540 151 8 8 [13] 4.3663 6FB488568F32C ADD641E1AB2F78FA77746 152 9 5.2509 208231DA2413C 9E8FC89FC495336A9CBCF 153 9 4.8206 1750B45D32C2A B082DF818031BE7E6697 154 8 4.2517 OA14B8E8ABD389 F4D22F71349C93B04FB8E 155 8 4.2704 02DBA28BE1C1 49CE3721E654EAA16048 156 9 4.5986 2276F919A0F4F1 52D1549B8483D14633C 157 9 8 [13] 4.668 13BCC89691AP60ED B555F051832920BE 158 9 4.9473 32ED143AD90CDC9 3B53FD6D79C51505787E 159 9 4.7396 13231B84BD7B402 60CE2C260A2841E1F239	1 1					
147 8 4.3409 5922CBC9F357 4B8CFF8EEB4029739097 148 8 4.3703 D1A1CFF74837 787694056465C5B84421 149* 8 9 [13] 4.5531 1415F0E18F14 0712E75328421324CA097 150 9 9 [14] 4.7209 1994E080CEAF3 83704CFB1E3D5F240540 151 8 8 [13] 4.3663 6FB488568F32C ADD641E1AB2F78FA77746 152 9 5.2509 208231DA2413C 9E8FC89FC495336A9CBCF 153 9 4.8206 1750B45D32C2A B082DF8180831BE7E6697 154 8 4.2517 0A1488E8AB389 F4D22F71349C93B04FD8E 155 8 4.2704 02DBA28BE1C1 49CE28721E654EAA16048 156 9 4.5986 2276F919A0F4F1 52D15498B483AD14633C 157 9 8 [13] 4.6368 13BCC89611AF69E DF81CC228550F183920BE 158 9 4.7396 32ED143AD90CDC9 3B35F06F97CF5105287E 159 9 4.7789 1233184BD87B402 <						
148 8 4.3703 D1A1CFF74837 787694056465C5B8A421 149* 8 9 [13] 4.5531 1415F0E18FE14 0712E75328421324CAC97 150 9 9 [14] 4.7209 1994ED80CEAF3 837D4CFE1E3D5F2F40540 151 8 8 [13] 4.3663 6FB488568F32C ADD641E1AB2F78FA77746 152 9 5.2509 208231DA2413C 98FC89FC495336A9CEF 153 9 4.8206 1750BB45D32C2A B082DF8180831BE7E6697 154 8 4.2517 0A14B8E8ABD389 F4D22E71349C93B04FD8E 155 8 4.2704 02DBA28BBE1CC1 49CEE3721E654EAA16043 156 9 4.5986 2276F919A0F4F1 52DD15498B483AD14633C 157 9 8 [13] 4.6368 13BCC89691AF69E DF81CCE28550F183920EB 158 9 4.7396 32ED143AD90CDC9 3B53F06B79CF5105587E 159 9 4.7396 32ED143AD90CDF408BF2 E803733CE69B2932B4F1 160 9 4.5674 00540AC0FE408BF2 E803733CE69B2932B4F1 163 9 9 [13] <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
150 9 9 [14] 4.7209 1994ED80CEAF3 837D4CFB1E3D5F2F40540 151 8 8 [13] 4.3663 6FB488568F32C ADD641E1AB2F78FA77746 152 9 5.2509 208231DA2413C 9E8FC89FC495336A9CECF 153 9 4.8206 1750B845D32C2A B082DF8180831BE7E6697 154 8 4.2517 0A14B8E8ABD389 F4D22F71349C93B04FD8E 155 8 4.2704 02DBA28BBE1CC1 49CE3721E654EAA16048 156 9 4.5986 2276F919A0F4F1 52DD15498B483AD14633C 157 9 8 [13] 4.6368 13BCC89691AF69E DF81CCE28550F183920BE 158 9 4.7396 78E320A0078C468 BF390152F624DAA27734E 160 9 4.7789 12331B84BBB7B402 60CCE241E09172873555 162 9 4.5674 00540AC0FE408BF2 28B03739CE69B2932B4F1 163 9 9 [13] 4.6760 3585E52CBD46F2F3 2BE31EA222044BDB060F 164 9 5.0367 E85957A353429F9 45968EFB404759E67E7B8 165 9 4.2834	148					
151 8 8 13 4.3663 6FB488568F32C ADD641E1AB2F78FA77746 152 9 5.2509 208231DA2413C 9E8FC89FC495336A9CBCF 153 9 4.8206 1750BB45D32C2A B082DF8180831BE7E6697 154 8 4.2517 0A14B8E8ABD389 F4D22E71349C93B04FD8E 155 8 4.2704 02DBA28BE1CC1 49CEE3721E654EAA16048 156 9 4.5986 2276F919A0F4F1 52DD15498B483AD14633C 157 9 8 [13] 4.6368 13BCC89691AF69E DF81CCE28550F183920BE 158 9 4.7396 78E320A0078C468 BF390152F624DAA27734E 160 9 4.8780 AD5A92659732430 2CBCE2260A2841E1FE239 161 9 4.5674 00540AC0FE408BF2 E8B03739CE69B2932B4F1 163 9 9 [13] 4.6760 3585E52CBD46F2F3 2B31EA222044BDDB060F 164 9 5.0367 E85E957A353429F9 45968EFB404759E67E788 163 9 4.2834 1A3170699871AF2B3 60570ADABA8483F99E6F6 165 9 4.2834 <t< td=""><td>149*</td><td>8</td><td>9 [13]</td><td>4.5531</td><td>1415F0E18FE14</td><td>0712E75328421324CAC97B32B</td></t<>	149*	8	9 [13]	4.5531	1415F0E18FE14	0712E75328421324CAC97B32B
152 9 5.2509 208231DA2413C 9E8FC89FC495336A9CBCF 153 9 4.8206 1750BB45D32C2A B082DF8180831BE7E6697 154 8 4.2517 0A14B8E8ABD389 F4D22E71349C93B04FD8E 155 8 4.2704 02DBA28BBE1C1 49CEE3721E654EAA16048 156 9 4.5986 2276F919A0F4F1 52DD15498B483AD14633C 157 9 8 [13] 4.6368 13BCC89691AF69E DF81CCE28550F183920BE 158 9 4.9473 32ED143AD90CDC9 3B357D6B79CF50587E 159 9 4.7396 78E320A0078C468 BF390152F624DA27734B 160 9 4.8780 AD5A92659732430 2CBCE2260A2841E1FE239 161 9 4.7789 12331B84BDB7B402 60CCB241E09172873D555 162 9 4.5674 00540AC0FE408BF2 E8B03739CE69B2932B4F1 163 9 9 [13] 4.6760 3585E52CBD46F2F3 2EB31EA222044BDD8060F 164 9 5.0367 E85957A353429F9 45968EFB404759E67E788 165 9 4.2834 1A3170699871AF2B3 605						
153 9 4.8206 1750BB45D32C2A B082DF8180831BE7E6697 154 8 4.2517 0A14B8E8ABD389 F4D22E71349C93B04FD8E 155 8 4.2704 02DBA28BBE1CC1 49CEE3721E654EAA16048 156 9 4.5986 2276F919A0F4F1 52DD15498B483AD14633C 157 9 8 [13] 4.6368 13BCC89691AF69E DF81CC228550F183920BB 158 9 4.9473 32ED143AD90CDC9 3B353FD6B79CF5105587E 159 9 4.7396 78E320A0078C468 BF390152F624DAA27734B 160 9 4.8780 AD5A92659732430 2CECE2260A2841E1F2239 161 9 4.7789 12331B84BDB7B402 60CCB241E09172873D555 162 9 4.5674 00540AC0FE408BF2 E8B03739CE69B2932B4F1 163 9 9 [13] 4.6760 3585E52CBD46F2F3 2EB31EA222044BDDB060F 164 9 5.0367 E85957A353429F9 45968EFB404759E67E7B8 165 9 4.2834 1A3170699871AF2B3 60570ADABA8483F99E6F6 165 9 4.2834 1A3170699871AF2B3			8 [13]			
154 8 4.2517 155 8 4.2704 156 9 4.5986 157 9 8 [13] 158 9 4.9473 159 9 4.9473 159 9 4.7396 160 9 4.8780 161 9 4.7789 161 9 4.5674 162 9 4.5674 163 9 9 [13] 4.6760 328252280468855228046727334203228824484885234248948484848484848484848484848484848484	-	-				
155 8 4.2704 02DBA28BBE1CC1 49CEE3721E654EAA16048 156 9 4.5986 2276F919A0F4F1 52DD15498B483AD14633C 157 9 8 [13] 4.6368 13BCC89691AF69E DF81CCE28550F183920BE 158 9 4.9473 32ED143AD90CDC9 3B353FD6B79CF5105587E 159 9 4.7396 78E320A0078C468 BF390152F624DAA27734E 160 9 4.8780 AD5A92659732430 2CECE260A2841E1FE239 161 9 4.5674 00540AcOFE408BF2 E8B03739CE69B2932B4F1 163 9 9 [13] 4.6760 3585E52CBD46F2F3 2BE31EA222044BDDB060F 164 9 5.0367 E85E957A353429F9 45968EFB404759E67E7B8 165 9 4.2834 1A3170699871AF2B3 60570ADABA8485P9E6F6 166 9 4.5337 3CAE9C8BDB9F786DE ACB526691035DF40F62D1 167 9 8 [13] 4.7190 0344845C1D11FA45B B319DAA9851CC693EBC21 168 9 4.6057 609F6CEEC7744DB5 3AE6478548782C30B4BFA		-				
156 9 4.5986 2276F919A0F4F1 52DD15498B483AD14633C 157 9 8 [13] 4.6368 13BCC89691AF69E DF81CCE28550F183920BE 158 9 4.9473 32ED143AD90CDC9 3B353FD6B79CF5105587E 159 9 4.7396 78E320A0078C468 BF390152F624DAA27734E 160 9 4.8780 AD5A92659732430 2CECE260A2841E1FE239 161 9 4.5674 00540AcOFE408BF2 E8B03739CE69B2932B4F1 163 9 9 [13] 4.6760 3585E52CB046F2F3 2BE31EA222044BDDB060F 164 9 5.0367 E85E957A353429F9 45968EFB404759E67E7B8 165 9 4.2834 1A3170699871AF2B3 60570ADABA848599E6F6 166 9 4.5337 3CAE9C8BDB9F786DE ACB526691035DF40F62D1 167 9 8 [13] 4.7190 0344845C1D11FA45B B319DAA9851CC693EBC21 168 9 4.6057 609F6CEEC7744DB5 3AE6478548782C30B4BFA						
157 9 8 [13] 4.6368 13BCC89691AF69E DF81CCE28550F183920BE 158 9 4.9473 32ED143AD90CDC9 3B353FD6B79CF5105587E 159 9 4.7396 78E320A0078C468 BF390152F624DAA27734E 160 9 4.8780 AD5A92659732430 2CBCE2260A2841E1FE239 161 9 4.5674 00540Ac0FE408BF2 E8B03739CE69B2932B4F1 163 9 9 [13] 4.6760 3585E52CBD46F2F3 2BE31EA222044BDDB060F 164 9 5.0367 E85E957A353429F9 45968EFB404759E67E7B8 165 9 4.2834 1A3170699871AF2B3 60570ADABA8483F99E6F6 166 9 4.5337 3CAE9C8BDB9F786DE ACB526691035DF40F2632E821 167 9 8 [13] 4.7190 0344845C1D11FA45B B319DAA9851CC693EBC21 168 9 4.6057 609F6CEEC7744DB5 3AE6478548782C30B4BFA						
158 9 4.9473 32ED143AD90CDC9 3B353FD6B79CF5105587E 159 9 4.7396 78E320A0078C468 BF390152F624DAA27734E 160 9 4.8780 AD5A92659732430 2CBCEC260A2841E1FE239 161 9 4.7789 12331B84BDB7B402 60CCB241E09172873D555 162 9 4.5674 00540AC0FE408BF2 E8B03739CE69B2932B4F1 163 9 9 [13] 4.6760 3585E52CBD46F2F3 2BE31EA222044BDDB060F 164 9 5.0367 E85E957A353429F9 45968EFB404759E67E7B8 165 9 4.2834 1A3170699871AF2B3 60570ADABA8483F99E6F6 166 9 4.5337 3CAE9C8BB9F786DE ACB526691035DF40F2621 167 9 8 [13] 4.7190 0344845C1D11FA45B B319DAA9851CC693EBC21 168 9 4.6057 609F6CEEC7744DB5 3AE6478548782C30B4BFA		-	8 [13]			
160 9 4.8780 AD5A92659732430 2CBCC2260A2841E1FE239 161 9 4.7789 12331B84BDB7B402 60CCB241E09172873D555 162 9 4.5674 00540AC0FE408BF2 E8B03739CE69B2932B4F1 163 9 9 [13] 4.6760 3585E52CBD46F2F3 2EB31EA222044BDDB060F 164 9 5.0367 E85E957A353429F9 45968EFB404759E67E7B8 165 9 4.2834 1A3170699871AF2B3 60570ADABA8483F99E6F6 166 9 4.5337 3CAE9C8BDB9F786DE AC5526691035DF40F62D1 167 9 8 [13] 4.7190 0344845C1D11FA45B B319DAA9851CC693EBC21 168 9 4.6057 609F6CEEC7744DB5 3AE6478548782C30B4BFA		9				
161 9 4.7789 12331B84BDB7B402 60CCB241E09172873D555 162 9 4.5674 00540Ac0FE408BF2 E8B03739CE69B2932B4F1 163 9 9 [13] 4.6760 3585E52CBD46F2F3 2BE31EA222044BDDB060F 164 9 5.0367 E85E957A353429F9 45968EFB404759E67E7B8 165 9 4.2834 1A3170699871AF2B3 60570ADABA8483F99E6F6 166 9 4.5337 3CAE9C8BDB9F786DE ACB526691035DF40F62D1 167 9 8 [13] 4.7190 0344845C1D11FA45B B319DAA9851CC693EBC21 168 9 4.6057 609F6CEEC7744DB5 3AE6478548782C30B4BFA						
162 9 4.5674 00540AC0FE408BF2 E8B03739CE69B2932B4F1 163 9 9 [13] 4.6760 3585E52CBD46F2F3 2BE31EA222044BDDB060F 164 9 5.0367 E85E957A353429F9 45968EFB404759E67E7B8 165 9 4.2834 1A3170699871AF2B3 60570ADABA8483F99E6F6 166 9 4.5337 3CAE9C8BDB9F786DE ACB526691035DF40F62D1 167 9 8 [13] 4.7190 0344845C1D11FA45B B319DAA9851CC693EBC21 168 9 4.6057 609F6CEEC7744DB5 3AE6478548782C30B4BFA		-				
163 9 9 [13] 4.6760 3585E52CBD46F2F3 2BE31EA222044BDD606F 164 9 5.0367 E85E957A353429F9 45968EFB404759E67E7B8 165 9 4.2834 1A3170699871AF2B3 60570ADABA8483F99E6F6 166 9 4.5337 3CAE9C8BDB9F786DE ACB526691035DF40F62D1 167 9 8 [13] 4.7190 0344845C1D11FA45B B319DAA9851CC693EBC21 168 9 4.6057 609F6CEEC7744DBB5 3AE6478548782C30B4BFA						
164 9 5.0367 E85E957A353429F9 45968EFB404759E67E7B8 165 9 4.2834 1A3170699871AF2B3 60570ADABA8483F99E6F6 166 9 4.5337 3CAE9C8BDB9F786DE ACB526691035DF40F62D1 167 9 8 [13] 4.7190 0344845C1D11FA45B B319DAA9851CC693EBC21 168 9 4.6057 609F6CEEC7744DBB5 3AE6478548782C30B4BFA		-	0 [12]			
165 9 4.2834 1A3170699871AF2B3 60570ADABA8483F99E6F6 166 9 4.5337 3CAE9C8BDB9F786DE ACB526691035DF40F62D1 167 9 8 [13] 4.7190 0344845C1D11FA45B B319DAA9851CC693EBC21 168 9 4.6057 609F6CEEC7744DB5 3AE6478548782C30B4BFA			9 [13]			
166 9 4.5337 3CAE9C8BDB9F786DE ACB526691035DF40F62D1 167 9 8 [13] 4.7190 0344845C1D11FA45B B319DAA9851CC693EBC21 168 9 4.6057 609F6CEEC7744DB55 3AE6478548782C30B4BFA		-				
167 9 8 [13] 4.7190 168 9 4.6057 0344845C1D11FA45B B319DAA9851CC693EBC21 609F6CEEC7744DB55 3AE6478548782C30B4BFA						
168 9 4.6057 609F6CEEC7744DBB5 3AE6478548782C30B4BFA			8 [13]			
		-	9 [14]			
170 9 4.6598 1B6907DF2E0428551B 3223A81B2ACA77398E148	170	9		4.6598	1B6907DF2E0428551B	3223A81B2ACA77398E1487A0C

L	PSL	PSL	F	Hexadecimal form		
171	9		4.4077		5F3C5C3C370189ACBF	618CBB21DD4A90AD21A654424
172	9		4.7685			AE652A2B45911803B18B7F104
173	9	9 [13]	4.7932			4B2C1574F4532C07F0433A399
174	9		4.6564		30F24FA47B129602434	14DD71ECC81BEF50239AB55CB
175	9		4.2832		69254BED3E8E1F84E30	E4EFE316440B799D9AFAA36FB
176	9		4.2549		10F9CF566589BB4A0AA	5DCB7BDBAB19BE1BAFD2CF40C
177	9		4.3416		154FD8B689BAE3BE56AC	D25BEBC7C0C0BB8484DDEAE67
178	9		4.1331		2C7EED76637297ECE103	2CAE2DF5A64BC8A51883F9507
179	9	9 [13]	4.3287		07A40FBE21A31F277379	96EDFDA6565D4150AA75CF2BC
180	9		4.3385			94F3B9D450F8FEC0DAA74AFE2
181*	9	10 [13]	4.5832			5DF157C6731BFB3DAD6961124
182	9		4.2347			A68BA8AD42522499C381906E3
183	10		4.4879			A0709E0B97DB9FA35F551746B
184	9		3.9331			63861019A5203B383A8A5C075
185	10		4.5464			55FED1E72489877FA1C4B47E9
186	10 10		4.6239 4.5285			1C905922FD612CF3CC83F05C3
187 188	10		4.5285			9E03D9994B8B424E7EE2851FB 4A66E2B9C4B102F5A3FFBE3E7
180	10		4.7176			4A66E2B9C4B102F5A3FFBE3E7 59DDD805B7D40700E18C580DA
189	10		4.4645			D21C22F33F67D0786AB541818
190	10	9 [13]	5.0125			DE36C5C296756CBA8325FF00F
191	10	> [13]	4.7950			8B2E9C19B13D2B6991A01A029
192	10	10 [13]	4.5205			D684E0206786428A3BF85C4C0
194	10	10 [10]	4.4288			7180F14F120BD38049EDEFF96
195	10		4.2316			E0D2EA584FD8A9CEC62B6E71C
196	10		4.3048			8B0EFA8C6FE4D8B19165E23BB
197	10	10 [13]	4.6267		1016AEDCF5EC0CA1E841D7552	F457FB4C9B79F678CC6D363BD
198	10		4.5052		2A88EAFC16C7B4A411788BF5B	798BC4836B44A1840C9C931E2
199	10	10 [13]	4.4889		4B1A9382A18BB9FD5C60A10F7	4A00CEC3180F5126F41EDB64D
200	10	10 [14]	4.5496		A52DE56BB6911EE34183B1D91	0608C43D13FAE13A13E745544
201	10		4.0080	0	DFAFD351B1F0E2A322A74A30A	7B90B7E40CA194D63ACFD2669
202	10		4.3033		5768E01358C821A3C140465C3	
203	10		4.3033		7AD5210DEFB193936EE1F2325	
204	10		4.2310	9	26DB5FAA7AD71A4A1931A91C3	
205	10		4.7050		C2AABB65964BDDF6031603DE4	
206	10		4.1288		7D85973B7D04F776B6868BBC5	
207 208	10 10		4.1886 4.3126		8303A80984E57076E2EF16C36	
208	10		4.3120		D8BCA7635D21AA1FA1A5C6E94 7A2D520642791E4A288B3637B	
209	10		4.6392		7247DFBC2FCBFDE1AB159A9B9	
210	10	10 [13]	4.2899		403FD3104DB895E0D83A2C363	
211	10	10 [15]	4.3567		CB148B2DB2B65156F3963680C	
212	10		4.5170		54B6C279762DD879E85E962C0	
214	11		4.4872		36AF9C68E25FBFE069F165F57	
215	10		4.3584		D3D5C736C636B91B930F73E3B	
216	11		4.7725		C0430BC19BEB2520BB67A388F	
217	10		4.1364	1F60F	67AA4427449AEB6FB3C7131E1	5ACC420AA12D282E078DB902E
218	11		4.5373	2AAAA	597ACB23CD6B518E16C0E85CB	DFC4ECE0FC812033D921E6C00
219	11		4.7798		500C4A7F0AD9733B60E197309	
220	11		4.6414		8A9B49E7F2566BC5C2310018B	
221	11		4.4096		1860002C5EA107E6B685B38A8	
222	11	10 11 23	4.5273		6C46E38C7094E8FF9552FB26F	
223	11	10 [13]	4.5216		B7A9545D25BD89F37E75809FF	
224	11		4.5253		80D82D0AF19E9C18C6F6A152F	
225 226	11 11		4.6462 4.5990		960C003CEC2B3628DE13AF24D 358BCDE176C9455054ACE5048	
220	11	10 [13]	4.5990		D2F46F407DF63C089A79B22D2	
227	11	10 [13]	4.6365		982838889652829FFA130DAFC	
229	11	11 [13]	4.5664		0FA5834140572D8C6B38450A6	
230	11	[+0]	4.5299		10BB7DF8973BB7EC9388F2B2F	
231	11		4.5819		96F38A954A0976C262D0D9F26	
232	11		4.4556		06ECAB0CFE5A68AD21DCB8D9B	
233	11	11 [13]	4.5423		BB2E36746A6C3843035044231	
234	11		4.3122		8701A329258336DA9E64304AD	
235	11		4.4529	6FDCEF49D	AD916CB37840D43AAA795F25E	4930A3C72ED48776371F5011F
236	11		4.3418	76B3EABB8	1A847C4DA6B6D204C68407E30	5CC22FD9F148372B64587284C
237	11		4.3488		608FDC6E618E1108B60323724	
238	11		4.6992		AFCDC47B1EF4DF1236319AF5F	
239*	11	12 [13]	4.5457		FAFD27B4515ECE1CF274F5D83	
240	12		4.6512	826E6DFF3F	D1D316DED80CEF68C9AB09DC4	/ADZBOLJUAAJJZE4A349AIF8/

L	PSL	PSL	F	Hexadecimal form		
241*	11	12 [13]	4.3921	030D7CE8ECF	18D184F798C6E925B5704AF4D	A2153A769D9074480E80E002B
242	11		4.3464	3A452CF3DC2	89C379144C0E8BA92E4B808CE	D496E69311012B053F30E9D7E
243	11		4.6415	35C9D9FAFFB	96A551B71C8390A37759CC45F	484156FA82F926B26887C70F2
244	11		4.2224	5C8AF0D5BF9	D541F6B82C8DE3C6A18267037	AFC92FDDAFB632C94B3DE26F6
245	11		4.3994	029CCAFFEDB3	109A073885E8E81FE68305F54	D0A3A741B0B163E2925AB33A5
246	11		4.4980	1EF242563567	E4FE52FF00D8EF33CBCD77E15	76F0C1098B36CD62E154F3BAA
247	12		4.7024	79A0DBE18DFD	836CDEDA5BD77238DFEBD5081	8A26713F2BD6C58E61E8BA98A
248	11		4.4414	E721F0BD8B58	2CEDF5730D2FE3147225DD445	8008182C9DF924BAD460DD581
249	12		4.6491	0CF423FF49B08	9C5EA2D4EC04B0E66C888F18D	533CAA2E2900A9A61697974F7
250	12	12 [14]	4.4816	0622264A2C88E	147AAAE46E531F0C33FC0B1A0	DB7ED694F30685E9A52EF7BE1
251	11	11 [13]	4.7291	6DB7A22D9933A	C0168A3171654A6CF1F8D0AAF	7B9485F179D73F919E19C17DF
252	11		4.0020	FAC07D4D1E117	B4E1677CC923412105413BBAF	205A3373BC454AE4E34DA35E3
253	12		4.7163	0B0B99CDB21AB6	94CC3F2887D7B83036A9F8965	07976154B800C000C7B4CB986
254	12		4.5440	3FDC4870527391	C0A10C3348A5FE518A2C5B82C	DAB91F0D6927A426457D03B72
255	12		4.5902	21234DBAD3F352	6E8501E19ED0B66077A6F2563	99C6293D902818A2AA03B3D10
256	12	12 [14]	4.8075	C66E72E53E702C	DE4A16F649491AAA790FE155D	07F7FCDD00CD3B2D1C7E7EEBD
257	12	12 [13]	4.8338	005288A05F7398A	14DF4441798F8FB49B3667832	30292F30CBC295A2B7C6AF90B
258	12		4.3421		30B776153844C33C4B98FD1C5	
259	12		4.4596		8564FB299AC381DF0814BDDD8	
260	12		4.6492		C39A0D21300321D834F0A9743	
261	11		4.2672		2C47443AAC52565A717174C59	
262	12		4.4557		529B8310D39A097DFEEDF926F	
263	12	12 [13]	4.3344		479E4F03723535A5B15359542	
264	12		4.6814		F4734C3A7EA9E3E9ED1809CC6	
265	12		4.6007		6DA7383814819FA67BDB996FC	
266	12		4.3118		B82FF294FBD41AC9886129D19	
267	11		4.2652		5E8E8F6FAF6132E431B1EF8E7	
268	12		4.5912		F16F1D0CC409087C0A547B697	
269	12	12 [13]	4.5903		4AF7B8C6D698458B626F3CF48	
270	12	10 1103	4.3836		C06D440EB73C93289BD73E9E6	
271	12	12 [13]	4.5028		3588BEAF3D5489C300D976626	
272	12		4.8267		A18C345823177B5F330F135DE	
273	12		4.4617		F8CE619CB008B3C7FF649E3DA	
274	12		4.4683		578392D64A2C34EDD9960B2C0	
275	12		4.3881		1C97957581650E3C2E42627FF	
276	12	10 [10]	4.5032		8250229573D322E8926478D40	
277	12	12 [13]	4.4352		5C46D0FCAC99D6A2ABC9FC336	
278	12		4.5790		8EF00D7AE6E82B0A5EFFCF47E	
279	12		4.3192		97B9C4D0F60BD024053C903CD	
280 281*	12	12 [12]	4.2535		FACC08A4E6372094623FCC11F	
281* 282	12 12	13 [13]	4.2325 4.4273		029B6C2FBC3CACD455008C9EE 87A62ADF9BB7CA20F40C203FD	
282	12	12 [13]	4.4273		561F00D0B349B923F742304EB	
283	12	12 [13]	4.4307		7B37A554A01F899BB87518AAB	
284	12		4.3735		90CBFF2376484A77472BAB2A6	
285	12		4.3830		3ADB4CFFB7537B97758B14A4C	
280	12		4.1706		64F462406B4234868C55E4AAB	
288	12		4.3858		CE683CE9ADBBE399B0620F0C1	
289	12		4.2981		03A970452A0771277C12F4CEF	
290	13		4.5622		1178171966EDF2D770488BC1C	
290	13		4.5621		C134A1ECD978C0D95C8947A64	
292	13		4.6410		E0389F6EA37561A969BE68D09	
293	13	13 [13]	4.7599		F3E49084CBE0F4BCC6BC4D509	
294	13	[10]	4.3961		D55D00DD65F8532F1408FBC3F	
295	13		4.3992		EA9E6FAC40E93CD95BCD5A026	
296	12		4.3203		732B13207A97F373C94C2D710	
297	12		4.2953		8EFF9F42764E4385F3A255273	
298	13		4.5771		9C843BF83698C284C37F1B1A9	
299	13		4.4166		566DBE0CA61DDED7C22623611	
300*	13	14 [14]	4.4074		A42E7C784BA0BA6E9CC7DE4FC	

TABLE II

Some results between L = 303 to 1000, obtained from 3 random runs of the proposed algorithm.

303 13 304* 13 350 14 353* 14 400 15 449 16	14 [14] 14 [14] 14 [14] 15 [13]	4.3507 4.0676 3.9458 4.2075	AD95352CC22999A6FB0C43086 4126CDA6FA380553FAF855670 38329784CD15E5FD165E71FA1		E
350 14 353* 14 400 15	4 [14] 4 14 [14] 4 15 [13]	3.9458	4126CDA6FA380553FAF855670		E
350 14 353* 14 400 15	14 [14] 15 [13]	3.9458		737149D716A118A39D317F56B	
353* 14 400 15	15 [13]		38329784CD15E5FD165E71FA1		2559C84C9F842
400 15		4.2073		955F6AA3FD68D163C020C83DF	
		4 2000	2301CE6AF55A9367F56F975F0	F8237A4B217DED35D90E5816E	94F1ECC71B333DBBDA5036461
449 16	16 [13]	4.3908	42E54FDEAC2B011A64125B93F		
		4.0547	3BA7280283209CB9B3C119C17	CCA40C033D59A1CFA1F115F10	
450* 16		4.4235	B3D233BB90D073CED9159C75A		1F5A9DBD1150A3269BAEF6F77 73C6C1ABE141EAFE4F8F510EF
500* 17		4.3442	86692BB8EE8599610DCF3BBC6	2AB2323A3ECF2D5BAFB96296C 5FF085A3624FFD18784AE2A7F	
512* 18	20 [14]	4.2656	0C6 59629957F19DBF1BD1FCC147A	0D7D4513078969028B0AD1E7D C967014099B8D967A55086B68	
547 18	18 [13]	4.3408	1A1122346FA6 DF0ADAA3EF781CC68787065EE	B24D0058AF50DF76297DFB4DD 84E33C3EC2F328FCA7FB90948	
550* 18	20 [14]	4.0695	1B75CCF68F659A 4A3FCF7D616F61077FF12A907	1E87B8EA72B3ACBA7B46C702 FC89835664FB5421298018595	
600* 19	20 [14]	3.6753	947D1CA2F0D6605BFE64A83D0 B75345932030798EAD7362F79	DE36DF1124823FB586FB3D62B	EAA03228D4E4A8600B1C1B84B
650* 20	21 [14]	3.9239	AC842603610546BE0C050D6B5		3629519BBA27A
653 20	20 [13]	4.2287	661453631900E59DF4B4BD866	DCF8106BA56FBE36006054BB8	D835EBA3A93EFA01ECD517F19 0042DAE58D12B9
700 22	22 [14]	4.1524	D67C18A56FB5FC1A3CC9F0D0D 33B1053BEDE8D1677832775DB		
	[1.]		3185FD0232E2CDC92725588DE 8A1A5E43440216E1292CD9A0C		779C512CD67B61D874F3AD782
750* 22	24 [14]	3.7603	58096AF298169E090BAD48814	0D2C305FBDF8B	E28B8F56A2C52EFD20DD56B5F
751 22	21 [13]	4.1537	731E999DC0DC7550640CFC6F1	F66CCB41BDA727A0FEE629F47	
	. 21 [13]	4.1557	F98BFFB1D3F4C557F60DAE504 E8449FC6C21C355B97C8294A3	848FA28617F2A0F967C82304C	DFB3B856C8EBD8BEAD682F05A
800* 23	26 [14]	3.7481	43CBDE96919EF1DCE0A34E45D		BE46CCBF2B4D8E87BE39B4DAB BE718414F3AC82113DF1FEFD5
850* 24	25 [14]	3.8096	FF9AE0245D10A97D94CDD048A 3EE1A834B9586	336B9745A0AE9821FAAF92E12 872DF36A9E31B629E9CBD6C7E	
			DC8FFFDAFF90FA881B8E616F2 D160CB1A8052DC3851E0850FA		
853 24	22 [13]	4.0854	02768D10E7D43B 9553236F6CCC5A7710BF4B20E	B00F7D393A61C6F78AC926759 F382C7274E1222AD3E6676769	
900* 25	26 [14]	3.7623	E3808E0F4D84AF5392E81F508 D3B8E76EBC7A737A3A210F4E4 24A01FCA8A1A85EF8DB3E4792	47E066618EB529E7F468B8F7C	6C98B68A16646A51508853AF5
950* 26	28 [14]	4.0438	C3A9BA4E16218D792490B0CAE		
20	20 [14]	7.0400	A95132B1A8CD2EF8392BCC99D		F7F9C6CCAECA104107D527744
052 25	25 [12]	2 9 4 0 2	F7A4C3ED429A82E5ACF4390B1 46B9AE073DA6987796C3323F4		170AD040FF2F449A4539A3C63
953 25		3.8493	6F31F9C2ACB1F520F3522FF35 06B6DF1820F42FADEA195F3E8 DFD801181F997A767A026899A	A56CC703346B757F1886E0DB8	42F19F293A2C8A0C31AD9B0A7 50D45A040A2E218999BD5536B
1000* 27	28 [14]	3.7873		1B979ACDE60E2C090A499CE7E	7FD311D01DD74BE054B4E2DAD 919F9C1E25F7422E81DFFF045 AAB94C89526CA1718D53A4073 AB5A3FC3A57155DA2056D5982

23

TABLE III Some results between L = 1019 to 4096, obtained from 3 random runs of the proposed algorithm.

L	PSL	PSL	F	Hexadecimal form		
1019	26	24 [13]	4.1390		5DF5B	7DB1608F87A6C00E33A6AAE88
				2F273C56FCFD5242F0A60D974	CEBE75733A782AC3F6687CC4E	53EC18BA1E7EA820C84B2A1CC
				4742E4ADE9C89A72E36A44130	2F26315A438C72E2955B0C5AA	16C90DFFD00BD37A813852651
				A95FDFC4A371F0EBF4341AC6F		
1024*	28	30 [14]	3.9683			61EB56D8C3A37BEDFF2EEBC30
				96B47CF2CE9EBA6C28A6895AF		
				218D398A6A66B389D16C8A6BC		
				63C07C4E20AECF7513F41329D		
1500*	35	40 [14]	3.7316	77CDCD88C3F33F08D81BBBDBE		
				98B5B323ADD46AF5DD8147BCE		
				F5A23C0A52316EA3FF7A02381		
				C8D02E8AF221EB42D0C11A8BC		
2000*	42	4.4 [1.4]	2 (102	C512E7E5487593EF9EFD96D7A		
2000*	42	44 [14]	3.6193	1 7 7 1 0 7 7 1 0 0 0 0 0 0 0 0 0 0 0 0		848E894E9BC0CB6E07FE3700C
				1AA19DAB48DE771363D8F8D3C		
				CFFD7E53BDF26CA3A73ADCBF8 6F25526C767ECC52CA9E590D2		
				031D07357D53866B24D6C2156		
				D94F1531053E29DDD2A02B041		
				D9425121CBC7AB6AFEFE38105		
2048*	42	44 [14]	3.5387		B796F2F16FCC6A2B5551A473F	
2010		[1.]	5.5507	464E144537D7536C12FE744D8		
				2A69DFA2B80690E6F5260C231		
				7BC61CF82B36B1F17CA56E206		
				7E057FFB9A8D152D8760C86A2		
				748911C572FCEB38E2432D41B	2C39FAB52BB2558EC98DF7A18	181C43D4205A339F904668288
				B06D49401871EC06C3C0AA2E2	316BE7F546B79D9C9D37A2CF9	3128422D7125D8B84B69A717A
2197*	45	47 [14]	3.6423			0331A80FD5ED35094DC259258
				1CA4954F3B24D3E19BD96C272	76AC577596F82274B74FADA2F	2A040059E64D3AC0269E71231
				7E767010E525E7D677D278F9F	8A3924EEB505E7D420822B3F0	30474F2FCF38B9588087863B1
				B9E248F223E0749ED065C6C99		
				27E310E80D9B2598AB4CCE2AE		
				533A69B210A185EA3E3474AE1		
				166E0268015AD30A13866F896		
2000#		50 51 41	2 2 6 0 0	E405FCB9F20FC36356ADFDA33		
3000*	52	58 [14]	3.3608	C22BEEF73C56B9DC59F6D5AFF		
				77157EC6581848C87107C611B		
				F0A599ACE0DF1B032BA7B1887 80319F8BFF4BDAF9E2E7BFBFA		
				BCD4A8BC2A18CE06CE2FB5124		
				A163EC514A0A93BF4E1B7F89E		
				A3822067A6D1EECF2AAC2E53F		
				B2B1F702E0A4B383FADA845A5		
				31067F5554C970AD724B0FECE		
				E37569D603E668938A73AD9D8		
4096*	61	68 [14]	3.4589			FC7E8DC88127C078FBD569A4A
				D05AB26D86A2D067C1E274783	B891CBF64617E0906673F029A	ED144133B3FF48DF2DB8A1878
				6780075E9C2B0CC46E6D0DA62	3CF1F50F1DF94177C28076F3C	E44BC24C69D242E8D6F49F678
				E71C2D4D72C9412C828734AA3	9CA28EA2A7E5891B451ADA9B2	408E666BA052C81509DE81789
				7E4AF9FE4F504846D80D6B14C	EEBDD9402A35C03AFD4EAE97B	7ECB690094681EFD13837398A
				CECAA9AB5FC10682B00CA74BD	15B5C0D7C53BAF35BF70612CB	4DDE55EB4CF2F028596ED8382
				3F5D1A73463B9953326AE6950	CF1299AB6ACB432887A56E9F0	42957BAE604C003E982152DFE
				AFA75968C0D8B0FEAA2ED33FC		
				4D9164A6FEA9647EAA1E1D631		
				CFBE0AF7596E9EB4BCBBBDA10		
				F60AABCA0A32A5D1694B818B0		
				F2973C8163731272219255826		
				A8E20D11EC5A81C106E04D5F5		
				D7320CCD9CFE5DC651051E0F6	6/8550BA09F9892E76D6E17C4	9ECD63F71B71FF351EEAF6DEB