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Abstract

In this paper, colocated MIMO radar waveform design is considered by minimizing the integrated

sidelobe level (ISL) to obtain beampatterns with lower sidelobe levels than competing methods. First, a

quadratic programming problem is formulated to design beampatterns by using the minimal-ISL criteria.

A theorem is derived that provides a closed-form analytical optimal solution that appears to be an

extension of the Rayleigh quotient minimization for a possibly singular matrix in the quadratic form.

Such singularities are shown to occur in the problem of interest, but proofs for the optimum solution in

these singular matrix cases could not be found in the literature. Next, an additional constraint is added

to obtain beampatterns with desired 3dB beamwidths, resulting in a nonconvex quadratically constrained

quadratic program which is NP-hard. A semi-definite program and a Gaussian randomized semi-definite

relaxation are used to determine feasible solutions arbitrary close to the solution to the original problem.

Theoretical and numerical analyses illustrate the impacts of changing the number of transmitters and

orthogonal waveforms employed in the designs. Numerical comparisons are conducted to evaluate the

proposed design approaches.
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Multiple-input multi-output (MIMO) Radar, transmit beampattern, convex optimization, relaxation.

I. INTRODUCTION

Multi-input multi-output (MIMO) radars which emit different waveforms from different transmit anten-

nas can provide extra degrees of freedom in waveform design to allow significant coherent gains [1]–[4]

when the antennas are colocated. Thus, flexible waveform design for transmit beampattern formation is

of interest for colocated multi-input multi-output (MIMO) radars. Beampattern formation is carried out

by designing either a waveform covariance matrix [5], [6] or a waveform coefficient matrix [7]. The goal

is to focus the transmit power into a range of interesting angles while minimizing the transmit power

for other angles [8]. Various methods can be found in [1], [7], [9]–[17] and in the references therein.

Among the references on beampattern design, the most common strategy is called shape approximation,

i.e., beampattern design according to a known shape under the criteria of minimum mean square error

(MMSE) [1], [9], [11], [13], [14], [16] or minimum difference (MD) [7], [13]. To accomplish these

goals, gradient search algorithms [1], [11], barrier methods [13], iterative algorithms [14], [16], and

convex optimization [7], [9] have all been used. Since the sidelobe level is one of the most important

performance indexes in antenna radiation theory [18]–[20], some minimum sidelobe level design strategies

have received attention and this is also the topic of this paper. Published methods are the minimum peak

sidelobe level (PSL) method [9], [12], [21], [22], the discrete prolate spheroidal sequences-based design

(DPSSD) method [23] and the minimum integrated sidelobe level (ISL) method [17]. The minimum PSL

method constrains the definition of the sidelobe region as the region outside a band of angles twice as

wide as the mainlobe, which is a severe restriction that limits flexibility to employ wider mainlobes.

DPSSD used a maximization of the ratio of energy in mainlobe to the total energy to derive a closed-

form solution using some approximations. Further, the sidelobe levels obtained by maximizing the ratio

of energy in mainlobe to total energy can never be smaller than obtained by maximizing the ratio of

energy in mainlobe to the energy in sidelobes [24]. Alternatively, in this paper a closed-form analytical

solution is given for the criterion of minimum ISL and no approximations are employed. To the best of

our knowledge, this solution and the proof justifying it, have not appeared in any publications to date.

Our results appear to be an extension of the Rayleigh quotient minimization [25, Sec. 8.2.3] for a possibly

singular matrix in the quadratic form. Such singularities are shown to occur in the problem of interest,

but proofs for the optimum solution in these singular matrix cases could not be found in the literature.

To augment the closed form results, the minimum ISL criterion is next considered with an additional

constraint to require a desired 3dB beamwidth, This results in a nonconvex quadratically constrained
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quadratic program which is NP-hard. A semi-definite program and a Gaussian randomized semi-definite

relaxation is used to determine feasible solutions arbitrary close to the solution to the original problem.

Extensive numerical comparisons are conducted to evaluate the proposed design approaches. Additionally,

a novel theoretical analysis describes the impact of the number of transmitters and the number of transmit

waveforms on the designed beampatterns.

Notation: Throughout this paper, we use lowercase italic letters to denote scalars, lowercase and

uppercase letters in bold to denote the vectors and the matrices, respectively. Superscripts of ∗, T and H

represent the conjugate, transpose and complex conjugate-transpose (or Hermitian) operators of a matrix,

respectively, while tr{·} represents the trace of a square matrix and vec{·} represents the vectorization

operator which creates a column vector from a matrix by stacking its column vectors. ‖ · ‖ denotes the

Euclidean (or l2) norm of a vector and ⊗ denotes Kronecker product. The notation I denotes identity

matrix and 0 denotes all-zero vector or matrix. R, C and Z+ denote the real, complex and positive integer

spaces, respectively.

II. PROBLEM FORMULATION

Consider a colocated uniform linear array (ULA) MIMO radar system equipped with M transmit

antennas, where the antennas are separated by a half wavelength. Assume each transmitter emits a

weighted sum of Q independent orthonormal baseband waveforms which are expressed by φ (t) =

[φ1 (t) φ2 (t) · · · φQ (t)]T . The weightings are described by a coefficient matrix C = [c1 c2 · · · cQ],

where C ∈ CM×Q and cq is used to control the amount of the qth waveform added into a sum at each

transmit antenna [23]. The total transmit power is fixed at E by setting
Q∑
q=1
‖cq‖2 = E. Thus the signals

transmitted by the M antennas can be described by

ψ (t) = Cφ (t) . (1)

After applying a steering vector a(θ), the waveforms transmitted to a far-field target at θ with θ ∈

Θ = [−π/2, π/2] can be expressed as

s (t, θ) = aH (θ) Cφ (t) (2)

where a(θ) = [1 ejπ sin(θ) · · · ejπ(M−1) sin(θ)]T .

Integrating |s (t, θ) |2 over a time equal to the support of φ (t), then the expression for the beampattern

becomes [1], [9]

P (θ) = aH (θ) CCHa (θ) . (3)
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Given the beampattern P (θ) expressed in (3), based on [26], we can write it as

P (θ) = ‖CHa (θ) ‖2 = ‖vec
{
aH (θ) C

}
‖2

=
∥∥((IQ ⊗ aH (θ)

)
vec {C}

)∥∥2

= vecH {C}
(
IQ ⊗

(
a (θ)aH (θ)

))
vec {C}

= cH (IQ ⊗A(θ)) c = cHÃ(θ)c

(4)

where c , vec {C}, A(θ) , a (θ)aH (θ) and Ã(θ) , IQ ⊗A(θ). Note that both A(θ) and Ã(θ) are

Hermitian positive semidefinite matrices for ∀θ.

Divide Θ, the set of all possible θ, into two disjoint sets called Θml, the mainlobe region and Θsl, the

sidelobe region. To concentrate the transmit power into Θml as much as possible, we can formulate the

following minimum integrated sidelobe level (ISL) optimization

min
‖c‖>0

cHAslc

cHAmlc

s.t. ‖c‖2 = E

(5)

where

Asl ,
∫

Θsl

Ã (θ) dθ, Aml ,
∫

Θml

Ã (θ) dθ. (6)

Problem (5) is a quadratic programming problem with a ratio objective (QP-R). When Aml (∈

CMQ×MQ) is a positive definite matrix with full rank, then (5) just can be converted into a Rayleigh

quotient [25, Sec. 8.2.3] minimization, and an analytical optimal solution can be obtained [27]–[29].

However, in our case Aml may not be a full rank matrix which means Aml will not be positive definite.

Here we provide a numerical demonstration of this by considering a case when we vary the width of

mainlobe from 5◦ to 160◦ in Fig. 1. From the figure, we can see that only when the width of Θml is

greater than 55◦ is Aml full rank. Thus, a more general method to obtain the analytical optimal solution

of (5) needs to be considered. However, to the best of our knowledge, we have not found any literature

giving an analytical solution to (5) for Aml not full rank.

The problem in (5) seeks the minimal ISL for the defined Θml and Θsl. However, in some applications

a particular 3dB beamwidth is also desired, requiring the addition of some constraints to (5) to obtain

the altered optimization by

min
c

cHAslc

cHAmlc

s.t.
1

2
≤ cHÃ(θ)c

cHÃ(θ0)c
≤ 1, ∀θ ∈ Θml.

(7)
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Fig. 1: Demonstration on the rank of Aml vs. angle width of Θml

where θ0 denotes the maximum power point in Θml, which is usually chosen to be at the center point

of the main lobe. The above problem is a nonconvex quadratically constrained quadratic programming

(QCQP) problem [30] which is NP-hard.

In the following section, we will propose the best suitable methods to solve the above two problems,

respectively.

III. WAVEFORM DESGIN FOR BEAMPATTERN FORMATION

A. Beampattern formation for minimal-ISL only

Although we have demonstrated that Aml might not be a positive definite matrix, we can confirm that

Aml + Asl is positive definite as shown in the following Lemma 1.

Lemma 1: Given Asl =
∫

Θsl
IQ ⊗A(θ) dθ and Aml =

∫
Θml

IQ ⊗A(θ) dθ, where Θsl + Θml =

[−π/2, π/2], A(θ) = a(θ)aH(θ) and a(θ) = [1 ejπ sin(θ) · · · ejπ(M−1) sin(θ)]T , then Aml+Asl is always

positive definite.

Proof of Lemma 1:
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For IQ ⊗A(θ) is positive semidefinite, thus given ∀c ∈ CMQ×1 and ‖c‖ > 0, we have

cH (Asl + Aml) c = cH

(∫ π

2

−π
2

IQ ⊗A(θ)dθ

)
c

≥ cH

(∫ π

2

−π
2

(IQ ⊗A(θ)) cos(θ)dθ

)
c

= cH

(
IQ ⊗

∫ π

2

−π
2

A(θ)cos(θ)dθ

)
c

= cH (IQ ⊗ (2IM )) c = 2‖c‖2 > 0

(8)

Obviously, Asl + Aml is always positive definite, hence, the proof of Lemma 1 is completed. �

Based on Lemma 1, then we can use the following theorem (which can be viewed as an extension

of the Rayleigh quotient minimization) to get the minimal solution for problem (5)(Note that c can

normalized without loss of any generality for the ratio objective function, thus the constraint ‖c‖2 = E

in (5) is ignored).

Theorem 1: Define Hermitian matrices A, B ∈ Cn×n, and assume A + B is positive definite while

A is non-negative definite with rank(A) = ς (0 < ς ≤ n). Focusing on r ∈ Cn×1 and a minimization

problem formulated as

min
‖r‖>0

rHBr

rHAr
(9)

then

1) If 0 < ς < n, the minimal solution of (9) is given by

r = U


(
Λ
− 1

2

1

)H
−B̃−1

1 B̃H
2

(
Λ
− 1

2

1

)H
xmin (10)

where xmin (∈ Cς×1) denotes the eigenvector corresponding to the minimum eigenvalue of Λ
− 1

2

1 B̃
(
Λ
− 1

2

1

)H
;

B̃ ∈ Cς×ς such that B̃ , B̃0 − B̃2B̃
−1
1 B̃H

2 ; Λ1 ∈ Rς×ς is an invertible diagonal matrix ob-

tained from the eigen-decomposition of A by A = U

 Λ1 0

0 0

UH , and B̃0 ∈ Cς×ς , B̃1 ∈

C(n−ς)×(n−ς) and B̃2 ∈ Cς×(n−ς) are the submatrices of UHBU given by

UHBU =

 B̃0 B̃2

B̃H
2 B̃1

 . (11)

2) If ς = n, the minimal solution of (9) is given by

r =
(
A−1/2

)H
xmin (12)

May 6, 2015 DRAFT



ACCEPTED BY IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 7

where xmin (∈ Cn×1) denotes the eigenvector corresponding to the minimum eigenvalue of A−1/2B(A−1/2)H .

Proof of Theorem 1:

1) 0 < ς < n

A is a Hermitian and non-negative matrix with rank(A) = ς by assumption. Using eigen-decomposition,

we can factorize rHAr as

rHAr = rHU

 Λ1 0

0 0

UHr

= yH

 Λ1 0

0 0

y

= y1
HΛ1y1

(13)

where U is a unitary matrix whose columns are eigenvectors argumented with a set of vectors to form a

basis and Λ1 ∈ Rς×ς is an invertible diagonal matrix with positive eigenvalues of A along the diagonal.

Further, y is defined as

y = UHr =

 y1

y2

 =

 UH
1 r

UH
2 r

 . (14)

Then (9) can be formulated as

min
‖r‖>0

rHBr

rHAr
= min
‖y1‖>0

yHUHBUy

y1
HΠΠHy1

(15)

where Π is invertible and Π , Λ
1/2
1 for Λ1 = ΠΠH .

Let x = ΠHy1. Further simplification of (15) leads to

min
‖r‖>0

rHBr

rHAr
= min
‖x‖>0

(
yH1 yH2

)
UHBU

 y1

y2


xHx

= min
‖x‖>0

(
xH yH2

)
Σ

 x

y2


xHx

(16)

May 6, 2015 DRAFT
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where Σ is defined as

Σ =

 Π−1 0

0 I(n−ς)

UHBU

 Π−1 0

0 I(n−ς)

H

=

 Π−1 0

0 I(n−ς)

 B̃0 B̃2

B̃H
2 B̃1

 Π−1 0

0 I(n−ς)

H

=

 Π−1B̃0(Π−1)H Π−1B̃2

(Π−1B̃2)H B̃1

 ,
 Σ0 Σ2

ΣH
2 Σ1

 .

(17)

If x is a solution to (16), then so is x
‖x‖ . Thus we can focus on the solutions satisfying xHx = 1.

Then the original problem (9) is equivalent to

min
‖x‖2=1

(
xH yH2

)
Σ

 x

y2

 . (18)

The Lagrange function of (18) can be written as

L(x,y2, λ) = xHΣ0x + yH2 ΣH
2 x + xHΣ2y2

+ yH2 Σ1y2 + λ(1− ‖x‖2).

(19)

To get the stationary points of L(x,y2, λ), we use the theorems in [31], where for a real function

L of the complex variable vectors ξ and ξ∗, the stationary points are obtained by solving ∇ξL = 0 or

∇ξ∗L = 0. Here we use the gradients of the conjugates of the vectors to obtain the necessary condition

for a stationary point as

∇x∗L(x,y2, λ) = Σ0x + Σ2y2 − λx = 0 (20)

∇y∗
2
L(x,y2, λ) = ΣH

2 x + Σ1y2 = 0 (21)

∇λL(x,y2, λ) = 1− ‖x‖2 = 0 (22)

On the other hand, let Γ = A+B, and left and right multiply the equation with UH and U, respectively,

then we have

UHΓU = UHAU + UHBU

=

 Λ1 0

0 0

+

 B̃0 B̃2

B̃H
2 B̃1


=

 Λ1 + B̃0 B̃2

B̃H
2 B̃1

 .

(23)

May 6, 2015 DRAFT
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Since Γ = A + B is positive definite, then the matrix on the right-hand side (RHS) of (23) is

positive definite, thus Σ1 = B̃1 should also be positive definite. Therefore based on (21) we have

y2 = −Σ−1
1 ΣH

2 x. Then combining (20) and (22), all the stationary points should satisfy(
Σ0 −Σ2Σ

−1
1 ΣH

2

)
x = λx

y2 = −Σ−1
1 ΣH

2 x

‖x‖2 = 1

(24)

To obtain the minimal point of (18), we can find (x,y2, λ) among the stationary points (i.e., the

constraint of (24)) to make the objective function in (18) the least by

min
x,y2,λ

(
xH yH2

)
Σ

 x

y2


s.t.

(
Σ0 −Σ2Σ

−1
1 ΣH

2

)
x = λx

y2 = −Σ−1
1 ΣH

2 x

‖x‖2 = 1

(25)

Left multiplying the first constraint of (25) by xH on both sides and inserting the first two constraints

into the objective function, then (25) can be simplified by

min
‖x‖2=1

xH
(
Σ0 −Σ2Σ

−1
1 ΣH

2

)
x (26)

Based on the Rayleigh-Ritz theorem [32, Sec. 4.2.2], then the minimal solution of (26) becomes the

eigenvector corresponding to the minimum eigenvalue of (Σ0−Σ2Σ
−1
1 ΣH

2 ), where (Σ0−Σ2Σ
−1
1 ΣH

2 ) =

Λ
− 1

2

1

(
B̃0 − B̃2B̃

−1
1 B̃H

2

)(
Λ
− 1

2

1

)H
based on (17). If we assume xmin is the eigenvector, then the mini-

mum value of (9) is achieved by

r = U

 y1

y2

 = U

 (Π−1)Hxmin

−B̃−1
1 B̃H

2

(
Π−1

)H
xmin


= U


(
Λ
− 1

2

1

)H
−B̃−1

1 B̃H
2

(
Λ
− 1

2

1

)H
xmin.

(27)

2)ς = n

When ς = n, A is a positive definite matrix and Λ1 ∈ Rn×n. Using the same process as for the case

when 0 < ς < n, we obtain that the minimum value of (9) is [29]

r =
(
A−1/2

)H
xmin (28)
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where xmin is the eigenvector corresponding to the minimal eigenvalue of A−1/2B(A−1/2)H .

Therefore the proof of Theorem 1 is completed. �

B. Beampattern formation for desired beamwidths

In the following, we will propose different convex methods to solve the problem of (7) according to

the relationship between the number of transmitters M and transmit waveforms Q.

1) Cases for Q = M : Since Q = M , we can use a Hermitian semi-definite matrix R (∈ CM×M ) to

represent CCH =
∑M

q=1 cqc
H
q without loss of any generality. Then (4) can be reformulated as

P (θ) = cH (IQ ⊗A(θ)) c =

M∑
q=1

cHq A(θ)cq

= tr

A(θ)

M∑
q=1

cqc
H
q

 = tr {A(θ)R}

(29)

Thus (7) can be reformulated as

min
R

tr
{
Asl
MR

}
tr
{
Aml
M R

}
s.t.

1

2
≤ tr {A(θ)R}

tr {A(θ0)R}
≤ 1, ∀θ ∈ Θml

R � 0

(30)

where Aml
M ,

∫
Θml

A(θ)dθ, Asl
M ,

∫
Θsl

A(θ)dθ, Aml = IQ ⊗Aml
M and Asl = IQ ⊗Asl

M . Also � in

(30) denotes that R should be a semi-definite matrix.

The objective function of (30) is a ratio of two linear functions of R Thus if R is a solution to (30), so

is R
tr{AmlM R} . Therefore we can focus on the solution that satisfies tr{AmlM R} = 1. Then (30) is equivalent

to

min
R

tr
{

Asl
MR

}
s.t. tr

{
Aml
M R

}
= 1

1

2
≤ tr {A(θ)R}

tr {A(θ0)R}
≤ 1, ∀θ ∈ Θml

R � 0

(31)

Obviously, (31) is a semi-definite programming (SDP) [33] problem for the variable R. Thus we can

use the convex optimization toolbox CVX [34], [35] directly to get the optimal solution.

May 6, 2015 DRAFT
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2) Cases for Q 6= M : Since xHTx = tr{TxxH} for ∀x and T, then (7) is equivalent to

min
c,X

tr{AslX}

s.t. tr{AmlX} = 1

1

2
≤ tr{Ã(θ)X}

tr{Ã(θ0)X}
≤ 1, ∀θ ∈ Θml

X = ccH

(32)

Observing (32), we find that it is not a convex optimization due to the last nonconvex constraint

X = ccH (∈ CMQ×MQ). Therefore, to solve (32), we consider using semidefinite relaxation (SDR) [36],

[37]. Relaxing the constraint X = ccH to a convex positive semidefinite constraint X − ccH � 0, we

can obtain a lower bound on the optimal value of (32) by solving the following convex problem

min
X,c

tr {AslX}

s.t. tr {AmlX} = 1

1

2
≤

tr
{

Ã(θ)X
}

tr
{

Ã(θ0)X
} ≤ 1, ∀θ ∈ Θml

X− ccH � 0

(33)

Hence problem (33) is the SDR of (7) and can be solved with CVX. Suppose the optimal solution of

(33) is (X?, c?). This may not be the solution of (7). To get an accurate approximate solution for (7)

based on (X?, c?), Gaussian randomization [37] can be used. Generate a sufficient number of samples by

assuming c is a Gaussian variable with c ∼ CN (c?,X?− c?c
H
? ), then choose the samples satisfying the

constraint of (7) to find the best feasible point among them to make the objective function the smallest.

IV. NUMERICAL RESULTS

In this section, some theoretical and numerical analyses are performed to show how the variables Q

(number of waveforms) and M (number of transmitters) impact the designed beampatterns. Next, some

comparison simulations are conducted to verify the performance our methods.

A. Beampattern analyses with respect to the number of waveforms Q and transmitters M

1) Analysis on the impact of different Q on the designed beampatterns: First we give a Lemma which

will be useful to our analyses.

May 6, 2015 DRAFT
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Lemma 2: Given Hermitian non-negative definite matrices A,B ∈ Cn×n, if there exists kmin(≥ 0)

such that min
r∈Cn×1

rHBr
rHAr = kmin(≥ 0), then kmin = min

r∈Cn×1

rHBr
rHAr = min

X�0

tr{BX}
tr{AX} , where X(∈ Cn×n) is a

positive semidefinite Hermitian matrix.

See the proof in Appendix A. Given a non-zero vector c+ = [cT1 cT2 ]T ∈ CM(Q+1)×1, where c1 ∈

CMQ×1 and c2 ∈ CM×1, we have

cH+

(
IQ+1 ⊗Asl

M

)
c+

= cH1

(
IQ ⊗Asl

M

)
c1 + cH2 Asl

Mc2

= cH1

(
IQ ⊗Asl

M

)
c1 + c̃H2

(
IQ ⊗Asl

M

)
c̃2

= tr
{(

IQ ⊗Asl
M

) (
c1c

H
1 + c̃2c̃

H
2

)}
(34)

where c̃2 ∈ CMQ×1 and c̃2 , [cT2 0TM(Q−1)]
T . Based on (34), we have

min
c+∈CM(Q+1)×1

cH+
(
IQ+1 ⊗Asl

M

)
c+

cH+
(
IQ+1 ⊗Aml

M

)
c+

= min
c+∈CM(Q+1)×1

tr
{(

IQ ⊗Asl
M

) (
c1c

H
1 + c̃2c̃

H
2

)}
tr
{(

IQ ⊗Aml
M

) (
c1cH1 + c̃2c̃H2

)}
≥ min

X0�0

tr
{(

IQ ⊗Asl
M

)
X0

}
tr
{(

IQ ⊗Aml
M

)
X0

}
(35)

where X0 ∈ CMQ×MQ and the inequality holds because the problem on the RHS is a SDR of the

problem on the LHS. On the other hand, we have min
c+∈CM(Q+1)×1

cH+ (IQ+1⊗Asl
M )c+

cH+ (IQ+1⊗Aml
M )c+

≤ min
c∈CMQ×1

cH(IQ⊗Asl
M )c

cH(IQ⊗Aml
M )c

since setting the extra components in c+ to zero gives the same answer as the problem on the RHS.

However, no matter what Q and M are, min
c

cH(IQ⊗Asl
M )c

cH(IQ⊗Aml
M )c

= min
X0�0

tr{(IQ⊗Asl
M )X0}

tr{(IQ⊗Aml
M )X0} will always hold based

on Lemma 2. Thus min
c+∈CM(Q+1)×1

cH+ (IQ+1⊗Asl
M )c+

cH+ (IQ+1⊗Aml
M )c+

= min
c∈CMQ×1

cH(IQ⊗Asl
M )c

cH(IQ⊗Aml
M )c

. Then we can conclude that the

values of Q will not have impact on beampatterns obtained by the analytical method proposed in Section

III-A. Fig. 2(a) has verified our conclusion since all the cases with different Q have the same shaped

beampattern. Now we consider the convex method proposed in Section III-B. To begin our analyses, a

lemma is provided.

Lemma 3: Given a real-valued function f(Q) = min
X�0

tr {(IQ ⊗B) X} subject to tr {(IQ ⊗Ai) X} ≤

bi (∈ R), i = 1, ...,K, where Ai, B (∈ CM×M ) and X (∈ CMQ×MQ) are all Hermitian matrices1, then

f(Q+ 1) = f(Q) holds for ∀Q ∈ Z+.

1Here we consider bounded set, since the minimization is a SDP with bounded objective, so the minimal value, i.e., the value

of f , for each Q should always exist.
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See the proof in Appendix B. It’s not hard for us to prove that the SDRs of the minimization (7) for

a case with Q+ 1 and a case with Q can be expressed in the form of f(Q+ 1) and f(Q), respectively,

as defined in Lemma 3. Therefore, the SDRs for a case with Q + 1 and a case with Q have the same

minimal value based on Lemma 3. Since we find the final solutions for different Q based on different

SDRs but with the same minimal value, we can conclude that the beampatterns designed by the convex

method for different Q will generally be the same except for minor differences that may exist because we

find the best solution for each case among a Gaussian randomized sample. Fig. 3(a) shows the numerical

results with different values of Q. We can see that there are only minor differences between the different

beampatterns, which not only shows the correctness of our conclusion but also shows the good precision

of Gaussian randomization.

2) Analysis on the impacts of different M on the designed beampatterns: Considering a vector c ∈

CM×1, then cHAsl
Mc = [cH 0]Asl

M+1[cH 0]H holds. Thus given c∗ = [cT1 · · · cTQ]T ∈ CMQ×1, we have

cH∗

(
IQ ⊗Asl

M

)
c∗ =

Q∑
q=1

cHq Asl
Mcq

=

Q∑
q=1

[cHq 0]Asl
M+1[cHq 0]H

= c̃H∗

(
IQ ⊗Asl

M+1

)
c̃∗

(36)

where c̃∗ ∈ C(M+1)Q×1 is an extension of c∗ by padding a zero at the end of each M elements. Therefore,

the beampattern we obtain at M by (5) can be viewed as a special case of M+1 with M zero-components.

Thus when we increase the number of transmitters, we obtain a beampattern with a lower sidelobe level

because the case of M + 1 will provide a lower optimal value than the case of M which means a lower

sidelobe level. Fig. 2(b) shows the simulation results of the beampatterns for different values of M .

From the figure, it can be seen that the sidelobe level of the beampattern decreases when M increases,

as the analysis indicated. When M is large enough, the mainlobe width of the beampattern is steady at

the desired width of 30◦. However, when M is not, though increasing M can reduce sidelobe levels,

it will result in a reduction in the 3dB beamwidth. Thus when using the analytical method proposed

in Section III-A, one should choose M carefully in beampattern formation if it is desirable to obtain

a good trade-off between the 3dB beamwidth and the sidelobe level. Similarly, based on (36) we also

can convert the case of M for (7) into a special case of M + 1 though (7) has an addtional constraint

comparing with (5), which again means that increasing M will lower the sidelobe level. Fig. 3(b) has

verified our conclusion.
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Fig. 2: Normalized beampatterns designed by the analytical method for a desired 30◦ width of the main

lobe, (a) vs. different values of Q; (b) vs. different values of M .

B. Comparisons among the different design methods

1) Comparisons between the two proposed methods: For M = 8 and Q = 3, we consider three types

of desired beampatterns: the one-mainlobe case, the two-mainlobe case and the three-mainlobe2 case. In

each case the desired width of each mainlobe region is 22◦ while the space between mainlobes is 50◦

for the two multiple mainlobe cases. Fig. 4 shows the numerical results of the beampatterns designed

using the two proposed methods. From the three subfigures, it is seen that both of the methods can

2Multi-beam parallel design for complicated multi-mainlobe cases can be employed when using the minimal-ISL only criterion.
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Fig. 3: Normalized beampatterns designed by the convex method with a desired 30◦ beamwidth, (a) vs.

different values of Q; (b) vs. different values of M .

provide useful beampatterns. Note that all the beampatterns designed by adding the constraint on the

3dB beamwidth achieve a 3dB beamwidth close to that desired as expected. The mainlobes obtained

using the method without the constraint are slightly different as might be expected.

2) Comparisons with conventional methods: The minimal-ISL only design method is compared with

the DPSSD method proposed in [23], since both of them can obtain closed-form solutions. Fig. 5(a) shows

the numerical results of the two methods (where M = 8, Q = 2, and the width of the defined mainlobe

region is 22◦). We can see that our method obtains a lower sidelobe level, which means the closed-formed

minimal solution of our method has better performance in terms of lowering sidelobe level. The minimal-
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ISL design method for the desired 3dB beamwidth is compared with the shape approximation methods

(SAMs) which also provide the desired 3dB beamwidth. Now consider two specific SAM methods. The

first one is the SAM proposed in [9, Sec. III-C] (denoted as ’SAMMMSE’). Though SAMMMSE is a

covariance matrix (R) design method, it can obtain the globally optimal solution by using the criteria

of minimum MSE. The second method is the SAM proposed in [7] (denoted as ’SAMMD’), which used

shape approximation by minimizing the maximum difference. Fig. 5(b) shows the simulation results of a

desired beampattern with a 40◦ beamwidth, where M = 8 and Q = 3. From the figure, we can see that

the beampattern designed by our method has the lowest sidelobe level.

3) Narrow-beam comparisons with conventional phased-array radar: In some cases it is desired to

focus energy on a single angle θt. This can be accomplished by setting Aml = IQ⊗
(
a(θt)a

H(θt)
)

in (5)

and then applying Theorem 1. In Fig. 6, we present some comparisons of results obtained from this slight

modification of the minimal-ISL only criterion with those obtained from the conventional phased-array

(CPA) radar [38], which can obtain narrowly focused beampatterns [1]. The three subfigures in Fig. 6

show that the beampatterns designed using our method have lower sidelobe levels when compared to

those obtained by the CPA radar. When we carefully inspect the 3dB beamwidths of the beampatterns,

we can observe that our method can achieve a mainlobe width which seems to approach to that of the

conventional one as we increase M . As Fig. 6 illustrates, the differences of the 3dB beamwidths for

M = 10, M = 20 and M = 100 are less than 0.1◦, 0.02◦ and 0.0012◦, respectively.

V. CONCLUSION

Colocated MIMO radar waveform design for transmit beampattern formation by minimizing ISL has

been considered in this paper. Both analytical and convex design methods using the criteria of minimum

ISL are proposed, respectively, to obtain beampatterns with lower sidelobe levels with different goals.

Under the minimum ISL design criterion, both theoretical and numerical analyses have shown that

the number of waveforms Q doesn’t have impact on the quality of beampatterns while the number

of transmitters M does. Further, the larger the value of M , the lower the value of the sidelobe level.

Finally, numerical comparisons have shown our methods can obtain beampatterns with lower sidelobe

levels than conventional methods.

APPENDIX A

PROOF OF LEMMA 2

Define k? and X? � 0 such that k? = tr{BX?}
tr{AX?} . Use eigen-decomposition to factorize X? as X? =∑n

i=1 xix
H
i . Without loss of generality, we assume tr{Bx1xH1 }

tr{Ax1xH1 }
≤ tr{BxixHi }

tr{AxixHi }
for i = 1, ..., n and rmin is
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the minimal solution of min
r∈Cn×1

rHBr
rHAr , then

k? =
tr{BX?}
tr{AX?}

=

∑n
i=1 tr{Bxix

H
i }∑n

i=1 tr{AxixHi }

≥ min
i

tr{Bxix
H
i }

tr{AxixHi }
=

tr{Bx1x
H
1 }

tr{Ax1xH1 }

≥ tr{Brminr
H
min}

tr{ArminrHmin}
= kmin

(37)

Note that X? can be an arbitrary feasible point of min
X�0

tr{BX}
tr{AX} , thus min

X�0

tr{BX}
tr{AX} ≥ kmin. On the other

hand, we have min
X�0

tr{BX}
tr{AX} ≤ kmin for min

X�0

tr{BX}
tr{AX} is an SDR of min

r∈Cn×1

rHBr
rHAr . Therefore the proof of

Lemma 2 is completed. �

APPENDIX B

PROOF OF LEMMA 3

Write f(Q+1) as f(Q+1) = min
X+�0

tr {(IQ+1 ⊗B) X+} s.t. tr {(IQ+1 ⊗Ai) X+} ≤ bi, i = 1, ...,K,

since if we let X+ =

 X 0

0 0M×M

 (∈ CM(Q+1)×M(Q+1)) then f(Q+ 1) = f(Q) holds, hence, we

have

f(Q+ 1) ≤ f(Q) (38)

Define X+ =

 X1 X12

XH
12 X2

, where X1 ∈ CMQ×MQ, X12 ∈ CMQ×M and X2 ∈ CM×M , then we

can rewrite f(Q+ 1) as

f(Q+ 1) = min
X+�0

tr {(IQ ⊗B) X1}+ tr {BX2} s.t.

tr{(IQ ⊗Ai) X1}+ tr {AiX2} ≤ bi, i = 1, ...,K

= min
X1,X̃2�0

tr
{

(IQ ⊗B)
(
X1 + X̃2

)}
s.t.

tr
{

(IQ ⊗Ai)
(
X1 + X̃2

)}
≤ bi, i = 1, ...,K

(39)

where X̃2 ∈ CMQ×MQ and X̃2 =

 X2 0

0 0M(Q−1)×M(Q−1)

.

Obviously, the minimization in f(Q+ 1) (see the RHS of (39)) can be relaxed to the minimization in

f(Q), thus we have f(Q+ 1) ≥ f(Q). Combining (38) then we have f(Q+ 1) = f(Q). Therefore, the

proof of Lemma 3 is completed. �
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Fig. 4: Beampattern comparisons between the two proposed methods. (a) One-mainlobe case, (b) Two-

mainlobe case, (c) Three-mainlobe case.

May 6, 2015 DRAFT



ACCEPTED BY IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS 21

 

 

-80 -60 -40 -20 0 20 40 60 80
-35

-30

-25

-20

-15

-10

-5

0

Angle (degrees)

B
e

a
m

p
a

tte
rn

 (
d

B
)

 

 
DPSSD
Minimal-ISL only

(a)

 

-80 -60 -40 -20 0 20 40 60 80

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Angle (degrees)

B
e

a
m

p
a

tte
rn

 (
d

B
)

 

 

Desired beampattern
SAM

MMSE

SAM
MD

Minimal-ISL for desired 3dB BW

-3dB

(b)
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Fig. 6: Single-angle focused beampattern comparisons between the minimal-ISL criterion and CPA radar.

(a) M = 10, (b) M = 20, (c) M = 100.
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