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Design and Analysis of Efficient Synthesis
Algorithms for EDAC Functions in FPGAs
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Abstract—Error Detection and Correction (EDAC) functions
have been widely used for protecting memories from single event
upsets (SEU), which occur in environments with high levels of
radiation or in deep submicron manufacturing technologies. This
paper presents three novel synthesis algorithms that obtain area-
efficient implementations for a given EDAC function, with the
ultimate aim of reducing the number of sensitive configuration
bits in SRAM-based Field-Programmable Gate Arrays (FPGAs).
Having less sensitive bits results in a lower chance of suffering a
SEU in the EDAC circuitry, thus improving the overall reliability
of the whole system. Besides minimizing area, the proposed
algorithms also focus on improving other figures of merit like
circuit speed and power consumption. The executed benchmarks
show that, when compared to other modern synthesis tools, the
proposed algorithms can reduce the number of utilized look-up
tables (LUTs) up to a 34.48%. Such large reductions in area
usage ultimately result in reliability improvements over 10% for
the implemented EDAC cores, measured as MTBF (Mean Time
Between Failures). On the other hand, maximum path delays and
power consumptions can be reduced up to a 17.72% and 34.37%
respectively on the placed and routed designs.

Index Terms—field programmable gate arrays (FPGA), syn-
thesis tools, efficient synthesis, error detection and correction
(EDAC), single event upsets (SEU)

I. INTRODUCTION

W ITH the continuous downscaling of the VLSI fab-
rication technologies, radiation induced errors have

become a major concern in modern digital electronics. Even at
ground level, high-energy particles like neutrons coming from
the cosmic background create undesired current pulses that
may invert the value stored in a memory element such as a
flip-flop [8], [18], [32]. This kind of errors, called single event
upsets (SEU), compromise the reliability of the systems if no
action is taken to mitigate them. In the space environment,
outside the protection of the magnetosphere of the Earth,
SEUs become a critical concern because of the high radiation
levels. SEUs can have serious consequences for the spacecraft,
including loss of information, functional failure or loss of
control [5].

Due to their flexibility and high computing capability, Field-
Programmable Gate Arrays (FPGAs) are nowadays widely
used to implement digital systems. In aerospace applications,
antifuse FPGAs have been traditionally preferred due to their
high tolerance to radiation [39]. Nevertheless, there is a grow-
ing interest in using SRAM-based FPGAs in space embedded
systems because of their lower costs, higher performances and
in-flight reconfigurability [28], [36], [43].
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SRAM-based FPGAs are specially sensitive to radiation
because of the fact that the configuration memory that defines
the circuitry implemented inside them is vulnerable to SEUs.
Regarding this matter, Hamming EDAC (Error Detection And
Correction) cores with SEC-DED (Single-Error-Correction,
Double-Error-Detection) capabilities have proven to be an
effective way to protect the internal configuration memory
[1], [17], [25], [29], [30], as well as other external volatile
memories [6], [23], [24]. However, the fact of such cores being
placed inside the FPGA makes them less reliable, as they can
also be affected by SEUs in configuration memory.

The aim of this work is to develop new synthesis algorithms
capable of minimizing the area utilization of SEC-DED EDAC
functions in FPGAs without affecting negatively other parame-
ters like processing speed and power consumption. A reduction
in area means a lower number of sensitive configuration bits
(i.e., bits which are associated with the circuitry of the design),
and therefore more reliability of the EDAC cores themselves
when they are implemented in SRAM-based FPGAs. This
statement is justified by the fact that, under the same radiation
environment (modelled by the particle flux) and FPGA model
(which determines the area cross-section per bit), the Mean
Time Between Failures (MTBF) is directly proportional to
the number of sensitive bits of the design [22], [41], [42].
The EDAC cores can also get an increase in reliability when
implemented in other FPGA technologies (e.g., flash-based),
as every instantiated component has an intrinsic rate of fail-
ure [26]. On the other hand, having higher processing speeds
not only has a positive impact on memory throughput, but also
on the reliability of the whole system, as higher scrubbing
rates would be possible [7], [38]. Efficient implementations
are desirable from an economic perspective as well because
they allow choosing smaller FPGAs with lower speed grades.

The algorithms presented in this paper achieve a significant
reduction in area, maximum path delay and power consump-
tion figures of the implemented circuits (up to 34.48%, 17.72%
and 34.37%, respectively) when compared to the ones obtained
by means of commercial synthesis tools. The resulting increase
of the MTBF (up to 10.91%) gives an extra protection to these
critical functions, which can be easily combined with other
well-known techniques like TMR for further increasing the
immunity to SEU.

The paper is structured as follows. Section II presents the
related works. Section III briefly explains the theory behind
EDAC codes. Section IV describes the proposed algorithms
formally. Section V compares the performance of the de-
veloped methods with other modern synthesis tools. Finally,
Section VI draws the main conclusions.
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II. RELATED WORKS

Most of the previous work about optimizing the imple-
mentation of SEC-DED EDAC has been aimed to ASIC
(Application-Specific Integrated Circuit) devices. The opti-
mization goal is usually the number of transistors, although
the speed of the resulting circuit is also considered in some
cases [4], [23], [24]. In FPGA devices, as opposed to ASICs,
one does not have the freedom to create custom cells at
layout level, so the optimization cannot be done following this
approach. Another difference is that the main parameters that
determine area utilization in FPGAs are usually the number
of utilized LUTs and flip-flops, rather than the number of
transistors. In a 6-input LUT FPGA, the hardware cost of
instantiating any logic function up to 6 inputs is virtually
the same, while in ASICs the number of inputs of a gate
makes a great difference. Because of these reasons, specific
optimization methods were developed for this paper, with the
focus on FPGA devices.

Other works in the literature do focus on optimizing the
implementation of EDAC codes in FPGAs, but not on the
kind of EDAC codes that will be discussed in our paper. For
example, [3] introduces an alternative implementation of Reed-
Solomon (RS) codes [40] with reduced area utilization, in the
context of satellite communications. Despite mentioning the
importance of achieving high processing speeds and low power
consumption in space applications, the authors of that work do
not include results about these two parameters.

There is another work [37] whose main aim is to obtain
small and fast implementations of RS codes in FPGAs by
choosing the most suitable generator polynomials and multi-
plication constants. In that work, the optimized RS codes are
intended to be used in combination with SEC-DED Hamming
codes for protecting memories from SEU, but the optimization
of the latter part is not considered. The SEC-DEC Hamming
codes are just the ones that the present paper will focus its
interest on.

In addition to the novelty of optimizing the implementation
of SEC-DEC Hamming codes on FPGAs, the present work
proposes new custom synthesis algorithms as an alternative
way to obtain such optimized implementations. The analy-
ses and in-depth descriptions presented in the paper allow
to obtain a comprehensive knowledge of the problem of
synthesizing EDAC functions efficiently from a hardware, a
mathematical and a computational perspective.

In the literature on the field, the synthesis process for
FPGAs has been traditionally divided in two stages: logic
optimization [11], [14] and technology mapping [9], [16].
Recent research on this subject has been focused on combining
both stages in order to provide better results [10], [35],
although according to [15], [31] there is still much room for
improvement. The proposed algorithms exploit this latter idea
to its fullest, making no distinction between logic optimization
and technology mapping stages.

In contrast to most of the synthesis tools and algorithms,
which provide high flexibility at the expense of optimality, this
paper focuses on a particular type of problem and tries to find
the best possible solution for a given optimization criterion,

which can be configured as desired. This strategy will allow a
significant reduction in area, maximum path delay and power
consumption of the implemented circuits when compared to
the ones obtained by means of commercial synthesis tools,
which represent the state of art of FPGA synthesis algorithms.
Additionally, the obtained solutions can be used to measure the
quality of faster, heuristic approaches. In particular, this work
presents a greedy algorithm whose use is strongly justified
in spite of not being completely optimal, as it has viable
execution times even for the largest designs.

III. SEC-DED EDAC CODES

The present study will focus on the odd-weight column
EDAC codes proposed in [26]. These codes are extensively
used in many applications as a result of their SEC-DED
(Single-Error-Correction, Double Error Detection) capabilities
and their relatively low hardware needs [4], [12], [27].

According to coding theory [21], a SEC-DED EDAC code
can be defined via its parity-check matrix Hr×n = {hij}. This
matrix has r rows and n = r+k columns, being r the number
of parity bits, k the number of data bits and n the codeword
length. The codeword m = {mi} is formed by concatenating
the input data bits d = {di} and the calculated check bits
c = {ci}, and it is the one that is actually stored in memory
for protecting the original data.

For calculating the bit i (1 ≤ i ≤ r) of the check bits c,
one has to take the row i from the H matrix and check the
positions where hij = 1, with 1 ≤ j ≤ k. These positions
indicate the elements of the data bits vector d that have to be
XOR’ed between themselves in order to obtain ci.

In most applications, the codeword m is saved in a memory
which may suffer from undesired bit alterations caused by
SEU. When the data needs to be recovered, the syndrome
vector s = {si} has to be calculated in order to know if
the codeword has been altered. With SEC-DEC codes, the
syndrome vector can be used to spot the location of single-
bit errors so that they can be corrected with a bit flip. If the
obtained syndrome is equal to 0, it means that the retrieved
codeword is the same as the one that was originally saved. If
the syndrome is not equal to 0 and the parity of the syndrome
is even, a double-bit error flag can be raised.

For calculating the bit i (1 ≤ i ≤ r) of the syndrome vector
s, one has to take the row i from the H matrix and check the
positions where hij = 1, with 1 ≤ j ≤ n. These positions
indicate the elements of the codeword m which have to be
XOR’ed between themselves in order to obtain si.

Let us illustrate the procedure explained above with the
following example H matrix:

H =


1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
0 1 1 1 0 0 0 1

 (1)

The H matrix above represents the only odd-weight-column
SEC-DEC code that generates an 8-bit length codeword (n =
8) for a 4-bit data word (k = 4). In coding theory, this is



3

denoted as an (8,4) code. For H under consideration, the check
bits shall be calculated as follows:

c1 = d1 ⊕ d2 ⊕ d3
c2 = d1 ⊕ d2 ⊕ d4
c3 = d1 ⊕ d3 ⊕ d4
c4 = d2 ⊕ d3 ⊕ d4

(2)

Assuming an input data vector d = [1011] and applying
(2), the check bits would be c = [0010]. The codeword, that
is, the actual bits that will be saved in memory would be
m = [10110010].

According to the procedure described previously, the syn-
drome shall be calculated with the following equations:

s1 = m1 ⊕m2 ⊕m3 ⊕m5

s2 = m1 ⊕m2 ⊕m4 ⊕m6

s3 = m1 ⊕m3 ⊕m4 ⊕m7

s4 = m2 ⊕m3 ⊕m4 ⊕m8

(3)

If neither the data bits or the check bits have been altered,
the resulting syndrome is s = [0000], as expected. However,
if we flip m3, for example, we would get s = [1011]. By
inspecting H, we can spot that the error occurred at d3, as
s = [1011] matches with the third column of H.

IV. DESCRIPTION OF THE ALGORITHMS

The purpose of the proposed algorithms is to synthesize
a given EDAC function in such a way that it allows an
efficient implementation on the desired FPGA technology.
The optimization goals followed in this study are listed and
justified in Section IV-A.

The algorithm presented in Section IV-C guarantees opti-
mality because the whole space of solutions is explored, avoid-
ing to make assumptions based on heuristics. This approach
is often categorized as backtracking, and it has the drawback
of having long processing times. In order to reduce the
cost of blind backtracking, a dynamic programming version
of the same algorithm will be presented in IV-D, and its
processing speed will be measured later in V-B. In spite of
being implemented differently, both versions of the algorithm
are functionally equivalent, and they will be referred to with
the same name: FS-EDAC (Full Search EDAC).

The results provided by any of the versions of FS-EDAC are
useful to set an optimal reference that can be used measure the
performance of the available synthesis tools, and to develop
faster algorithms that try to reach the best possible solution.
Following this idea, Section IV-E presents G-EDAC (Greedy
EDAC): a greedy variant of FS-EDAC whose performance will
be evaluated later in Section V, both in terms of processing
speed and hardware implementation results.

A. Optimization goals

The algorithms will focus their effort in reducing area occu-
pation, although some attention will also be put in optimizing
processing speed and power consumption.

The area occupation can be calculated as the number of
utilized LUTs, which are the basic combinational resources
available in every FPGA technology. Other specialized FPGA

resources such as carry logic or embedded multipliers will
be ignored as they cannot be exploited for implementing
the circuits under study. For measuring processing speed,
path delays will be considered instead of clock periods, as
the inferred circuits will be purely combinational. Optionally,
higher speeds can be achieved by inserting flip-flops within
the internal stages to form a pipeline, but at the cost of more
area, specially if Triple Modular Redundancy (TMR) is used
to protect such flip-flops against radiation.

The actual maximum path delay, which will determine
the processing speed, can only be obtained by the timing
analysis tools provided by the selected FPGA vendor after the
synthesis, place and route stages. Because of this reason, the
parameter to minimize will not be the maximum path delay
itself. Instead, other variables which are directly related to the
maximum path delay will be considered, namely:
• The maximum number of LUTs that a path has to go

through (from now on, levels). Each LUT adds a certain
delay to the path, as well as the nets used to connect two
consecutive LUTs.

• The number of nets or signals that are part of the circuit.
The higher the number of nets, the more complex will
get the routing process, which generally results in longer
delays.

• The maximum fan-out of all the LUTs present in the
circuit. A higher fan-out in an output means that it takes
more time for this output to charge the input capacitances
of the inputs it is connected to, as the current is divided
among those inputs.

Both the number of utilized LUTs and the number of nets
have an impact on power consumption. As these parameters
will be minimized by the algorithms, a reduction on power
consumption can also be expected for a given clock frequency.

Given that not all of the mentioned parameters can be
minimized at the same time, some type of priority mechanism
has to be established. The proposed algorithms prioritize
the minimization of the parameters with the following order
(highest priority first):

1) Number of LUTs,
2) Maximum level.
3) Number of nets.
4) Maximum fan-out.
In all cases, the optimization consists on minimizing the

value of the parameter.

B. Algorithm interface

The inputs to all the algorithms presented in this section
are Hr×n = {hij}, l(j) and K, while the output is the
optimized netlist. Each one of the inputs will be described
in the paragraphs below.

The parity-check matrix H defines the EDAC function to
implement. It consists of a binary matrix (hij = 0 or 1) where
each of the r rows represents an output, and each of the n
columns represents an input. As explained in Section III, an
output i is calculated as the XOR combination of all the inputs
of the corresponding row that satisfy the condition hij = 1.
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The function l(j) establishes the level of the jth input
(l(j) ≥ 0). It is common that the level of every input signal
comes directly from the output of a flip-flop. For that particular
case, we would have l(j) = 0 for 1 ≤ j ≤ n.

The constant K is the maximum number of inputs that
a LUT of the target technology has, so the algorithms may
instantiate LUTs with a number of inputs between 2 and
K (K ≥ 2). Other characteristics of the selected FPGA
technology like the routing architecture are not taken into
account.

C. Backtracking version

This section describes the backtracking version of FS-
EDAC. The steps of the algorithm are summarized in the list
below, and they will be explained extensively throughout the
subsequent subsections:

1) Initialization
2) Search for common terms
3) Update of the current network
4) Parameter calculation
5) Solution evaluation
6) Construction of the final network

Steps 3 to 5 will be applied to each common term found
in Step 2. A common term is defined as a group of two or
more terms in one output (i.e., a column of H) that are shared
at least with another output. At the same time, Steps 2 to
5 will be applied to each network obtained in Step 3. This
means that FS-EDAC is a highly recursive algorithm, as it
enters a new level of recursion with each found common term,
including the ones obtained as a result of having grouped
previous common terms. Therefore, a long execution time can
be expected when the input functions have a high number
of inputs or outputs. Nevertheless, this approach ensures that
every possible solution is evaluated, which guarantees that the
result is optimal regardless the defined optimization goal or
cost function.

1) Initialization: As we will see later in Section IV-C3, in
each recursive iteration the H matrix will be extended with a
new column, representing the common term that was selected.
The extended version of H will be named H∗r×n∗ = {h∗ij}.

In the first iteration we need to work with the original
H matrix, because no common term has been found yet.
Therefore we establish H∗ ← H and n∗ ← n.

It will also be useful to keep track of the number of common
terms found so far. We define a new variable called gates ct
and set it to 0, as initially there are no common terms.

Given that each tested solution will be compared to the
one that is currently considered the best, an initial solution
needs to be calculated to serve as a first reference. For this
purpose, we will obtain the network that results from applying
the MISO algorithm [13] to each output (or row) defined by
H. If the optimization parameters under consideration are the
ones listed in Section IV-A, they can be calculated with the
formulas included in [13]. In any case, these parameters shall
be stored in memory for later comparison with other solutions.

2) Search for common terms: The first step of every itera-
tion is to find all the possible groups of two or more terms in
one output that are shared at least with another output. This is
done by trying all the combinations of 2 or more columns and
2 or more rows, and checking if the elements of H∗ defined
by those combinations are equal to 1.

First, we define:

P=q(S) =
{
P ∈ P(S)

∣∣|P | = q
}

(4)

where P(S) is the power set (i.e., the set of all subsets)
of the set S, and |P | is the cardinality (i.e., the number of
elements) of the set P .

We can define QR and QC as the set of all possible
combinations of rows and columns that may together form
a common term, respectively:

QR =

r⋃
s=2

P=s(N≤r) (5)

QC =

K⋃
t=2

P=t(N≤n∗) (6)

We can check if those combinations indeed form a common
term by inspecting the H∗ matrix:

G =
{
(A,B) ∈ QR ×QC

∣∣H∗[A,B] = 1
}

(7)

The result is G: a set of ordered pairs where the elements
of the pair are the sets of rows and columns that together form
a common term in the current H∗ matrix. In (7), H∗[A,B]
is the submatrix of H∗ that results from selecting the rows
indicated by A and the columns indicated by B.

Finding G is a computationally intensive operation, which
requires to test a high number of combinations, with their
respective memory accesses. For a given H∗, two nested
sweeps are needed: one for s (2 ≤ s ≤ r) and another one
for t (2 ≤ t ≤ n∗). This implies

[∑r
s=2

(
r
s

)]
·
[∑K

t=2

(
n∗

t

)]
combinations. For each combination, there are s · t accesses
to the elements of H∗ in order to check if they are all
equal to 1. This means a total of

[∑r
s=2

(
r
s

)
s
]
·
[∑K

t=2

(
n∗

t

)
t
]

memory accesses. Note that as n∗ increases, the number of
tested combinations and memory accesses increase as well.
This fact is specially undesirable for our algorithm, because
n∗ is incremented after each recursive iteration, as will be
explained later in Section IV-C3. This issue becomes even
more problematic when one takes into account that a new
G will have to be obtained for every (A,B) in the current
G, reaching several levels of recursion depending on the size
and contents of the original H and also on the value of K.
This is just the main problem that will be mitigated later in
Section IV-D by means of dynamic programming.

3) Update of the current network: For each found group
(A,B) ∈ G, we need to update H∗ so that we can perform a
new iteration of the recursive algorithm later. First, the chosen
group has to be removed from the current H∗. We do so by
filling with zeros the array positions determined by (A,B):

h∗ij ←

{
0 i ∈ A, j ∈ B

h∗ij else
(8)
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Then, a new column is appended to H∗, representing the
new common term, which is in fact a FPGA LUT that
implements a XOR function with |A| inputs:

H∗ ← [H∗|c] (9)

with c = {ci} being a r × 1 column vector such that:

ci =

{
0 i ∈ A

1 i /∈ A
(10)

Note that the fact of adding a column to H∗ makes:

n∗ ← n∗ + 1 (11)

Given that such column represents a common term:

gates ct← gates ct + 1 (12)

Also note that the number of elements equal to 1 in H∗ is
always reduced with each update, due to the fact that |B| ≥ 2.

The output of the common term that has just been added
needs to be given a level, just like any of the original inputs.
It is easy to realize that the level of the new common term is
equal to the greatest level of the selected terms (which can be
either inputs or common terms) plus 1:

l(n∗) 7→ max
{
l(j)|j ∈ B

}
+ 1 (13)

The information about the rows that comprise the new group
(A) has already been saved in H∗ with the addition of the new
column. But we may also have to save the information about
the columns (B) elsewhere for later access. Such information
will be needed for reconstructing the resulting network when
the algorithm finishes. For this purpose, we can define the
function c(t) as the set of selected columns for the tth common
term. In each iteration, this function has to be updated with a
new element:

c(gates ct) 7→ B (14)

4) Parameter calculation: Now that we have updated H∗,
n∗, l(j) and gates ct, the next step is to obtain parameters
that characterize the current solution in order to evaluate
its quality according to the defined optimization goals. As
stated in Section IV-A, the proposed implementation of the
algorithm will consider the following optimization parameters:
the number of gates, the maximum level, the number of nets
and the maximum fan-out.

Such parameters must be calculated for the network that
results from applying the MISO algorithm to each of the
outputs defined by H∗, so that they correspond to the final
network that FS-EDAC would output in the case that it was
indeed the best overall one. In spite of being a fast algorithm,
applying MISO in each iteration of the FS-EDAC can take
a very long time because there is usually a high number of
iterations. This section proposes alternative ways for obtaining
the optimization parameters without the need to apply the
MISO algorithm at all, derived on the equations presented
in [13]. This way, the execution time is significantly reduced.

The number of gates of the final network can be easily
calculated using the following formula:

gates = gates ct +
r∑

i=1


[∑n∗

j=1 h
∗
ij

]
− 1

K − 1

 (15)

The first addend corresponds to the common terms found up
to this point. The other one is related to the gates that would
be instantiated by the MISO, should it have been applied.

For calculating the maximum level of the final network, we
first need to find the number of inputs and common terms that
have a level equal to m for a given output i:

l=m(i) =
∣∣{j ∈ N≤n∗

∣∣l(j) = m,hij = 1
}∣∣ (16)

The level of the output i of the final network is given by:

out level(i) =

⌈
logK

( ∞∑
m=0

l=m(i) ·Km

)⌉
(17)

The global maximum level is therefore:

max level = max
i
{out level(i)} (18)

There is a compact formula for the number of nets of the
final network:

nets =
gates ct∑
t=1

|c(t)|+
r∑

i=1

K
[∑n∗

j=1 h
∗
ij

]
− 1

K − 1

 (19)

The first addend corresponds to the nets used for connecting
the common terms that have been found up to this point, while
the other part of the equation refers to the network produced
by the MISO algorithm.

For obtaining the maximum fan-out, we first need to obtain
the fan-out of every input or common term of the current
solution. There is no need to calculate the fan-outs of the gates
instantiated by the MISO algorithm, as they are all equal to 1
(that is, the minimum possible value).

The fan-out of the jth column of H∗, which could cor-
respond to either an input or a common term, is simply
calculated as:

fanout(j) =
r∑

i=1

h∗ij (20)

Therefore, the maximum fan-out is:

max fanout = max
j

{
fanout(j)

}
(21)

5) Solution evaluation: In this step, the solution that is
currently considered the best is compared to the one cor-
responding to this iteration. For this purpose, we will take
the optimization parameters calculated in the previous step
and apply the procedure defined in Fig. 1, which is used to
determine which solution is better.

Following the strategy defined in Section IV-A, the criteria
defined in Fig. 1 minimizes the area of the inferred circuit,
while trying to maintain good values for the rest of parameters.
Nevertheless, any other optimization goal is possible, as long
as the associated parameters or cost functions can be obtained
or estimated during the synthesis phase.
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num_gates(A) < 
num_gates(B)?

num_gates(A) = 
num_gates(B)?

max_level(A) <  
max_level(B)?

max_level(A) = 
max_level(B)?

nets(A) < 
nets(B)?

A is better 
than B

nets(A) =
nets(B)?

max_fanout(A) =  
max_fanout(B)?

max_fanout(A) <  
max_fanout(B)?

A is worse 
than B

yes

yes

yes

yes

no

no

no

no

no

no

no

no

yes

yes

yes

A and B are
the same

yes

Start

Fig. 1: Priority mechanism to select the best out of two
possible solutions.

If this step discovers that the current solution is better
than the one that was being considered the best, then the old
solution has to be discarded and replaced with the current one.
The associated optimization parameters need to be stored in
memory for the comparisons that will be performed in later
iterations of the algorithm. All the variables that define the
new solution (H∗, n∗, l(j), etc) need to be stored as well in
case it ends up being the best overall one, so that the final
network can be constructed in the last step.

6) Construction of the final network: Once all the groups
have been processed, the last step is to apply the MISO
algorithm to each output (or row) defined by the H∗ that was
considered to be the best among all. The result is a circuit
that represents the optimal solution according to the defined
optimization criteria.

D. Dynamic programming version

This section describes an alternative implementation of FS-
EDAC which is equivalent in terms of functionality to the
backtracking version presented in Section IV-C, but consider-
ably faster because it takes advantage of memoization tech-
niques in order to avoid recalculating everything from scratch
in each recursive iteration. It does so by either precomputing
parameters at the beginning of the algorithm or by reutilizing
partial results obtained in previous iterations. In computer
science, this type of techniques are usually referred to as
dynamic programming.

The definition of the steps of this algorithm is the same as
in Section IV-C. Therefore, the procedure will be explained in
an analogous way, using the same subsection structure.

1) Initialization: First, we get an initial G using (7), just as
explained in Section IV-C2. This will be the only time that we
will have to apply this computationally intensive operation, as
the subsequent Gs will be obtained using a dynamic approach.

In Section IV-C1, we prepared an H∗ matrix that would
be updated and extended in every recursive iteration. Now,
by means of a custom dynamic programming technique, it
will be possible to avoid the need to maintain H∗ at all, thus
saving lots of read and write accesses to it. That means that
the subsequent searches of groups will have to be performed
in an alternative, indirect way. The same idea applies to the
calculation of the optimization parameters, which used to
depend a lot on H∗ as well.

In spite of not having to maintain H∗, we must keep track
of the number of columns that it would have had in the case
that it existed. Therefore, we initialize n∗ ← n.

In later stages of the algorithm, we will want to know the
sum of elements of H∗ equal to 1 at each row. For this purpose,
we define a vector ar×1 = {ai} that will be updated in each
iteration so as to keep track of the row sums:

ai =

n∑
j=1

hij (22)

Now we prepare the LUTs (software LUTs, not hardware
LUTs of the FPGA) that will replace some of the calculations
later in the algorithm with simple memory accesses.

There will be a software LUT for the number of gates
(or FPGA LUTs) that are needed to merge together a given
number of signals s, and an analogue LUT for the number of
nets:

gates LUT(s) =
⌈
s− 1

K − 1

⌉
, 1 ≤ s ≤ n (23)

nets LUT(s) =
⌈
K

s− 1

K − 1

⌉
, 1 ≤ s ≤ n (24)

There is no need to calculate (23) and (24) for s > n, as
the worst case would be s = n for any H with n columns.
The worst case happens when all the elements of a row in
H are 1, so all of them are to be merged together in order
to produce the output corresponding to that row. Due to the
fact that K ≥ 2, the number of elements in a row equal to 1
will always be reduced with each recursive iteration, so it is
impossible to get out of the bounds of the LUTs if they are
dimensioned as explained above.

Note that both (23) and (24) could have been obtained by
applying the MISO algorithm to an imaginary network with s
inputs, but that would have taken more execution time. Also
note that those equations do not include the gates and nets
that may have been instantiated as a result of having found
a number of common terms. We need to prepare separate
counters for that purpose: gates ct and nets ct, and set their
values to 0.

For the levels, we initialize a new matrix Lr×(mmax+1) =
{lim} with the values given by (16):

lim = l=m(i) (25)
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As usual, the matrix has been dimensioned for the worst
case, which occurs when all the elements in two or more rows
of H are equal to 1, all input levels l(j) are equal to each
other, and all the common terms are formed by pairs of signals
grouped in a stairwise manner. Knowing n and l(j), but not
the contents of H itself, an upper bound for the maximum
expected level is:

mmax = n+max
{
l(j)
∣∣1 ≤ j ≤ n

}
− 1 (26)

Finally, we have to compute the initial fanouts using (20) so
as to be able to update them in subsequent steps. The fanouts
can be saved in a new fn∗×1 = {fj} vector, which will be
extended later for every new common term.

2) Search for common terms: At this stage, the set of found
groups for the current solution is already located in G, as we
calculated it either in the initialization step or in the previous
network update step. Therefore, there is no need to perform
this time-consuming process any more.

3) Update of the current network: In the backtracking
version of the algorithm, this step was devoted to select a
group (A,B) ∈ G and update H∗ accordingly. However, it
was explained in Section IV-D1 that we would no longer need
to maintain H∗. Instead, now we use a dynamic approach for
obtaining the new G that will be used in the next recursive
iteration, based on the information currently stored in G.

First of all, we have to apply equations (11), (12) and (14),
just as in the non-dynamic version of the algorithm. The row
sums will be updated in an incremental way, reflecting the
changes that would have been made to H∗ in the case that it
existed:

ai ←

{
ai − |B|+ 1 i ∈ A

ai else
(27)

Now we are ready to start building a brand-new G∗:

G∗ ← ∅ (28)

For each (A′, B′) ∈ {G− (A,B)}, we need to calculate a
new group to be added to the group set G∗:

(A′′, B′′) =



(A′, B′) A′ ∩A = ∅∨
B′ ∩B = ∅

(A′, (B′ −B) ∪ n∗) A′ ⊆ A∧
B′ ∩B 6= ∅∧
B′ * B

(∅, ∅) else

(29)

We add each new group (A′′, B′′) to G∗ as indicated below:

G∗ ← G∗ ∪ (A′′, B′′) (30)

After all groups (A′, B′) ∈ (G − (A,B)) have been
processed, we can replace the previous G with the one that
has just been built:

G← G∗ (31)

In the following paragraphs, we will explain equation (29),
which reassembles one of the most important contributions
that will help to accelerate the algorithm.

H∗ =

 0 0 0 0 0 · · · 1
0 0 0 1 1 · · · 1
0 0 0 1 1 · · · 0


(a) Independent groups

(A,B)

(A′, B′) = (A′′, B′′)

H∗ =

 0 0 0 · · · 1
0 0 1 · · · 1
0 0 1 · · · 1


(b) Updatable group

(A,B)

(A′, B′) (A′′, B′′)

H∗ =

 0 0 0 · · · 1
0 0 1 · · · 1
0 1 1 · · · 0


(c) Discardable group

(A,B)

(A′, B′)

H∗ =

 0 0 0 · · · 1
0 0 1 · · · 1
0 0 1 · · · 1


(d) Duplicated group

(A,B)

(A′, B′) (A′′, B′′)

Fig. 2: Example scenarios when updating G.

The first condition of (29) is the one in which the selected
group (A,B) and the group to be updated (A′, B′) do not have
any element in common. This means that the fact of grouping
the terms defined by (A,B) does not affect the group (A′, B′)
at all, because they are totally independent. Therefore, we keep
(A′, B′) untouched.

The scenario described in the paragraph above is depicted
in Fig. 2a. In this example, H∗ is shown only for illustrative
purposes, because in fact it is not calculated. In Fig. 2a, the
group (A,B) has been already blanked out as a result of
applying (8), and the corresponding common term has been
added to the last column of H∗ as in (9). For clarity, the
example A, B, A′ and B′ vectors only contain contiguous
elements, but it does not have to be always this way.

The second condition of (29) occurs when there is an
overlapping between (A,B) and (A′, B′) in such a way that
a new group can be created using the new common term that
was added as a result of having chosen (A,B). Fig. 2b shows
an overlapping that has broken the group (A′, B′), which
can no longer exist in its current form because not all of its
elements are equal to 1 (H∗[A′, B′] 6= 1). In spite of that, the
characteristics of the overlapping allows to define a new group
based on (A′, B′) which uses the recently added common
term. In (29), the condition for updating (A′, B′) has been
designed so that 2 ≤ |A′′| ≤ r and 2 ≤ |B′′| ≤ K. Otherwise,
the resulting (A′′, B′′) could be an invalid common term.

In the last case of (29), the group (A′, B′) is discarded
because it has been broken in such a way that it cannot be
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updated to use the recently added common term. Fig. 2c shows
an example of this last scenario.

It has to be noted that two different (A′, B′) groups can
lead to the same (A′′, B′′) for a given (A,B) and G. Such
is the case of Fig. 2d, if one compares it with Fig. 2b. After
applying (30), the fact that G∗ is defined as a set avoids any
possible duplication.

4) Parameter calculation: In this stage, we will obtain
the optimization parameters of the current solution, taking
advantage of partial results from previous recursive iterations.

As we have already updated gates ct in Section IV-D3,
we just need to apply the following equation to get the total
number of gates:

gates = gates ct +
r∑

i=1

gates LUT(ai) (32)

The common term selected in Section IV-D3 must be given
a level l(n∗) using (13). Then, L = {lim} is updated with:

lim ←


lim + 1 i ∈ A,m = l(n∗)

lim − 1 i ∈ A,m ∈ {l(j)|j ∈ B}
lim else

(33)

Basically, we decrease the level counter of the elements that
would have been removed from H∗ in the current recursive
iteration, and increase the counter for the level of the new
common term. The maximum level is then calculated as in
(17) and (18), but replacing l=m(i) with lim.

In order to know the total number of nets, first we need to
update nets ct with the number of nets of the new common
term:

nets ct← nets ct + |B| (34)

The number of nets of the final network is calculated as:

nets = nets ct +
r∑

i=1

nets LUT(ai) (35)

The fan-out vector f = {fj} is updated according to the
following formula:

fj ←

{
fj − |A|+ 1 j ∈ B

fj else
(36)

After that, the fan-out of the new common term must be
appended to f :

fn∗ ← |A| (37)

The maximum fan-out is obtained with (21), but replacing
fanout(j) with fj .

E. Greedy variation

This section defines the greedy variant of FS-EDAC, called
G-EDAC. The steps of this last algorithm are the same than the
ones listed at the beginning of Section IV-C, but the iteration
process is different.

In FS-EDAC, Steps 2 to 5 had to be applied to each network
obtained in Step 3. With G-EDAC, this new level of recursion
is only entered for the network with the best cost function
for the current set of common terms under consideration. It is

easy to identify the best network because by the time the new
recursion level has to be entered, Step 5 would have already
been performed for all the networks of the current level, as
part of the process of finding the best overall solution.

The process explained above reduces dramatically the num-
ber of algorithm branches, and therefore a huge improvement
in processing time can be expected. However, the result is not
guaranteed to be optimal any more, unlike happened with FS-
EDAC. The degree of optimality achieved by FS-EDAC, as
well as its processing time, will be evaluated in Section V.

V. RESULTS

In this section, the results of applying the algorithms pro-
posed in this paper will be compared between themselves and
to those obtained by commercial synthesis tools, namely Xilinx
Vivado 2014.2, Mentor Graphics Precision RTL 2014.09 and
Synopsys Synplify 2013.03.

Every tested synthesis algorithm or tool has been provided
with the same input, although expressed in different forms. The
inputs will be passed to FS-EDAC and G-EDAC as explained
in Section IV-B. In the case of commercial synthesis tools, the
input is usually specified with hardware description languages
(HDLs) like VHDL or Verilog. In this work, VHDL has been
selected.

A. Execution time

The section is devoted to perform a deep analysis about the
execution time of both versions of FS-EDAC: the one based
on backtracking and the one based on dynamic programming.
The later algorithm was designed for accelerating the first one
while maintaining exactly the same functionality and overall
structure, which allows to perform a detailed comparison for
each algorithm step, finally leading to some interesting con-
clusions. On the other hand, the same type of analysis cannot
be made for G-EDAC as well because the iteration process is
not comparable. This is just the reason why the execution time
of G-EDAC becomes several order of magnitude faster than
any version of FS-EDAC, as we will see later in this section.

The two software implementations of FS-EDAC were im-
plemented in MATLAB, following the equations presented
in Sections IV-C and IV-D. The objective of this analysis is
to quantify the amount of acceleration obtained by applying
dynamic programming techniques to this specific algorithm.

Table I shows the results of the benchmark that was per-
formed in order to compare the two different implementations.
The algorithms were executed 10 times in a Intel Core 2 Quad
processor at 2.66 GHz, one run after another and forcing them
to run in a single core. The time estimates presented in the
table are median values of the 10 runs.

The parity-check matrix that was selected as the input for
the algorithms was the only possible (15,10) minimum odd-
weight EDAC code that can be built according to the method
explained in [26]. The size of the associated H matrix (n =
15 and r = 5) is big enough for the algorithms to take a
reasonable amount of time in being executed, which provides
an adequate precision for the benchmark. For this matrix, we
will assume that the n inputs come directly from the output
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Backtracking Dynamic

Absolute
time (s)

Relative
time (%)

Absolute
time (s)

Relative
time (%)

Acceleration
(dir/dyn)

Initialization 0.000 0.000 0.003 0.027 0.048
Search for common terms 33.529 63.278 2.901 23.543 11.558
H∗ building 3.672 6.930 0.000 0.000 ∞
Row sums 0.855 1.614 0.416 3.376 2.055
Number of gates 0.224 0.423 0.207 1.680 1.082
Maximum level 3.390 6.398 2.522 20.467 1.344
Number of nets 0.577 1.089 0.206 1.672 2.801
Maximum fan-out 0.689 1.300 0.344 2.792 2.003
Globals declaration 6.577 12.412 3.601 29.223 1.826
Function overhead 3.237 6.109 1.885 15.297 1.717
Solution evaluation 0.237 0.447 0.237 1.923 1.000

Total 52.987 100.000 12.322 100.000 4.300

TABLE I: Execution time breakdown for the two software implementations with an example H

of n flip-flops, so l(1 ≤ j ≤ n) = 0. The maximum number
of inputs per LUT will be set to K = 3.

In Table I, the first column lists the different tasks in which
the software implementations spend a measurable CPU time,
including the total execution time. Most of the listed tasks
are directly related to the different steps of the algorithm as
described in Sections IV-C and IV-D. Others, like Globals dec-
laration and Function overhead, are software-specific issues,
not closely related with the algorithm itself.

The first and most important conclusion that can be ex-
tracted from Table I is that, indeed, the dynamic programming
techniques have permitted to accelerate the total execution of
the algorithm. With the example inputs that were established,
the measured acceleration factor was 4.3.

A closer inspection of Table I reveals that every single
step of the algorithm is accelerated, with the exception of
the Initialization step, which is something that could be
expected because a full search of groups in the initial H
has to be performed in the dynamic version of the algorithm.
However, the impact of this delay in the total execution time
is insignificant, as this is a task that is executed only once.
The rest of tasks listed in Table I are executed once for every
possible solution. With H under consideration, the number of
tested solutions is 236321 in both versions of the algorithm,
as they are functionally equivalent.

Table I shows that the step which has benefited most from
the dynamic approach is the search for common terms. Also,
it is interesting to note that the dynamic version does not
spend any time in building the H∗ matrix. This behaviour
is consistent to what was explained in Section IV-D1 about
the non-maintenance of H∗.

Up to this point, only the Absolute time and Acceleration
columns have been analysed. But there are also many inter-
esting conclusions that can be extracted from the Relative
time columns. With them, we can discover which tasks have a
greater impact on the total execution time, and think of some
ideas to make them faster.

The relative time spent in the Globals declaration entry
shows that it is the main component that is decelerating the
dynamic algorithm. This component can be eliminated by
using another programming language that makes an efficient
handling of the global variables, with no unwanted delays

because of context changes. Such is the case of the C/C++
language, for example. If we removed the row Globals dec-
laration from Table I, we would get a overall acceleration of
×5.321. A proper C/C++ implementation would also decrease
the execution time of every single algorithm stage.

The second most important component in the execution
time of the dynamic implementation is the Search for common
terms step. After all the optimizations that have been made,
the only effective way of reducing the time spent at this stage
would be to reduce the number of tested groups, in such a
way that the best solution is not discarded.

Further analysis of the 236321 tested solutions reveals that
there are only 35 unique solutions. The rest of them can be
considered duplicates, with exactly the same structure as other
solutions but combining different inputs, which in the end
makes no difference at all. If the algorithm had been able to
discard those 236286 duplicates, its execution time would be
dramatically reduced, getting as fast as a few milliseconds for
the present benchmark considering the fact that the execution
time is proportional to the number of tested cases. Note that
such huge boost would be possible because of the regularity
of the selected H matrix, which contributes to increase the
number of duplicates. Other H matrices can be less regular, but
still, processing speed will surely be reduced if the duplicates
are identified in an efficient way.

Another way to accelerate the algorithm is to change the
strategy and follow a greedy approach like G-EDAC. However,
this type of techniques do not always ensure the best possible
solution, and sometimes they have to be completely redesigned
if the optimization parameters or their priority are changed. By
avoiding duplicate solutions in brute-force implementations, as
explained in the paragraph above, one would theoretically be
able to get speeds comparable to those of a greedy algorithm
and still obtain optimal results, keeping the flexibility to alter
the optimization parameters at will. As a reference, G-EDAC
was made to process the same H of the present benchmark,
and the resulting processing time was 190 milliseconds.

B. Hardware implementation results

In this section, the hardware implementation results of
the algorithms described in this paper will be analysed and
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TABLE II: Post place and route results of the Hsiao (22,16) function in an A3P030 FPGA (K = 3)

Synthesis tool LUTs Max. level Nets Max. fan-out Common Max path Total
terms delay (ns) power (mW)

Synplify 29 3 76 3 1 3.640 1.961
Prec-RTL 28 3 74 3 2 3.551 1.737
MISO 24 2 72 3 0 3.099 1.660
G-EDAC 20 2 60 3 4 3.052 1.433
FS-EDAC 19 2 57 3 5 2.995 1.287

compare to those obtained by several commercial synthesis
tools. Additionally, the standalone version of MISO will be
used for processing a full EDAC function, not just as a part of
the present algorithms. For an explanation about how to apply
MISO to a multi-output function like EDAC, please see [13].

The EDAC functions will be passed to the commercial
synthesis tools as VHDL source files containing the defin-
ing equations with no further manipulations. For example,
the (8,4) SEC-DED code defined in equation (3) would be
translated to VHDL as follows:

s(1) <= m(1) xor m(2) xor m(3) xor m(5);
s(2) <= m(1) xor m(2) xor m(4) xor m(6);
s(3) <= m(1) xor m(3) xor m(4) xor m(7);
s(4) <= m(2) xor m(3) xor m(4) xor m(8);

Signals m and s are connected to a set of flip-flops, which
in turn are connected to the input and output ports of the top
level entity, so they are associated with physical pins of the
FPGA. According to the nomenclature presented in this paper,
this means that all the inputs will have a level equal to 0. Given
that no registers have been instantiated between signals m and
s, the core of the circuit will be purely combinational.

When a synthesis tool is given a piece of VHDL code like
the one shown above, it generates a netlist in EDIF format
which is specific for the target technology. The netlist defines
a circuit that can only contain the components available in the
target FPGA, without specifying where they will be placed or
how the connections will be routed throughout the die. Those
tasks are in charge of the place and route tools provided by the
FPGA vendor (available as part of Libero SoC for Microsemi
FPGAs or as part of Vivado for Xilinx FPGAs).

FS-EDAC produces a simplified circuit, but such circuit has
to be inserted somehow in the design flow, so that the place
and route tools can finish implementing it. One possible way
is to generate an EDIF netlist, emulating a normal synthesis
tool. However, the authors chose to generate a technology-
dependent VHDL file, which is a VHDL file that includes
specific libraries for the target technology and only instantiates
components that are present in such technology. Using this
technique, the generated VHDL cores can be easily integrated
in larger designs by adding them into the design flow just
like any other HDL source file. If the VHDL file is defined
correctly, a commercial synthesis tool like Synplify or Vivado
will not modify the circuits defined in those files. Instead, it
will perform a direct translation from VHDL to EDIF.

Several tests have been executed for this study, evaluating
the selected synthesis tools for two different FPGA architec-
tures: one from Microsemi and the other from Xilinx.

The synthesis, place and route tools have been configured to

reduce the area utilization as much as possible, so as to match
the first optimization objective that was established for FS-
EDAC (see Section IV-A and Fig. 1). For this purpose, the only
tool that needed a change of the default options was Precision
RTL, whose Optimization goal property was set to Compile for
area. On the other hand, the techniques that were applied in
order to obtain the best possible timing performances (timing
was a lower-priority optimization goal) will be explained in
subsequent subsections, because each tool has its own way to
do so. The results shown in the tables of this section have
been extracted from the reports generated by the respective
tools, after completing the process of placing and routing the
synthesized circuits.

The maximum path delay is measured from the input to the
output of the EDAC entity. Each input and output signal of this
combinational block has been connected to one flip-flop so as
to minimize the effects of widespread placing, which happens
when the EDAC entity is directly connected to the FPGA I/O
pins. The existence of the flip-flops allows the placing tools
to make the circuits more compact, so the comparison of the
maximum path delay is more fair. Besides, the results will be
more similar to those that would be found in a real application,
as it is a usual practice to register the inputs and outputs of
every FPGA core.

In the present study, the total power (static power plus
dynamic power) has been calculated as accurately as possible,
feeding the power estimation tools of the respective manu-
factures with the output of a post place and route simulation
of the circuit. The test bench switches the inputs at every
clock cycle with a probability of 50%. On the other hand,
the clock frequency has been established to 100 MHz. The
computed total power only includes the elements that belong
to the EDAC entity itself (i.e., the consumption of clock nets,
I/O blocks and flip-flops are not considered).

1) Results with a 3-input LUT FPGA: In the first set
of tests, the selected FPGA model is an A3P030, from the
Microsemi ProASIC3 family. The core of this FPGA consists
of a sea of cells called VersaTiles. Each cell can be configured
either as a 3-input LUT (K = 3), a D-flip-flop or a latch, and
they may be connected between themselves through any of the
four levels of routing hierarchy.

The results obtained for the A3P030 are specially relevant,
as the ProASIC3 family is widely used for developing and pro-
totyping FPGA designs for space missions [2], [19], [20], [33],
[34], [44], where EDAC functions are usually implemented for
protecting memories from SEU. Once the designs have been
finished, the ProASIC3 netlists can be exported to a RTAX
FPGA. This latter family of FPGAs is very popular in space
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TABLE III: Post place and route results of the Hsiao (72,64) function in an XC7A100T FPGA (K = 6)

Synthesis tool LUTs Max. level Nets Max. fan-out Common Max path Total Sensitive
terms delay (ns) power (mW) bits

Vivado 48 3 256 5 0 2.580 1.404 23222
Synplify 52 2 260 5 0 2.486 1.496 23824
Prec-RTL 47 2 254 5 1 2.519 1.445 23388
MISO 48 2 256 5 0 2.476 1.464 23284
G-EDAC 35 2 192 3 12 2.332 1.103 21223

applications due to their high reliability against radiation.
Because of it being flash-based, it is not possible to re-

program a ProASIC3 in run-time, so the EDAC cores cannot
be used to protect the configuration memory of the FPGA it-
self. Still, the use of the proposed algorithms will be beneficial
for the EDAC cores and for the reliability of the systems as a
whole because of the reasons outlined in Section I.

All the algorithms under study where fed with the (22,16)
EDAC function presented in [26]. Table II shows that the
proposed algorithms (G-EDAC and FS-EDAC, in any of its
versions) provide better results than Synplify and Precision
RTL for every evaluated parameter with the exception of the
maximum fan-out, which the same for all the tested tools. The
performance of Vivado could not be evaluated in this case
because this tool does not support FPGAs by Microsemi.

Since the FS-EDAC algorithm tries all possible combina-
tions of common terms among every output, it is natural that
it produces a circuit with less area than any other algorithm, as
it was configured to find the solution with the fewer number
of LUTs. In this case, FS-EDAC obtains around 1/3 less LUTs
than the commercial synthesis tools.

It is specially relevant the fact that G-EDAC produces
very similar results to FS-EDAC in spite of being several
orders of magnitude faster. Still, it has to be checked in the
next subsection whether such degree of optimality is also
achievable with bigger input designs and different FPGA
architectures.

It can happen that FS-EDAC and G-EDAC get a high
value in the maximum level, as this parameter has been
given a lower optimization priority than the number of LUTs.
However, Table II shows that both FS-EDAC and G-EDAC
have outperformed the rest of algorithms for this parameter
as well. One could think that the higher number of common
terms has allowed this behaviour, however, the truth is that it
all depends on how well these terms are grouped. All of the
proposed algorithms take a great care in grouping the common
terms properly.

It is surprising to realize that the MISO algorithm obtains
better results than other commercial tools for this case, in
spite of being a simple algorithm which processes each output
separately, completing its execution in a matter of milliseconds
even for the biggest designs. According to the Common terms
column, both Synplify and Precision RTL have processed the
EDAC function as a whole (therefore identifying common
terms), but still, the area utilization is worse than MISO.

The seventh column of Table II confirms that the assumption
about the relationship between the maximum level and the
maximum path delay has been correct. Assuming that the place
and route tools perform well, the circuits with lower maximum

level are prone to be faster, as explained in Section IV-A.
In order to extract the maximum effort of the Libero IDE
place and route tools, a multi-pass place and route process was
performed with a strict clock period constraint (1 nanosecond).
After 20 passes, the solution with lower maximum path delay
was selected. In this case, the speed improvement of the
proposed algorithms has been between 14.05% and 17.72%
when compared to the commercial synthesis tools.

The estimated total power has proven to be approximately
proportional to the number of used resources, that is, the num-
ber of LUTs and nets. The improvement is equal to 34.37%
for the most favorable case. Nevertheless, it is important to
note that the resulting total power also depends a lot on the
performance of the place and route tools, just like happens
with the maximum path delay. It could occur, for example,
that an inferred net goes through a lot of FPGA nets and
switching matrices or multiplexers, resulting in longer path
delays and increased total power consumption. These effects
are minimized by using the technique explained in the previous
paragraph, which has allowed to obtain consistent results.

2) Results with a 6-input LUT FPGA: The other battery
of tests was obtained with the Vivado software suite, using
the XC7A100T, a 6-input LUT FPGA (K = 6) from the
Artix-7 family. The architecture of this family is very different
from the ProASIC3, and the differences are not limited to the
number of inputs of each LUT. The main logic resources of
this FPGA are the Configurable Logic Blocks (CLBs). Each
one consists on a pair of slices, and every slice contains four
6-input LUTs plus four storage elements (latches or flip-flops).
The CLBs are arranged in a regular array of rows and columns,
connected between them by means of switching matrices and
general-routing resources that run vertically and horizontally
around the CLBs. The configuration memory of this FPGA
is stored in a SRAM memory, which is specially sensitive to
SEU, so it will be highly interesting to check the increase of
reliability of the EDAC cores themselves when the proposed
synthesis algorithms are applied.

In this section, the algorithms where fed with a larger EDAC
function than in Section V-B1, namely the (72,64) EDAC
function presented in [26]. It was considered convenient to
choose a bigger input function so as to allow some margin of
optimization to the synthesis tools now that K is also higher
than before. A general rule is that a higher value of K usually
allows to infer smaller circuits, given that each LUT will be
able to host a bigger portion of the complete logic function.
Having smaller synthesized circuits would not permit to draw
firm conclusions, as the results would be more similar between
themselves.
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FS-EDAC could not be tested in this new analysis because
the execution times where unacceptably long. An estimation
showed that it could take several years to execute FS-EDAC
for the EDAC function under consideration, in contrast to the
9.33 seconds taken by G-EDAC to process the same function.

Table III shows the results for the XC7A100T. G-EDAC is
clearly the algorithm that performs best, in spite of the fact that
greedy approaches do not always guarantee optimal solutions.
The reduction of area utilization with the other tools is now
between 25.53% and 32.69%. Regarding the maximum level,
only Vivado has obtained a value of 3, which explains the
worse value in the maximum path delay for this tool (9.61%
higher than G-EDAC). For the rest of the tools, the maximum
path delays are more similar between themselves, as all of
them have obtained a maximum level equal to 2.

Neither Synplify nor Vivado have been able to find any
common term, and still, MISO obtains better figures of merit
than the other two without even trying to find a common term.
This is because MISO guarantees that the solution minimizes
all the optimization parameters defined in Section IV-A at the
same time, as long as LUT output sharing is not allowed (i.e.,
no common terms). In this case, Precision RTL has beaten
MISO because the first one has grouped a proper common
term, although the mere fact of selecting one or more common
terms does not always mean an improvement over selecting
none (see Table II).

It can be seen in Table III that the relationship between the
post-place and route maximum path delay and the total power
with the optimization parameters is not as strong as in Table II.
This is because the method of running multiple passes is not
possible in Vivado, as its place and route algorithms seem to
be deterministic (i.e., they do not rely on random seeds). In
order to extract the maximum effort from this tool, the chosen
strategy was to iteratively reduce the clock period constraint
until such constraint cannot be met by Vivado.

Lastly, an additional column was appended to Table III,
which was not present in Table II. This new column gives
the number of sensitive bits calculated by the Vivado bit-
stream generation tool. Unfortunately, such information is not
reported by Libero SoC, so it could not be included in Table II.

Table III confirms the idea that a lower area usage results
in a smaller number of sensitive bits. The reduction obtained
with G-EDAC with respect to the other algorithms and tools
is between 8.61% and 10.91%. This is just the percentage
of improvement in circuit reliability that can be expected for
an EDAC core implemented in a SRAM-based FPGA, as
the number of sensitive bits is directly proportional to the
MTBF (Mean Time Between Failures) for a given radiation
environment and FPGA model. This means that the ultimate
goal of improving the reliability of EDAC cores implemented
in SRAM FPGAs has been successfully accomplished.

VI. CONCLUSIONS

In this paper, three algorithms specialized in synthesizing
EDAC functions on FPGAs have been extensively described
and evaluated. By exploiting the properties of this particular
problem, the algorithms are able to obtain optimal (FS-EDAC)

or quasi-optimal (G-EDAC) solutions given a predefined op-
timization criteria.

When compared to the results obtained by means of com-
mercial synthesis tools, the proposed algorithms can reduce
the area, maximum path delay and power consumption of
the resulting circuits up to 34.48%, 17.72% and 34.37%,
respectively. These numbers confirm the fact that there is still
a wide margin of improvement for the synthesis tools that are
currently available in commercial FPGA design suites.

In addition, the EDAC cores were effectivily hardened
against radiation, achieving an increase of 10.91% in the
MTBF. The higher reliability becomes even more useful in the
cases where the EDAC cores are in charge of protecting the
configuration memory that defines the circuitry implemented
in the FPGA, including the EDAC cores themselves.

Even though the algorithms proposed in this paper were
designed specifically for FPGA devices, it is easy to adapt FS-
EDAC so that it minimizes other parameters that are specific
to ASIC devices, e.g., the number of transistors and/or the die
area. On the other hand, the greedy version of the algorithm
(G-EDAC) is also adaptable, but a new battery of tests should
be executed in order to evaluate its degree of optimality.

Being a highly recursive algorithm, FS-EDAC has the draw-
back that it is not practical for dealing with large functions, as
the number of possible combinations increases exponentially
with every added input or output. It was shown in Section V-A
that dynamic programming techniques produce a significant
performance boost (5 times faster than backtracking), but
still, the long processing times prevented the authors from
determining the optimal results for the largest tested circuit.
As future work, it will be analysed whether more intelligent
searches can be performed for finding common terms, as
the current implementations try many combinations that are
identical between them (see Section V-A). A smarter algorithm
which is able to skip some or all of the duplicates may have
a reasonable execution time even for the largest functions.

For all the designed algorithms, the MATLAB language and
software suite was selected because it allowed fast develop-
ment and easy debugging, reducing the risk of programming
errors. However, it was said in Section V-A that C/C++
implementations would be very beneficial for accelerating
the algorithms. Software ports to the C/C++ language will
consequently be scheduled as future work for this paper.

Finally, another line of research could be opened regarding
the implementation of heuristic or greedy algorithms more
sophisticated than G-EDAC. Again, having developed FS-
EDAC will be useful for this task, as the degree of optimality
will be subject to be measured by comparing the results of the
new algorithms with the ones obtained by FS-EDAC.
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