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Abstract—Common ISAR radar images and signals can be
reconstructed from much fewer samples than the sampling theo-
rem requires since they are usually sparse. Unavailable randomly
positioned samples can result from heavily corrupted parts of
the signal. Since these samples can be omitted and declared as
unavailable, the application of the compressive sensing methods
in the recovery of heavily corrupted signal and radar images is
possible. A simple direct method for the recovery of unavailable
signal samples and the calculation of the restored ISAR image
is reviewed. An analysis of the noise influence is performed. For
fast maneuvering ISAR targets the sparsity property is lost since
the ISAR image is blurred. A nonparametric quadratic time-
frequency representations based method is used to restore the
ISAR image sparsity. However, the linear relation between the
signal and the sparsity domain transformation is lost. A recently
proposed gradient recovery algorithm is adapted for this kind of
analysis. It does not require the linear relation of the signal and
its sparsity domain transformation in the process of unavailable
data recovery. The presented methods and results are tested on
several numerical examples proving the expected accuracy and
improvements.

Index Terms—Radar imaging, ISAR, time-frequency analysis,
noisy signal, sparse signal, compressive sensing.

I. INTRODUCTION

In inverse synthetic aperture radar (ISAR) a high resolution
image of a target is obtained by using the two-dimensional
Fourier transform of the received (and processed) signal. The
ISAR image of a point target is a highly concentrated two-
dimensional pulse function at a point whose position corre-
sponds to the target’s range and cross-range. For a number
of reflecting points, the radar image consists of several pulses
at the range and cross-positions [1]-[4]. Usually the number
(area) of nonzero values in the ISAR image is small as
compared to the total number of signal samples. Thus, we
may say that the common signal in ISAR is sparse in the
two-dimensional Fourier domain [5], [6]. As such it can be
reconstructed from much fewer samples than the sampling
theorem requires. Unavailable, randomly position samples
could also result from heavily corrupted parts of the signal,
that are omitted and declared as unavailable, before the ISAR
image recovery and calculation is done [7]. In the signal
recovery the fact that the two-dimensional Fourier transform
domain is the domain of radar signal sparsity is used. This
fact allows the application of the compressive sensing methods
[5], [6], [8], [9], [23]. A simple method for the unavailable
radar signal data recovery and the ISAR image calculation is
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reviewed in the paper. An analysis of the noise influence on
this radar image is done. A simple and accurate formula for
the output signal-to-noise ratio is derived.

For fast maneuvering ISAR targets, the radar image can be
spread over the two-dimensional Fourier transform domain [1],
[10]-[18]. Then a large number of the two-dimensional Fourier
transform values are nonzero, covering a large part of the radar
image. In this case the sparsity property of the signal is lost.
One possibility to restore this property is to use parametric
transforms to compensate and refocus the ISAR image, making
it sparse again [1], [12], [18]. However, a large number of
parameters should be used for almost each reflecting point in
the case of a general nonuniform motion. Good results can
be achieved using these techniques, but at the expense of a
high computational load. This kind of parametric calculation
is even more complex for the reduced set of available signal
samples, when the compressive sensing methods are going
to be used. The other way to refocus the image is based
on the quadratic time-frequency representations [1], [20]. A
representation which can achieve high concentration, like in
the Wigner distribution case, at the same time avoiding the
cross-terms, is the S-method. This method is nonparametric
and computationally quite simple. It requires just a few addi-
tional additions and multiplications on the already calculated
ISAR image using the two-dimensional Fourier transform [15],
[21], [26]. However, the S-method relation to the signal is
not linear. Therefore, many conventional compressive sensing
based recovery techniques, including the one reviewed in this
paper, can not be used. They are based on the direct linear
reconstruction relation between the signal and the transform
in the domain of signal sparsity. This is not the case in the
quadratic signal representations, such as the S-method. It was
the reason why the recently proposed gradient method for
the signal samples recovery [9] is adapted for the problem
formulation in this paper. This method does not require a direct
linear relation of the signal and its sparsity transformation
domain in the process of recovery of unavailable signal values.

The presented methods and results are illustrated and tested
on several numerical examples proving the expected efficiency
and improvements.

The manuscript is organized as follows. A brief review of
the signal model in the considered ISAR systems is given
in Section 2. A reconstruction algorithm for the radar signal
with unavailable data is presented in Section 3, along with
the analysis of noise influence. The gradient method for the
reconstruction of the ISAR images, corresponding to nonuni-
form motion is presented in Section 4. Examples illustrate the
accuracy of the proposed methods.
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Fig. 1. Illustration of one revisit (chirp series) discretization in coordinates
m (chirp index, slow time) and n (time within one chirp, fast time), along
with a real time. The case of M = 8 chirps in one revisit and N = 8
samples within chirp is presented. The CIT is 64 samples. Unavailable or
heavily corrupted data are marked by read.

II. RADAR SIGNAL MODEL

For a continuous wave radar that transmits signal in a form
of series of M chirps [1] the received signal (reflected from a
target) is delayed with respect to the transmitted signal for
td = 2d(t)/c, where d(t) is the target distance from the
radar and c is the speed of light. The received signal, after
an appropriate demodulation, compensation and filtering, is

q(m, t) = σejΩ0
2d
c e−j2πBfr(t−mTr) 2d

c (1)

where σ is the reflection coefficient of the target, while Ω0 is
the radar operating frequency. The repetition time of a single
chirp is denoted by Tr, while the number of samples within
each chirp is N . The coherent integration time (CIT) is Tc =
MTr. Index m corresponds to the chirp index (slow time).
The received signal for a system of point scatterers can be
modeled as a sum of the individual point scatterer responses,
[1]. The Doppler part in the received signal of a point target
is

s(t) = σej2d(t)Ω0/c, (2)

By denoting t−mTr = nTs, where Ts = Tr/N is a sampling
interval within a chirp and n is the index of signal sample
within one chirp (fast-time), the range part of the received
signal exp(−j2πBfr(t−mTr) 2d

c ) reduces to exp(j2πγn/N)
with γ = −BfrTsN(2d/c). The two-dimensional Fourier
transform of the received and processed signal is

Q(k, l) =

M−1∑
m=0

N−1∑
n=0

q(m,n) exp e−j(
2πmk
M + 2πnl

N ), (3)

The illustration of the discrete q(m,n) values in one revisit is
presented in Fig. 1.

A. Uniform Target Motion with Unavailable/Corrupted Data

In the simplest case, when the target motion may be
considered as uniform within the CIT, the distance can be
written as

d(t) ∼= d0 + vt ∼= d0 + vmTr.

The received signal, from the ith reflecting point, after the
distance compensation, is

qi(m, t) = σie
jΩ02viTrm/cej2πγin/N

= σie
j2πβim/Mej2πγin/N ,

where βi and γi are the constants proportional to the velocity
(cross-range) and range. The total signal for K reflecting
points is

q(m,n) =

K∑
i=1

qi(m,n).

Next assume that some blocks of the received radar signal
are either unavailable or highly corrupted so that it is better
to omit them from the analysis [7]. Assume that the blocks
of the omitted signal samples are randomly positioned. The
two-dimensional Fourier transform of this signal is then

Q̂(k, l) =

M−1∑
m=0

∑
n∈NA(m)

q(m,n)e−j(
2πmk
M + 2πnl

N ).

It can happen that the unavailable/corrupted data are: all within
one chirp or spread over two or more chirps, including the
possibility that a few chirps in a row are affected in this
way, Fig. 1. These cases are included by using the notation
n ∈ NA(m) where NA(m) is the set of available samples
within the mth chirp. For some m it could also happen
that NA(m) = ∅, i.e., that there are no available samples
within that chirp. The total number of available samples is
1� NA ≤MN . We can consider two cases [19]:

(1) For k = βi and l = γi we will have

Q̂(k, l) =

M−1∑
m=0

∑
n∈NA(m)

σi = σiNA (4)

where NA is the total number of available samples.
(2) For k 6= βi or l 6= γi then

Q̂(k, l) =

M−1∑
m=0

∑
n∈NA(m)

σie
jφ(n,m,k,l) = Ξ(k, l).

For a large number of unavailable samples 1 � NA � NM
the previous value is a sum or vectors with quasi arbitrary
phases. It can be considered as a complex-valued variable with
Gaussian distributed real and imaginary parts (as shown in
[22]). Its variance is

var{Q̂(k, l)} = NA
NM −NA
NM − 1

σ2
i .

Therefore, for K reflecting points we may write [22]

E{Q̂(k, l)} =

K∑
i=1

σiNAδ(k − βi, l − γi)

var{Q̂(k, l)} = NA
NM −NA
NM − 1

K∑
i=1

σ2
i (1− δ(k − βi, l − γi)) .

Based on this analysis, the received signal and the ISAR
image recovery can be done using the following simple and
computationally efficient algorithm.

Algorithm:
(i) Calculate the initial transform estimate Q̂(k, l) by using

the available/remaining signal values

Q̂(k, l) =

M−1∑
m=0

∑
n∈NA(m)

q(m,n)e−j(
2πmk
M + 2πnl

N ). (5)

or Q̂= Φy.
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where y is the vector of available samples q(m,n), n ∈
NA(m)

y = [q(m,n) | n ∈ NA(m) ]T .

Note that the two-dimensional data q(n,m) are transformed
into a column vector y and Φ is the corresponding transfor-
mation matrix. It is used to produce Q̂(k, l) arranged into a
column vector Q̂.

(ii) Set the resulting transform values Q(k, l) to zero at all
positions (ki, li) except the highest K̂ values in the initial
estimate Q̂(k, l), i.e.,

Q(k, l) = 0 for (k, l) 6= (ki, li), i = 1, 2, ..., K̂

(ki, li) = arg
i=1,2,...,K̂

{max{sort{|Q(k, l)|}}}.

This criterion is not sensitive to the assumed number of
nonzero coefficients K̂ as far as all nonzero positions of
the original transform are detected and the total number K̂
of transform values in Q̂(k, l) is lower than the number of
available samples, i.e.,

K ≤ K̂ ≤ NA.

All K̂ −K transform values that a zero in the original signal
will be found as zero-valued in the algorithm.

(iii) The unknown K̂ transform coefficients could be then
easily calculated by solving the set of NA equations for
available instants n ∈ NA(m), at the detected nonzero
candidate positions (ki, li), i = 1, 2, ..., K̂. The linear system
for unknowns Q(ki, li) is obtained using the inverse two-
dimensional Fourier transform for NA available signal values,

1

MN

∑K̂
i=1Q(ki, li)e

j(
2πmki
M +

2πnli
N ) = q(m,n), (6)

for 0 ≤ m ≤ N − 1, n ∈ NA(m).

System (6) is a system of NA linear equations with K̂
unknown transform values Q(ki, li). This linear system can
be written in a matrix form as

ΨQK̂= y,

where: QK̂ is a vector whose elements are unknowns Q(ki, li),
i = 1, 2, ..., K̂, Ψ is the corresponding coefficients matrix,
and y is a vector whose elements are available signal q(m,n)
samples.

For K̂ = NA its solution is simple, QK = Ψ−1y. In
general, for K̂ < NA the system is solved in the least square
sense as

QK =
(
ΨHΨ

)−1
ΨHy. (7)

where H denotes the Hermitian transpose operation. The
reconstructed coefficients Q(ki, li), i = 1, 2, ..., K̂, (vector
QK̂) are equal to the transform coefficients of the original
signal for all detected candidate frequencies. If some transform
coefficients, whose true value should be zero, are included
(when K < K̂) the resulting system will produce their correct
(zero) values.

The condition that the system (6), with K̂ unknowns, has
a solution is that there are at least K̂ independent equations,

i.e., that

rank(Ψ) ≥ K̂ or

det(ΨHΨ)6=0.

The reconstruction accuracy can be easily checked calculat-
ing the mean squared error between the reconstructed samples
and the available samples, at the positions of the available
samples n ∈ NA(m).

Comments:
In general, a simple strategy can be used by assuming that

K̂ = NA and by setting to zero-value the smallest N − NA
transform coefficients in Q̂(k, l). This simple strategy is very
efficient if there is no input noise. Large K̂, close or equal to
NA, will increase the probability that full signal recovery is
achieved in one step. However, in the case of additional input
noise in available samples, a value of K̂ as close to the true
signal sparsity K as possible will reduce the noise influence
on the reconstructed signal. This will be shown later.

If the algorithm fails to detect a component (the reconstruc-
tion accuracy of the available samples can be used to detect
this event) the procedure can be repeated after the detected
components are reconstructed and removed. In such cases the
iterative procedure is recommended.

Iterative procedure:
If the number of available samples is low or there are

components with much lower amplitudes, so that they can
not be detected in one step, the iterative procedure should be
used. Algorithm for the iterative procedure is:
-The largest component at (k1, l1) in (5) is detected. The
transform values Q(k, l) are set to zero at all positions (k, l)
except at the position of the highest one at (k1, l1). This
component is reconstructed using (6) with K̂ = 1 and
subtracted from the signal.
-The remaining signal is used to calculate (5) again. The
highest value position (k2, l2) is found, and signal is recon-
structed at two frequency points {(k1, l1), (k2, l2)} using (6)
with K̂ = 2. The reconstructed signal is removed from the
original signal and (5) is calculated with the remaining signal.
-Procedure is continued in this way until the maximal absolute
difference of the reconstructed signal, with K̂ components
at positions {(k1, l1), (k2, l2), ..., (kK̂ , lK̂)}, and the given
available signal values (at the positions n ∈ NA(m)) is bellow
the required accuracy level.

Example 1: A signal with K = 10 randomly positioned
reflecting points

q(m,n) =

10∑
i=1

σie
j2πβim/Mej2πγin/N ,

with reflecting coefficients 1/8 ≤ σi ≤ 3/8 and M = N =
64 is considered with 87.5% unavailable samples. The two-
dimensional Fourier transform (ISAR image) of the original
signal, if all signal samples were available, is presented in
Fig.2(a). The initial two-dimensional Fourier transform of the
signal is calculated using (5) with NA = 0.125MN available
samples, Fig.2(b). It is presented in Fig.2(c). The largest K̂ =
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Fig. 2. (a) A two-dimensional Fourier transform of the considered radar
signal (ISAR image). (b) Radar signal with 12.5% of available/uncorrupted
samples (unavailable/corrupted samples are presented in black). (c) The two-
dimensional Fourier transform calculated using the available samples of the
radar signal. (d) The recontracted ISAR image.

14 > 10 values in Q̂(k, l) are taken as candidates for the
nonzero coefficients. Note that any 10 ≤ K̂ ≤ 512 would
produce the same result, as far as the nonzero coefficients
of the original signal’s two-dimensional Fourier transform are
included. The signal is then fully reconstructed using (6)-(7)
and presented in Fig.2(d). The difference between the available
signal values and the reconstructed signal values, at the same
positions, is within the computer precision.

B. Influence of Additive Input Noise

Assume now that an input additive noise ε(n) exists in
the available data. Note that the noise due to missing values
influences the results in the sense presented in the previous
section. When the recovery is achieved the accuracy of the
result is related to the input additive noise in signal samples.
It also depends on the number of available signal samples and
nonzero transform coefficients (sparsity) as it will be shown
next.

The reconstruction equations (6) for the noisy available data
are

q(m,n) + ε(m,n) =
1

MN

∑K̂
i=1Q(ki, li)e

j(
2πmki
M +

2πnli
N ),

(8)
for 0 ≤ m ≤ N − 1, n ∈ NA(m).

The transform indices can take a value from the set of detected
values (k, l) ∈ {(k1, l1), (k2, l2), ..., (kK̂ , lK̂)}. A matrix form
of equations (8) is

y + ε = ΨQK̂ .

This is a system of NA linear equations with K̂ unknowns in

QK̂ . As it has been shown, the solution is

ΨH(y + ε) = ΨHΨQK̂

QK̂ =
(
ΨHΨ

)−1ΨH
(y + ε)

QK̂ = QKS + QKN . (9)

The true transform coefficients and the noise influence to the
reconstructed transform are

QKS =
(
ΨHΨ

)−1
ΨHy,

QKN =
(
ΨHΨ

)−1
ΨHε.

If all signal samples were available, the input signal-to-noise
(SNR) ratio, would be

SNRi = 10 log

∑M−1
m=0

∑N−1
n=0 |q(m,n)|2∑M−1

m=0

∑N−1
n=0 |ε(m,n)|2

= 10 log
Es
Eε
.

(10)
Assume that the noise energy in the available samples is

EεA =

M−1∑
m=0

∑
n∈NA

|ε(m,n)|2 . (11)

The true amplitude in the signal transform at the position
(ki, li), in the case if all signal samples were used, would
be MNσi where σi is the amplitude (reflection coefficient) of
the signal component corresponding to the position (ki, li).
To compensate the resulting transform for the known bias
in amplitude (4) when only NA available samples are used
the coefficient should be multiplied by MN/NA. In a full
recovery, a signal transform coefficient is equal to the coeffi-
cient of the original signal with all signal samples being used.
The noise in the transform coefficients is multiplied by the
same factor of MN/NA. Therefore, the energy of noise in
the reconstruction algorithm is increased to EεA(MN/NA)2.
The SNR in the recovered signal is

SNR = 10 log

∑M−1
m=0

∑N−1
n=0 |q(m,n)|2

M2N2

N2
A

∑M−1
m=0

∑
n∈NA

|ε(m,n)|2
(12)

Since only K̂ out of MN coefficients are used in the
reconstruction the energy of the reconstruction error is reduced
for the factor of K̂/(MN) as well. The energy of noise in the
recovered signal is

EεR =
K̂

MN

M2N2

N2
A

M−1∑
m=0

∑
n∈NA

|ε(m,n)|2 .

The SNR in the recovered signal is

SNR = 10 log

∑M−1
m=0

∑N−1
n=0 |q(m,n)|2

K̂NM
N2
A

∑M−1
m=0

∑
n∈NA

|ε(m,n)|2
. (13)

Since the variances of noise in all samples and the available
samples are the same then

1

NA

M−1∑
m=0

∑
n∈NA

|ε(m,n)|2 =
1

MN

M−1∑
m=0

N−1∑
n=0

|ε(m,n)|2 (14)
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Thus, the SNR in the recovered signal, according to (13), (14)
and (10), is

SNR = SNRi − 10 log

(
K̂

NA

)
. (15)

We may conclude that in the case of additive input noise in
the available signal samples, the output SNR will be increased
if the number K̂ is as small as possible, for a given number
of available samples NA. In the ideal case, with respect to
the additive noise, value of K̂ should be equal to the signal
sparsity K̂ = K.

Example 2: Consider a noisy signal from Example 1. Assume
that an additive complex-valued Gaussian noise exists, with the
input SNR equal to

SNRi = 9.05 [dB]

and NA = MN/8. Since K = 10 in the previous example we
used estimated value K̂ = 14 for the calculation. According
to (15) the output SNR is

SNR = SNRi − 10 log

(
K̂

NA

)
= 9.05 + 15.81 = 24.86 [dB].

The improvement in SNR is 15.81 [dB]. This result is statis-
tically checked. The statistical result is obtained by averaging
over 100 realizations. The obtained statistical value of the
output SNR is

SNR(stat) = 24.53 [dB].

Agreement with the theory is almost exact, within the number
of realizations statistical confidence.

If the number of components was estimated exactly as K̂ =
10, then the SNR values would be obtained as

SNR = 26.32 [dB]

SNR(stat) = 26.26 [dB].

The SNR value for K̂ = 10 would be higher for
10 log(14/10) = 1.46 [dB] than in the case with K̂ = 14.

C. Nonuniform Target Motion

For fast moving targets and complex motions, the target
over all M chirps, in one revisit, cannot be considered as
the one with constant velocity motion. Then a higher-order
approximation

d(t) ∼= d0 + v0t+ a
t2

2
+ . . . ,

should be used with

v(t) = v0 + at+ . . .

If we assume that v(t) = v0 + at, then the Doppler shift
is linear function of time. Its rate is a. Thus, instead of a
delta pulse concentrated at one frequency, corresponding to
v0, we will obtain a Fourier transform of a linear frequency-
modulated signal (or higher-order frequency-modulated sig-
nal), whose instantaneous frequency changes are proportional

to the velocity v(t) changes. The radar image, based on this
form, is centered at the same position as the Fourier trans-
form image, but with the spreading term in the cross-range
(Doppler) direction of the form exp

(
j 2Ω0

c ( 1
2!d
′′(0)t2 + ...)

)
,

due to the target motion. In the discrete domain the signal is
[15]

qi(m,n) = σie
j2πβim/Mejαim

2/2+...ej2πγin/N ,

Qi(k, l) = (2π)
2
σiδ(k − βi, l − γi) ∗k FT{ejαim

2/2+...}

where αi = 2Ω0T
2
r d
′′(0)/c and ∗k is the convolution in the

discrete cross-range domain. This spread can be significant
and the resulting ISAR image is not sparse or sparsity is
significantly degraded.

If the two-dimensional Fourier transform is corrected ac-
cording to the S-method [15], [21], [26], along the cross-range
direction, then the resulting image will be

SMi(k, l) = (2π)
2
σ2
i δ(k − βi, l − γi).

It is sparse again and does not depend on d′′(0). Under certain
conditions this representation is free of cross-terms among
different reflection points, producing

SM(k, l) = (2π)
2
K∑
i=1

σ2
i δ(k − βi, l − γi).

The S-method based ISAR image can be easily realized in
a recursive way starting from

SM0(k, l) = |Q(k, l)|2 , (16)

with SM0(k) being the standard two-dimensional Fourier
transform based radar image. The S-method based presentation
can be achieved starting with the already obtained Fourier
transform-based radar image Q(k, l), with an additional simple
calculation according to

SML(k, l) = SML−1(k, l) + 2 Re{Q(k + L, l)Q∗(k − L, l)}

or

SML[q(m,n)] = SML(k, l) (17)

= |Q(k, l)|2 + 2

L∑
z=1

Re{Q(k + z, l)Q∗(k − z, l)}

In this way, using the S-method, we will restore signal
sparsity in the ISAR image domain. However we have lost
the possibility to use a direct linear relation between the signal
and the sparsity domain transformation. For a reduced set of
NA < MN available signal samples, n ∈ NA(m) the problem
statement is now

min ‖SML(k, l)‖0 subject to the available values y. (18)

where y is the vector of the available signal samples q(m,n),
n ∈ NA(m) and

‖SML(k, l)‖0 =

N−1∑
k=0

N−1∑
l=0

|SML(k, l)|0 .

The simple counting of nonzero coefficients by using the zero-
norm with |SM(k, l)|0 is, in theory, the best optimization
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function. Finding the unavailable signal value to produce
the minimal number of nonzero coefficients in the resulting
presentation is an obvious optimization criterion. However,
this criterion is very sensitive to small values in SML(k, l).
Also the gradient solutions are not possible with the zero-norm
functions, since they are completely flat for any nonoptimal
value. That is why the norm-one is used in the standard
compressive sensing methods instead of the norm-zero. In the
S-method formulation the norm that will correspond to the
commonly used norm-one of the Fourier transform is

min ‖SML(k, l)‖1/2 subject to available values of y. (19)

with

‖SML(k, l)‖1/2 =

N−1∑
k=0

N−1∑
l=0

|SML(k, l)|1/2 .

This form, for L = 0 reduces to the norm-one of the Fourier
transform, since
N−1∑
k=0

N−1∑
l=0

|SM0(k, l)|1/2 =

N−1∑
k=0

N−1∑
l=0

|Q(k, l)| = ‖Q(k, l)‖1

Minimization of
∑N−1
k=0

∑N−1
l=0 |SML(k, l)|1/2 has already

been used for the time-frequency parameters optimization in
[24]. Note that under certain conditions the norm-one produces
the same result as the norm-zero in the problem formulation
(18), [5], [6].

A simple gradient algorithm to iteratively calculate the miss-
ing signal values, while keeping available samples q(m,n)
unchanged, [9], is adapted for the problem formulation (19).
It is presented next.

D. Algorithm

This gradient algorithm is inspired by the adaptive sig-
nal processing methods with an adaptive step size. It is a
gradient descent algorithm where the missing samples, are
corrected according to the gradient of the sparsity measure
‖SML(k, l)‖1/2. Their final value should converge to the point
of the minimal sparsity measure of the signal time-frequency
representation.

The algorithm for missing samples reconstruction is imple-
mented as follows:

Step 0: Set s = 0, p = 0 and form the initial signal y(0)(m,n)
defined for all m and n as:

y(0)(m,n) =

{
q(m,n) for available samples, n ∈ NA(m)
0 for n /∈ NA(m)

,

The initial value for an algorithm parameter ∆ is estimated as

∆ = max
n∈NA(m)

|q(m,n)|. (20)

Step 1: Set yr(m,n) = y(p)(m,n). This signal is used in Step
3 in order to estimate reconstruction precision.
Step 2.1: Set p = p+ 1. For each missing sample at (ni,mi)
for n /∈ NA(m) form the signals y1(m,n) and y2(m,n):

y1(m,n) = y(p)(m,n) + ∆δ(n− ni,m−mi)

y2(m,n) = y(p)(m,n)−∆δ(n− ni,m−mi). (21)

Step 2.2: Estimate differential of the signal transform measure

g(mi, ni) =
‖SM1,L(k, l)‖1/2 − ‖SM2,L(k, l)‖1/2

2N∆
(22)

where SM1,L(k, l) = SML[y1(m,n)] and SM2,L(k, l) =
SML[y2(m,n)] are the S-methods of y1(m,n) and y2(m,n),
respectively, calculated with L correction terms.
Step 2.3: Form a gradient matrix Gp with the same size as
the signal q(m,n). At the positions of available samples n ∈
NA(m), this vector has value Gp(m,n) = 0. At the positions
of missing samples ni /∈ NA(m) its values are Gp(m,n) =
g(mi, ni), calculated by (22).
Step 2.4: Correct the values of y(m,n) iteratively by

y(p)(m,n) = y(p−1)(m,n)− 2∆Gp(m,n), (23)

Step 3: If the maximal allowed number of iterations Pmax is
reached stop the algorithm. Otherwise calculate

Tr =

∑M−1
m=0

∑
n/∈NA

|yr(m,n)− y(p)(m,n)|2∑M−1
m=0

∑
n/∈NA

|y(p)(m,n)|2
.

Value of Tr is an estimate of the reconstruction error to signal
ratio, calculated for missing samples only. If Tr is above the
required precision threshold (for example, if Tr > 0.001),
the calculation procedure should be repeated with smaller ∆.
For example, set new ∆ value as ∆/

√
10, increment the step

counter s = s+ 1, and go to Step 1.
Step 4: Reconstruction with the required precision is ob-
tained in p iterations or when the maximal allowed number
of iterations Pmax is reached. The reconstructed signal is
q̂(m,n) = y(m,n) = y(p)(m,n).

By performing presented iterative procedure, the missing
values will converge to the true signal values, producing the
minimal sparsity measure in the ISAR image domain.

Comments on the algorithm:
- Inputs to the algorithm are the signal size M ×N , set of

available signal samples NA, available signal values q(mi, ni),
ni ∈ NA(m), the maximal allowed number of iterations Pmax

and the required precision used in Step 3. The algorithm
output is the reconstructed signal matrix q(m,n) = y(m,n).

- When we approach to the optimal point, the gradient
algorithm using the norm-one and a large number of variables
(missing signal values) will produce a solution close to the
exact signal samples, with a precision related to the algorithm
step ∆. The precision is improved by using adaptive step ∆.
A value of ∆ equal to the signal magnitude (20) is used in
the starting iteration. When the optimal point is reached then,
due to the norm-one like form, the algorithm will not improve
the reconstruction precision any more, for a given algorithm
step ∆. When this case (in Step 3) is detected the step ∆ is
reduced, and the same calculation procedure is continued from
the reached reconstructed signal values. In several steps, the
algorithm can approach the true signal values with a required
precision.
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Fig. 3. All signal samples (chirps) available: (a) The Fourier transform based
presentation. (b) The S-method with three correction terms, L = 3. (c) The
S-method with five correction terms, L = 5 . (d) The Wigner distribution
based presentation (the S-method with L = 63). Horizontal lines (red, green,
blue) present the level of the true squared amplitudes of the components.

Example 3: A signal corresponding to the Doppler part of
radar signal only is considered first. Its form is

q(m, 0) =

6∑
i=1

σie
j2πβim/Mejαim

2/2

= 2
√

0.6 cos(52mπ/64− 2.2π(m/64)2)

+ 2
√

1/2 cos(10mπ/64 + 2π(m/64)2)

+ 2
√

1/4 cos(32πm/64− 0.75π(m/64)2)

with −64 ≤ m ≤ 63 and σi ∈ {
√

0.6,
√

0.6,
√

0.5,√
0.5,

√
0.25,

√
0.25}, βi ∈ {26, −26, 5, −5, 16, −16}

and αi ∈ {−1.1π/1024, 1.1π/1024, π/1024, −π/1024,
−0.375π/1024, 0.375π/1024}, for i = 1, 2, ..., 6. The
representations with all available samples are presented in
Fig.3. The Fourier transform base presentation (radar image)
is shown in Fig.3(a) for L = 0 since SM0(k, 0) = |Q(k, 0)|2.
We can see that although there are just 6 reflecting points the
number of nonzero (significant) values in SM0(k) is above
40. The sparsity condition is heavily degraded. Adding just a
few of the correction terms, according to (17), and calculating
the S-method based presentation the sparsity in ISAR image is
restored. Presentations with L = 3 and L = 5 in the S-method
are shown in Fig.3(b)-(c). Note that the Wigner distribution,
WD(k, 0) = SM63(k, 0), although well concentrated for the
components, can not be used due to emphatic cross-terms
which degrade the sparsity, Fig.3(d).

Consider next the signal with 45 missing signal values
(missing chirps in this case). Here, the S-method is calculated
with L = 5 and the gradient based reconstructed algorithm
is applied. The S-method, assuming all missing values are set
to 0, is presented for the initial iteration in Fig.4(a). The next
iterations steps according to the presented iterative algorithm
(denoted by step counter s), improve the presentation toward
the case as if all data were available, Fig.4(b)-(d) for s = 2, 4,
and 16.

Example 4: The setup that will be considered for this ISAR
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Fig. 4. The S-method presentation (radar image) with missing/corrupted 1/3
of the signal samples (chirps): (a) Initial S-method personation p = 0, and
the reconstructed S-method in the next iterations (b)-(d) with p = 2, p = 4,
and p = 16, respectively.

example assumes [25]: a high-resolution radar operating at
the frequency f0 = 10.1 GHz, Ω0 = 2πf0, bandwidth of
linear frequency-modulated chirps B = 300 MHz, and the
coherent integration time Tc = 2 s. The pulse repetition time
is Tr = Tc/256 with the sampling interval Ts = Tr/64. The
target is at 2 km distance from the radar, and rotates at ΩR =
4π/180 1/s = 4 o/s. The nonlinear rotation with frequency
Ω = π 1/s is superimposed, ΩR(t) = ΩR + A sin(Ωt), and
amplitude A = 1.25π/180 1/s corresponds to the total change
in angular frequency ΩR for 2.5π/180 1/s. Note that here the
range and the cross-range resolutions are Rrange = c/(2B) =
0.5 m, and Rcross−range = πc/(Ω0TcΩR) = 0.106 m (calcu-
lated for Tc = 2 s with ΩR ∼= 4π/180 1/s, neglecting effects
of the nonlinear rotation). It has been assumed that there are
15 reflecting points at the positions (xi, yi) ∈ {(−3.5,−3.5),
(−3.5,−0.5), (−3.5, 2.5), (0,−3), (0, 0), (0, 3), (2.5,−3),
(2.5, 0), (2.5, 3.5), (3.5,−1.5), (3.5, 2.5), (−2, 2), (−2,−3),
(5, 0.5), (5, 3)}. First, the case with all available data is
considered. The ISAR image based on the two-dimensional
Fourier transform is presented in Fig.5(a). The S-method based
ISAR image with L = 3 and L = 6 is shown in in Fig.5(b)-
(c). It can be seen that just a few correction terms to the
Fourier transform based ISAR image significantly improve
the concentration. The Wigner distribution (the S-method with
L = 64) is highly concentrated. However it suffers from the
cross-terms, Fig.5(d). The range and cross-range coordinate
axes are scaled with the resolution parameters.

The case with 50% of the data being unavailable (or
removed due heavy corruption) is considered next. The ISAR
image calculated by using the two-dimensional Fourier trans-
form is presented in Fig.6(a). As we can see the image sparsity
is low. Since a large amount of the data is missing this
image can not be improved by a direct application of the
S-method since the missing data behave as a noise (Section
II.A). The S-method based image with L = 6 is shown in
Fig.6(b). The same holds for the Wigner distribution (the S-
method with L = 64) given in Fig.6(c). However, the original
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Fig. 5. The ISAR image based on: (a) The two-dimensional Fourier
transform. (b) The S-method with L = 3. (c) The S-method with L = 6. (d)
The Wigner distribution (the S-method with L = 64). All data are available.
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Fig. 6. The ISAR image based on: (a) The two-dimensional Fourier
transform. (b) The S-method with L = 6. (c) The Wigner distribution. (d)
The S-method based on the reconstructed signal in two steps (s = 2). Only
50% of randomly positioned available data are used in the reconstruction.

image calculated with the S-method is highly sparse. Therefore
the unavailable data can be reconstructed by minimizing the
S-method subject to the available data, equation (19). The
gradient based method is used to solve this minimization
problem. The reconstructed S-method is almost the same as the
S-method of the signal with all available data. It is presented
in Fig.6(d).

III. CONCLUSION

An analysis of the ISAR image reconstruction in the case
of a large number of unavailable or heavily corrupted data is
presented. A simple method that can produce reconstruction
in the case of uniform motion is reviewed, along with a simple
an accurate analysis of the noise influence to the results. In the
case of fast and complex target manoeuvring the ISAR image
is blurred and the sparsity property is lost. For a large number
of reflecting points a parametric approach to refocus the image
and reconstruct the signal with large number of missing data
would be computationally extensive. A simple nonparametric
method is used here to refocus image. Since it belongs
to the class of quadratic time-frequency representations, a
direct linear relation between the sparsity domain and the
signal can not be established. Thus, the reconstruction task
is appropriately reformulated. An adapted form of gradient
algorithm is used is recover the ISAR image of the quality
as in the case if all data were available. The efficiency of the
proposed methods is illustrated on several numerical examples.
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[23] S. Stanković, I. Orović, and L. Stanković, ”An Automated Signal
Reconstruction Method based on Analysis of Compressive Sensed
Signals in Noisy Environment”, Signal Processing, Elsevier, Volume
104, November 2014, Pages 43–50.
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