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 

Abstract—In this paper, the optimization-based alignment (OBA) methods are investigated with 

main focus on the vector observations construction procedures for the strapdown inertial navigation 

system (SINS). The contributions of this study are twofold. First the OBA method is extended to be 

able to estimate the gyroscopes biases coupled with the attitude based on the construction process of 

the existing OBA methods. This extension transforms the initial alignment into an attitude estimation 

problem which can be solved using the nonlinear filtering algorithms. The second contribution is the 

comprehensive evaluation of the OBA methods and their extensions with different vector observations 

construction procedures in terms of convergent speed and steady-state estimate using field test data 

collected from different grades of SINS. This study is expected to facilitate the selection of appropriate 

OBA methods for different grade SINS. 

 

Index Terms—Attitude estimation, inertial navigation, initial alignment, velocity integration 

formula  

I. INTRODUCTION 

As a dead-reckoning navigation method, the performance of the strapdown inertial navigation system (SINS) 
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relies largely on the accuracy of the initial conditions which are determined by the so called initial alignment 

[1, 2]. Up to this day, the initial alignment has been one of the most researched topics for SINS and various 

methods have been proposed to address this problem [3]. Typically, the initial alignment can be achieved 

through two consecutive stages: coarse alignment and fine alignment. Regarding the fine alignment, 

consensus has been reached that the Kalman filtering based optimal estimation scheme is the standard method. 

The Kalman filtering based fine alignment is founded on the linearized system error models and necessitates 

the coarse alignment to provide roughly known initial attitude to guarantee the validity of such linearization 

[4, 5]. Unfortunately, the traditional analytic coarse alignment methods are no longer applicable when the 

carrier is moving or maneuvering.  

Recently, an attitude matrix decomposition based coarse alignment method has been proposed for the 

carrier under swaying or maneuvering conditions [6-11]. By introducing some “fixed” reference frames 

known as inertial frames, the attitude matrix can be decomposed into three parts: attitude matrix as a function 

of the carrier’s angular rate, attitude matrix as a function of the Earth and transport rates and a constant 

attitude matrix encoding the transformation between the body and navigation frames at the very start of the 

initial alignment. The first two attitude matrices can be obtained through the attitude update procedure 

according to the corresponding angular rates. The constant attitude matrix can be derived using solutions to 

Wahba’s problem based on the constructed vector observations. To this respect, the attitude alignment 

problem has been transformed into a continuous attitude determination problem [6]. In [6, 8], such initial 

alignment method is termed as “optimization-based alignment (OBA)” because the Wahba’s problem is 

virtually a constrained least square problem and all the solutions are devoted to minimizing the corresponding 

cost function in a optimal manner. Since many fruitful algorithms can be readily used to address the attitude 

determination problem, say Davenport’s q method used in [6, 8, 10], the key of determining the constant 

attitude matrix has been the construction of the vector observations. Since the constant attitude matrix 

encoding the transformation between the “fixed” body and navigation frames at the very start of the initial 
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alignment, the vector observations expressed in the corresponding reference frames are constructed based on 

the specific force equation. The specific force equation encodes the relationship between different kinds of 

acceleration information and therefore, acceleration information based vector observations are firstly 

constructed and used in the OBA method in [6]. However, there is much external disturbance inherent in the 

acceleration information, which can degrade the performance of the OBA method significantly. Although the 

low-pass filter designed in [6] can restrain the disturbance to a certain extent, the parameters design for the 

low-pass filter based on different maneuvering conditions is a troublesome process. Meanwhile, the 

disturbance of the accelerometer outputs has not been taken into account in [6]. A straightforward and 

effective method to restrain disturbance is to integrate the acceleration information over certain time interval, 

which is just the case in [8, 10].Regarding the length of the integral time interval, there are mainly two 

integration procedures: one is the integration procedure over the whole alignment time interval in [8] and the 

other is the integration procedure over certain time interval with fixed length in [10]. It is well known that 

restraining effect on the disturbance becomes better and better when the integral time interval increases, 

which seemingly favors the integration procedures in [8]. Moreover, making use of more acceleration 

information can accelerate the convergent speed of the OBA method. However, when the integral time 

interval increases, the inertial sensors biases will also cause accumulative errors in the constructed vector 

observations and in turn, degrade the performance the OBA method. To this respect, the integral time interval 

should not be too long, which favors the integration procedures in [10] on the other way.  

The aforementioned conflicting conclusions demonstrate that many issues need to be further fully 

addressed for the OBA methods. Motivated by the aforementioned discussion, this paper is devoted to 

evaluating the performances of the OBA method with different vector observations construction procedures 

using field test data collected from different grades of SINS. Since the inertial sensors biases, especially the 

gyroscopes biases, have a much negative effect on the precision of the calculated attitude, the existing OBA 

methods will be no longer applicable for the low-grade SINS, say micro-electromechanical system (MEMS) 
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technology based low-cost SINS [12, 13], due to their inability to estimate anything other than the attitude. 

With this consideration, this paper extends the existing OBA methods and investigates an attitude estimation 

based alignment method which can estimate the gyroscopes biases coupled with the attitude. Since the 

investigated attitude estimation based alignment method is used to estimate the attitude at current time that is 

not constant for the in-motion alignment, we term the investigated alignment method as “dynamic OBA” 

method. In contrast, the traditional OBA methods are used to determine the constant attitude matrix at the 

very start of the initial alignment and can be viewed as “static OBA” method.  The aforementioned different 

integration procedures have also been investigated and evaluated in the construction of the vector 

observations for the developed dynamic OBA method. 

The rest of the paper is organized as follows. Section II mathematically makes the static OBA method 

statement with main focus on the vector observation construction methods with different integration 

procedures. In Section III, the dynamic OBA method able to estimate the gyroscopes biases coupled with the 

attitude is developed. Meanwhile, the explicit filtering procedure is also presented to solve the established 

attitude estimation problem. Section IV evaluates the aforementioned OBA methods comprehensively in 

terms of convergent speed and steady-state estimate using field test data collected from different grades of 

SINS. Finally, conclusions are drawn in Section V. 

 

II. STATIC OBA METHOD 

A. Formulation of the Static OBA Method 

For the OBA method, the attitude kinematics equation is used directly and there is no need to derive the 

corresponding angle error models. Therefore, the OBA method can be seen as an analytical method. The 

ingeniousness of the OBA method mainly manifests in the reapplication of the navigation (attitude, velocity 

and position) rate equations in a new manner. For the traditional application, the attitude kinematics equation 

in terms of attitude matrix is given by 
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 n n b

b b nbC C    (1) 

where 

  b b nT n b nT n n

nb ib b in ib b ie enC C           (2) 

The definitions of the involved reference frames in this paper are the same with those in [8]. n

bC  denotes the 

attitude matrix from the body frame to the navigation frame, determining the values of which prior to the 

navigational computation is just the purpose of the initial alignment. b

ib denotes the body angular rate 

measured by gyroscopes in the body frame, n

ie the earth rotation rate expressed in the navigation frame and 

n

en the angular rate caused by the linear motion of the carrier.  

Denote by  0n the inertially non-rotating frame that is aligned with the navigation frame at 0t , by  0b the 

inertially non-rotating frame that is aligned with the body frame at 0t , by  n b t the navigation/body frame at t . 

According to the chain rule of the attitude matrix, the attitude matrix  n

bC t can be decomposed as 

    
     

 0

0
0

n t bn n

b bn b t
C t C C C  (3) 

Since the attitude matrices
 
 0n

n t
C and

 
 0b

b t
C can be determined through the attitude update procedure based on 

the angular rates n

in and b

ib , respectively as 

 
 
 

 
 

 
 

 
 

0 0

0 0

b b b

ibb t b t

n n n

inn t n t

C C

C C





 

 
 (4) 

the heart of determining  n

bC t is transformed into determining the constant matrix  0n

bC . According to [6, 8, 

10], the calculation of  0n

bC is virtually a continuous attitude determination problem using infinite vector 

observations which are constructed based on the specific force equation. The specific force equation 

expressed in the navigation frame is given by 

  2n n b n n n n

b ie env C f v g       (5) 
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where nv denotes the ground velocity, bf  the specific force measured by accelerometers in the body frame 

and ng  the gravity vector. 

Substituting (3) into (5) gives 

 
 
     

   0

0
0 2

n t bn n b n n n n

b ie enn b t
v C C C f v g       (6) 

Multiplying
 
 0n

n t
C on both sides and recognizing the resulting equation yield 

    
 

 
    0 0

0 2
b nn b n n n n n

b ie enb t n t
C C f C v v g       (7) 

which can also be rewritten in a compact form as 

  0n

b a aC    (8) 

with 

 
 
 0b b

a b t
C f   (9a) 

 
 
    0

2
n n n n n n

a ie enn t
C v v g        (9b) 

The determination of the constant matrix  0n

bC in (8) based on the vector observations in (9) is well known 

as the Wahba’s problem [14]. Accordingly, many fruitful algorithms have been developed for such problem, 

such as the three axis attitude determination (TRIAD) based method, Davenport’s q method, the quaternion 

estimator (QUEST) based method and so on. More details about these attitude determination methods can be 

found in the excellent survey paper [14] and the references therein. In [9], the TRIAD based method is applied 

to determine the constant matrix  0n

bC  while in [6, 8, 10, 11], the Davenport’s q method is applied. Since 

many effective attitude determination methods are readily to be used, the construction methods for the vector 

observations are crucial to such problem. Although the vector observations in (9) can be used directly, the 

severe disturbances inherent in the acceleration information, say bf and nv , have a much negative effect on the 

performance of the attitude determination. A straightforward way to attenuate the negative effect of external 

disturbances is to integrate the acceleration information through certain time interval. According to the 
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different integration procedures, there are mainly two different vector observations constructions methods for 

the developed attitude determination problem, which will be presented detailedly in the following section. 

B. Velocity Integration Formula for Vector Observations Construction 

Denote by t the current time instant during the initial alignment process. In [8], the vector observations in 

terms of acceleration in (9) are integrated over the time interval 0, t . The resulting form of the attitude 

determination problem associated with the vector observations in terms of velocity is given by 

  0n

b v vC    (10) 

with 

 
 
 0

0

t b b

v b
C f d


    (11a) 

 
 
    0

0
2

t n n n n n n

v ie enn
C v v g d


         (11b) 

Similarly to [8, 15], denote the current time instant in its discrete-time form as t M t with t denoting the 

time duration of the update interval  1,k kt t  , 0,1,2, , 1k M  . Accordingly, the integration of (11) can be 

calculated using the velocity integration formula developed in [8, 15] as 

 
 
 

 
   

1
1

0

0

k
k

k
k

M t b tb b

v b tb t t
k

C C f t dt






   (12a) 

 
 
 

 
 

 
 

 
 

 
   

1

0

1

1
0 0

0

1
0

0

                                

k
k

k
k

k
k

k
k

Mt t n tn nn n n

v ien n tn t tt
k

M t n tn n

n tn t t
k

C v C C ω v dt

C C g t dt
















  



 

 

 (12b) 

The illustration of such integrating procedure is shown in Fig. 1. It can be seen from Fig. 1 that, as the time 

goes on, the length of the integration time interval is increasing and, in turn, the attenuating effect of the 

external disturbances will be more remarkable. Moreover, making use of such integration procedure can 

guarantee the numbers of the constructed vector observations without loss of intermediate GPS data samples. 

Since the acceleration information of the accelerometer and the GPS at certain time instant can be used 
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repeatedly for many times, the convergent speed of the attitude determination is expected to be much faster. 

The downside of such integration procedure is that, the sensor biases will cause accumulative errors in the 

constructed vector observations as is shown in (12a). In [8, 10], the OBA method is regarded as a coarse 

alignment method which needs much shorter time interval, so the accumulative errors have an ignored effect 

on the navigational or more precise SINS. However, for the low-cost SINS, say MEMS based SINS, the 

negative effect of these accumulative errors will be much remarkable and even invalidate the OBA method. 

…………

…………

……

0

bf 1

bf 2

bf 1

b

Mf 

b

Mf

0 1 2 1M  M

 

Fig. 1. Integration procedure in (11) 

A straightforward way to attenuate the negative effect of these accumulative errors is to integrate the 

acceleration based vector observations in (9) over time interval ,mt t with  0,mt t . The so called interleaved 

integrating method proposed in [10] is just with such category. In this case, the corresponding attitude 

determination formulation with the associated vector observations in terms of velocity increment is given by 

  0n

b v vC     (13) 

with 

 
 
 0

m

t b b

v bt
C f d


     (14a) 

 
 
    0

2
m

t n n n n n n

v ie ennt
C v v g d


          (14b) 

Here, the subscript v is used to denote the velocity increment over time interval  ,mt t  and to sign 

difference with the velocity denotation v used in (11). Although the interval of the interleaved integration is 

set to be the GPS-sample time in [10], it can be extended to a more general form with arbitrary length. We can 
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determine the length of the interleaved integration interval based on the consideration of the trade-off 

between the convergent speed and the attenuating the negative effect of accumulative errors. That is to say, 

the time interval should be as long as possible to guarantee the convergent speed of the OBA method on one 

hand, while on the other hand, the time interval should be as short as possible to attenuate the negative effect 

of accumulative errors. The interleaved integrating procedure can also guarantee the numbers of the 

constructed vector observations without loss of intermediate GPS data samples, which is just the motivation 

of the derivation of the interleaved integration in [10]. 

In [10], there is no explicit integration formula to calculate the integration in (14). However, the velocity 

integration formula developed in [8, 15] can be readily applied as 

 
 
 

 
   

1
1

0 k
k

k
k

M t b tb b

v b tb t t
k m

C C f t dt








   (15a) 

 
 
 

 
 

 
 

 
 

 
   

1

1

1
0 0

1
0

                                  

k
k

k
km

k
k

k
k

Mt t n tn nn n n

v ien n tn t tt
k m

M t n tn n

n tn t t
k m

C v C C ω v dt

C C g t dt


















  



 

 

 (15b) 

where mt m t  . The illustration of the interleaved integration procedure is shown in Fig. 2. 

…… …… ……

…… …… ……k 2k  k m 2k m 0

0

bf b

kf 2

b

kf 

b

k mf  2

b

k mf  

Sliding Fixed-interval 

integration 

 

Fig. 2. Integration procedure in (14) 

It should be noted that all the existing OBA methods are all unable to estimate anything other than the 

attitude. Since for the low-cost SINS the sensors biases have much negative effect on the attitude calculation, 

it is desired to extend existing OBA methods and make them be able to estimate the sensors biases coupled 

with the attitude for the initial alignment problem. With this consideration, a dynamic OBA method is 
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developed in this paper, which is used to estimate the attitude at current time rather than the constant attitude 

at the very start of the initial alignment.  

III. DYNAMIC OBA METHOD  

A. Alternative Perspective on Interleaved Integration 

Before getting into the development of the dynamic OBA method, we first give an alternative perspective 

on the interleaved integrating procedure, which will facilitate the derivation of the developed dynamic OBA 

method. 

Specifically, according to the chain rule of the attitude matrix, we have 

 
 
 

 
 

 
 

 
 

 
 

 
 

0 0

0 0

m

m

m

m

b tb b

b t b tb t

n tn n

n t n tn t

C C C

C C C




 (16) 

Substituting (16) into (7) and integrating the resulting equation over time interval ,mt t  yield 

 
   

 
 
 

 
 

 
    

0

0

0

2

m

m
m

m

m
m

t b tbn b

b bb tt

t n tn n n n n n

ie ennn tt

C C C f d

C C v v g d







      




 (17) 

For the integrating operator d , the time instant mt is constant and so as the corresponding attitude 

matrices
 
 0

m

b

b t
C and

 
 0

m

n

n t
C . To this respect, (17) can be rewritten as 

 
   

 
 
 

 
 

 
    

0

0

0

2

m

m
m

m

m
m

t b tbn b

b bb t t

t n tn n n n n n

ie ennn t t

C C C f d

C C v v g d







      




 (18) 

Multiplying
 
 
0

mn t

n
C on both sides and incorporating the corresponding attitude matrices yield 

 

   
 

 
    2

m

m

m

m

t b tn b

b m bt

t n t n n n n n

ie ennt

C t C f d

C v v g d







      




 (19) 

where 
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    
     

 0

0
0m

m

n t bn n

b m bn b t
C t C C C  (20) 

Eq. (19) can also be written in the form of attitude determination problem as 

  n

b m v vC t     (21) 

with 

 
 
 m

m

t b t b

v bt
C f d


     (22a) 

 
 
    2m

m

t n t n n n n n

v ie ennt
C v v g d


          (22b) 

The relationship between (14) and (22) is given as 

 
 
 

 
 

0

0

m

m

b

v vb t

n

v vn t

C

C

 

 

 

 




 (23) 

Regarding (21),  n

b mC t can be viewed as a “dynamic constant” matrix. Here, the term “constant” in 

“dynamic constant” means that the attitude matrix  n

b mC t at time instant mt is regarded as a constant for the 

vector observations in following time interval ,mt t . In this respect, the determination of  n

b mC t  based on 

(21) shares the same procedure as that of  0n

bC based on (10) and (13). On the other hand, the term 

“dynamic” in “dynamic constant” means that the attitude matrix  n

b mC t is variational on the whole time 

interval of the initial alignment as the time instant mt  is changed from 0 to t . The illustration of the integration 

procedure in (22) is shown in Fig. 3. All the attitude matrices at the marked time instant are just the 

aforementioned “dynamic constant” matrices. 

The navigation and body frames at time instant mt , i.e.  mn t and  mb t , can also be viewed as inertial 

frames for the corresponding frames at the following time interval ,mt t  just the same as the  0n and  0b  

for the corresponding frames at time interval  0, t . Since the time instant mt is changed from 0 to t , the 

corresponding frames  mn t and  mb t are only the “temporary inertial” frames. In the following section, the 
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concept of “temporary inertial” frames will also be used to derive the dynamic OBA method. 

…… …………

…… …………
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bf 1
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b
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mf 
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0
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1k m 

1

b

k mf  
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k 1k 

b

kf 1

b

kf 

……
…
…

 

Fig. 3. Integration procedure in (22) 

After the “dynamic constant” matrix  n

b mC t being derived, the attitude matrix at the current time instant 

can be readily obtained as 

    
     

 m

m

b tn tn n

b b m b tn t
C t C C t C  (24) 

where 

 
 
 

 
 

 
 

 
 

 
 

 
 

0

0

0

0

m m

m m

b t b t b

b t b b t

n t n t n

nn t n t

C C C

C C C




 (25) 

All the attitude matrices at the right hand of (25) can be calculated according to (4). It should be noted that 

the attitude determination procedure (21)-(25) is not a new OBA method and it is the same as that of the 

interleaved integration based method. 

B. Dynamic Attitude Estimation Model 

In this section part, we will develop the dynamic OBA method with consideration of estimating the sensors 
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biases. The derivation of such method is based on the aforementioned concepts “dynamic constant” matrix 

and “temporary inertial” frames. For the alternative perspective on the interleaved integration, the frames at 

the time instant mt are treated as inertial for the corresponding frames at the following time interval ,mt t , 

while in this section, the frames at time instant t are treated as inertial for the corresponding frames at the 

previous time interval ,mt t . 

Specifically for any time instant  ,mt t  , according to the chain rule of the attitude matrix, we have 

    
     

 n b tn n

b bn t b
C C C t C




   (26) 

Substituting (26) into (5) yields 

 
 
     

   2
n b tn n b n n n n

b ie enn t b
v C C t C f v g




       (27) 

It should be noted that all the quantities above are functions of time and their time dependences on are 

omitted for brevity. Multiplying
 
 n t

n
C


on both sides of (27) and reorganizing the resulting equation yield 

    
 

 
    2

b t n tn b n n n n n

b ie enb n
C t C f C v v g

 
       (28) 

Integrating (28) on both sides over the time interval ,mt t  

 
   

 

 
    2

m

m

t b tn b

b bt

t n t n n n n n

ie ennt

C t C f d

C v v g d







      




 (29) 

For the integrating operator d ,the time instant t is constant and so as the corresponding  n

bC t . To this 

respect, (29) can be rewritten as 

  n

b dv dvC t    (30) 

with 

 
 
 

m

t b t b

dv bt
C f d


    (31a) 

 
 
    2

m

t n t n n n n n

dv ie ennt
C v v g d


         (31b) 
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It is shown that we have made use of the similar “temporary inertial” concept in going from (17) to (18) and 

(29) to (30). The reference frame  n

bC t corresponding to the “temporary inertial” frames can also be viewed 

as a “dynamic constant” matrix. In last section, the constant characteristic of the “dynamic constant” 

matrix  n

b mC t is used for the static attitude determination. In contrast, the dynamic characteristic of the 

“dynamic constant” matrix  n

bC t will be used for the following dynamic attitude estimation. When the 

attitude matrix  n

bC t is treated as a dynamic value, the gyroscopes biases can be easily incorporated into the 

dynamic attitude update model. Considering the contaminated bias and noise, the direct output of the 

gyroscopes  b

ib t  is modeled as 

 
     

 

b b b

ib ib gv

b

gu

t t t

t

   

 

  


 (32) 

where b is the gyro drift derived from a random walk process. gv and gu are independent zero-mean 

Gaussian white-noise processes with spectral densities. 

Reorganizing (32) and substituting the result into (1) give the following attitude model 

             Tn n b b n n

b b ib b in gvC t C t t t C t t         (33) 

Eq. (33) and (30) constitute the typical dynamic attitude estimation model with (33) being the process 

model and (30) the measurement model. With the developed dynamic model, many existing dynamic attitude 

estimation methods known as filtering methods can be readily applied. Before getting involved in explicit 

details of filtering algorithms that will be presented in next section, we first extend the velocity integration 

formula developed in [8, 15] to solve the integration (31). 

The velocity integration formula developed in [8, 15] can not be applied in (31) in its current form. Next, 

we will show how the integration in (31) can be calculated using the velocity integration formula. 

The integration in (31a) can be expressed as 
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 
 

 
 

 
 

 
 

 
 0 0

0 0
m m m

t t tb t b t b b t bb b b

b b b b bt t t
C f d C C f d C C f d

  
       (34) 

As it is shown, the integration on the right hand of (34) is the same as that in (14a). Therefore, the 

integration in (31a) can be calculated as 

 
 
 

 
 

 
   

1
1

0

0

k
k

k
k

M t b tb t b b

dv b b tb t t
k m

C C C f t dt






    (35) 

The first part of the integration (31b) can be developed as 

 
 
 

 
 

 
 

   
     

 
                 

m mm

m
m

tt tn t n t n tn n n n

inn n nt tt

tn t n tn n n n

m innn t t

C v d C v C v d

v t C v t C v d

  



  

 

  

   

 


 (36) 

Substituting (36) into (31b) yields 

 
   

   

 
 

 
 

             

m

m m

n tn n

dv mn t

t tn t n tn n n

ien nt t

v t C v t

C v d C g d
 



  

 

   
 (37) 

Similar to the procedure in (34), the first integration on the right hand of (37) can be expressed and 

calculated as 

 
 
 

 
 

 
 

 
 

 
 

 
 1

0

0

1
0

0
                         

m m

k
k

k
k

t tn t n t nn n n n

ie ien n nt t

M t n tn t n n n

ien n tn t t
k m

C v d C C v d

C C C ω v dt

 
   






  

 

 

 
 (38) 

The second integration on the right hand of (37) can be expressed and calculated as 

 
 
 

 
 

 
 

 
 

 
 

 
   

1

0

0

1
0

0
                  

m m

k
k

k
k

t tn t n t nn n

n n nt t

M t n tn t n n

n n tn t t
k m

C g d C C g d

C C C g t dt

 
 










 

 
 (39) 

Substituting (38) and (39) into the right side of (37) yields 

 

   
   

 
 

 
 

 
 

 
 

 
   

1 1
1 1

0 0

0

m

k k
k k

k k
k k

n tn n

dv mn t

M Mt tn t n tn t n nn n n

ien n t n tn t n tt t
k m k m

v t C v t

C C C ω v dt C C g t dt



 
 

 

 

 
   

 
  

 (40) 
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The illustration of the developed dynamic attitude determination problem and the associated vector 

observations (31) are shown in Fig. 4. In Fig. 4, kx is the state of the dynamic model, which includes attitude 

and gyroscopes biases. It should be noted that, although the vector observations are constructed based on the 

interleaved integration procedure, they can also be constructed based on the integration procedure in (11). Let 

0mt  , the integration procedure in (31) is just the same as that in (11). The properties of the two integration 

procedures discussed in the last section for the OBA method are also suitable for the dynamic attitude 

estimation problem.  

kx1kx 2kx 

2ky  1ky  ky

…… …… ……

…… …… ……2k m  k m 2k  k

2

b

k mf  

b

k mf  2

b

kf 

b

kf

 

Fig. 4. Integration procedure in (31) for the dynamic model (32) 

C.  Modified UnScented QUaternion Estimator 

Since the attitude is usually parameterized in terms of quaternion for on-computer application, most of the 

existing filtering methods for attitude estimation are devoted to handle the quaternion normalization 

constraint in the filtering recursion, such as the multiplicative extended Kalman filter [14], the UnScented 

QUaternion Estimator (USQUE) [16, 17] and its modified version (MUSQUE) [18, 19]. In this paper, the 

MUSQUE is used. Considering clarity and completeness, the explicit filtering procedure of MUSQUE for the 

investigated dynamic attitude estimation problem is presented in this section part. Parameterizing the attitude 

in terms of quaternion, the attitude kinematics equation (33) in its discrete-time form is given by 
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  1 1, , ,b n

k k k ib inq ff q      (41) 

Eq. (41) is a general form of the discrete-time attitude kinematics equation in terms of quaternion. The 

discrete-time attitude kinematics equation is virtually the on-computer calculation procedure of the attitude. 

Various fruitful algorithms have been developed for the on-computer attitude calculation, say single sample 

algorithm, double sample algorithm and so on. We can select the appropriate one based on the consideration 

of the algorithm precision and complexity. Since this paper focuses on the initial alignment method 

development, the explicit procedures of these calculation algorithms are not presented and only a general 

form as shown in (41) is presented. 

The MUSQUE is virtually an extension of the unscented Kalman filter (UKF) [20, 21] with consideration 

of the quaternion norm constraint. Since the norm constraint of the quaternion can be easily destroyed by the 

weighted-mean computation inherent in the UKF, the attitude quaternion can not be used directly as the 

filtering state. In order to overcome this problem the MUSQUE uses the quaternion for global nonsingular 

attitude representation and unconstrained generalized Rodrigues parameter (GRP) for local attitude 

representation and filtering. Given the error quaternion 4

T
Tq q      , where  is the vector part of the 

quaternion q , the corresponding GRP representation p is given by 

 
4

p f
a q








 (42) 

where a  is a parameter from 0 to 1, and f is a scale factor. 

In the MUSQUE, the state is selected as  ;k k kx   . Given the state estimate 1
ˆ

kx  at time instant 1k  , the 

corresponding state covariance 1kP  and the quaternion estimate 1
ˆ

kq  , the aim of MUSQUE is to determine the 

state estimate ˆ
kx and quaternion estimate ˆ

kq at time instant k . The explicit filtering procedure is given as 

follows 

Time Update 
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Generate the sigma points as 

  1

1 1 1

1

ˆ
p

k

k k k

k

x n P





 





  



 
    
 

 (43) 

where is a tune parameter which is usually set to3 n in the UKF to capture some higher order information 

of the distribution with n denoting the state dimension [19]. The i-th component of 
1

p

k

 
is denoted 

as  1

p

k i  and its quaternion form is denoted as      1 1 4, 1

T
T

k k kq i i q i    
     which can be calculated 

according to the reverse form of (42) as 

  
     

 

2 2
2 2

1 1

4, 1 2
2

1

1p p

k k

k
p

k

a i f f a i
q i

f i

 



 




 





   



 (44a) 

      1

1 4, 1 1

p

k k ki f a q i i  

  
     (44b) 

The corresponding quaternion based sigma points  1

q

k i  are given as 

    1 1 1
ˆq

k k ki q i q      (45) 

Propagate the quaternion and gyroscopes bias based sigma points through the process model (41) 

       1 11
, , ,q q b n

k k ib ink k
i ff i i     
  (46) 

Since the gyroscopes bias is viewed as constant, the propagated gyroscopes bias based sigma points are given 

as 

    11 kk k
i i   
  (47) 

The prediction of the attitude quaternion is given by the quaternion averaging algorithm as [22] 

 
31

ˆ arg max T

k k
q S

q q Aq



  (48) 

where 

    
2

1 1
1

1

2

n
Tq q

k k k k
i

A i i
n

 
 



   (49) 
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The predicted quaternion error based sigma points are given by 

    
1

1 1 1
ˆq

k k k k k k
q i i q 



  
  
 

 (50) 

Denote      1 1 4, 1
ˆ

T
T

k k k k k k
q i i q i  

  
 
 

, the corresponding predicted GRP based sigma points are given 

by 

  
 

 
1

1

4, 1

k kp

k k

k k

i
i f

a q i
















 (51) 

Denote
1 1 1

T
pT T

k k k k k k

   
  

 
 

, the predicted mean and covariance of the state are given by 

  
2

1 1
1

1
ˆ

2

n

k k k k
i

x i
n


 



   (52a) 

    
2

11 1 1 1 1
1

1
ˆ ˆ

2

n T

kk k k k k k k k k k
i

P i x i x Q
n

      


      
     (52b) 

where 1kQ  is the covariance of the process noise. 

Measurement Update 

Regenerate the sigma points as 

  
*

1*

1 1 1*

1

ˆ

p

k k

k k k k k k

k k

x n P






 





  



 
    
  

 (53) 

Denote the quaternion form of  *

1

p

k k
i


as  

     * * *

1 1 4, 1

T
T

k k k k k k
q i i q i  

  
 
 

 

which can be calculated according to the reverse form of (42) as 

  
     

 

2 2
* 2 2 *

1 1
*

4, 1 2
2 *

1

1p p

k k k k

k k
p

k k

a i f f a i
q i

f i

 



 




 





   




 (54a) 

      * 1 * *

1 4, 1 1

p

k k k k k k
i f a q i i  

  
  
 

 (54b) 
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The quaternion based sigma points corresponding to  *

1k k
q i


is given by 

    * *

1 1 1
ˆq

k k k k k k
i q i q 

  
   (55) 

Propagate the quaternion based sigma points through the measurement model (30) as 

     *

,1

q

k dv kk k
i C i  


  (56) 

where   *

1

q

k k
C i


denotes the attitude matrix corresponding the quaternion  *

1

q

k k
i


. 

The mean and covariance of the measurement are given by 

  
2

1

1
ˆ

2

n

k k

i

y i
n




   (57a) 

    
2

,

1

1
ˆ ˆ

2

n
T

y k k k k k k

i

P i y i y R
n

  


           (57b) 

where kR  is the covariance of the measurement noise. The cross-correlation covariance of the state and 

measurement is given by 

    
2

, 1 1
1

1
ˆ ˆ

2

n
T

xy k k kk k k k
i

P i x i y
n

 
 



         (57c) 

The state estimate and corresponding covariance are given by 

  ,1
ˆ ˆ ˆ

k k dv k kk k
x x K y


    (58a) 

 ,1

T

k k y k kk k
P P K P K


   (58b) 

where 

  
1

, ,k xy k y kK P P


  (58c) 

Attitude Update 

Denote ˆˆ ˆ
T

T T

k k kx p     . The quaternion corresponding to ˆ
kp is denoted as 4,

ˆ
T

T

k k kq q      which 

can be calculated as 
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q

f p

 



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


 (59a) 

  1

4,
ˆ

k k kf a q i p        (59b) 

The quaternion estimate is given by 

 
1

ˆ ˆ ˆ
k k k k

q q q


   (60) 

Reset the first three elements (GRP) of ˆ
kx to zero and go to the next filtering cycle. 

IV. PERFORMANCE EVALUATION THROUGH FIELD TEST  

In this section, the vector observations construction procedures for both the static and dynamic OBA 

methods are evaluated using field test data. Specifically, the following four initial alignment methods are 

evaluated: 

q method: full integration 

q method: partial integration 

filter: full integration 

filter: partial integration 

The term “full integration” means the integration procedure in (11) and “partial integration” the interleaved 

integration procedure in (14) or (31). The term “q method” is corresponding to the OBA method as the 

Davenport’s q method is used to calculate the constant attitude matrix. The term “filter” is corresponding to 

the dynamic OBA method as the MUSQUE algorithm is used to calculate the dynamic attitude matrix. In the 

partial integration procedure, 100 interleaved samples are used, i.e. 100mt t t   for (14) and (31). 

As is discussed in the last section, the two different integration procedures mainly affect the convergent 

speed and steady-state estimate of the corresponding attitude determination methods. In this section, we will 

evaluate the two characteristics of the aforementioned four initial alignment methods using car-mounted field 

test data collected on SINS with different levels of precision. One is the navigation-grade SINS equipped with 
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a triad of ring laser gyroscopes and accelerometers. The other is the low-grade SINS equipped with a triad of 

MEMS gyroscopes and accelerometers. The specifications of the navigation-grade and low-grade inertial 

sensors are listed in Tables I and II, respectively. 

TABLE I．SPECIFICATIONS OF THE NAVIGATION-GRADE INERTIAL SENSORS 

 Gyro Accelerometer 

Dynamic 

range 

400 s  3g  

Update rate 100Hz 100Hz 

Bias 0.05 h  50 g  

Bias stability 0.01 h  50 g  

 

TABLE II． SPECIFICATIONS OF THE LOW-GRADE INERTIAL SENSORS 

 Gyro Accelerometer 

Dynamic 

range 

150 s
 

10g  

Update rate 100Hz 100Hz 

Bias 0.5 s
 

0.005g  

Bias stability 0.02 s  
0.001g  

 

There is also a GPS antenna installed outside the cabin on the top of the car and the SINS/GPS integrated 

navigation result is used as the reference data to compare with. The raw measurements (1 Hz) of GPS were 

linearly interpolated to obtain the velocity and position at both ends of the update interval. 

A. Testing Results Using the Navigation-grade SINS 

According to [8], the OBA method can reach a satisfactory performance for the navigation-grade SINS 

after only 100s, therefore, we also make use of 100s collected data to test the involved initial alignment 

methods in this paper. The testing results of the four initial alignment methods using the navigation-grade 

SINS data are presented in Fig. 5-10, respectively. Fig. 5 and 6 plot the pitch angles estimates and estimate 

error, Fig. 7 and 8 the roll angles, Fig. 9 and 10 the yaw angles, respectively. The stead-state attitude error 
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summary of the four initial alignment methods is listed in Table III for comparison. It is shown that the full 

integration procedure can reach a much faster convergent speed and better stead-state estimate performance 

than the partial integration procedure. This is because that in the full integration procedure the sampling data 

collected from the inertial sensors is used more times and, in turn, more adequately than that in the partial 

integration procedure. The improvement in terms of convergent speed and steady-state precision by the full 

integration procedure is guaranteed by the high-grade specifications of the navigation-grade inertial sensors. 

That is to say, making use of the sampling data collected from the navigation-grade inertial sensors repeatedly 

will not cause accumulative errors. Therefore, for the OBA of the high-grade SINS, the full integration 

procedure will be more celebrated. Moreover, with the full integration procedure the dynamic method 

developed in this paper is a little better than the static method. However, the computational cost of the 

dynamic method is much larger than that of the static method. All the initial alignment methods are 

implemented using Matlab on a computer with a 2.66G CPU, 2.0G memory and the Windows7 operating 

system. In our experiment, the cost time of processing the 100s data is about52s for dynamic OBA method 

with full integration and 8s  for static OBA method with full integration. If the OBA methods are only 

regarded as coarse alignment methods which are used to provide rough attitude for the following fine 

alignment, the static OBA method will be more celebrated due to its less computational cost. 

The proposed dynamic OBA method shows no much improvement over the traditional method is mainly 

due to the inability of the proposed method to estimate the accelerometer biases. The accelerometer biases 

mainly determine the ultimate precision of the initial alignment. If the negative effect of the gyroscopes biases 

is not so obvious as for the navigation-grade SINS, the steady-state alignment precision is mainly determined 

by the accelerometer biases. Since both the static and dynamic OBA methods are unable to estimate the 

accelerometer biases, their performance is similar to each other in this case. Advanced method that is able to 

estimate the accelerometer biases can be expected to further improve the alignment performance of the 

navigation-grade SINS. 
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Fig. 5. Pitch angles estimates 
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Fig. 6. Pitch angles estimate error 
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Fig. 7. Roll angles estimates 
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Fig. 8. Roll angles estimate error 



IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 52, NO. 4 AUGUST 2016 

 

26 

 

0 20 40 60 80 100
40

60

80

100

120

140

160

Y
a

w
 /
 d

e
g

t / s

 

 

True

q method: full integration

q method: partial integration

filter: full integration

filter: partial integration

 

Fig. 9. Yaw angles estimates 
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Fig. 10. Yaw angles estimate error 

 

Table III. ATTITUDE ERROR SUMMARY USING NAVIGATION-GRADE INERTIAL SENSORS (unit: arcmin) 

 Pitch Roll Yaw 

q method: full integration -0.18 0.62 14.41 

q method: partial integration -0.23 1.92 21.15 

filter: full integration -0.07 0.48 5.88 
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filter: partial integration -2.51 0.99 104.4 

 

The main advantage of the developed dynamic method is its ability to estimate the gyroscopes biases 

coupled with the attitude. The gyroscopes biases estimate results with different integration procedures are 

presented in Fig. 11 and 12, respectively. Meanwhile, the gyroscopes biases estimate results using the 

SINS/GPS integration are also plotted in Fig. 11 and 12 to compare with. For the SINS/GPS integration, the 

initial gyroscopes biases are assumed to be zero, which is the same as that in the dynamic OBA methods. 

However, all the attitude, velocity and position are properly initialized. That is to say, the SINS/GPS 

integration is actually carried out after the attitude alignment. As it is shown, the gyroscopes biases estimate 

results using the full integration procedure are more close to the results of the SINS/GPS integration than that 

of the partial integration procedure. However, the results of all the three estimate procedure are not so well. 

This is because that for the high-grade SINS, the observability of the biases errors is feeble and much longer 

time is needed to converge the estimate results [6, 7].  
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Fig. 11. Gyroscopes biases estimates of the “filter: partial integration” and SINS/GPS 
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Fig. 12. Gyroscopes biases estimates of the “filter:full integration” and SINS/GPS 

B.  Testing Results Using the Low-grade SINS 

In this test, the car with low-grade SINS was moving in a large circle around the sports grounds with a good 

sky view of the GPS antennas. Two circles of test data with different velocities are collected to evaluate the 

alignment methods. In the first circle, 250s were taken for the car to make one circuit around the sports 

grounds. The testing results of the four initial alignment methods using the first data segment are presented in 

Fig. 13-18, respectively. Fig. 13 and 14 plot the pitch angles estimate and estimate error, Fig. 15 and 16 the 

roll angles, Fig. 17 and 18 the yaw angles, respectively. The stead-state attitude error summary of the four 

initial alignment methods is listed in Table IV for comparison. It is shown that both the two static OBA 

methods are no longer applicable. This is because that the gyroscopes biases have a much negative effect on 

the accuracy of the attitude and the static OBA methods are unable to estimate the biases during the attitude 

alignment. For the dynamic OBA methods developed in this paper, the partial integration procedure is 

effective while the full integration procedure is noneffective just as the static methods. This is because that 

the inertial sensors biases will cumulate in the constructed vector observations and when the integrating 

interval increases with time just as the full integration procedure the cumulated errors will be larger and larger, 

resulting in much degraded vector observations and, in turn, much degraded attitude estimate. The 
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effectiveness of the dynamic OBA method with partial integration procedure lies in its ability to estimate the 

gyroscopes biases. The gyroscopes biases estimate results with partial integration procedure along with the 

results of the SINS/GPS integration are presented in Fig. 19. It is shown that biases estimate results of the 

dynamic OBA method with partial integration procedure are comparable with that of the SINS/GPS 

integration. For comparison, the gyroscopes biases estimate results with full integration procedure along with 

the results of the SINS/GPS integration are presented in Fig. 20. It is shown that biases estimate results of the 

dynamic OBA method with full integration procedure are much degraded. Therefore, the dynamic OBA 

method with partial integration procedure is most celebrated for the low-grade SINS. 

It is shown that the estimate of the gyroscopes bias in the vertical direction has a much slower convergence 

speed than that of the gyroscopes biases. This is mainly due to the different degrees of observability. For more 

thorough details about the observability of the initial alignment, the reader is referred to the systematical and 

comprehensive study [7] for this problem. Although it appears that the test time is a little short to obtain a 

clear result for the vertical gyroscopes bias, it does not affect the demonstration of the validity of the proposed 

dynamic OBA method. This is because that the performance of the proposed dynamic OBA method in 

estimating the gyroscopes biases is comparable with that of the SINS/GPS integration which is the accredited 

method in estimating the sensor biases. However, it should be noted that the SINS/GPS integration is founded 

on the linearized system error models and necessitates the initial alignment to provide roughly known initial 

attitude to guarantee the validity of such linearization. If the attitude can not be aligned appropriately, the 

performance of the SINS/GPS integration will be much degraded. Therefore, the investigated initial 

alignment method is still necessary in practical application. It can be seen in Fig. 13-18 and Tab. IV that the 

dynamic OBA method with partial integration procedure can align the attitude quite well. Therefore, the 

subsequent stage of SINS/GPS integration can be readily carried out after the dynamic OBA. Meanwhile, the 

attitude alignment time should not be too long due to some special military requirements in terms of 

maneuverability. In this respect, the test time is appropriate for the attitude alignment. The calibration of the 
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sensor biases can be further carried out in the subsequent SINS/GPS integration stage. 
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Fig. 13. Pitch angles estimates (first circle) 
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Fig. 14. Pitch angles estimate error (first circle) 
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Fig. 15. Roll angles estimates (first circle) 
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Fig. 16. Roll angles estimate error (first circle) 
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Fig. 17. Yaw angles estimates (first circle) 
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Fig. 18. Yaw angles estimate error (first circle) 

 

Table IV. ATTITUDE ERROR SUMMARY USING LOW-GRADE INERTIAL SENSORS (first circle, unit: deg) 

 Pitch Roll Yaw 

q method: full integration 1.77 2.97 207.81 

q method: partial 

integration 

2.42 2.99 -57.58 

filter: full integration 2.87 2.35 29.69 
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Fig. 19. Gyroscopes biases estimates of the “filter: partial integration” and SINS/GPS (first circle) 
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Fig. 20. Gyroscopes biases estimates of the “filter: full integration” and SINS/GPS (first circle) 

In the second circle, 150s were taken for the car to make one circuit around the sports grounds. The testing 

results of the four initial alignment methods using the second data segment are presented in Fig. 21-26, 

respectively. Fig. 21 and 22 plot the pitch angles estimate and estimate error, Fig. 23 and 24 the roll angles, 

Fig. 25 and 26 the yaw angles, respectively. The stead-state attitude error summary of the four initial 

alignment methods is listed in Table V for comparison. The gyroscopes biases estimate results of the dynamic 
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OBA method with partial integration procedure along with the results of the SINS/GPS integration are 

presented in Fig. 27. The gyroscopes biases estimate results of the dynamic OBA method with full integration 

procedure along with the results of the SINS/GPS integration are presented in Fig. 28. We can draw the same 

conclusions from these results with those from the last experimental results. It should be noted that the 

gyroscopes biases in the two experiments are not the same with each other. This is because that the 

gyroscopes biases are always not the same after each application of power, which is known as the bias 

instability. Admittedly, this observation suggests that the gyroscopes biases should be estimated in each 

application, which can further give prominence to the significance of the proposed dynamic OBA method for 

the attitude alignment of the low-grade SINS. 
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Fig. 21. Pitch angles estimates (second circle) 
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Fig. 22. Pitch angles estimate error (second circle) 
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Fig. 23. Roll angles estimates (second circle) 
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Fig. 24. Roll angles estimate error (second circle) 
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Fig. 25. Yaw angles estimates (second circle) 
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Fig. 26. Yaw angles estimate error (second circle) 

 

Table V. ATTITUDE ERROR SUMMARY USING LOW-GRADE INERTIAL SENSORS (second circle, unit: deg) 

 Pitch Roll Yaw 

q method: full integration -2.81 -0.38 -124.41 

q method: partial integration -2.52 -1.13 -32.75 

filter: full integration -2.47 -1.01 -51.71 

filter: partial integration 0.07 0.18 -1.47 
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Fig. 27. Gyroscopes biases estimates of the “filter: partial integration” and SINS/GPS (second circle) 
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Fig. 28. Gyroscopes biases estimates of the “filter: full integration” and SINS/GPS (second circle) 

It should be noted that the 100 interleaved samples used in the partial integration is only a special case. The 

length of integration time interval has a remarkable effect on the performance of the developed dynamic OBA 

method. For the navigation-grade SINS, making use of the sampling data more adequately can reach a better 

performance in terms of convergent speed and steady-state precision. For the low-grade SINS, however, the 

situation is a little complex. On the one hand, too less sampling data incorporated into the integration can not 

guarantee the appropriate convergent speed. On the other hand, too more sampling data incorporated into the 

integration may cause accumulative error due to the inherent inertial sensors’ error. In this respect, it is desired 

to determine the length of integration time interval under different conditions. However, there is no universal 

method to achieve such end and it can only be determined through experiment study. Regarding the utilizing 

procedure of the sampling data over certain time intervals, the investigated method has a reasonable similarity 

to the finite impulse response (FIR) filter. Recently, Shmaliy and Simon have investigated unbiased FIR filter 

for the state-space model based problems and presented a unified forms for Kalman and FIR filtering [24, 25]. 

In [24], it is pointed out that the optimal window size can be easily estimated experimentally by minimizing 

an elaborate cost function without any “true” reference. The similarity between the Kalman and FIR filtering 

motives us to determine the length of integration time interval according to the proposed method in [24], 
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which is the further research regarding the investigated dynamic OBA method. 

V. CONCLUSION 

The newly developed OBA method has been proven to be an ingenious method for the SINS initial 

alignment under swaying or maneuvering conditions. Typically, there are mainly two integration procedures 

for the construction of the vector observations used in the OBA methods. However, the conflicting properties 

of the two integration procedures necessitate a further investigation of the OBA methods. Meanwhile, the 

existing OBA methods are all unable to estimate anything other than the attitude and can be viewed as static 

methods, which stultifies them for the low-grade SINS. Based on the construction process of the static OBA 

methods, a dynamic OBA method is developed to estimate the gyroscopes biases coupled with the attitude, 

which is expected to be applicable for the low-grade SINS. The existing static OBA methods and the 

developed dynamic OBA method with different integration procedures are comprehensively evaluated in 

terms of convergent speed and steady-state estimate using field test data from both navigation-grade and 

low-grade SINS. The comparison analysis shows that for the navigation-grade SINS the static OBA method is 

most celebrated due to its less computational cost and appropriate steady-state estimate precision. In this case, 

making use of more acceleration information can result in a much faster convergent speed with no 

degradation in steady-state estimate due to the high-grade specifications of the navigation-grade inertial 

sensors. For the low-grade SINS, the static OBA methods are no longer applicable due to the accumulative 

errors in the constructed vector observations caused by the large inertial sensors biases. In this case, the 

developed dynamic OBA method with interleaved integration procedure is most celebrated since it can 

estimate the gyroscopes biases appropriately and thus result in a much better attitude alignment performance. 

Making use of more acceleration information from the low-grade inertial sensors will cause much 

accumulative errors in the constructed vector observations, which can even stultify the dynamic OBA 

method.  

A disadvantage of the proposed algorithm is that it can not estimate the accelerometer biases. Quite recently, 
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Wu et al. [23] propose an online constrained-optimization method to simultaneously estimate the attitude and 

the inertial sensor biases. This online constrained optimization method performs quite well in estimating the 

attitude and the accelerometer biases. However, its performance of estimating the gyroscopes biases is 

compromised due to the severe noise and disturbance. Therefore, this online constrained optimization 

method is confined to those accurate applications with navigation-grade SINS measurements [23]. In this 

respect, the online constrained optimization method and the proposed dynamic OBA method is 

complementary to each other in joint estimation of the gyroscopes/ accelerometer biases. In the future work, 

we will try to handle the gyroscopes/ accelerometer biases simultaneously by combining the virtue of the 

online constrained-optimization method and the proposed dynamic OBA method. 
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