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 

Abstract—The pair correlation function is introduced to target tracking filters that use a finite point process target model as a 

means to investigate interactions in the Bayes posterior target process. It is shown that the Bayes posterior target point process of the 

probability hypothesis density (PHD) filter—before using the Poisson point process approximation to close the recursion—is a spatially 

correlated process with weakly repulsive pair interactions. The reduced Palm target point process is introduced to define the 

conditional target point process given the state of one or more known targets. Using the intensity function of the reduced Palm process, 

an approximate two-stage pseudo maximum a posteriori track extractor is developed. The proposed track extractor is formulated for 

the PHD filter and implemented in a numerical study that involves tracking two close-by targets. Numerical results demonstrate 

improvement in the mean optimal subpattern assignment statistic for the proposed track extractor in comparison to the Gaussian 

mixture PHD filter’s state extractor. 

 

Index Terms—Reduced Palm intensity, Palm filter, Conditional intensity, Pair correlation, Intensity filter, PHD filter, Track 

extraction. 

I. INTRODUCTION 

A set of target tracking filters based on finite point process models such as the probability hypothesis density (PHD) filter [1], 

the intensity filter (iFilter) [2], and the cardinalized PHD (CPHD) filter [1] bypass the need to explicitly enumerate 

measurement-to-target assignments by approximating the Bayes posterior target process with a finite point process model in 

which all targets share a common probability density function (pdf) which is proportional to the intensity function of the 

posterior target process. This approximation ignores correlations between pairs of target states and any higher order interactions 

that involve groups of targets. The present paper is concerned with pair correlations that exist between targets in the Bayes 

posterior point process of the PHD filter before it is approximated with a Poisson point process (PPP) in order to close the 

recursion that defines the filter algorithm. Explicit expressions for the pair correlation function of the Bayes posterior point 

process are derived from the generating functional of the joint target-measurement point process. 

The existence of pair, or spatial1, correlation in the Bayes posterior target process implies that track extraction methods should 

somehow compensate for the correlation between detected targets. Although of little practical significance in many situations, 

ignoring this correlation will lead to biased state estimates, especially for closely spaced targets. To compensate for the spatial 

correlation, [3] introduced methods leading to a finite point process called the reduced Palm process [4], [5, Chapter 13], [6]. The 

intensity function of the reduced Palm process acts like a whitening filter, meaning that the reduced Palm process uses 

conditioning on detected targets to reduce the intensity of the Bayes posterior intensity function. Simply said, the reduced Palm 
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process is a kind of subtractor, or notched intensity filter. While the intensity function collapses the multitarget state into a single 

target state space, the reduced Palm process separates individual detected targets from the other targets.  

Derivation of the conditional intensity function of the reduced Palm process requires the calculation of second or higher 

factorial moments of the Bayes posterior process. For the PHD filter, it is seen in [3] that the information encoded in the second 

factorial moment is of value for resolving a target pair that may be otherwise merged in the intensity, or PHD, function. While 

earlier work in [7] also studies the second-order statistics of multitarget systems in order to devise a second order multitarget 

tracking filter which propagates not only the intensity function but also the covariance density of the random track set, its 

conclusions suggest that computationally tractable second order multitarget filters are unlikely to be devised. Therefore, [7] 

offers an alternative path to generalize Kalman filtering for multitarget systems. This work is further developed in [8] and [9]. 

This line of work eventually leads to the partially higher order (i.e., “first order in the states of individual targets, but of higher 

order in the target number” [10]) target process model for the CPHD filter and its approximations such as [11]. In contrast, [3] 

does not specifically aim to derive a new filter based on an enhanced target process model. It exploits the information encoded in 

the second or higher factorial moments of the Bayes posterior target process for the purpose of track extraction. Its results are 

general and applicable to cardinal filters as well. 

Building on the results of [3], this paper provides three main contributions. Firstly, in Section V, using the second factorial 

moment of the Bayes posterior process, the exact form of the pair correlation function of the PHD filter is derived. As seen in 

Section V.B, this proves analytically that the Bayes posterior process of the PHD filter before the PPP approximation is 

inherently a spatially correlated process. This is because of the fact that the pair correlation function of the Bayes posterior 

process is less than or equal to one for any pair of target states. In contrast, lack of correlation in the usual statistical sense 

corresponds to the case where the pair correlation function is strictly equal to one [4]. A finite point process that has a pair 

correlation function which is less than one for any arbitrary pair of points will be called a weakly repulsive point process (see, 

e.g., [12, Section 6.1.1] for the definition of repulsive and attractive point processes).  

Secondly, in Section VI, a two-stage pseudo maximum a posteriori (pseudo-MAP) track extractor for a general finite point 

process multitarget model is derived. The first stage of the track extractor estimates the canonical, or cardinal, number of the 

target process, and the second stage sequentially extracts marginal target pdfs due to extracted targets using a general bivariate 

target-measurement process probability generating functional (PGFL). While the two-stage track extraction process is well-

known (see, e.g., [1]), the introduction of the conditional intensity function for the purpose of sequential peak determination and 

the introduction of the reduced Palm process for the purpose of individual target pdf extraction are novel contributions of this 

work. The track extractor for the PHD filter is formulated.  

Thirdly, in Section VII, the paper derives the reduced Palm intensity function of the Bayes posterior process of the PHD filter 

and uses it to carry out the multi-dimensional optimization required to find the pseudo-MAP estimate of the extracted target 

states. This sequential procedure uses a series of single target optimizations. The introduction of a modulation term which is 

called herein the Palm corrector is the last main contribution of this paper. The Palm corrector is a subtractive tool that acts 

similarly to a spatial whitening filter (a name adopted from the traditional time series signal processing literature). It is a general 

tool which can also be applied to other tracking filters.   

The Palm track extractor does not directly depend on explicit [13-18] or implicit [19],[20] clustering methods. The Palm 

method proposed in this paper is similar to the CLEAN algorithm of radio astronomy [21], which removes targets from the 

intensity function sequentially using the shape of the intensity surface around expected target states [22],[23]. 

The outline of this paper is as follows: The PGFL of a finite point process and its functional derivatives are described in 

Section II. The PGFL of the reduced Palm process is derived in Section III.  In Section IV, the joint PGFL of two finite point 
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processes is given and used to find the PGFL of the Bayes posterior of one point process conditioned on realizations of another 

one. Additionally, the pair correlation function is defined in Section IV. In Section V, the pair correlation function for the PHD 

filter is derived. The two-stage track extraction algorithm is presented in Section VI, and the track extraction algorithm is 

formulated for the PHD filter in Section VII. In Section VIII, numerical examples are presented, and concluding remarks are 

given in Section IX. 

II. PROBABILITY GENERATING FUNCTIONAL 

The event space  S of a simple finite point process Ξ is the set of all ordered pairs of the form   1 , , , nn s s .  The points 

i
s  are in the state space S , which is typically taken to be a specified subset of dim( )S .  The event space is called the “Grand 

Canonical Ensemble,” and the number n is called the canonical, or cardinal, number.  For 0n , the event is  0, . For 1n  , 

the event corresponds to !n  equally likely ordered events of the form     1, , , nn s s  ,   Sym n , where  Sym n  denotes 

the set of all permutations of the first n positive integers. 

Background discussions for finite point processes can be found in the authoritative text [5].  Consider a real-valued function h

on the state space dim( )SS =  , the probability generating functional (PGFL) of Ξ is defined as:  

       1 1
0 1

 , , ,
n

n

i n nS
n i

G h E h h s p n s s ds ds


 

 
    

 
   (1) 

Simply put, the PGFL is the expectation of the random product  
1

n

ii
h s

 , and it is only evaluated for functions h  such that 

(1) is absolutely convergent.  It is shown in [24] (Theorem 4.1) that for symmetric probability distributions, i.e. distributions that 

are invariant under point order permutations, the PGFL determines a finite point process uniquely. The next section describes a 

method of extracting information from the PGFL by functional differentiation.  Functional differentiation is essentially the same 

as in the classical Calculus of Variations, but with an additional second limiting step involving a test sequence for a Dirac delta 

(discussions of test sequences are widely available, e.g., see [25]).   

A. Derivatives of the Probability Generating Functional 

The functional derivative of  G h  with respect to the variation w is defined by 

   
0

lim
G d

h G h w
w d





 


 (2) 

The variation w is a specified bounded real-valued function on S  and it is assumed that  sup 1
s S

h s


 .   Here, we assume that w  

is a function in a test sequence for the Dirac delta (see, e.g., [25]).  Using (1) and (2) gives 

       1 1
0 1

, , ,
n

n

i i n n
n iS

G h w h s w s p n s s ds ds 


 

         (3) 

Since integrals and sums are absolutely convergent, taking the limit in (2) gives 

       1 1
1 1 1,

, , ,
n

n n

k i n n
n k i i kS

G
h w s h s p n s s ds ds

w



   

 
     
   (4) 

Now, the limit of (4) taken over the test function sequence w  for the Dirac delta     x s s x    with a point mass at 

s x S  defines the derivative of the PGFL as 
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     
   

     1 1
1 1 1,. .

, , ,
n

x

n n

x k i n n
n k i i kwx S

G G G
h h h s h s p n s s ds ds

x w 






   

   
         

   (5) 

Using the sampling property of the Dirac delta , the symmetric structure of  1, , , np n s s  and relabeling arguments give: 

 
 

   
1

2 2
1 2

, , , ,
n

n

i n n
n iS

G
h n h s p n x s s ds ds

x 



 

  
     
   (6) 

Higher derivatives can be derived using the same mechanics. The result is [26]  

     
 

   1 1 1
11

1 1  , , , , , ,
n k

k n

i k k n k n
n k i kk S

G
h n n n k h s p n x x s s ds ds

x x 



 
  

  
           
   (7) 

Derivatives of the PGFL with respect to any finite number of Dirac deltas provide a mechanism to recover the pdf of the point 

process. For example, the kth derivative of the PGFL evaluated at  0h   gives:  

   1
1

0 ! , , ,
k

k
k

G
k p k x x

x x


 

 
 (8) 

This is the pdf of the unordered event  1, , kx x . 

The PGFL evaluated at (.)h x  generates the probability generating function (PGF) of the canonical number of points of the 

point process [26]: 

       
.

0

n

h x
n

F x G h x p n





   (9) 

The expected number of points is the derivative of  F x  evaluated at 1x = , that is, [ ] (1)E N F¢= .  

B. Factorial Moments of the PGFL 

The special case of (6) as  .h  approaches 1 is 

     
 

 
1

2 21
1 1

, , , ,lim
n

n n
h n S

G
m x n p n x s s ds ds

x
h





 


   


   

(10) 

The function    1m x is called the first moment of the point process.  In the larger literature, it is also called as the intensity 

function.  In the tracking literature [1], it is often referred to as the PHD function.  It gives the expected number of points in the 

point process per unit state space S.  

With Dirac deltas at distinct locations, the higher derivatives evaluated with  . 1h   give factorial moments of the point 

process: 

         
 

 1 1 1 1
1 1

, , 1 1 , , , , , ,lim
n k

k

k k k n k nk
h n kk S

G
m x x n n n k p n x x s s ds dsh

x x 



 
 


         

 
   (11) 

Factorial moments [24] are the key to understanding the Palm process and pair (and higher order) correlation functions. 

In what follows, the limit  . 1h   will be dropped for notational convenience, i.e.    
11 1

1 lim
k k

hk k

G G

x
h

x x x

 


   
. 

III. THE REDUCED PALM PROCESS 

The Palm distribution formalizes conditioning on a point of the process. Intuitively speaking, it describes the distribution of 

the population given that there is a point at a specified location. The Palm process includes this point in realizations of the 
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process. The theory was first developed by C. Palm in 1943 in early work in the area of telephone communication (see [27] for 

an English translation of Palm’s original paper). It was further developed and generalized to several dimensions by others (see 

[5, Chapter 13], [28], and references therein). For the purpose of track extraction however, what is of interest is the distribution 

of the population excluding the point given at the specific location. This distribution defines the “reduced” Palm process.     

Let the pdf  1, , , np n v v be described as: 

 1

0

, , ,

         

        

   1, ,
lim

( )

n

th

i

ndV

p n v v

thereareexactly n points and i point

Pr is in theball of radius centered at v

of volumedV for i n

dV





 

 
 
 
   

 (12) 

Because of the symmetric structure of (.)p , given a fixed set of points  1, ,k
kx x x  , 1k ³ , and a set  1, ,t

tv v v  , 0t ³

, the probability that an event produced by the process has t k  distinct points in infinitesimal balls centered at the points of the 

set union   1 1, , , , ,k t
k tX x v x x v v     is  1 1, , , , , , ! n k

t k

t k
p t k v v x x k dV

k
 

    
 

 . 

In this expression, the coefficient !
t k

k
k

 
 
 

 counts the number of ways in which t k  members can be assigned to k fixed balls 

centered at the points of kx . Finding the conditional probability of the event that point process has t additional members in 

infinitesimal balls centered at the elements of   1, ,t
tv v v   given that the event has k distinct members in infinitesimal balls 

centered at the points of kx  involves integrating out 1, , tv v   over all possible states and for all canonical numbers t . That is, 

the reduced Palm pdf is defined as: 

  
 

 

1 1

1 1
0

1 1 10

, , , , , , !

lim , , , | , ,

, , , , , , !
i

t k

t k

i k ii S

t k
p t k v v x x k

k
p t v v x x

i k
p i k s s x x k ds ds

k

 



 
    

   
 

    
 

 
 (13) 

provided the limit exists. Let n t k  , then (13) can be rewritten as:  

        
     

1 1
1 10

1 1 1

, , , , , , 1 1
lim , , , | , ,

, , , , , , 1 1
i k

t k
t k

i k ii k S

p n v v x x n n n k
p t v v x x

p i k s s x x i i i k ds ds






     
  

        
 (14) 

The denominator of (13) is equal to the kth factorial moment given in (11).  

A. The PGFL of the Reduced Palm Process 

The conditional probability model of the reduced Palm process is defined in (14). With the required index changes, the PGFL 

of the reduced Palm process is equal to:  

       
       1 1

1 1 1
1 1

, , , , , ,
| , , | , , 1 1

, ,n k

n k
t k

k k i n k
n k i kkS

p n s s x x
G h x x E h x x h s n n n k ds ds

m x x

 


 

  
                  

   (15) 

Since    1 , , kkm x x  is independent of the summation and the integration, (15) is proportional to the functional derivative of 

 G h  with respect to k distinct Dirac deltas located at 1 , , kx x  given by (7).  The PGFL of the reduced Palm process is seen to 

be the ratio of the kth derivative of the PGFL with the kth factorial moment: 
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 
 

   

 

 
1 1

1
1

1

| , ,
, ,

1

k k

k k
k k

kk

k

G G
h h

x x x x
G h x x

m x x G

x x

 
   

      
 

 (16) 

The factorial moment in the denominator acts as a (Bayesian) normalizing factor. In words, (16) says that the normalized 

functional derivatives of a finite point process are the PGFLs of the reduced Palm processes [5, Proposition 13.2.VI].  

Realizations of the reduced Palm process events do not include points of the conditioning set. The Palm process events are 

formed from the reduced Palm process events by concatenating the conditioning set to each event. The reduced Palm process is 

more suitable to track extraction purposes than the Palm process itself. 

If it exists, the intensity function of the reduced Palm process, at 1kx   is given by: 

    
 

 
11

1

1 1
1

1

1

| , ,

1

k

k
k k k

k

G

x x
m x x x

G

x x







 

 


 

 (17) 

Example I: The reduced Palm Process for the PPP 

The PGFL of the PPP with the intensity function  f s  is given by [26]: 

       exp 1
S

G h f s h s ds   (18) 

Using the results of section 2.A, the functional derivative of  G h  with respect to a Dirac delta at x is 

     G
h G h f x

x





 

(19) 

Using (15)-(19), it is straightforward to verify the well-known result that, the PGFL of the reduced Palm process is equal to that 

of the original PPP: 

 

 
  

1

G
h

x G h
G

x


 



 (20) 

Furthermore, the derivatives of the PGFL have the factorized form 

     
11

n n

i
in

G
h G h f x

x x 




    
(21) 

From (21), it follows that the PGFL of the reduced Palm process conditioned on k distinct points is identical to the PGFL of the 

original PPP:  

 

 
 1

1

1

k

k
k

k

G
h

x x
G h

G

x x


 




 

 (22) 

This is a restatement of the well-known independent scattering property of PPPs [2]. It does not hold for general processes. 

Another result of the independent scattering property of PPPs is the factorization of its moments. This will lead to the 

conditional intensity function at an arbitrary point  1 1, ,k kx x x   to be:  
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        
   

   

       
1

1 1 1
1 1

1

1 1

11 1

11

| , ,

k

k i
k k k

k

i

i

k

k

k i

m x x m
m x x x m

m x x m

x
x

x



 








   





 (23) 

Therefore, for PPPs, the intensity function at an arbitrary point is independent of its value at any other point that is not in the set 

 1, , kx x . For target tracking purposes, a PPP multitarget model indicates that there is no dependency between distinct target 

states. 

 

Example II: The PGFL of the Reduced Palm Distribution for the Independently and Identically Distributed Clusters  

Independently and identically distributed (IID) clusters are the finite point process model of the measurement and the target 

point processes for the cardinalized PHD filter [10]. Dividing  1, , , np n s s
 
into two functions, namely the distribution of the 

canonical, or cardinal, number with the point mass function ( )Np n  and the spatial distribution of each point with the pdf  p s , 

the PGFL of  IID clusters is given by 

        
0

( ) ( ) ( )
n

N
N S S

n

G h p n h s p s ds G h s p s ds




     (24) 

where ( )NG   is the ordinary PGF of the canonical number, N , of the process. Let ( )NG    denote its ordinary derivative.  

Following Section 2A, the PGFL of the reduced Palm distribution for the IID clusters conditioned on the existence of a point at 

1x  with 1( ) 0p x   is  

 
 

 

      
 

1

1
11

1

1
1 1

( )
[ | ]  

1 ( )

n

N S
n

N
n

G
h p x p n n h s p s ds

x
G h x

G
p x p n n

x

 









 



 


 (25) 

The term 1( ) 0p x   can be cancelled. The sum in the numerator is the ordinary derivative of the PGF of the canonical number 

evaluated at ( ) ( )S h s p s ds , while the sum in the denominator is the derivative of the PGF evaluated at one. Thus,  

 
 

1

( ) ( )
[ | ]

(1)

N

S

N

G h s p s ds
G h x

G







 (26) 

This gives the conditional intensity function at 2x  as  

 
 

 
   

 

     

 

2
2

[1] 2 1 1
2

1

1 22

1
1

( | ) [1 | ]

( (

1

)

1

) N N
n

N

h

n

N

S

N

N

G h s p x p n n n
p x Gx

m x x G x
x G G

p n n

p s ds












  
 









 (27) 

where ( )NG    is the second derivative of ( )NG  . The ratio of conditional intensity and the intensity functions at 2x  with 

2( ) 0p x   is then given by 

   
   

   

 

21

21

1 2
2

1

1| N
n

N

n

p n n nm x x

m x
p n n












 
 
 




 (28) 

For the Poisson distributed canonical number probability mass function (pmf), it is easy to show that the ratio of the conditional 

intensity and the intensity functions is equal to one. For such case, IID clusters are a PPP. For an arbitrary canonical number pmf 
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however, the ratio can be larger or smaller than one. A simple example to demonstrate this is the uniform canonical number pmf.  

Assuming a uniform distribution on the number of points from zero to 1K ³ , the value of the ratio (28) can be seen to be 

greater than one for 4K  , less than one for 4K   and equal to one for 4K  . For general IID clusters, therefore, the factorial 

moments are not the product of first moments. Moreover, (28) shows that the interaction in the factorial moments at an arbitrary 

pair of points 1x  and 2x   (with  1 0p x   and  2 0p x  ) does not depend on the separation between the two points, that is, the 

interaction between points is global, not local. In target tracking applications, a direct result of this fact is the “spooky” 

interaction between widely separated targets reported in [30]. 

 

IV. THE BAYES POSTERIOR PGFL FOR TWO PROCESSES 

Let   be a finite point process with events    1, ,  , mm y y Y  , where the measurement space Y  is in general unrelated to 

the target state space S . Extending the definition (1) of the PGFL for Ξ  to the joint point process  , Ξ  with events in the 

Cartesian product space    Y S   gives  

       Υ
1 1 1 1

0 0 1 1

, , , , , , , ,
m n

n m

i j m n m n
n m i jY S

G g h h s g y p m y y n s s dy dy ds ds
 

   

  
      

   
   Ξ  

(29) 

The products in (29) are defined to be one for 0m =  and 0n = . For  . 1h   or  . 1g  , the PGFL of the joint process 

reduces to the PGFL of the single process. 

   Υ Υ ,1G g G g Ξ  and    Υ 1,G h G hΞ Ξ  (30) 

Taking the functional derivatives of  Υ ,ΞG g h  with respect to Dirac deltas at 1, , kz z  in Y and taking  . 0g   gives  

  

     
ΥΞ

1 1 1
0 11

0, ! , , , , , , ,
n

k n

i k n n
n ik S

G
h k h s p k z z n s s ds ds

z z



 

  
       

   
(31) 

Similarly, using (29), 

   
ΥΞ

 
1

1

0,1 ! , , ,
k

k
k

G
k p k z z

z z


 
 

 
(32) 

The pdf of the conditional process |ΥΞ  is defined by 

 
 

 
 | ,

( | )
p

p
p

 
 




 

  
(33) 

where n  is a realization of  . Therefore, similarly to the PGFL of the reduced Palm process, the PGFL for the Bayes posterior 

process is the ratio of (31) and (32): 

 
 

 

ΥΞ

Ξ|Υ 1
ΥΞ

1

0,

|

0,1

k

k
k

k

G
h

z z
G h

G

z z




 



 

 (34) 

The functional derivatives of the Bayes posterior PGFL with respect to Dirac deltas with  . 1h   give its factorial moments. 

The first factorial moment is the intensity function, or the PHD function, and gives the expected target count per unit space. 

From (30) and (31), the intensity function is 
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   
 

 
1

1
1

2

1

21 ,...,, , , , , ,
| .

, , ,

n k n nS
n

k

n p k z z n x s s ds ds
m x

p k z z










 




 
 (35) 

A. The reduced Palm intensity function of the Bayes posterior process  

From (17), the reduced Palm intensity function of the Bayes posterior process at  1 1, ,N Nx x x   conditioning on the 

existence of the set of points  1, , Nx x  is the normalized derivative given by:  

      
 

 

Ξ|Υ

Ξ|Υ 1 1
1 1 1 Ξ

1

1 |Υ

1

1 |
...

| , , , 1 | , , ,

1 |
...

N

N
N N

N

N N

G

x x
m x x x G x x

G

x x


 









 

      
 

 (36) 

Writing for the PGFL of the Bayes posterior process with  1 , , kz z   gives: 

    
     

     

1

 |
1 1 1 2

1
1 1

 |
1 1 1

2

1

1

1 ... , , , , , ,...,
| , , ,

1 ... 1 , , , , , ,...

, ,...,

, , ,, ...

n N

n N

k N n N nS
n N

N N

k

N

N N n N nS
n N

n n n N p k z z n x x s s ds ds
m x x x

n n n N p k z z n x x s s ds ds


 




 

 
 

 










   
 

    

 

 
 (37) 

For the special case 1N  , the ratio of the reduced Palm intensity function of the Bayes posterior process at state 2x , conditioned 

on the existence of a point at state 1x  (with    11 0m x  ), and the intensity function of the Bayes posterior process at state 2x  is 

given by: 

    
   

   
       

   

 

 

 

2

1

1

1 1

1

 
1 1 3

2

 
1 1 2 2

1

1

 
1 2

1

2 21 2

2 21 1 1

2 3

2 2

,

,...,

,...,

,...,

| , |

| | |

1 , , , , , , ,

, , , , , ,

, , ,

, , , , , ,

n

n

n

k n nS
n

k n nS
n

k

k n nS
n

m x x m x x

m x m x m x

n n p k z z n x x s s ds ds

n p k z z n x s s ds ds

p k z z

n p k z z n x s s ds ds

 

  


























  


 




 

 

 

 

 (38) 

Even for the PPP model where there exists no correlation between the two distinct states 1x  and 2x , the ratio (38) shows that in 

the Bayes posterior point process, the conditional intensity function at 2x  may depend on 1x  based on the structure of p  . This 

pairwise correlation and any higher order dependency involving more than two points is lost when a Poisson approximation is 

used to close a Bayesian recursion. 

 The ratio of conditional intensity and the intensity functions for a pair of points as in (38) is known in the point process theory 

literature as the pair correlation function. The pair correlation function is defined as the ratio of the second factorial moment and 

the first moment at two distinct states [4]. Pair correlation is a non-negative function. Let G  denote the PGFL of a finite point 

process, the pair correlation function  1 2 ,  x x
 
is defined by: 
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 
 

   
   

       
1 221 2

1 2
1 21 1

1 2

2

1 ,
 ,  

1 1

G
m x xx x

x x
G G m x m x
x x




 

 
 
 

 

(39) 

For a PPP, since the moments factor as in (23), the pair correlation function is identically equal to one. This is a direct result of 

its independent scattering property. A different pair correlation value indicates dependent scattering between pairs of points. For 

such a case, if the pair correlation is less than one, the likelihood of observing the pair together in the outcome space is 

diminished compared to an independent sample model. On the other hand, a pair correlation greater than one indicates a 

comparatively increased likelihood of observing such a pair together. Therefore, the pair correlation function is an indicator of 

pairwise interactions in a point process model. 

V. EXAMPLE: CORRELATION IN THE PHD FILTER  

Let  Ξf s  and  y  be the intensity functions of the predicted target process and the measurement process, both of which 

are assumed to be Poisson. Let  DP s  be the target detection probability, and ( | )p y s  be the measurement likelihood function. 

The PGFL of the joint event for the PHD filter is derived in [1].  The joint PGFL can be written in the form (see [26]): 

 

     

     

       

Ξ

ΥΞ Ξ

Ξ

( 1)

, exp (1 )

( | )

Y S

D

S

D

S Y

y g y dy f s ds

G g h h s P s f s ds

g y h s P s p y s f s dy ds

  
 
   
 
   

 

 

 (40) 

A. The Bayes posterior process  

Let  1, , , kk z z    denote the k measurements reported by the sensor. Then the PGFL of the Bayes posterior process Ξ|ΥG  

can be found by carrying out the functional derivatives in (32) on the bivariate PGFL (40). The result is: 

 
 

 

           

         

 
 

       

     

ΥΞ

Ξ|Υ 1
ΥΞ

1

ΥΞ Ξ

1

ΥΞ Ξ

1

ΞΥΞ

ΥΞ Ξ
1

0,

|
0,1

0, |

0,1 |

( | )0,

0,1 ( | )

k

k
k

k

k D
i ii S

k D
i ii S

Dk
i iS

D
i i iS

G
h

z z
G h

G
z z

G h z h s P s p z s f s ds

G z P s p z s f s ds

z h s P s p z s f s dsG h

G z P s p z s f s ds


















 



 

   
  

 
 
   

 
 




 (41) 

where, from (40), 

 
         

ΥΞ
Ξ

ΥΞ

0,
exp 1 1

0,1
D

S

G h
h s P s f s ds

G

 
   

 
  (42) 

is seen to be the PGFL of the thinned PPP modeling the multitarget process.   

The resulting PGFL (41) has a factorized form involving 1k +  terms. This means that it is the superposition of 1k +  

independent point processes. The first independent target process in (41) is the PPP thinned due to the detection probability 

which corresponds to the missed targets. Its PGFL is given in (42). The next k independent Bernoulli processes in (41) 

correspond to the measurements.  A Bernoulli process comprises a Bernoulli trial with outcomes labeled “detection” and “missed 
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detection.”  A target at x  is detected with probability  DP x , and – if detected – it produces the measurement 
i
z  with the 

likelihood function ( | )ip z x .  The PGFL of the Bernoulli process for the measurement 
i
z  is 

       
     

Ξ

Ξ

( | )
[ ]

( | )
Bernoulli

D
i iS

D
i iS

z h s P s p z s f s ds
G h

z P s p z s f s ds













 (43) 

As a check, note that [1] 1BernoulliG  .   

B. The pair correlation function 

The pair correlation function of the PHD filter’s Bayes posterior process is the ratio of its second factorial moment and the 

product of its first moments at two distinct target states. In (41), let 

         
 

ΥΞ
Ξ|Υ

ΥΞ

0,
|  where 

0,1

G h
G h A h B h A h

G
    (44) 

and 

 
       

     

Ξ

Ξ1

( | )

( | )

D
k

i iS

Di
i iS

z h s P s p z s f s ds
B h

z P s p z s f s ds













 (45) 

By using the chain rule, the first derivative of the conditional process can be shown to be the functional:  

         
Ξ|Υ

1 1 1

|
G A B

h h B h h A h
x x x

  
 

  
 

(46) 

where                                                       Ξ
1 1

1

 1 DA
h A h P x f x

x


 


 

(47) 

        
       

Ξ
1 1 1

Ξ
11

( | )

( | )

Dk
i

D
i

i iS

P x p z x f xB
h B h

x z h s P s p z s f s ds




 



 (48) 

This can be written as   

      
1

Ξ|Υ
Ξ|Υ

1

| |  x

G
h G h C h

x
 




 (49) 

where the functional  
1xC h  is: 

           
       1

Ξ
1 1 1Ξ

1 1
Ξ

1

( | )
 1

( | )

Dk
iD

x
D

i
i iS

P x p z x f x
C h P x f x

z h s P s p z s f s ds

  





 (50) 

Using (10), the first moment of the posterior process can be shown to be: 

 
                

     1

Ξ
1 1 1Ξ|Υ Ξ

1 1 1 11
Ξ

1

( | )
| 1   1

( | )

Dk
iD

x
D

i
i iS

P x p z x f x
m x C f x P x f x

z P s p z s f s ds




    





 (51) 

Similarly, to derive the second factorial moment of the Bayes posterior, the second derivative of the PGFL is needed. Using 

the chain rule gives the second derivative as  

          
1 2 1 2

2 Ξ|Υ
Ξ|Υ

,
1 2

| |  x x x x

G
h G h C h C h C h

x x
 

 
 

  (52) 

where 
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         

        1 2

Ξ Ξ
1 1 1 2 2 2

, 2
Ξ1

( | ) ( | )

( | )

D Dk
i i

x x
Di

i iS

P x p z x f x P x p z x f x
C h

z h s P s p z s f s ds

 





  
(53) 

An important fact about  
1 2,x xC h  is that it is non-positive for all 1x  and 2x  for all 0h  . 

From (52), it is seen that the second factorial moment of the posterior process is equal to:  

         
1 2 1 21 2 ,2 , | 1 1 1x x x xm x x C C C     (54) 

From (51) and (54), the pair correlation function of the Bayes posterior process is  

     
       

 
   

1 2

1 2

1 22 ,

1 2
1 21 1

, | 1
, 1

| | 1 1
x x

x x

m x x C
x x

m x m x C C




 
     (55) 

From (55), it is evident that the Bayes posterior process is inherently correlated. Moreover, (53) shows that the interaction term 

 
1 2, 1x xC  is never positive, so 1   for any target pair. A process such that 1   for all 1x  and 2x  shows weakly repulsive 

behavior. This theoretical contribution, first reported in [3], is new to the tracking literature.  

Further insights on the nature of pair interactions can be gained by observing (53) and (54). From (54), the second factorial 

moment of the Bayes posterior process at two distinct target states is equal to the product of the first moments corrected by an 

interaction term. Writing the interaction term explicitly in (53) shows that this term corrects the double counting of information. 

The product of the first moment at two distinct target states,  i.e.    
1 2

1 1x xC C , includes terms which correspond to the case in 

which the same measurement is generated by both targets. Intuitively, in the second factorial moment, the job of the interaction 

term  
1 2, 1x xC  is to enforce the single target to single measurement association assumption by subtracting incompatible cases 

from the product of the first moments. That is, target states in the outcomes of the Bayes posterior process are connected insofar 

as there is at least one measurement for which they have non-zero likelihoods and detection probabilities. Practically speaking, 

the interaction between a pair of target states goes to zero as targets become progressively better resolved. Given a PPP prior, 

pair correlations between distant regions of the target state space are practically negligible. This is a direct result stemming from 

the PPP target model of the PHD filter. 

VI. TRACK EXTRACTION VIA REDUCED PALM INTENSITY 

A Bayesian estimate of   is determined using a specified loss function ( | )L   . This function gives the associated loss with 

choosing the estimate  S    when the true realization is  S   . The Bayes loss of   is the expected loss, 

 ( ) E |R L      , where the expectation is with respect to the density  Ξ|Υ |p    defined in (33). The Bayes estimate 

 B̂ayes S   minimizes the Bayes loss: 

 
ˆ arg min ( )Bayes

S
R


 





 (56) 

The Bayes estimate depends on the choice of the loss function ( | )L   .  

 In many problems, ( | )L    can be specified so that the Bayes estimate reduces to the MAP estimate,  |arg max ( | )p    . 

However, the MAP estimate is undefined for the posterior pdf  | ( | )p    . This is because events involving different numbers of 

targets have different units. On the other hand, a two-stage pseudo-MAP estimate can be implemented by using the posterior 

distribution of the canonical number as well as the posterior intensity functions. In such an approach, the first stage estimates the 
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canonical number and the second stage extracts the estimated number of target states. The statistical consistency of two-stage 

estimates must be verified on a case by case basis.  

Assuming that the pseudo-MAP estimate is reliable, a two-stage sequential track extractor from the Bayes posterior process 

will be derived. The consistency and efficiency of its estimates should be verified for underlying point process models. 

A. The canonical number estimate 

From (9) the PGF of the canonical number of targets in the Bayes posterior process is given by: 

   
 

 Ξ|Υ Ξ|Υ

.
0

| |n
Nh x

n

F x G h x p n 





  
 
 

(57) 

The pseudo-MAP estimate of the canonical number is then given by: 

 
0

1
arg max

!

n

n
MAP

n
x

F x
N

n x


 
 
  

 
(58) 

An alternative (but not theoretically equivalent) estimate of the canonical number is the integral of Bayes posterior intensity 

function, i.e., the expected number of targets,  

 Ξ|Υ |  Expected

S
f s sN d     

(59) 

where, in (59), the brackets [.] is the rounding function which rounds its nonnegative argument to the nearest integer. The 

estimate (59) is generally simpler to calculate in filter implementations. 

B. Track extraction via reduced Palm intensity 

Conditioned on the estimated canonical number N, the pdf of the event  1 , , Nx x is given by: 

      
Ξ|Υ

Ξ|Υ Ξ|Υ
1 1

1

, , | ! , , , | 0 |
N

N N
N

G
p x x N p N x x

x x
  

   
 

 
(60) 

The pseudo-MAP track extractor is defined by 

 
   

1

Ξ|Υ
1

, ,
, ,arg max |

N

N
x x

p x x 


   (61) 

The optimization in (61) is over all N target states. The algorithm in Table I gives an approximate pseudo-MAP estimate of the 

target states corresponding to N peaks for 1N  . Let   be the set of extracted target states, and let  1, , , kk z z    denote the k 

measurements reported by the sensor. The algorithm starts with     and fills   sequentially and recursively with the peaks of 

the reduced Palm intensity function conditioned on the previously extracted target states. (The iterative procedure of Table I is 

similar to the SAGE [31] and RELAX [32] algorithms proposed for multiple target detection from the complex radar signal with 

unthresholded data.)  

After the peaks are determined, marginal target pdfs will be calculated. Let ix   denote the set of extracted target states 

excluding the target at the state ix , that is,  1 1 1, ..., , , ...i i i Nx x x x x    . From (8), the marginal pdf of the target in state ix  is 

given by: 

   
Ξ|Υ

Ξ|Υ | , 0 | ,
ix i i

G
x xp x

x
   

  


 (62) 
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TABLE I 

PSEUDO CODE FOR PEAK EXTRACTION ALGORITHM 

  1

Ξ

Given : 1) Theset of measurements, , , ,

2) The PGFL of the predicted target process, [ ]

kk z z

G h

  
 

     

     

ΥΞ ΥΞ
Ξ|Υ

1 1

Ξ|Υ
Ξ|Υ

1

Evaluate PGFL of the Bayes posterior process, |Y

| 0, 0,1 Eqn. (33)  

Evaluate intensity (PHD, first moment) of  |Y

| 1 | For PHD filter, see Eqn. (50).

Extract

k k

k k

G G
G h h

z z z z

G
f x

x



 



 

   








 

 

 
 

 

1

1

1

Ξ|Υ
1

Ξ|Υ

Ξ|Υ 1
Ξ|Υ

1 1

 first target:

         argmax |

Let

Extract targets 2 :  sequentially from the conditional Palm intensity functions:

 2 :

 {

1 |
Eqn. (35)...

| ,
F

1 |
...

i
i

i

i

ii

x
x f x

x

N

For i N

G

x x
f x

G

x x






 













 



 

 

 Ξ|Υ

or PHD filter, see Eqn. (82)-(84).

 argmax | ,

 

}

i i i

i

ix
x f x

x

 

 



   

 

 
 

VII. TRACK EXTRACTION VIA REDUCED PALM INTENSITY FOR THE PHD FILTER 

This section formulates the two-stage sequential track extractor for the PHD filter. Assuming that the predicted target process 

is a PPP, the MAP estimate for the canonical number is given in Subsection A. Subsection B formulates the sequential peak 

extraction algorithm of Table I. Subsection C gives the conditional pdf approximation for each extracted target, and Subsection 

D discusses the computational requirements.  

A. The canonical number estimate 

The PGF of the canonical number of the Bayes posterior process is, using (57) and (41),  

       
   1

exp 1
k

i Detected i
Missed

i i Detected i

z x z
F x x

z z

 


 


       

(63) 

where 

    Ξ1 D
Missed S

P s f s ds     (64) 

and 

     Ξ( | )D
Detected i iS

z P s p z s f s ds     (65) 

The derivatives of  F x  evaluated at 0x   give the canonical number pmf. Direct calculation gives  
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where j  is the Palm modulation term given by (85). 
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C. Conditional distributions for extracted tracks 

After the peaks are determined, the final task of the track extractor is the estimation of a conditional target pdf for each 

extracted target. From (52) and using the approximation (81), the pdf of the target ix  conditioned on the other extracted targets, 

 1 1 1,..., , ,...i i i Nx x x x x    , is given up to a proportionality constant K  by 
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 

   (86) 

In comparison to the conditional intensity function of (82), the evaluation of (86) is done by taking  . 0h  3.This difference 

between the conditional intensity function and the conditional target pdf (up to a proportionality constant) can be shown using 

(8) and (16). Starting with the Bayes posterior target process, defined in (34), the reduced Palm process, defined in (16), gives 

the reduced process conditioned on other extracted targets. Taking the next functional derivative and setting  . 0h   as in (8) 

annuls the contribution of events with more than N targets to the estimated conditional target pdf. On the other hand, taking the 

next functional derivative and setting  . 1h   would allow the contribution of events with more than N targets to the 

conditional intensity function. Writing (86) explicitly gives:  
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  (87) 

 

Equation (87) can be rewritten in the in the Palm modulation form similar to (84): 
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where  
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and 

 
3 That is,  Ξ|Υ | ,

i ix xp x    is proportional to the Papangelou conditional intensity function, see [29] and [5, Eq. 15.5.1a]. 
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Both (84) and (89) show that the function of the Palm corrector is to modulate the weights of the Bernoulli process components 

due to target detections. The general structure of the Bayes posterior process does not change, except for the weights of 

individual components. For example, in the Gaussian mixture PHD filter implementation of [33], the application of the Palm 

corrector alters only the weight, not the mean or the covariance of an individual Gaussian component.  

It should be noted that the term  Ξ 0lf x   cancels from both (89) and (90). In a similar fashion, the term  Ξf x  cancels 

from both (84) and (85). That is, the Palm corrector’s modulation of measurement weights does not depend on the intensity of 

the conditional point insofar as  Ξ 0lf x  . 

In a practical application, the pdf defined by (88) should be truncated around the extracted peak to avoid the biasing effect 

from distant targets. This was done according to the sensor characteristics in the sequential Monte Carlo implementation of [22]. 

For the Gaussian mixture PHD (GM-PHD) implementation, the tree structure that holds the track pedigrees recommended in [34] 

provides a natural grouping of components. Alternatively, for the Gaussian mixture implementation, mixture components that 

share at least a single common measurement in a history of last S scans may be clustered together. The extracted track pdf will 

then be truncated to those components that share at least a single common measurement with the peak in the last S scans.  

D. Computational requirements 

Let N be the number of existing targets for a given scan estimated according to (67), or by integrating the intensity function of 

the Bayes posterior process, the peak extraction algorithm of Table I requires, on average, N sequential optimizations. The first 

optimization searches for the peak of the intensity function, which is the direct output of the PHD filter, whereas the remaining 

1N -  optimizations search for the peaks of the reduced intensity function, which are calculated by the recursive application of 

the Palm corrector. The first order Palm corrector for N targets, defined in (83) and rewritten in (84)-(85), is structurally similar 

to the intensity function of the Bayes posterior process defined in (51), but with an additional modulation coefficient for each 

measurement. Therefore, the reduction of N peaks from the posterior intensity function, at worst, requires the sequential 

recalculation of the Bayes posterior intensity function for each extracted peak. Each sequential peak reduction includes an 

additional modulation coefficient which is calculated for each measurement. In practice, however, only the measurements close 

to the peaks will have an effect on the results, thus computational savings can be achieved by gating procedures. Moreover, for 

the GM-PHD implementation, it is only required to calculate the modulation coefficients. That is, the weight, not the mean or the 

covariance of the Gaussian component itself is altered in recursions. 

After the peaks of the Bayes posterior process are determined, the track extraction algorithm will determine the pdfs for 

extracted tracks. Each pdf due to an extracted peak is calculated by conditioning on the existence of targets at the remaining 

1N -  peaks. The conditional pdf of (87) is quite similar to the conditional intensity function of (84), but with altered weights. 

Therefore, the extraction of individual target pdfs will require, at worst, a computation similar to carrying out 2N N times the 

PHD filter’s measurement update formula. 

VIII. NUMERICAL EXAMPLES 

For illustration purposes, we consider a scenario involving two targets moving in close proximity. The target state vector 

 Tx x y y   is composed of position (m) and velocity components (m/s). Observations are the position components of target 

states corrupted by additive Gaussian noise. The surveillance region in which observations are generated has a field of view 
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extending 2000 m in both position coordinates. Clutter is assumed to be PPP with uniform intensity over the surveillance 

region. Figure 1 shows the simulated target paths in the scenario. Targets are initiated with state vectors  1700 01000 50
T  for 

the first target and  1700 0 1000 50
T  for the second target. In the first 30 seconds of the scenario, targets approach each other 

slowly by performing a coordinated turn at 3 degrees per second. For the next 30 seconds, they move with constant speed in 

parallel separated by 90 meters. Finally, they drift apart by carrying out another 90 degree turn in the last 30 seconds. 

 

 

 

Fig. 1. True target positions. 

 

In the tracking filter, target motion is modeled according to the linear Gaussian dynamics. If ( )x k  represents the state vector 

of a target at time instant k, then   
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 (91) 

where ( )v k  is a Gaussian distributed random variable with zero-mean and covariance matrix Q ,  

3 2

2

2

3

0 0
3 2

0 0
2

0 0
3

0 0 0

P

T T

T
T

Q

T
T

T



 
 
 
 
   
 
 
 
    

(92) 

and where the process noise standard deviation P of ( )k  is taken to be 5 m/s2. 

y 
ax
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Measurements from detected targets are assumed to be linear Gaussian, that is, the measurement 
k
z  of a target at ( )x k  is a 

realization of the model  

( ) ( ) ( )

1 0 0 0

0 0 1 0

Z k Hx k w k

H

 

 
  
 

 (93) 

where the error term w  is zero mean Gaussian random variable with covariance matrix 2
2 MR I  , where 2I  is the identity 

matrix of size 2 and M  is the measurement error standard deviation, which is taken to be 25 m. Target detection probability is 

constant and independent of target state. Issues of sensor resolution are ignored. Measurement update rate is 1 Hz. 

 The first target tracker is a sequential Monte Carlo implementation of the PHD filter. In this implementation, the target birth 

and the target spawn conditions are not considered. It is assumed that existing targets survive till the end of the scenario with a 

probability of one. The initial intensity function is a Gaussian mixture generated by two Kalman filters using the first 10 target 

originated measurements correctly assigned to each target. The initiation of Kalman filters is made according to the two point 

differencing method of [35]. In the initiation scans, both targets generate a measurement at all times. At the end of the 10th scan, 

20,000 particles are sampled from each Gaussian corresponding to a target. Concatenating 40,000 particles and setting the 

expected number of targets to 2 give the particle approximation of the initial intensity function of the target process. To be clear, 

the prior target process is assumed to be a PPP whose intensity function is the superposition of two Gaussian components 

produced by the Kalman filters. From scan 11 to scan 91, the unweighted particle approximation of the target process’ intensity 

function is propagated using the PHD filter’s recursions. That is, each particle is predicted in time according to the target motion 

model defined by (91)-(92) (i.e. for the time update, transition prior probability distribution is the importance function), and after 

each measurement update, which is carried out according to (51), weighted particles are resampled to give rise to 40,000 

unweighted particles. Additionally, added to each resampled particle is a small additive random dithering sampled from a zero 

mean Gaussian with a covariance matrix DitherQ  defined by  

0.33 0.5 0 0

0.5 1 0 0

0 0 0.33 0.5

0 0 0.5 1

DitherQ

 
 
 
 
 
 

 (94) 

 

Figure 2, shows the position distribution of Monte Carlo particles taken from a single run for this implementation of the PHD 

filter. In Figure 2, a random subset of particle cloud is plotted for every 5 scans beginning with scan 11. 
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Fig. 2. Sequential Monte Carlo implementation of the PHD filter. Target particles are plotted at every five seconds beginning with the 11th scan. 40,000 

particles approximating the intensity function of the target process are down sampled to 1000.  

 

Applied to this filter is the track extracting algorithm presented in Table 1. In the implementation of the track extractor, the 

canonical number is calculated according to (59). To determine the peaks of the Bayes posterior intensity function, similar to 

[36], the surveillance region is divided into 51 x 51 resolution cells of equal size; that is 80 m x 80 m for both position 

coordinates. Each resolution cell is subdivided into 21 x 21 sub-resolution cells with a size of 4 m x 4 m. The total weight of 

particles falling inside each cell gives the weight for that cell. The global peak of the intensity function of the Bayes posterior 

process is approximated at the state of particle that has the largest weight and which falls inside the heaviest resolution as well as 

the sub resolution cells. (Alternatively, the weighted mean of these particles could be used.) While not implemented for this 

demonstration, a full grid that includes both position and velocity components may improve peak detection, especially for 

crossing targets. 

Figure 3 shows the position distribution of extracted tracks for a single run (red particles correspond to the first extracted track 

and blue particles correspond to the second extracted track). Observing Figure 3, it can be seen that the location of the global 

peak of the Bayes posterior intensity function, i.e. the first extracted track, switches between Target 1 and Target 2. Because 

there are (on average) two peaks of equal height, the global peak oscillates randomly between targets based on the distribution of  

Monte Carlo particles. Nevertheless, the subtractive (spatial whitening) nature of the reduced Palm intensity function predicted 

by (70) can be observed from the separation of particles of the extracted tracks. To see this more clearly, Figure 4 zooms in scan 

51. Plotted are (a) the intensity function of the Bayes posterior process, (b) superposition of the reduced Palm intensity functions, 

(c)  the reduced Palm intensity function around the global peak, and (d) the reduced Palm intensity function around the 

secondary peak. Figure 4 verifies that, as theory indicates in the equation (70), the reduced Palm intensity function subtracts 

intensity due to the conditioned target from the Bayes posterior intensity function.  This in effect divides a single particle cloud 

generated by two targets into two near-by but separate groups. It is interesting (and potentially important for applications) to note 

that the target-specific particle clouds are overlapped, and not divided into non-overlapping clouds as they would be if a 

classifier had been used to determine a discriminant boundary.  
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Fig. 3. Sequential Monte Carlo implementation of the PHD filter. Target particles are plotted at every fifth scan beginning with the scan 11. 40,000 particles 

approximating the conditional probability density function due to each target are down sampled to 1000.  

 

On the other hand, as shown in Figure 5, Palm track separation is unsuccessful when the Bayes posterior intensity function 

fails to reveal two peaks.  Figure 5 zooms in scan 61. Even though there are two target originated measurements in this scan, the 

reduced Palm intensity function does not separate the tracks. This is because the target measurements are close to each other with 

respect to measurement error standard deviation.  (There is 20 m separation in x axis and 29 m separation in y axis between 

measurements, and the measurement error standard deviation is 25 m).  Conditioned on the global peak, the reduced Palm 

intensity function has a peak practically at the same location. Since two target states used for conditioning are practically at the 

same state, the sequential peak extraction algorithm of Table 1 fails to find two distinct peaks. It is important to note, however, 

that the failure of the Bayes posterior intensity function to reveal two peaks does not cause a catastrophic failure in the Palm 

track extractor. A natural concern would be that conditioning on one of two nearby targets would cause the reduced Palm 

intensity to subtract both targets. This does not happen in Fig. 5.  

Another case involving undetected target can also be seen in Fig. 3 in the box that corresponds to scan 36. In this scan, upon 

close inspection, it is seen that Target 2 is detected, but Target 1 is missed. Because of the well-known target death problem for 

the PHD filter [37], the intensity function is quickly reduced in the vicinity of Target 1. As a result, the canonical number 

estimator reports a single target, so the peak extractor finds a single peak around Target 2’s location. That means that Target 1 is 

not extracted and the spread of particles for Target 2 is biased slightly upwards towards Target 1 to accommodate for the 

presence of Target 1 in the prior from the previous scan.  
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ax

is



> TAES-201400067< 
 

24

Fig. 4. Scan 51 results. Intensity functions are down sampled to 1000 particles. (a) The Bayes posterior intensity function, (b) Superposition of reduced Palm 

intensity functions due to two peaks (c) The reduced Palm intensity function around the global peak (d) The reduced Palm intensity function around the second 

peak 

 

Fig. 5.  Scan 61 results. Intensity functions are down sampled to 1000 particles. (a) The Bayes posterior intensity function, (b) Superposition of reduced Palm 

intensity functions due to two peaks (c) The reduced Palm intensity function around the global peak (d) The reduced Palm intensity function around the second 

peak 

From these examples, it is clear that the performance of the Palm track extractor depends on the performance of both the 

canonical number estimator and the performance of the peak detector. It is well-known that the canonical number estimate of the 
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PHD filter is unstable [37], [38], [39]. Even disregarding errors due to the clutter or misdetections, inspection of Figure 3 shows 

that under a benign condition, the global peak of the PHD intensity function jumps between targets. The situation deteriorates 

rapidly with increasing the clutter rate or decreasing the level of the probability of detection. It is evident that the effective use of 

the Palm method as a track extractor requires stabilizing the global peak of a target. There are numerous studies concerning 

stabilization of PHD filter estimates. For example, [34] proposes a tree structure similar to track oriented MHT for a Gaussian 

mixture implementation of the PHD filter, while [36] and [40] use track labeling and track to measurement assignment for a 

sequential Monte Carlo implementation. The present study is intended for the introduction of reduced Palm intensity function, so 

discussion of methods for stabilizing the PHD filter peaks is outside the scope of this paper—it is an active area of research and 

the subject of on-going work.  

To demonstrate the potential capability of the Palm track extractor with numerical results, a comparison with the GM-PHD 

implementation of [33] is carried out in this scenario. The GM-PHD filter is chosen for comparison because its intensity function 

approximation is inherently clustered, therefore its track extractor is both more efficient and more robust (see [33] and [34]) in 

comparison to the clustering methods suggested for the target state estimation in sequential Monte Carlo implementations. As 

done in the sequential Monte Carlo tracker example, the initial intensity function of the GM-PHD implementation is a Gaussian 

mixture involving two components generated by two Kalman filters using the first 10 target originated measurements correctly 

assigned to each target. No further birth or spawn components are generated in the following scans and the probability of target 

survival is assumed to be one. For the management of Gaussian components in the GM-PHD filter, the prune and merge 

thresholds are, respectively, 510T   and 4U  .  The maximum number of Gaussian components is set to max 500J   (see 

Table II in [33] for the meanings of these parameters). Track extraction for the GM-PHD filter is carried out according to Table 

III of [33], and the minimum component weight for the track extraction is set to 0.5. The Palm track extractor is implemented 

separately without altering the GM-PHD recursions. On the other hand, the Palm track extractor works before the Bayes 

posterior process is approximated with merge and prune operations at each measurement update, while the GM-PHD state 

extractor works on the approximated Bayes posterior intensity function.  

The canonical number estimator for the Palm track extractor is the expected target number rounded to the nearest integer 

according to (59). Following the recommendation in [33], the peak search algorithm of the Table I is altered to work with  the 

weight, not the height, of Gaussian components. To be clear, the first peak extracted is the mean of the heaviest Gaussian 

component. Conditioned on this peak, reduced Palm process is calculated by modulating the weights of detected Gaussian 

components according to (84) and (85). The next extracted peak is the heaviest component of the reduced Palm intensity 

function. This procedure is repeated until all peaks are determined. The state estimate for each extracted target is the expected 

target state calculated according to the pdf defined by (87). For each extracted Gaussian peak, this pdf is truncated to involve 

only those components that were updated by at least a single common measurement within a history of 5 scans.  

Figure 6 shows 20000 Monte Carlo run average results of the mean optimal subpattern assignment (MOSPA) statistic with 

parameters 2p   and 200 mc   (see [41], [42] for the definition of MOSPA) and the mean number of extracted tracks. To 

generate Figure 6 from the scenario described previously and shown in Figure 1, in each Monte Carlo run measurements are 

created independently with the target detection probability level set to 0.98 and the mean number of false alarms set to 10. Three 

salient features are observable in Figure 6. The first feature is that there is a visible negative bias in the reported number tracks 

for the GM-PHD state extractor when targets are in close proximity. The negative bias is especially more pronounced when 

targets are approaching each other, whereas target separation is more graceful. In contrast, the Palm track extractor’s canonical 

number estimates do not show such pronounced bias. The next salient feature is that, while there is no noticeable difference in 

MOSPA statistic for both state estimators when targets are far apart, the MOSPA statistic for both state estimators show an 
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increase in the error level when targets are at close proximity. The last salient feature is that, although the MOSPA statistic for 

the Palm track extractor is lower on the average, its level is higher than the GM-PHD state estimator’s level while targets are 

approaching to each other or when they are separating from each other. This suggests that, target state estimates of the Palm 

track extractor are biased by the Gaussian components belonging to the other target. This problem is in part influenced by the ad-

hoc target pdf truncation method which involves clustering components that share at least a single common measurement within 

a history of 5 scans. It may be ameliorated with more advanced track management methods such as the one recommended in 

[34].  

Figure 7 shows 20000 Monte Carlo run results with target detection probability lowered to 0.9. At this level, both track 

extractors show a clearly visible negative bias in the estimated number of tracks. While the canonical number estimator for the 

GM-PHD filter show similar features in comparison to Figure 6, there exist a noticeable difference in the canonical number 

estimates in comparison to the Palm track extractor even when targets are far apart from each other. The negative bias in the 

reported number of tracks after the rounding operation can be analytically explained for the case with no false alarms. Assuming 

that there is a single target which is detected according a known target detection probability, DP , and the prior intensity function 

integrates to one, it is straightforward to show that if the target produces a measurement the Bayes posterior intensity function 

will integrate to 2 DP , whereas if the target is missed, the Bayes posterior intensity function will integrate to 1 DP . Taking the 

expectation shows that the canonical number of the Bayes posterior process is unbiased. On the other hand, rounding operation 

biases the reported number of extracted tracks. For example, when 0.5DP  , if the target is detected, the expected target number 

will be rounded to 1, whereas if the target is missed, the expected target number will be rounded to 0. Therefore, the expected 

number of reported tracks after the rounding operation is equal to DP , which is negatively biased. In contrast, for 0.5DP  , the 

expected number of reported tracks after the rounding operation is equal to 1 DP , which is positively biased. The GM-PHD 

implementation puts another stress to the already biased canonical number estimates by rounding the weights of individual 

Gaussian components. The detrimental effect is especially more pronounced when multiple prior Gaussian components compete 

for the same measurement. 

 
Fig. 6. 20000 Monte Carlo results for the MOSPA and the canonical number estimate with the target detection probability at 0.98 and the mean number of 

false alarms at 10. 
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Fig. 7. 20000 Monte Carlo results for the MOSPA and the canonical number estimate with the target detection probability at 0.90 and the mean number of 

false alarms at 10. 

Figure 8 shows the scenario average MOSPA results from 1000 Monte Carlo runs at varying target detection probability and 

false alarm rates. From Figures 6 and 7, it is seen that the Palm track extractor has uniformly lower MOSPA results in 

comparison to the GM-PHD filter’s state extractor. One reason for this is that the GM-PHD filter’s state extractor has a bias on 

its canonical number estimates due to the way it thresholds individual Gaussian components.  (Ways to reduce this bias are not 

discussed in [33] but were subsequently developed in the context of other trackers.)  The examples of this section are a first 

demonstration that the reduced Palm process is a new and valuable tool for separating individual target states. 

 

 

Fig. 8. 1000 Monte Carlo run average MOSPA results at the probability of detection level (a) 0.98, (b) 0.90, (c) 0.8 and mean number of false alarms varying 

from 10 to 200. 
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IX. CONCLUSION 

This paper investigates pair correlations in the Bayes posterior target process for multitarget tracking filters using finite point 

process target models. The pair correlation function is the second factorial moment at two distinct target states divided by the 

product of first moments. This study uses the pair correlation function to show that the PPP target model of the PHD filter leads 

to a spatially correlated Bayes posterior target process that has weakly repulsive target pair interactions. 

A closely related concept to the pair correlation function is the Palm distribution. The Palm distribution defines the conditional 

distribution of points, given that a point exists in all possible realizations that can be produced by the finite point process model. 

For target tracking purposes, this means that the Palm process  defines the multitarget process given the state of a target that is 

known to exist. Another related distribution is the reduced Palm distribution. The reduced Palm distribution defines the 

distribution of points that can be produced by the finite point process model after excluding the point used in the conditioning. 

For target tracking purposes, the reduced Palm distribution defines the mathematically correct way to remove a target from a 

point process target model. This paper describes the PGFL of the reduced Palm process.  With this tool at hand, it then derives a 

two-stage pseudo-MAP track extractor, namely the Palm track extractor, for a general finite point process target model.  

The Palm track extractor is a two-stage algorithm. In the first stage the number of targets is estimated. In the second stage 

peaks are extracted sequentially by removing a single target which is estimated at the peak of the reduced Palm intensity function 

conditioned on the previously extracted targets. To solidify the method, a first order approximation of the Palm track extractor 

which considers only pairwise interactions among targets is formulated for the special case of the PHD filter.  

The approximate Palm track extractor for the PHD filter is applied in a simulated numerical study which involves tracking two 

close-by targets. The experiment is carried out using a sequential Monte Carlo implementation of the PHD filter. It shows that 

the Palm track extractor can extract separate target pdfs under sparse clutter if the target peaks are resolved in the posterior 

intensity function. A second experiment is carried out using the same scenario, but with a GM-PHD filter implementation. 

Numerical results show improvements in track extraction with the use of Palm method. An on-going study investigates Palm 

filters which propagate the reduced Palm intensity function with extracted tracks. Conditional intensity functions for target 

tracking filters using multiple Bernoulli and IID clusters target models are also currently being investigated.  
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