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Abstract

In a typical MIMO radar scenario, transmit nodes transmit orthogonal waveforms, while each receive

node performs matched filtering with the known set of transmit waveforms, and forwards the results to

the fusion center. Based on the data it receives from multiple antennas, the fusion center formulates a

matrix, which, in conjunction with standard array processing schemes, such as MUSIC, leads to target

detection and parameter estimation. In MIMO radars with compressive sensing (MIMO-CS), the data

matrix is formulated by each receive node forwarding a smallnumber of compressively obtained samples.

In this paper, it is shown that under certain conditions, in both sampling cases, the data matrix at the

fusion center is low-rank, and thus can be recovered based onknowledge of a small subset of its entries

via matrix completion (MC) techniques. Leveraging the low-rank property of that matrix, we propose

a new MIMO radar approach, termed, MIMO-MC radar, in which each receive node either performs

matched filtering with a small number of randomly selected dictionary waveforms or obtains sub-Nyquist

samples of the received signal at random sampling instants,and forwards the results to a fusion center.

Based on the received samples, and with knowledge of the sampling scheme, the fusion center partially

fills the data matrix and subsequently applies MC techniquesto estimate the full matrix. MIMO-MC

radars share the advantages of the recently proposed MIMO-CS radars, i.e., high resolution with reduced

amounts of data, but unlike MIMO-CS radars do not require grid discretization. The MIMO-MC radar

concept is illustrated through a linear uniform array configuration, and its target estimation performance

is demonstrated via simulations.
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I. INTRODUCTION

Multiple-input and multiple-output (MIMO) radar systems have received considerable attention in

recent years due to their superior resolution [1], [2], [4].The MIMO radars using compressed sensing

(MIMO-CS) maintain the MIMO radars advantages, while significantly reducing the required measure-

ments per receive antenna [5], [6]. In MIMO-CS radars, the target parameters are estimated by exploiting

the sparsity of targets in the angle, Doppler and range space, referred to as thetarget space; the target

space is discretized into a fine grid, based on which a compressive sensing matrix is constructed, and

the target is estimated via sparse signal recovery techniques, such as the Dantzig selector [6]. However,

the performance of CS-based MIMO radars degrades when targets fall between grid points, a case also

known as basis mismatch [7], [8].

In this paper, a novel approach to lower-complexity, higher-resolution radar is proposed, termed MIMO-

MC radars, which stands for MIMO radars using matrix completion (MC). MIMO-MC radars achieve the

advantages of MIMO-CS radars without requiring grid discretization. Matrix completion is of interest

in cases in which we are constrained to observe only a subset of the entries of ann1 × n2 matrix,

because the cost of collecting all entries of a high dimensional matrix is high. If a matrix is low rank and

satisfies certain conditions [9], it can be recoveredexactly based on observations of a small number of

its randomly selected entries. There are several MC techniques in the literature [9], [10], [11], [22], [23],

[24]. For example, in [9], [10], [11], recovery can be performed by solving a nuclear norm optimization

problem, which basically finds the matrix with the smallest nuclear norm out of all possible matrices

that fit the observed entries. Other matrix completion techniques are based on non-convex optimization

using matrix manifolds, such as Grassmann manifold [22], [23], and Riemann manifolds [24].

In a typical MIMO radar scenario [4], transmit nodes transmit orthogonal waveforms, while each receive

node performs matched filtering with the known set of transmit waveforms, and forwards the results to

the fusion center. Based on the data it receives from multiple antennas, the fusion center formulates a

matrix, which, in conjunction with standard array processing schemes, such as MUSIC [29], leads to

target detection and estimation. In MIMO-CS radars, each receive nodes uses a compressive receiver

to obtain a small number of samples, which are then forwardedto the fusion center [5][6]. Again, the

fusion center can formulate a matrix based on the data forwarded by all receive nodes, which is then

used for target estimation. In the latter case, since no matched filtering is performed, the waveforms do

not need to be orthogonal. In this paper, we show that under certain conditions, in both aforementioned
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sampling cases, the data matrix at the fusion center is low-rank, which means that it can be recovered

based on knowledge of a small subset of its entries via matrixcompletion (MC) techniques. Leveraging

the low-rank property of that matrix, we propose MIMO-MC radar, in which, each receive antenna either

performs matched filtering with a small number of dictionarywaveforms or obtains sub-Nyquist samples

of the received signal and forwards the results to a fusion center. Based on the samples forwarded by

all receive nodes, and with knowledge of the sampling scheme, the fusion center applies MC to estimate

the full matrix. Although the proposed ideas apply to arbitrary transmit and receive array configurations,

in which the antennas are not physically connected, in this paper we illustrate the idea through a linear

uniform array configuration. The properties and performance of the proposed scheme are demonstrated

via simulations. Compared to MIMO-CS radars, MIMO-MC radars have the same advantage in terms of

reduction of samples needed for accurate estimation, whilethey avoid the basis mismatch issue, which

is inherent in MIMO-CS radar systems. Preliminary results of this work have been published in [26].

Relation to prior work - Array signal processing with matrix completion has been studied in [13], [14].

To the best of our knowledge, matrix completion has not been exploited for target estimation in colocated

MIMO radar. Our paper is related to the ideas in [14] in the sense that matrix completion is applied to

the received data matrix formed by an array. However, due to the unique structure of the received signal

in MIMO radar, the problem formulation and treatment in hereis different than that in [14].

The paper is organized as follows. Background on noisy matrix completion and colocated MIMO

radars is provided in Section II. The proposed MIMO-MC radarapproach is presented in Section III.

Simulations results are given in Section IV. Finally, Section V provides some concluding remarks.

Notation: Lower-case and upper-case letters in bold denote vectors and matrices, respectively. Super-

scripts(·)H and (·)T denote Hermitian transpose and transpose, respectively.0L×M and1L×M denote

anL×M matrix with all “0” and all “1” entries, respectively.IM represents an identity matrix of size

M . ⊗ denotes the Kronecker tensor product.‖X‖∗ is the nuclear norm, i.e., sum of the singular values;

‖X‖ is the operator norm;‖X‖F is the Frobenius norm;X∗ denotes the adjoint ofX.

II. PRELIMINARIES

A. Matrix Completion

In this section we provide a brief overview of the problem of recovering a rankr matrix M ∈ C
n1×n2

based on partial knowledge of its entries using the method of[9][10][11].
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Let us define the observation operationY = PΩ (M) as

[Y]ij =







[M]ij , (i, j) ∈ Ω

0, otherwise
(1)

whereΩ is the set of indices of observed entries with cardinalitym. According to [10], whenM is

low-rank and meets certain conditions (see (A0) and (A1), later in this section),M can be estimated by

solving a nuclear norm optimization problem

min ‖X‖∗

s.t. PΩ (X) = PΩ (M) (2)

where‖·‖∗ denotes the nuclear norm, i.e., the sum of singular values ofX.

In practice, the observations are typically corrupted by noise, i.e.,[Y]ij = [M]ij + [E]ij , (i, j) ∈ Ω,

where,[E]ij represents noise. In that case, it holds thatPΩ (Y) = PΩ (M)+PΩ (E), and the completion

of M is done by solving the following optimization problem [11]

min ‖X‖∗

s.t. ‖PΩ (X−Y)‖F ≤ δ. (3)

Assuming that the noise is zero-mean, white,δ > 0 is a parameter related to the noise variance,σ2, as

δ2 = (m+
√
8m)σ2 [9].

The conditions for successful matrix completion involve the notion of incoherence, which is defined

next [9].

Definition 1. Let U be a subspace ofCn1 of dimensionr that is spanned by the set of orthogonal

vectors{ui ∈ C
n1}i=1,...,r, PU be the orthogonal projection ontoU , i.e., PU =

∑

1≤i≤r
uiu

H
i , andei be

the standard basis vector whoseith element is1. The coherence ofU is defined as

µ (U) =
n1

r
max

1≤i≤n1

‖PUei‖2 ∈
[

1,
n1

r

]

. (4)

Let the compact singular value decomposition (SVD) ofM be M =
r∑

k=1

ρkukv
H
k , whereρk, k =

1, . . . , r are the singular values, anduk and vk the corresponding left and right singular vectors,

respectively. LetU, V be the subspaces spanned byuk andvk, respectively. MatrixM has coherence

with parametersµ0 andµ1 if

(A0) max (µ (U) , µ (V )) ≤ µ0 for some positiveµ0.

(A1) The maximum element of then1×n2 matrix
∑

1≤i≤r
uiv

H
i is bounded byµ1

√

r/(n1n2) in absolute
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value, for some positiveµ1.

In fact, it was shown in [9] that if (A0) holds, then (A1) also holds withµ1 ≤ µ0

√
r.

Now, suppose that matrixM ∈ C
n1×n2 satisfies (A0) and (A1). The following lemma gives a

probabilistic bound for the number of entries,m, needed to estimateM.

Theorem 1. [9] Suppose that we observe m entries of the rank−r matrix M ∈ C
n1×n2 , with matrix

coordinates sampled uniformly at random. Let n = max{n1, n2}. There exist constants C and c such

that if

m ≥ Cmax
{

µ2
1, µ

1/2
0 µ1, µ0n

1/4
}

nrβ log n

for some β > 2, the minimizer to the program of (2) is unique and equal to M with probability at least

1− cn−β .

For r ≤ µ−1
0 n1/5 the bound can be improved to

m ≥ Cµ0n
6/5rβ log n,

without affecting the probability of success.

Theorem 1 implies that the lower the coherence parameterµ0, the fewer entries ofM are required to

estimateM. The smallest possible value forµ0 is 1.

Further, [11] establishes that, when observations are corrupted with white zero-mean Gaussian noise

with varianceσ2, when solving (3), the recovery error is bounded as
∥
∥
∥M− M̂

∥
∥
∥
F
≤ 4

√
1

p
(2 + p)min (n1, n2)δ + 2δ, (5)

wherep = m
n1n2

is the fraction of observed entries, andδ2 = (m+
√
8m)σ2.

B. Colocated MIMO Radars

Let us consider a MIMO pulse radar system that employs colocated transmit and receive antennas, as

shown in Fig. 1. We useMt andMr to denote the numbers of transmit and receive antennas, respectively.

Although our results can be extended to an arbitrary antennaconfiguration, we illustrate the ideas for

uniform linear arrays (ULAs). The inter-element spacing inthe transmit and receive arrays is denoted by

dt anddr, respectively. The pulse duration isTp, and the pulse repetition interval isTPRI . The waveform

of the ith transmit antenna issi (τ) =
√

E
Mt

φi (τ), whereE is the total energy for all the transmit

antennas, andφi (τ) , i = 1, . . . ,Mt are orthonormal. The waveforms are transmitted over a carrier with

February 27, 2018 DRAFT



6

wavelengthλ. Let us consider a scenario withK point targets in the far field at anglesθk, k = 1, . . . ,K,

each moving with speedϑk.

The following assumptions are made:

• The transmit waveforms are narrowband, i.e.,1
Tp

≪ c
λ , wherec is the speed of light.

• The target reflection coefficients{βk} , k = 1, . . . ,K are complex and remain constant during a

number of pulses,Q. Also, all parameters related to the array configuration remain constant during

theQ pulses.

• The delay spread in the receive signals is smaller than the temporal support of pulseTp.

• The Doppler spread of the receive signals is much smaller than the bandwidth of the pulse, i.e.,

2ϑ
λ ≪ 1

Tp
.

Under the narrowband transmit waveform assumption, the delay spread in the baseband signals can be

ignored. For slowly moving targets, the Doppler shift within a pulse can be ignored, while the Doppler

changes from pulse to pulse. Thus, if we express time ast = qTPRI + τ , whereq is the pulse index (or

slow time) andτ ∈ [0, Tp] is the time within a pulse (or fast time), the Doppler shift will depend onq

only, and the received signal at thel-th receive antenna can be approximated as [4]

xl

(

qTPRI + τ +
2d

c

)

≈
K∑

k=1

βke
j 2π

λ
(2ϑk(q−1)TPRI+(l−1)dr sin(θk))a

T (θk) s (τ)

+ wl

(

qTPRI + τ +
2d

c

)

, (6)

whered is the distance of the range bin of interest;wl contains both interference and noise;

a (θk) =
[

1, ej
2π

λ
dt sin(θk), . . . , ej

2π

λ
(Mt−1)dt sin(θk)

]T
, (7)

ands (τ) =
[
s1 (τ) , . . . , sMt

(τ)
]T

. For convenience, the signal parameters are summarized in Table I.

At the l-th receive node, for(l = 1, . . . ,Mr), a matched filter bank [4] is used to extract the returns due

to each transmit antenna [4] (see Fig. 2 (a)). Consider a filter bank composed ofMt filters, corresponding

to theMt orthogonal transmit waveforms. The receive node performsMt correlation operations and the

maximum of each matched filter is forwarded to the fusion center. At the fusion center, the received

signal due to thei-th matched filter of thel-th receive node, during theq-th pulse, can be expressed in

equation (8)

xq(l, i) =

K∑

k=1

βke
j 2π

λ
(2ϑk(q−1)TPRI+(l−1)dr sin(θk)+(i−1)dt sin(θk)) + wq(l, i) (8)
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Table I

L IST OF PARAMETERS USED IN THE SIGNAL MODEL

dt spacing between the transmit antennas

dr spacing between the receive antennas

Mt number of transmit antennas

Mr number of receive antennas

Q number of pulses in a coherent processing interval

TPRI radar pulse repetition interval

q index of radar pulse (slow time)

τ time in one pulse (fast time)

ϑ speed of target

φm baseband waveform

d distance of range bin of interest

c speed of light

θ direction of arrival of the target

β target reflect coefficient

λ wavelength of carrier signal

wl interference and white noise in thelth antenna

Tp duration of one pulse

Ts Nyquist sampling period

for l = 1, . . . ,Mr, i = 1, . . . ,Mt, and q = 1, . . . , Q, wherewq(l, i) is the corresponding interference

plus white noise.

Based on the data from all receive antennas, the fusion center can construct a matrixXMF
q , of size

Mr ×Mt, whose(l, i) element equalsxq(l, i). That matrix can be expressed as

X
MF
q = BΣDqA

T

︸ ︷︷ ︸

Z
MF
q

+W
MF
q , (9)

whereWMF
q is the filtered noise;Dq = diag

(
dq

)
, with dq =

[

ej
2π

λ
2ϑ1(q−1)TPRI , . . . , ej

2π

λ
2ϑK(q−1)TPRI

]T
;

Σ = diag ([β1, . . . , βK ]); A is theMt×K transmit steering matrix, defined asA = [a (θ1) , . . . ,a (θK)];

B is theMr ×K dimensional receive steering matrix, defined in a similar fashion based on the receive

steering vectors

b (θk) =
[

1, ej
2π

λ
dr sin(θk), . . . , ej

2π

λ
(Mr−1)dr sin(θk)

]T
. (10)
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1) MIMO-CS Radars: MIMO-CS radars [5],[6] differ from conventional MIMO radars in that they

use a compressive receiver at each receive antenna to obtaina small number of samples, which are then

forwarded to the fusion center (see Fig. 2 (b)). LetL denote the number of samples that are forwarded by

each receive node. If the data forwarded by thel-th antenna (l = 1, . . . ,Mr) are inserted in thel-th row

of anMr ×L matrix,Xq, then, an equation similar to (9) holds, except that now the transmit waveforms

also appear in the expression, i.e., [15]

Xq = BΣDqA
T
S

︸ ︷︷ ︸

Zq

+Wq, (11)

whereS = [s (0Ts) , . . . , s ((L− 1)Ts)] ∈ C
Mt×L.

III. T HE PROPOSEDMIMO-MC RADAR APPROACH

Looking at (9), ifMt > K andMr > K, both matricesΣ andDq are rank-K. Thus, the rank of the

noise free matrixZMF
q ∈ C

Mr×Mt is K, which implies that matrixZMF
q is low-rank if bothMt andMr

are much larger thanK.

Similarly, looking at (11), both matricesΣ andDq are rank-K. The rank of matrixS is min {Mt, L}.

Let us assume thatL > Mt. For Mt > K, the rank of the noise free data matrixZq ∈ C
Mr×L is K. In

other words, forMr ≫ K the data matrixZq is low-rank.

Therefore, in both sampling schemes, assuming that the conditions (A0) and (A1) are satisfied, the

fusion center matrix can be recovered from a small number of its entries. The estimated matrices

corresponding to several pulses can be used to estimate the target parameters via MUSIC [29], for

example.

In the following, we leverage the low-rank property of the data matrices at the fusion center to propose a

new MIMO radar approach. Since bothZq andZq
MF are formulated based on different sampling schemes

at the receive nodes, we will study two cases, namely, sampling scheme I, which gives rise toZq
MF ,

and sampling scheme II, which gives rise toZq.

A. MIMO-MC with Sampling Scheme I

Suppose that thelth receive node uses a random matched filter bank (RMFB), as shown in Fig. 3, in

which, a random switch unit is used to turn on and off each matched filter. Suppose thatL1 matched

filters are selected at random out of theMt available filters, according to the output of a random number

generator, returningL1 integers in[0,Mt − 1] based on the seedsl. Let J l denote the set of indices

of the selected filters. The same random generator algorithmis also available to the fusion center. The
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l-th receive antenna forwards theL1 samples along with the seedsl to the fusion center. Based on the

seedsl, the fusion center generates the indicesJ l. Then, it places thej-th sample of thel-th antenna

in theMr ×Mt matrix Zq
MF at location(l,J l(j)). In total,L1Mt entries of the matrix are filled. The

fusion center declares the rest of the entries as “missing,”and assuming thatZq
MF meets (A0) and (A1),

applies MC techniques to estimate the full data matrix.

Since the samples forwarded by the receive nodes are obtained in a random sampling fashion, the filled

entries ofZMF
q will correspond to a uniformly random sampling ofZMF

q . In order to show thatZMF
q

indeed satisfies (A0), and as a result (A1), we need to show that the maximum coherence of the spaces

spanned by the left and right singular vectors ofZ
MF
q is bounded by a number,µ0. The smaller that

number, the fewer samples ofZMF
q will be required for estimating the matrix. The theoreticalanalysis

is pursued separately in [28]. Here, we confirm the applicability of MC techniques via simulations.

We consider a scenario withK = 2 point targets. The DOA of the first target,θ1, is taken to be

uniformly distributed in
[
−90◦, 90◦

]
, while the DOA of the second target is taken to beθ2 = θ1 +∆θ.

The target speeds are taken to be uniformly distributed in[0, 500]m/s, and the target reflectivities,βk

are taken to be zero-mean Gaussian. Both the transmit and receive arrays follow the ULA model with

dt = dr =
λ
2 . The carrier frequency is taken asf = 1× 109Hz.

The left and right singular vectors ofZMF
q were computed for500 independent realizations ofθ1 and

target speeds. Among all the runs, the probability thatmax (µ (U) , µ (V )) > µ0 is shown in Fig. 4 (a)

for ∆θ = 5◦ and different values ofMr,Mt. One can see from the figure that in all cases, the probability

that the coherence is bounded by a number less than2 is very high, while the bound gets tighter as the

number of receive or transmit antennas increases. On the average, over all independent realizations, the

max (µ (U) , µ (V )) corresponding to different number of receive and transmit antennas and fixed∆θ,

appears to decrease as the number of transmit and receive antennas increases (see Fig. 4 (b)). Also, the

maximum appears to decrease as∆θ increases, reaching1 for large∆θ (see Fig. 4 (c). The rate at which

the maximum reaches1 increases as the number of antennas increases.

It is interesting to see what happens at the limit∆θ = 0, i.e., when the two targets are on a line in the

angle plane. Computing the coherence based on the assumption of rank2, i.e., using two eigenvectors,

the coherence shown in Fig. 5 appears unbounded asMr changes. However, in this case, the true rank

of ZMF
q is 1, andZMF

q has the best possible coherence. Indeed, as it is shown in theAppendix, for a

rank-1 Z
MF
q , it holds thatµ0 = µ1 = 1. Consequently, according to Theorem 1, the required numberof

entries to estimateZMF
q is minimal. This explains why in Fig. 9 (discussed further inSection IV) the

relative recovery error ofZMF
q goes to the reciprocal of SNR faster when the two targets havethe same

February 27, 2018 DRAFT



10

DOA. Of course, in this case, the two targets with the same DOAappear as one, and cannot be separated

in the angle space unless other parameters, e.g., speed or range are used. For multiple targets, i.e., for

K ≥ 3, if there aren (n < K) targets with the same DOA, the rank ofZ
MF
q is K − n, which yields a

low coherence condition since theseK − n DOAs are separated.

B. MIMO-MC with Sampling Scheme II

Suppose that the Nyquist rate samples of signals at the receive nodes correspond to sampling times

ti = iTs, i = 0, . . . , N−1 with N = Tp/Ts. Instead of the receive nodes sampling at the Nyquist rate, let

the l-th receive antenna sample at timesτ lj = jTs, j ∈ J l, whereJ l is the output of a random number

generator, containingL2 integers in the interval[0, N −1] according to a unique seedsl. The l-th receive

antenna forwards theL2 samples along with the seedsl to the fusion center. Under the assumption that

the fusion center and the receive nodes use the same random number generator algorithm, the fusion

center places thej-th sample of thel-th antenna in theMr × N matrix Z̃q at location(l,J l(j)), and

declares the rest of the samples as “missing”.

The full Z̃q equals:

Z̃q = BΣDqA
T
S̃, (12)

where S̃ = [s (0Ts) , . . . , s ((N − 1)Ts)]. Per the discussion onZq, assuming thatN > Mt > K, Z̃q

will be low-rank, with rank equal toK. Therefore, under conditions (A0) and (A1), Z̃q can be estimated

based onm = L2Mr elements, form sufficiently large.

The left singular vectors of̃Zq are the eigenvectors of̃ZqZ̃
H
q = HS̃S̃

H
H

H , whereH = BΣDqA
T .

The right singular vectors of̃Zq are the eigenvectors of̃SH
H

H
HS̃. Since the transmit waveforms are

orthogonal, it holds that̃SS̃H = I [15]. Thus, the left singular vectors are only determined bymatrix H,

while the right singular vectors are affected by both transmit waveforms and matrixH.

Again, to check whether̃Zq, satisfies the conditions for MC, we resort to simulations. In particular, we

show that the maximum coherence ofZ̃q is bounded by a small positive numberµ0. Assume there are

K = 2 targets. The DOA of the first target,θ1, is uniformly distributed in
[
−90◦, 90◦

]
and the DOA of

the second target is set asθ1+∆θ. The corresponding speeds are uniformly distributed in[150, 450]m/s.

The target reflectivities,βk, are zero-mean Gaussian distributed. The transmit waveforms are taken to be

complex Gaussian orthogonal (G-Orth). The carrier frequency is f = 109 Hz, resulting inλ = c/f = 0.3

m. The inter-spacing between transmit and receive antennasis set asdt = dr = λ/2, respectively.

The left and right singular vectors of̃Zq are computed for500 independent realizations ofθ1 and

target speeds. Among all the runs, the probability that themax (µ (U) , µ (V )) > µ0 is shown in Fig. 6,
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for different values ofMt,Mr, ∆θ = 5◦, andN = 256. One can see from the figure that in all cases,

the probability that the coherence is bounded by a number less than7 is very high, while the bound

gets tighter as the number of receive or transmit antennas increases. On average, over all independent

realizations, themax (µ (U) , µ (V )) corresponding to different values ofMt,Mr and a fixed∆θ appears

to increase withN , (see Fig. 6 (b)), while the increase is not affected by the number of transmit and

receive antennas. The average maximum does not appear to change as∆θ increases, and this holds for

various values ofMt, N (see Fig. 6 (c)).

Based on our simulations, the MC reconstruction depends on the waveform. In particular, the coherence

bound is related to the power spectrum of each column of the waveform matrix (each column can be

viewed as a waveform snapshot across the transmit antennas). Let S̃i (ω) denote the power spectrum

of the i-th column of S̃ ∈ C
Mt×N . If S̃i (ω) is similar for differenti’s, the MC recovery performance

improves with increasingMt (or equivalently, the coherence bound decreases) and does not depend onN ;

otherwise, the performance worsens with increasingN (i.e., the coherence bound increases). When the

S̃i (ω) has peaks at certainω’s that occur close to targets, the performance worsens. In Fig. 7, we show

the maximum power spectra values corresponding to Hadamardand G-Orth waveforms forMt = 10

andN = 32. It can be seen in Fig. 7 that the maximum power spectrum values corresponding to the

Hadamard waveform have strong peaks at certainω’s, while those for the G-Orth waveforms fluctuate

around a low value. Suppose that there are two targets at anglesθ1 = 20◦ andθ2 = 40◦, corresponding to

ω1 =
1
2 sin

(
π
9

)
andω2 =

1
2 sin

(
2π
9

)
, respectively. From Fig. 7 one can see that the targets fall under low

power spectral values for both waveform cases. The corresponding MC recovery error, computed based on

50 independent runs is shown in Fig. 8 (a). One can see that the error is the same for both waveforms. As

another case, suppose that the two targets are at angles0◦, 80◦, corresponding toω1 = 0, ω2 =
1
2 sin

(
4π
9

)
,

respectively. Based on Fig. 7, one can see thatω1 andω2 fall under high spectral peaks in the case of

Hadamard waveforms. The corresponding MC recovery error isshown in Fig. 8(b), where one can see

that Hadamard waveforms yield higher error.

C. Discussion of MC in Sampling Schemes I and II

To apply the matrix completion techniques in colocated MIMOradar, the data matrices̃Zq ∈ C
Mr×N

andZMF
q ∈ C

Mr×Mt need to be low-rank, and satisfy the coherence conditions with smallµi, i = 0, 1.

We have already shown that the rank of the above two matrices equals the number of targets. In

sampling scheme I, to ensure that matrixZMF
q is low-rank, bothMt andMr need to be much larger

thanK, in other words, a large transmit as well as a large receive array are required. This, along with
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the fact that each receiver needs a filter bank, make scheme I more expensive in terms of hardware.

However, the matched filtering operation improves the SNR inthe received signals. Although in this

paper we use the ULA model to illustrate the idea of MIMO-MC radar, the idea can be extended to

arbitrary antenna configurations. One possible scenario with a large number of antennas is a networked

radar system [16][17], in which the antennas are placed on the nodes of a network. In such scenarios,

a large number of collocated or widely separated sensors could be deployed to collaboratively perform

target detection.

In sampling scheme II, assuming that more samples (N ) are obtained than existing targets (K), Z̃q

will be low-rank as long as there are more receive antennas than targets, i.e.,Mr ≫ K. For this scheme,

there is no condition on the number of transmit antennasMt if G-Orth waveform is applied.

Based on Figs. 4 and 6, it appears that the average coherence bound,µ0, corresponding tõZq is larger

than that ofZMF
q . This indicates that the coherence under scheme II is largerthan that under scheme I,

which means that for scheme II, more observations at the fusion center are required to recover the data

matrix with missing entries.

D. Target Parameters Estimation with Subspace Methods

In this section we describe the MUSIC-based method that willbe applied to the estimated data matrices

at the fusion center to yield target information.

Let Ẑq denote the estimated data matrix for sampling scheme II, during pulseq. Let us perform

matched filtering on̂Zq to obtain

Yq =
1

L
ẐqS̃

H = BΣDqA
T + W̃q, (13)

whereW̃q is noise whose distribution is a function of the additive noise and the nuclear norm minimiza-

tion problem in (3). For sampling scheme I, a similar equation holds for the recovered matrix without

further matched filtering.

Then, let us stack the matrices into vectoryq = vec
(
Yq

)
, for sampling scheme II, oryq = vec

(

Ẑ
MF
q

)

,

for sampling scheme I. Based onQ pulses, the following matrix can be formed:Y =
[
y1, . . . ,yQ

]
∈

C
MtMr×Q, for which it holds that

Y = V (θ) X̃+W, (14)

where X̃ =
[
x̃1, . . . , x̃Q

]
is a K × Q matrix containing target reflect coefficient and Doppler shift

information; x̃q =
[
x̃1,q, . . . , x̃K,q

]T
and x̃k,q = βke

j 2π

λ
2ϑk(q−1)TPRI ; V (θ) = [v (θ1) , . . . ,v (θK)] is a
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MtMr ×K matrix with columns

v (θ) = a (θ)⊗ b (θ) (15)

andW =
[

vec
(

W̃1

)

, . . . , vec
(

W̃Q

)]

.

The sample covariance matrix can be obtained as

R̂ =
1

Q

Q
∑

n=1

yny
H
n =

1

Q
YY

H . (16)

According to [29], the pseudo-spectrum of MUSIC estimator can be written as

P (θ) =
1

v
H (θ)EnE

H
n v (θ)

(17)

whereEn is a matrix containing the eigenvectors of the noise subspace of R̂. The DOAs of target can

be obtained by finding the peak locations of the pseudo-spectrum (17).

For joint DOA and speed estimation, we reshapeY into Ỹ ∈ C
QMt×Mr and get

Ỹ = FΣ [b (θ1) , . . . ,b (θK)] +W, (18)

whereF = [d (ϑ1)⊗ a (θ1) , . . . ,d (ϑK)⊗ a (θK)], d (ϑ) =
[

1, ej
2π

λ
2ϑTPRI , . . . , ej

2π

λ
2ϑ(Q−1)TPRI

]T
. The

sampled covariance matrix of the receive data signal can then be obtained aŝRỸ = 1
Mr

ỸỸ
H , based on

which DOA and speed joint estimation can be implemented using 2D-MUSIC. The pseudo-spectrum of

2D-MUSIC estimator is

P (θ, ϑ) =
1

[d (ϑ)⊗ a (θ)]HEnE
H
n [d (ϑ)⊗ a (θ)]

(19)

whereEn ∈ C
QMt×(QMt−K) is the matrix constructed by the eigenvectors corresponding to the noise-

subspace of̂RỸ .

IV. N UMERICAL RESULTS

In this section we demonstrate the performance of the proposed approaches in terms of matrix recovery

error and DOA resolution.

We use ULAs for both transmitters and receivers. The inter-node distance for the transmit array is set

to Mrλ/2, while for the receive antennas is set asλ/2. Therefore, the degrees of freedom of the MIMO

radars isMrMt [3], i.e., a high resolution could be achieved with a small number of transmit and receive

antennas. The carrier frequency is set tof = 1 × 109Hz, which is a typical radar frequency. The noise

introduced in both sampling schemes is white Gaussian with zero mean and varianceσ2. The data matrix

recovery is done using the singular value thresholding (SVT) algorithm [18]. Nuclear norm optimization
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is a convex optimization problem. There are several algorithms available to solve this problem, such as

TFOCS [19]. Here, we chose the SVT algorithm because it is a simple first order method and is suitable

for a large size problem with a low-rank solution. During every iteration of SVT, the storage space is

minimal and computation cost is low.

We should note that in the SVT algorithm, the matrix rank, or equivalently, the number of targets, is

not required to be known a prior. The only requirement is thatthe number of targets is much smaller than

the number of TX/RX antennas, so that the receive data matrixis low-rank. To make sure the iteration

sequences of SVT algorithm converge to the solution of the nuclear norm optimization problem, the

thresholding parameterτ should be large enough. In the simulation,τ is chosen empirically and set to

τ = 5ζ, whereζ is the dimension of the low-rank matrix that needs to be recovered.

A. Matrix Recovery Error under Noisy Observations

We consider a scenario with two targets. The first target DOA,θ1 is generated at random in
[
−90◦, 90◦

]
,

and the second target DOA, is taken asθ2 = θ1+∆θ. The target reflection coefficients are set as complex

random, and the corresponding speeds are taken at random in[0, 500]m/s. The SNR at each receive

antenna is set to25dB.

In the following, we compute the matrix recovery error as function of the number of samples,m, per

degrees of freedom,df, i.e., m/df, a quantity also used in [11]. A matrix of sizen1 × n2 with rank r,

hasr (n1 + n2 − r) degrees of freedom [9]. Letφ
Ẑ

denote the relative matrix recovery error, defined as:

φ
Ẑ
=
∥
∥
∥Ẑ− Z

∥
∥
∥
F

/

‖Z‖F , (20)

where we useZ to denote the data matrix in both sampling schemes, andẐ to denote the estimated data

matrix.

Figure 9 showsφ
Ẑ

under sampling scheme I, versus the number of samples per degree of freedom for

the same scenario as above. The number of transmit/receiverantennas is set asMt = Mr = 40. It can be

seen from Fig. 9 that whenm/df increases from2 to 4, or correspondingly, the matrix occupancy ratio

increases fromp1 ≈ 0.2 to ≈ 0.4, the relative errorφ
Ẑ

drops sharply to the reciprocal of the matched

filter SNR level, i.e., a “phase transition” [22] occurs. It can be seen in Fig. 9 that, when the two targets

have the same DOA, the relative recovery error is the smallest. This is because in that case the data

matrix has the optimum coherence parameter, i.e.,µ0 = 1. As the DOA separation between the two

target increases, the relative recovery error of the data matrix in the transition phase increases. In the

subsequent DOA resolution simulations, we set the matrix occupancy ratio asp1 =
L1Mr

MtMr
= 0.5, which
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corresponds tom/df ≈ 5, to ensure that the relative recovery error has dropped to the reciprocal of SNR

level.

Figure 10 shows the relative recovery errors,φ
Ẑ

, for data matrixZ̃q (sampling scheme II), corre-

sponding to Hadamard or Gaussian orthogonal (G-Orth) transmit waveforms, and the number of Nyquist

samples is taken to beN = 256. Different values of DOA separation for the two targets are considered,

i.e., ∆θ = 0◦, 1◦, 5◦, respectively.

The results are averaged over100 independent angle and speed realizations; in each realization theL2

samples are obtained at random among theN Nyquist samples at each receive antenna. The results of

Fig. 10 indicate that, for the same∆θ, asm/df increases, the relative recovery error,φ
Ẑ

, under Gaussian

orthogonal waveforms (dash lines) reduces to the reciprocal of the SNR faster than under Hadamard

waveforms (solid lines). A plausible reason for this is thatunder G-Orth waveforms, the average coherence

parameter of̃Zq is smaller as compared with that under Hadamard waveforms. Under Gaussian orthogonal

waveforms, the errorφ
Ẑ

decreases as∆θ increases. On the other hand, for Hadamard waveforms the

relative recovery error appears to increase with an increasing ∆θ, a behavior that diminishes in the region

to the right of the point of “phase transition”. However, thebehavior of the error at the left of the “phase

transition” point is not of interest as the matrix completion errors are pretty high and DOA estimation is

simply not possible. At the right of the “phase transition” point, the observation noise dominates in the

DOA estimation performance.

In both waveforms, the minimum error is achieved when∆θ = 0◦, i.e., when the two targets have the

same DOA, in which case the rank of data matrixZ̃q is rank-1. The above observations suggest that the

waveforms do affect performance, and optimal waveform design would be an interesting problem. The

waveform selection problem could be formulated as an optimization problem under the orthogonal and

narrow-band constraints. We plan to pursue this in our future work.

It can be seen from Fig. 9 and Fig. 10 that in the noisy cases, asthe matrix occupancy ratio increases,

the relative recovery errors of the matrices decreases to the reciprocal of SNR.

B. DOA Resolution with Matrix Completion

In this section we study the probability that two DOAs will beresolved based on the proposed tech-

niques. Two targets are generated at10◦ and10◦+∆θ, where∆θ =
[
0.05◦, 0.08◦, 0.1◦, 0.12◦, 0.15◦, 0.18◦, 0.2◦, 0.22◦, 0.25◦, 0.3◦

]
.

The corresponding target speeds are set to150 and400 m/s. We setMt = Mr = 20 andQ = 5. The DOA

information is obtained by finding the peak locations of the pseudo-spectrum (17). If the DOA estimates

θ̂i, i = 1, 2 satisfy
∣
∣
∣θi − θ̂i

∣
∣
∣ ≤ ε∆θ, ε = 0.1, we declare the estimation a success. The probability of
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DOA resolution is then defined as the fraction of successful events in200 iterations. For comparison, we

also plot the probability curves with full data matrix observations.

First, for scheme I,L1 = 10 matched filers are independently selected at random at each receive

antenna, resulting matrix occupancy ratio ofp1 = 0.5. The corresponding probability of DOA resolution

is shown in Fig. 11 (a). As expected, the probability of DOA resolution increase as the SNR increases.

The performance of DOA resolution based on the full set of observations has similar behavior. When

SNR = 25dB, the performance of MC-based DOA estimation is close to thatwith the full data matrix.

Interestingly, forSNR = 10dB, the MC-based result has better performance than that corresponding to

a full data matrix. Most likely, the MC acts like a low-rank approximation ofZMF
q , and thus eliminates

some of the noise.

The probabilities of DOA resolution of DOA estimates under scheme II, with G-Orth and Hadamard

waveforms are plotted in Fig. 12 (a) and (b), respectively. The parameters are set asN = 256 and

p2 = 0.5, i.e., each receive antenna uniformly selectsL2 = 128 samples at random to forward. Similarly,

the simulation results show that under scheme II, the performance atSNR = 10dB is slightly better

than that with full data access. In addition, it can be seen that the performance with G-Orth waveforms

is better than with Hadamard waveforms. This is because the average coherence ofZq under Hadamard

waveforms is higher than that with G-Orth waveforms. As shown in Fig. 12, increasing the SNR from

10dB to 25dB can greatly improve the DOA estimation performance, as it benefits both the matrix

completion and the performance of subspace based DOA estimation method, i.e., MUSIC (see chapt. 9

in [29]).

C. Comparisons of Sampling Schemes I and II

Comparing the two sampling methods based on the above figures(see Figs. 11, and 12 (a),(b)) we see

that although the performance is the same, sampling scheme Iuses fewer samples, i.e.,10×20 samples, as

compared to sampling scheme II, which uses128× 20 samples. To further elaborate on this observation,

we compare the performance of the two sampling schemes when they both forward to the fusion center the

same number of samples. The parameters are set toSNR = 25dB, p1 = p2 = 0.5 andMt = N . Therefore,

in both schemes, the number of samples forwarded by each receive antenna was the same. The number

of transmit antenna was set asMr = 40 and80, respectively. Gaussian orthogonal transmit waveforms

are used. Two targets are generated at random in
[
−90◦, 90◦

]
at two different DOA separations, i.e.,

∆θ = 5◦, 30◦. The results are averaged over100 independent realizations; in each realization, the targets

are independently generated at random and the sub-samplingat each receive antenna is also independent
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between realizations. The relative recovery error comparison is plotted in Fig.13.

It can be seen in Fig.13 that asN (or equivalentlyMt) increases, the relative recovery error corre-

sponding toZ̃q andZ
MF
q decreases proportionally to the reciprocal of the observedSNR. The relative

recovery error under scheme I drops faster than under schemeII for both Mr = 40 andMr = 80 cases.

This indicates that scheme I has a better performance than scheme II for the same number of samples.

V. CONCLUSIONS

We have proposed MIMO-MC radars, which is a novel MIMO radar approach for high resolution target

parameter estimation that involves small amounts of data. Each receive antenna either performs matched

filtering with a small number of dictionary waveforms (scheme I) or obtains sub-Nyquist samples of the

received signal (scheme II) and forwards the results to a fusion center. Based on the samples forwarded by

all receive nodes, and with knowledge of the sampling scheme, the fusion center applies MC techniques

to estimate the full matrix, which can then be used in the context of existing array processing techniques,

such as MUSIC, to obtain target information. Although ULAs have been considered, the proposed ideas

can be generalized to arbitrary configurations. MIMO-MC radars are best suited for sensor networks

with large numbers of nodes. Unlike MIMO-CS radars, there isno need for target space discretization,

which avoids basis mismatch issues. It has been confirmed with simulations that the coherence of the

data matrix at the fusion center meets the conditions for MC techniques to be applicable. The coherence

of the matrix is always bounded by a small number. For scheme I, that number approaches1 as the

number of transmit and receive antennas increases and as thetargets separation increases. For scheme

II, the coherence does not depend as much on the number of transmit and receive antennas, or the target

separation, but it does depend onN , the number of Nyquist samples within one pulse, which is related

to the bandwidth of the signal; the coherence increases asN increases. Comparing the two sampling

schemes, scheme I has a better performance than scheme II forthe same number of forwarded samples.

APPENDIX

Proof. Suppose that there areK,K ≥ 2 targets in the search space, all with the same DOA, sayθ1. The

transmit and receive steering matrices are given by

A = [a (θ1) , . . . ,a (θ1)] , (21)

B = [b (θ1) , . . . ,b (θ1)] , (22)
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where the transmit and receive steering vectorsa (θ1) andb (θ1) are defined in equations (7) and (10),

respectively. The noise-free receive data matrix equals

Z
MF
q = BΣDqA

T

= [b (θ1) , . . . ,b (θ1)]








β1
. ..

βK















d1
. . .

dK







[a (θ1) , . . . ,a (θ1)]

T

=

(
K∑

k=1

βkdk

)

b (θ1)a
T (θ1) , (23)

wheredk is the Doppler shift of thek-th target. Its compact SVD is

Z
MF
q = uσvH , (24)

whereuH
u = 1,vH

v = 1, andσ is the singular value.

By applying the QR decomposition to the receive steering vector b (θ1), we haveb (θ1) = qrrr, where

q
H
r qr = 1. Thus,

qr =

[
1√
Mr

,
1√
Mr

ej
2π

λ
dr sin(θ1), . . . ,

1√
Mr

ej
2π

λ
(Mr−1)dr sin(θ1)

]T

, (25)

andrr =
√
Mr. Similarly, applying the QR decomposition to the transmit steering vectora (θ1), we have

a (θ1) = qtrt, whereqH
t qt = 1. Thus,

qt =

[
1√
Mt

,
1√
Mt

ej
2π

λ
dt sin(θ1), . . . ,

1√
Mt

ej
2π

λ
(Mt−1)dt sin(θ1)

]T

, (26)

andrt =
√
Mt.

Therefore, it holds that

Z
MF
q = qr rr

(
K∑

k=1

βkdk

)

rt

︸ ︷︷ ︸

η

q
T
t , (27)

whereη is a complex number. Its SVD can be written asη = q1ρq
∗
2, where|q1| = |q2| = 1, andρ is a

real number. Thus,

Z
MF
q = qrq1ρq

∗
2q

T
t = qrq1ρ

(
q
∗
t q2
)H

, (28)

where(qrq1)
H
qrq1 = |q1|2qH

r qr = 1 and
(
q
∗
t q2
)H

q
∗
t q2 = |q2|2

(

q
H
t qt

)∗

= 1. By the uniqueness of the

singular value, it holds thatρ = σ. Therefore, we can setu = qrq1 andv = q
∗
t q2.
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Let q(i)
r denote thei-th element of vectorqr. The coherenceµ (U) is given by

µ (U) =
Mr

1
sup

i∈N
+

Mr

∥
∥
∥q

(i)
r q1

∥
∥
∥

2

2

= Mr sup
i∈N+

Mr

∥
∥
∥q

(i)
r

∥
∥
∥

2

2

= 1. (29)

Let q∗(i)
t denote thei-th element of vectorq∗

t . The coherenceµ (V ) is given by

µ (V ) =
Mt

1
sup
i∈N+

Mt

∥
∥
∥q

∗(i)
t q2

∥
∥
∥

2

2

= Mt sup
i∈N

+

Mt

∥
∥
∥q

∗(i)
t

∥
∥
∥

2

2

= 1. (30)

Consequently, we haveµ0 = max (µ (U) , µ (V )) = 1. In addition, we haveµ1 ≤ µ0

√
K = 1 [9]. It

always holds thatµ1 ≥ 1. Thus,µ1 = 1. Therefore, we haveµ0 = µ1 = 1.
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Figure 4. Scheme I,K = 2 targets: (a) the probability ofPr (max (µ (U) , µ (V )) > µ0) of Z
MF
q for ∆θ = 5

◦; (b) the

averagemax (µ (U) , µ (V )) of ZMF
q as function of number of transmit and receive antennas, and for ∆θ = 5

◦; (c) the average

max (µ (U) , µ (V )) of ZMF
q as function of DOA separation.
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Figure 5. Scheme I,K = 2 targets: Themax (µ (U) , µ (V )) in terms ofMr for ∆θ = 0
◦, Mt = Mr.
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Figure 6. Scheme II,K = 2 targets, and G-Orth waveforms: (a) The probability ofPr (max (µ (U) , µ (V )) > µ0) of Z̃q for

∆θ = 5
◦ and N = 256; (b) The averagemax (µ (U) , µ (V )) of Z̃q as function ofN , for ∆θ = 5

◦ and different values

of Mt,Mr; (c) The averagemax (µ (U) , µ (V )) of Z̃q as function of∆θ, for N = 128, 256, and different combinations of

Mr,Mt.
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Figure 7. The maximal power spectrum of the orthogonal waveforms overN = 32 snapshots forMt = 10.
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(b)

Figure 8. The comparison of matrix completion in terms of relative recovery errors withMr = 128,Mt = 10, N = 32,

SNR = 25dB. There areK = 2 targets located at (a)20◦ and40◦; (b) 0◦ and80◦.
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Figure 9. Scheme I,K = 2 targets: the relative recovery error forZMF
q under different values of DOA separation.Mr =

Mt = 40.
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Figure 10. Scheme II,K = 2 targets: the relative recovery errors forZ̃q under Hadamard and Gaussian Orthogonal waveforms,

and different values of∆θ. Mr = Mt = 40, N = 256.
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Figure 11. Scheme I: DOA resolution. The parameter are set asMr = Mt = 20, p1 = 0.5 andSNR = 10, 25dB, respectively.
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(b)

Figure 12. Scheme II,K = 2, Mr = Mt = 20, N = 256, p2 = 0.5, SNR = 10, 25dB. DOA resolution with (a) G-Orth

waveforms; (b) with Hadamard waveforms.
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Figure 13. Comparions of the relative recovery errors in terms of number ofN (Mt) for Mr = 40, 80, respectively. The matrix

occupy ratio is set asp1 = p2 = 0.5. Two targets are generated at random in
[

−90
◦

, 90
◦
]

with DOA separation∆θ = 5
◦

, 30
◦,

respectively.
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