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Abstract—Target parameter estimation performance is in- Often, estimation performance is assessed by evaluation
vestigated for a radar employing a set of widely separated of bounds on the estimation errors. One of the most widely
transmitting and receiving antenna arrays. Cases with muliple used bounds is the Cramer-Rao Lower Bound (CRLB). The

extended targets are considered under two signal model assyp- . .
tions: stochastic and deterministic. The general expressis for CRLB for MIMO radar with widely separated antennas have

the corresponding Cramer-Rao lower bound (CRLB) and the been derived for target velocity estimation [11], coherent
asymptotic properties of the maximum-likelihood (ML) estimator and noncoherent target location estimation [12], nonceartiter

are derived for a radar with M, arrays of L; transmitting joint location and velocity estimation [13], and multipkrget
elements and)M, arrays of L, receiving elements for both types 4 ameter estimatiof [L4I,[L5]. It is important to notibatall

of signal models. : . . .
It is shown that for an infinitely large product M;M,, and a just referenced results consider radars with widely seépdra

finite L,., the ML estimator is consistent and efficient under the Omnidirectional antennas and do not consider widely sépdra
stochastic model, while the deterministic model requiresM;M,. — arrays.

to be Iinite anc:jL,].cf_tc_) be infinitely large in order to guarantee This work derives the CRLB on the joint estimation of po-
consistency and efficiency. " ; ; ; ;

Monte Carlo simulations further investigate the estimatin sition and velocity of mqupIg t"?‘rgets Wl.th a S.et of widelyps
performance of the proposed radar configuration in practicd f"“ated antenna arrays. A similar Conf'gurat'or_] was proposed
scenarios with finite M, M, and L., and a fixed total number in [7], where the idea of the MIMO radar with collocated
of available receiving antenna elements)M,.L,.. The numerical antennas was extended to achieve both coherent processing
results demonstrate that grouping receiving elements int@rop-  and spatial diversity gains. While each antenna element in
erly sized arrays reduces the mean squared error (MSE) and any closely-spaced array transmits a phase-shifted veio

decreases the threshold SNR. In the numerical examples cads b . .
ered, the preferred configurations employ M; M, > 1. In fact, & common signal to allow coherent processing in the radar

when M, M, becomes too small, due to the loss of the geometric System considered in this paper, the radar system proposed
gain, the estimation performance becomes strongly dependeon in [7] consists of multiple widely spaced subarrays where

the particular scenario and can degrade significantly, whié the  the closely spaced antennas inside each transmitting reybar
CRLB may become a poor prediction of the MSE even for high 5.6 a5sumed to transmit different orthogonal waveforme. Th
SNR. This suggests it may be advantageous to employ approash . . . - .
where neither M, M, nor L. are too small. authors developc_—zd an iterative generah;ed—pkehhomnb st

Index Terms—Distributed arrays, array processing, multiple- for target detection and parameter estlm{_:ltlon, ar-“-j corpare
input multiple-output (MIMO) radar’, Cramer-Rao Iowér boun d performance of several spatial spectral estimators |mmgxth¢
(CRLB), maximum likelihood (ML) estimate. Capon and APES approaches. The CRLB was not c0n5|de_zred
in [7]. To our knowledge, the CRLB and the asymptotic
properties of the ML estimator have not been discussed in
the literature for the configuration studied in this paper.

During the last decade, multiple-input multiple-output This paper derives the CRLB for two commonly used array
(MIMO) radars received significant attention from the reprocessing signal models: stochastic and determinisé}- [1
search community [1]-[10]. MIMO radars employ multiplef22]. The stochastic model assumes the targets’ reflectivi-
transmitted waveforms and jointly process signals reckivéies are random variables. If the reflectivities are nornall
at the multiple receivers. Two MIMO radar concepts argistributed, which is the case considered in this paper, the
commonly considered in the literature: MIMO radar withstochastic model leads to the well known Swerling | and
widely separated antennas [1]-[3]. [10]-[15] and MIMO radal target types [[3], [[28]. The deterministic model assumes
with colocated antennasi[4]:[8]. This work studies the iplét the targets’ reflectivities are deterministic unknowns and
target parameter estimation performance of a radar comfigusften used when the assumption about the normality of the
tion with widely separated antenna arrays, which combinesflectivities is not realistid |[5]]6]. Here the signal @siance
the benefits from viewing the targets from different locasip matrix and the power of the additive white Gaussian noise are
called geometric diversity, with the benefits of employingeated as unknown nuisance parameters under the stachasti
standard coherent array processing. model assumption. Similarly, the nuisance parameters for

_ _ _ _ the deterministic model are the targets’ reflectivities &mel
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No. ECCS-1405579. noise power. Notice that the previously derived boundir [13
for MIMO radar with widely distributed antennas under the
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stochastic model does not consider nuisance parameters waitt increasingl,. up to a point. When\/, M,. was too small,
treats the signal covariance matrix and the noise power the loss of geometric diversity (gains from different orien
known quantities, while the bounds [n[11] and|[12] derived f tations between different arrays and a given target) became
the deterministic case consider the noise power to be knovapparent. Equivalently, it became difficult to assure theets

Under the deterministic signal model assumption, the CRLBere all well positioned with respect to the arrays. At this
depends on the particular realization of the targets’ réfliec point, further decreases iW; M,. degraded performance. This
ties which makes the application of such a bound complicateddicates that it is often more beneficial to group receiving
In this work we consider an extended Miller-Chang bounantenna elements into a small number of receiving arrays and
(EMCB) [24] which is calculated as the deterministic CRLBhere is a clear limit on the minimum number of receiving
averaged over the different realizations of the targetiéce arrays which should be employed. However for a fidifgh,.
tivities. The EMCB provides a bound on the average varianaed L, the MSE may not be well predicted by the CRLB
of any scalar parameter of interest, where the average émntakven at the large SNR. The performance obtained did depend
using an assumed distribution for the parameter. This paper the location of the targets with respect to the arrays
uses the same distribution assumed in the stochastic modeld having a larger number of differently oriented arrays
In the numerical results section the EMCB is evaluated favas extremely helpful in providing geometric diversity wihi
different configurations of the radar with widely separategnded to enhance the worst-case performance as targets wer
antenna arrays and compared to the corresponding meaoved over some extensive region.
squared error (MSE). The obtained simulation results suggest that for a raddr wit

The CRLB is a good prediction of the variance of tha fixed finite number of receiving antenna elements the optima
estimation error only in the asymptotic region when SNRumber of transmit-to-receive array paths and the size ef th
is large or the number of taken data samples is large. Tagays depends on the scenario, and it may be advantageous
CRLB and the asymptotic properties of the corresponding Mb use the radar configurations where neitdérM,. nor L,
estimator for conventional antenna arrays for both std@hasare too small.
and deterministic models have been well studied_in [17] and The main contributions of this paper are: a) new CRLBs for
[18]. The asymptotic behavior of the ML estimator for MIMOa radar with widely separated antenna arrays under stachast
radar with widely separated antennas has been consideaad deterministic signal model assumptions; b) the derived
only under the stochastic model assumption in a single tar§gRLBs consider joint estimation of the parameters of mlgtip
scenario[[1B]. This work investigates a more general casetafgets in the presence of the nuisance parameters; cluthe st
multiple distributed antenna arrays observing multipkgéss. of the asymptotic properties of the ML estimator in the two
For a radar system with/; transmitting arrays of.,. antenna extreme cases: the produdf, ), is large, andL, is large;
elements andV/, receiving arrays withZ,. antenna elements d) the numerical study of the performance of ML estimator in
we study the asymptotic properties of the ML estimator in twihe scenarios with a fixed finite number of receiving antenna
scenarios: largé/, M, and largeL,.. elementsM,.L,.

The analysis shows that under the stochastic model asit is worth pointing out that the obtained results can give
sumption the ML estimates of the parameters of intereifte general trade-offs for the case of passive radar where th
become consistent and efficientf; M, approaches infinity transmitters are from existing communication systems,[25]
while L, is fixed to some constant value. On the other hanf26]. Assuming the passive system is able to estimate the
having finite M; M, and infinitely largeL,  does not provide transmitted signals with perfect accuracy, the derived BRL
consistency and efficiency. Under the deterministic modahd the asymptotic ML results can be applied to predict the
assumption the ML estimator is consistent but not efficietarget parameter estimation performance in passive ratiar.
if M;M, is asymptotically large and.,. is constant, while assumptions of perfectly estimated waveforms would result
finite M, M, and infinitely largeL, guarantee consistency anca lower bounds on the MSE that a passive radar system can
efficiency. achieve.

The asymptotic analysis provides an insight about theThe rest of the paper is organized as follows. Section I
estimation performance of the proposed radar system withscribes the received signal model for a radar with meitipl
widely separated arrays but does not answer the questian ofrddely spaced arrays, where each array employs coherent
optimal allocation of a finite number of antennas into a finiterocessing. Section Il derives the likelihood functionsda
number of distributed arrays. To further investigate tisisue the CRLBs for both the stochastic and deterministic models.
the paper provides a numerical comparison of the MSE afection IV discusses the asymptotic properties of the ML
the corresponding CRLB and EMCB for a position estimatiogstimator for both stochastic and deterministic signal eted
of two closely located targets using different configunasiof The performance evaluation of the ML estimator using Monte-
the radar with distributed arrays and finité; M,. and L. Carlo simulations is provided in Section V. Our conclusions

Different configurations of the radar with widely separatedre summarized in Section VI.
arrays were compared while keeping the number of receiving
antenna elements\/,.L,, fixed. The numerical results show Il. SIGNAL MODEL
that in the scenarios with sufficiently larde, M, and targets  Consider a radar system with/; transmitting andM,.
which were favorably positioned with respect to the distiéldl receiving arrays, which are arbitrarily distributed oves two-
arrays, the MSE and the threshold SNR tended to decredamensional surveillance area. Each transmitting andviece



array consists ofL; and L, antenna elements respectivelytime signals,(t), ex[n] is an L, x 1 vector of the additive
The center of thekth, k = 1,2,..., M, transmitting array receiver noise, an¢)” is a complex conjugate and transpose
is located at(wzu,y:x), While the center of theth, [ = operation. To incorporate multiple temporal samples in the
1,2,..., M,, receiving array is located &t..;, y,;). Each array model [1) we define théV x 1 temporal steering vector for
element of thekth transmitting array transmits a phase shiftethe (k, ¢, 1)th path as

version of the same waveforry s sk(t), whereE is the =

total transmitted energy. Let,(f)) be anL; x 1 vector of b (0l wiy) =1/ YL [Sk[l — nJeit]

beamforming coefficients which steers thkéh transmitting e T

array to point to the directiofi,. The radar system observes sk2 — ndJeh? sy [N — nf e N 2)

Q targets with coordinategr?,y?) and velocities(v{, v]),

whereq = 1,..., Q. The targets may act like non-point targetsvhere (-)7 denotes a matrix or a vector transpose operator.

by exhibiting different reflections in different directisnLet Considering/N temporal samples, the signal transmitted by
au, (07, ) be anL, x 1 vector which represents propagation fronthe kth transmitting array and observed at thk receiving
the kth transmitting array toward theth target located at the array becomes
bearing angl®y, . Leta,;(#?,) be theL, x 1 response vector of
thelth receiving array to the plane wave arrived from the target
¢ at the angle®?,. Notice that, the angleg?,, 6%, andd,, are
defined with respect to a given specified direction. For linea
arrays, this could be the direction normal to the correspund where® denotes the Kroneker product, and for the simplicity
receiving and transmitting arrays. In order to keep theltesuof the further presentation the following shorthand notati
of this paper general for all array configurations, we donf¢ usedaf, = a,,(67,), a%, £ a.(6%), wi = w;(6;), and
assume any particular array geometry, unless stated dfeerwby; = b (nf,, wi,).
The targets are assumed to be located in the far-field of the_et the coherent processing interval (CPI) Be= N At.
arrays and narrowband signals are assumed. The targets’ reflectivitiesy,, Vk,¢,! are assumed to remain
Assuming the observed) targets have constant veloci-constant during this interval. In addition, the narrowband
ties, the time delay for the signal traveling from the cent@ssumption in[{1) implies that the propagation time of the
of the kth transmitting array, reflected from thgth tar- signal across the array elements should be smaller than the
get and received at the center of ti#h receiving array reciprocal of the signal’s bandwidth [27].

Q
TR = Z ap,Ghal, ® ((Wl}cqagk) bZl) + ek 3)
q=1

is determined byt = (R}, + R)/c, where R}, = In the signal model(3), the bearing ang#¥s and#?,, the
\/(Itk —19)2 + (yi —y?)? is the range from the centertime delaynj,, and the propagation loss coefficieff, are
of the kth transmitting array to thegth target, RY, = defined by the location of theth target, while the Doppler

V(@ — 29)2 + (y — y?)? is the range from theth target shift wy,, is defined by the both theth target’s location and
to the center of thdth receiving array, and is the wave velocity. Lety? be aP x 1 vector of parameters of interest
propagation velocity. Fom?,v¢ < ¢, the Doppler shift for the gth target (e.g. ify? = [xq,yq,vg,vgf then P = 4),
induced by theqth target on the signal transmitted by théhen the corresponding spatio-temporal steering vectothi
kth transmitting array and received at tth receiving array gth target is

is defined by}, = vQ(cos ¢f, +cos ¢?))/c+vIQ(sin ¢, +

sing?)) /e, Whekrle(bgk = tan_lt(k(ytk - ng/(a:tk —ya:q)) i _ hi,(y?) = ¢, ® ((WtHka?k) bZl) : 4

v el T
—1 S x4 i i
tan " ((yn Y .)/(x” ), and-Q IS a carrer frequency. Now the received signal model ifl(3) can be rewritten in
At every receiving array, the continuous-time basebandasig .
the matrix form as

is sampled everyAt seconds. Due to the sampling, the

time delay and Doppler shift in the sampling domain are ri = Hy(¥)ag + ew (5)
defined asnj, = 7,/At and wi, = Qf At respectively.
The sampled baseband signal at ttrereceiving array, due to \ynere an = [al,a2, - O‘AQz T is a vector of tagets’

the transmission from thith transmitting array and reflection
from the@ targets, can be modeled as the superposition of t
Q time delayed and Doppler-shifted versions of the transmhitt ki (¥)

eflectivities for the kith transmit-to-receive array path,
{hiz(¢1)7hiz(¢2),--~ ,thl(l/JQ)} is a matrix

signal s, (t) as [27] of spatio—temporaITsteering vectors, anfl = [(wl)T,
0 ()T, -, (p9T| is a PQ x 1 vector of unknown pa-
ri [n] = E ZO/Z ¢Lay (69) rameters for the) observed targets. Further this paper uses
M. L KISELST rl 1 . . . ~ .
tht 1 (1) H,, to indicateHy (¢). For the estimate of ¢ we will use
(ot () o (95) s 0 = nfy @b ey o]t Intead ofFLi(w)

The following assumptions allow for the signals transnditte
whereaj, is the complex target reflectivity corresponding tdy the M, transmitting arrays and received at tiie receiving
the (k, ¢, 1)th (kth transmitting arraygth target,/th receiving array to be considered independently.
array) path,¢}, = 1/(R{ + R%)? is a propagation loss Assumption 1 (Orthogonal signals): Assuming sufficiently
coefficient, sy[n] is the sampled version of the continuoutarge sample suppo¥, the sampled waveforms transmitted



by the M, transmitting arrays are orthogonal if The rest of the paper develops the CRLBs and studies the

N asymptotic properties of the ML estimator for stochastid an

E deterministic signal models based on the Assumptions 211 an
b (0,0)by; (0,0) = . C Sig P
i (0,0)bg1 (0,0) ML, ;Sk[n]sk ] ©) 2.2 respectively.
E N 2 E ’
— ML, anl |Si [n” = ML, k=k
{ 0 kA K I1l. CRLB

The covariance matrix of any unbiased estimatorof
the vector of unknown parametefs satisfies the following
inequality [28]

and the orthogonality is approximately maintained for the s
of all possible time delays},, n},, and Doppler shiftso},,

q
wi,, as per Cov[¥] = 7' () (10)
by (nfy, W) by (nd, wiy) where
_ XNjSk[n — st ln — nfJem(hdn) o 1) = 2 | L (Lawq) | an
ML, ~— @) Y) = oy 7Y oy Y
£ L=k
~ { MtOLr kAR is a Fisher information matrix (FIM)A(r;~) is a likelihood

function, r is a collected data vector, and the symbol
The estimation of the parameters of interest [ih (5) anddicates that the differenc€ov[¥] — Z~1(v) is a positive
the corresponding CRLB on those parameters depend on seenidefinite matrix. The CRLB for the vector of unknown
assumptions made about the targets’ reflectivitigg. Two parametersy is defined as an inverse of the FIM
typical approaches exist in the literatute [[16]1[22]. Thestfi 1
is known as the stochastic model which assumes randomly Corte(y) =17 (7). (12)

distributed o, according to a zero-mean complex Gaussiafhis section presents the CRLBs for the stochastic and the

distribution with unknown covariance matrix that needs € byeterministic signal models for radar with multiple widely
estimated. Such a model is also referred to as unconditiogaparated arrays.

since the distribution of the received data depends only on

the statistics of the targets’ reflectivities, and remaihs t )

same for different realizations afy;. The second approach” Stochastic Model

is called deterministic and assumas, to be deterministic  According to the the stochastic model in Assumption 2.1,

unknowns. Since the distribution of the received data is thihe vector of targets’ reflectivities,; at theklth transmit-to-

case is conditioned on the particular values of the targetsceive array path is a sample from the complex Gaussian

reflectivities such a received signal model is also known &&ndom process with zero-mean agf x ) non-singular

conditional. This work considers both signal models based covariance matribA = E [a; ] Since the targets’ reflec-

the following assumptions. tivities and the additive noise are mutually independem, t
Assumption 2.1 (Stochastic signal model): The stochastic received signak;; in (8) is a zero-mean complex Gaussian

signal model assumes;,; to be a zero-mean circularly-with a covariance matrix

symmetric complex Gaussian random vector with a unknown " " 9

Q x Q covariance matrix,A = E[ayall], equal for all Ru = E [rury] = HuAH) +0°1p v (13)

transmit-to-receive array paths. Since the transmittingd aunder Assumptions 1, 2.1 and 3 the likelihood function

receiving arrays are widely separated, we assumecthaand becomes a product of individual likelihood functions focka
e are statistically independentif # &/ or [ £ I'. Thus transmit-to-receive array path

Elad,af,] = (Al k=K, 1= (8) Ag(r11,T12, .- Tag 0,5, A 07)
KL=kl 0 otherwise M. M, 1
. C . . _ H H ;efrkHLRgllrkl ( )
Assumption 2.2 (Deterministic signal model): Vectors of - 7NLr | Ry
targets’ reflectivitiesy; are assumed to be deterministic and I=1k=1
unknown. For the stochastic model the unknown parameters can be

Assumption 3 (Uncorrelated spatiotemporal noise): The gathered in a single vector

noise in [[5) is spatially and temporally white zero-mean - [111 2}T (15)

complex Gaussian random vector uncorrelated for different 7= P

transmit-to-receive array paths wherep is the Q2 x 1 vector containing real and imaginary
Pl x k=K 1= parts of the elements iA.

9) The ijth element of the FIM for the vector of unknown
parametersy in (I5) is [28]

whereo? is an unknown noise power, which is treated as a M, M,

nuisance parameter during the target parameter estimation [Z(9))i; = Z Z T { dRyi R @R;ll} . (16)

I, nisanL,N x L,.N identity matrix. dy; dv;

otherwise

Elenepy] = { 0

=1 k=1



The FIM as defined in[{16) contains the information abowtherea = [Re {af,},Im{af;} ,Re{al,},Im{al,},
unknown parameters of interegt as well as the information . pre {ad, v} Im{ad, }]T is the2Q M, M, x 1 vec-

. ) Ay Moy J 0 Ay Moy
about the nuisance parameters, the elements of the unkn@sfthat contains the real and imaginary parts of the unknown
signal covariance matriA stored inp and the noise variancetargets’ reflectivities. In this case the received data atfth
02-d Let c? be agth column of the matrixA, and djj = path [5) has the complex Gaussian distribution with the mean
mhgl bg a der_lvat|ve of the spatio-temporal steeringectory,, = H o and the covariancRy; = 021, y. The
vecotor hf, in () with respect to theth, p = 1,2,... P, corresponding likelihood function is
element of the vecto)?. The following expression for the

. 2
CRLB on the estimation errors of the targets’ parameters of Ad(rin, iz, Tan a3 9, €,07)
. . . . . . M, M;
interest only is derived from the FIM ifi {(L6) in AppedihX A “TIII L o (ru—Huaw) (rp—Higa)
oL e i T |0
C;'(¥) =) > GfiGu (22)
1=1 k=1
M, M, VI T For the described signal model, thgh element of FIM has
—GHFy, (Z Z Fﬁyﬁ/l/) (Z Z FﬁyGw> a following general form([28]
U=1k=1 U=1k'=1 M, M, ARy, dRy
where I=1k=1 i 7 (23)
F. — [R-T/250 —1/2 1 18 9R dpg R-! dpsy
w= Ry THR @Ry THy vee (Ry') (18) T 2he dy; My
i J

and themth, m = P(q — 1) + p, column of matrixGy,; is

: The FIM in 23) is defined for the vector of unknown param-
defined as follow

eters+ which contains both the parameters of inter¢sand

(G, = vec (R;ll/Q (Hklcq (dzll’)H the nuisance parametess ando. The corresponding CRLB
(19) forthe vector of targets’ parameters of interests only réved
+ dff (e Hﬁ) R;lm) : in Appendix(B, and can be written as
Here vec(+) is a vectorization operator that stacks columns 2 M, M
of a matrix on top of each other, arfd® denotes a complex Cil(y) = alte {Z > (DM, Dr)  (24)
conjugate operation. Notice that the derived bound depends =1 k=1
the time delays:},, the bearing angle®’, andé?,, the Doppler ® (apaf ® 1pxp)T}
shift w},, and the propagation loss coefficiegfs through the
terms d? which can be expanded using the differentiatioWhere N Her —1en
chain rule as follows g, = I, v — Hy (HyHy)  Hy (25)
4w — Ohy, _ ohy, Iny, ohy, 063, (20) is a projection matrix on a subspace orthogonal to a null
H o)y Ongy O(¥7), 00}, O(Y%)y space ofHI, Dy, = [d}c},d}j,...,dflp], 1pxp is the
ohy, 90y, ohy, Owj ohj, ¢ P x P all-ones matrix, and» denotes the Hadamard matrix

009, o(¢?),  Odwl, o), O, O(?),’ product. The derived CRLB depends on the time delays, the
To our knowledge the general expression for the CRLE n (1#faring angles, the Doppler shifts, and the propagatios los
cannot be significantly simplified since it requires an iseer co€fficients through the columns of the matrides that can
of a sum of matrices. be explicitly written using the differentiation chain rubes
One can observe froni{IL3) that the covariance mdkjx Shown in [2D). The resultant CRLB has a similar form with
of the received radar echoes is different for each trangmit-the CRLB for the single array case in_[18], where instead
receive array path. Thus, the radar echogs,are independent Of the summation over the multiple snapshots taken at the
but not identically distributed (i.n.i.d.) random vectofthe Same array, the expression [n(24) has a summation over the

result in [IT) is a summation a¥/, M, terms, such that each different transmit-to-receive array paths. Notice thatikirly
transmit-to-receive array path contributes informatidiowst 0 the stochastic model case discussed in Seéfionllll-A, the

the targets’ parameters of interest. radar echoes received over different transmit-to-receivey
paths have different distributions, thus the likelihooddtion
B. Deterministic Model in 24) is a summation of i.n.i.d. terms.

Assumption 2.2 of the deterministic signal model treats the'l'l?elpedr_fotr.rgatncde comparison of d|ﬁe|rent§ ra% 23$t§miw'th
vector of targets’ reflectivitiesy,; as a deterministic unknown multiple distributed arrays requires evaluation(ofl (24)dac

nuisance parameter. Both the real and imaginary patt;of dlffer(i_nt setbof tt?rr]gets_ reflectivities. L\/Iakm”g addn?rm;- i
has to be estimated for eagtand! jointly with the elements of sumptions about the nuisance parameters allows us to §mpli

+, and unknown noise power. Thus the vector of unknown the performance evaluation by obtaining a single value ef th
pa'lrameters for the determinisiic model is bound instead of a set of values. Multiple ways to remove

. the dependence of the bound on the nuisance parameters
¥ = [w, Q, 0—2] (21) have been proposed in the literature. For example, the dybri



CRLB assumes nuisance parameters to be random with knosltained by considering the asymptotic performance of the
prior distribution [16], [29]. Other methods, known as th&/L estimator whenA{, M, and L, are large.

modified Cramer-Rao bound, the Miller-Chang bound (MCB) 1) Large M;M,: Consider the function in(27) evaluated
and the extended MCB (EMCB), are discussed and compagtdsome given values ap, A, and 42

in [24]. These bounds characterize the estimation perfoo@a o

averaged over the different values of the vector of nuisancels ¢,A,62)

parameters. The EMCB is shown to be the tightest among the ) M, M, (28)
discussed Cramer-Rao like bounds. The EMCB is calculated Z {bg ‘f{kl‘ + T?‘{f{;llrkzrfl}}

by first deriving the CRLB for the joint estimation of the vect M, ML,

of prarameters of interesp and the nuisance parametets . o

and then averaging the result over assuming it has somewhereRy; = Hy AHJ +6°1, v is a positive definite matrix.
known probability distribution. The resulting expressigna In order to show that the ML estimates obtained by minimizing
bound on the expected value of the variance of the estimafdd) are consistent we first show that the function [in] (28)

=1 k=1

< taken with respect to the targets’ reflectivities converges to the expected value whep), — oo, and then
that the resulting expected value achieves its minimumaet th
Ealvar([]] = Comep(¥) = Ea[Ca(¥)] - (26)  true values of the parameters.

The EMCB is used in this work for performance evaluation Since the received signalsy;, at different transmit-to-
of the ML estimator for the deterministic model, since it cafeceive array paths have different covariance matriBes
ables. According to Kolmogorov’'s strong law of large num-
IV. MAXIMUM LIKELIHOOD ESTIMATION _bers, the sample mean of i.n.i.d random variables cor_lvet_ng_es

) . _ ) ) its expected value, as long as the variance of each individua
This section investigates the asymptotic properties of €, nand is bounded [30]. Appendi¥ C demonstrates that

ML estimator for both signal models: deterministic angre variance of theklth term in £, (4, A,62) is always
stochastic as defined in Assumption 2.1 and 2.2, requctiv%l ite. Thus, Kolmogorov's strong Isaw (’)f I:a\rge numbers can

Based on the standard theory, the ML estimator is known 5 lied by letti
be consistent and efficient if the number of observations albe applied to[(28) by letting/, M, — oo

proaches infinity[[28] while the number of nuisance paramsete 1 M, M,

stays fixed. Since the received signal model[ih (5) assumgs ({Z;,A,&?) RELENGY 5 — ZZ [log ‘sz‘

each receiving array takes only a single snapshot, in the My M, Ly 1=1 k=1

stochastic[(14) and the determinisfic](22) likelihood fiimrs A

the number of observations is equal to the number of trarsmit + Tr {R;llrklr,g}] ]
to-receive array pairspM;M,. Under the stochastic model (29)
assumption the number of nuisance parameters stays fixed as 1 M, M,

M, M, grows, while for the deterministic model it increases.= MM, L. Z Z {10g ‘sz‘ +1r {f{JQlE [rkzrg] H
Hence, asM; M, approaches infinity the standard theory can ' " =1 k=1

only be applied to the stochasitc model. In the following 1 M M R .

section we verify the asymptotic results for the stochastic™ 37 37,7, ZZ {k’g ‘Rkl‘ +TT{Rkl RMH

model whenM, M, is large, and investigate the corresponding =1 k=1

asymptotic properties for the deterministic model. In &ddi To show that the ML estimates are consisteht{ %, A, 52

we consider the asymptotic properties of ML in the scenario . S
with fixed M, M, and infinitely largeL,. for both models. N (23) is shown to be minimized by the true values of the

parameters. The lower bound on 29) can be obtained by

applying the inequality (110) stated in Appenflik G
A. Stochastic ML Estimator
M, M,

The ML estimates of the parameters are found by maxi- 1 ] ‘R ‘ T {R-'R
mizing the corresponding log-likelihood function. Undéet M, M. L, ;; 08 | Rkt | + T{ kil kl}

stochastic signal model assumption, the maximization ef th ) M, M, (30)
log of the likelihood function in[(14) is equivalent to the >N + log det Ry — const
minimization of the following function - MM, L, ; kz::l & .
2 ~
Ls (b, A 07) while the equality in[(30) holds only iRy = Ry, VE, L.
M, M. . . . L
1 Tt . H (27) Thus, for MyM, — oo, the function in [(2l7) is minimized
M, M,L, Z Z [log [Ryu| + Tr {Ry;"raryi }] when the estimates are equal to the true values of parameters
=1 k=1 P =1, A = A, andé? = 2. Therefore, the ML estimator

To our knowledge the variablag, A, ando? are not separa- is consistent forM; M, — oc. In addition, according to the
ble, and in general it is impossible to find closed form soluti  standard theory, since the number of nuisance parameters is
that minimize the function in((27). On the other hand, sonfixed, the ML estimator for targets’ parameters of interast i
insight about the ML estimates of these parameters can diso efficient.



2) Large L,: This subsection considers the asymptoticariables, the estimate ap can be found as the minimizer
behavior of the likelihood function if_(28) when the size obf the function
the receiving arraysL,., approaches infinity and the product

N 2 ) e IZJ:ar min&szar min F' (¢
MM, is finite. Similar to the case with an infinite number B ®) &1 (%)

of transmit-to-receive array paths/;M,., considered in the . 1 My M, N . (35)
previous subsection, we first verify thaf {28) convergedso i =arg H}ll’n L.NMM, Z Z Tr {HHMrklrkl}
expected value wheh, — co. AppendiXD shows that ak, " " =1 k=1
approaches infinity[(28) converges to Thus, the ML estimate of the vector of parameters of intefest
| ML ML iSQ?y;ecto&)whiﬁh lrrl:ir;irr;niz;ejs]c the estin;age ;)f theb noiseap;ower
A a9\ a.s. - 64(2))in . The likelihood function i 5) is obtained form
£s (¢’ A6 ) — M. ML, Z Z {bg ‘Rkl‘ 31) (32) by removing the undesirable dependence on the nuisance
. ==L parametersxy and o2. Such a likelihood function is known
+ TT{REE (HuamaiHy +0’21)H as the concentrated [19] or profile [31] likelihood. Notice,

S . since Assumption 2.2 considers the targets’ reflectiviies
which is not equal to the expected valuefinl(29), providéd deterministic unknowns, the number of unknown variables th

and M, are finite. As it can be seen fr0m31)' the summatiql, e 15 pe estimated grows with the number of antenna arrays,
also requires\i; M,. to be infinitely large in order for the trace

. ¢ P
term to converge to the expected valuelinl (29). The con$|sten1) Large M, M,: Insight about the performance of the ML

esltlm.a.tes of th? targets' parameters of mtferﬁst (Ioceadta]. W estimator in [(3b) can be obtained by studying an asymptotic
velocities) require consistent estimates of the corresipan case when the number of transmit-to-receive array pairs,

bear_in_g angles, time delays a_nd Dopp_ler shifts. The inﬁn_'f@[,ng, is large. Considef (35) evaluated at some given value
receiving arrays can provide ideal estimates of the bearing ;

angles, however for the time delays and Doppler shifts to be
ideally estimated the number of transmit-to-receive apaiys N 1 1 I
must be much greater than the number of observed targets,F (d’) = L.NM,M, ZZTT {Hﬂmr“rkl}‘ (36)
MM, > Q. Therefore, the ML estimates under the stochastic =1 k=1 R
model assumption and infinitely large receiving arrays af§milar to Sectioi [V-Al the consistency @f can be shown
inconsistent ifAM, M, is finite. by first demonstrating tha{ (B6) converges to the expected
value whenM,; M, — oo, and then showing that the obtained
o ) expected value is minimized by the true value of the vector
B. Deterministic ML Estimator of parametenp.
Under the deterministic model assumption, the estimates ofunder Assumption 2.2 of the deterministic signal model,
the unknown parameters can be found by the maximizationtbe radar echoesy; received at different transmit-to-receive

M, M;

the log of the likelihood function in({22) which is equivatenarray paths have different means,; = Hjoy;. Hence,
to the minimization of the function (38) is a summation of i.n.i.d. random variables. According
M. M to Kolmogorov's strong low of large numbers, this sum-
1 T t . . .
La(t, o, 02) = LN log (70> mation converges to the expected value, if the variance of
a¥ ) MM, L, ZZ [ 8 (m”) (32) each summand is finite. AppendX E shows that for targets’

=1 k=1
reflectivities with bounded magnitudeqy,|* < |amaal?,

Yk, q, 1, the variance of théith term in [36) is bounded. Thus,
The estimate of the vectors of targets’ reflectivities can lghen the number of transmit-to-receive array path§)/,.,
obtained by differentiatind (32) with respectdq,;, and equat- is approaching infinity, the function ifi_(B6) converges te th
ing the resultant derivatives to zero while assuming the twexpected value
other parameters? and1) to be equal to their corresponding

estimatesy> ands). This leads to a necessary condition which F($) L2 E
expressegyy; as a function ofyy as

— o ||ty — Hua|?]

M,
1 - iR H
L. NM,M, > Tr {Hﬂmr’“’r“ }]

1=1 k=1
1 1 M, M,
Ay — (FIHT TH -~ L
o (v) (Hlekl) H, vk (33) ~L.NIMLIL ; ; Tr {HHME { (Hiou + exp)
These steps also provide the estimate of the noise power as a H H
function of ¢ as - (Huo + ex) }}
M, M 1 My e
2 1 S ——i 2 2 | {1, HuawafiH )
200 — L H koo Hy
o) = LN, ; ;TT (g mfi}  @9) L NMM, 2= 2 i
S 2 1L
A o 1 o + o“Tr {Hﬁsz
Whereﬂﬁkl =1, v —Hy (HEHM) HZ is a projection (37)

matrix Hﬁkl evaluated at the estimat@. Substitutings(1») where the last identity follows since the noise veotgr is
and &y (1) back into [32) instead of the correspondingero-mean with the covarianeél;, y.



Since the matrix inside the first trace operator [n](3AYsing [42) it can be shown that the variance of the bias term
is positive semidefinite, and using the fact that the trade (39) approaches zero ds. — oo
of the orthogonal projection matrix is equal to its rank,

H —1y7H 2 H —1
Ir Hﬁm} — L,N — @, a bound on the expected value of %" [(HLM;/IIM) Hjjen] = o (HjHy) (43)
(28) follows as ~ 0P [diag (Iwfaly (G, Wi ad (G,
9 a.s. LrN - Q —1
F(’l,b) — 027LTN ’ |WkHa3€|2(<]?l)2)} 0.
M, M, . . .
1 - n Havll Thus the estimates afy; in (39) are consistent wheh, —
+ L, NM,M, Z Z Ir {HI:IMHklaklalekl} (38) . A
e IL.N Finally, sinceF () converges to the expected value[inl(38)
> 02% when L,. becomes asymptotically large, the estimate of the

noise powes? (1) = F (1)) converges td{40). One can notice
FurtherTr {11 H HEH | ; 't if by pt_)servmg [(4D) that if the size of the receiving array is
urther r{ o ORI O kl} in (38) is equal to zero | sufficiently large such thaf., N > Q, the estimate of the

and only if Hy; = Hy,, thus the equality in(38) holds only if gise power becomes consistent.
the estimate is equal to the true value of the parameterswvect Thys the estimates of the targets’ parameters of interest,
Therefore, the estimate of the targets’ parameters vegtsr  the noise variance and the targets’ reflectivities are stersi
consistent. when L,. is infinitely large. Unlike adding transmitting and
However the estimates of the vectors of targets’ refle@isit receiving arrays, increasinfy, does not increase the number
ay are inconsistent. This can be seen frdml (33) by letting nuisance parameters which have to be estimated. Since for
Hy = Hy infinitely large arrays, all targets can be considered as-wel
. _ separated, it follows from the standard theory that the ML
Gt () = et + (HigHi) ™ Hjer (39) es'fi)mates ofyy are also asymptotically efficientywhelhr —
Additionally, sinces? (1)) = F(1) and following the asymp- o©.
toic result in [[38), the estimate of the noise power [in] (34)

converges to N To summarize, this section provides a study of the asymp-
52(1/,) N Ti_QU‘{ (40) totic properties of the ML estimator under the stochastid an
L.N deterministic signal model assumptions for a radar withelyid

Thus, infinitely large productd/; M, does not provide a distributed arrays. The ML estimator af is shown to be
consistent estimate of the noise power. The biased essmatensistent and efficient under the stochastic model assompt
of the targets’ reflectivities and the noise power for largghen the number of transmit-to-receive array pathgM,,
MM, result in the ML estimate of) being consistent but is infinitely large. On the other hand, whed, M, is finite,
not efficient. increasing the receiving array sizé,., to infinity does not

2) Large L,: This section proves consistency and efficiendigsult in the consistent estimates f
of the estimates ofy, a and o2, for a finite number of  Under the deterministic model assumption, the ML estima-
transmit-to-receive array paths(; M,., and infinitely large size tor of ¢ is shown to be consistent but not efficient when
of the receiving array<.,. MM, — oo, since the number of nuisance parameters

Appendix(F proves that ab, — oo, the functionF(s)) in increases ad/; M, increases. However, whell; M, is fixed
[@B) converges to the same expected value a§ ih (38) whitd L. — oo the ML estimator for the deterministic model
is minimized wheny» = 1. Hence, the estimates ap in becomes consistent and efficient.
(38) are consistent if., — oco. Furthermore, a<.,, — oo the The conducted asymptotic analysis provides insight into
targets can be considered as sufficiently separated suth th@ parameter estimation performance of the radar system
the following assumption holds: with widely separated antenna arrays, whehM,. and L,
Assumption 4 (Well separated targets): For a given receiving are infinitely large. However, in practice an infinite number
arrays length/,,, and a number of temporal samplég, any Of antennas is infeasible, and optimal allocation of a finite
two observed targetsandq’ are well separated (in space andiumber of antennas into a finite number of widely separated
Doppler) if the corresponding spatio-temporal steeringfoes  arrays remains an open question. In addition, a sufficiently

are nearly orthogonal large SNR is required in practice for the derived CRLB to be
LB | H .4 120 q\0 ) agooq approximate performance measure. In_order_ to fur_ther
(hZz)H hZ/z ~ { W|Wk ay* (G 1=qa (41) |nve_st|_gate these problems we _conduct numerical simulatio
0 otherwise for finite M, M, andL,, and various values of SNR.

Thus for @ well separated targets
I E V. SIMULATION RESULTS
HiH, =~ sz diag (Jwilaj,[*(Gh)?, [wil afi 2 (¢R)?, This section uses the derived CRLB for stochastic and
¢ Ht Q12002 deterministic sighal models and Monte Carlo simulations to
Wil agg 7 (G) ) . (42) assess the estimation performance of different configursti




of the radar with widely separated antenna arrays. In oalerrtot depend on the specific type of the transmitted orthogonal
compare different radar systems based on the same amounwa¥eforms.
transmitted power and occupied bandwidth, we assume thaThe simulation results are obtained for two different po-
all radar configurations considered in this section havglsin sitions of Q = 2 targets. In the first case the targets are
element transmitting arrayd.{ = 1). The results from two close to the origin and approximately equidistant from all
sets of simulation scenarios are presented. In the firstheet transmitting and receiving array§t;,y;) = (—40, —50) and
number of transmitting arrays i&; = 6, and the total number (z2,y2) = (60,50). In the second case the targets’ locations
of receiving elements i3/, L,, = 512. In the second set of theare chosen such that they are closer to some transmitting
simulation scenariod/; = 2 and M,.L,. = 128. In both sets and receiving antennas and more remote from the others:
of the simulation scenarios, the target parameter estimati(z,,y;1) = (410, 320), and(z2, y2) = (510,420). The distance
performance is studied for multiple radar configurations Hyetween the targets in both cases isz 141.42m. Since the
changing the number of receiving array$. and their size MSE assessment of the ML estimator’s performance requires
L, while keeping the producit/,.L,, and the number of computationally intensive Monte Carlo simulations, the-si
transmitting arrays\/; fixed. ulation scenarios presented here consider the targetidacat
In all the simulation scenarios considered here, the receiestimation only. Thus the vector of unknown parameters is
and the transmitter arrays are located equidistantly ant syyp = [z, y?, xQ,yQ}T, Notice that the range resolution of the
metrically with respect to the origin [11], [12]. Such amen LFM waveform with IMHz bandwidth isAr = ¢/(2f,) =
placements allow for an easy to explain, general methogologs0m > r, thus the radar cannot reliably resolve the targets
for changing the number of arrays whose performance is edasyrange. We consider such targets as closely spaced.
to interpret to facilitate validation of the derived CRLBEhe Let the vector of targets’ reflectivities be generated from
centers of the transmitting and receiving arrays are the complex circular Gaussian distribution with zero-maad
diagonal covariance matriA = ¢21. Thus the targets are
(e, yex) =H (cos (2k — L)m/My) ass%med to be uncorrelated. The total SNR is degll‘ined as an

sin ((2k — 1)w/M,))  k=1,2,..., M, average of the SNRs over all transmit-to-receiver arrayspai
(xr1,yr1) =R (cos (2(1 — )7 /M,.), and targets
sm(2(l—1)7r/MT)),l= 1,2,...71\/fr 1 M, M, Q
— q
where R is a distance from the origin to the transmitter or SNR = M, M,Q ZZZSNRM
receiver. In the presented resulRs= 1100m. k=1i=1¢=1
All receiving antennas are assumed to be uniformly spacetiere )
linear arrays (ULA) withL, elements and half wavelength SNRI — Eai (Ch)
. . « . kZl - 72.
inter-element spacing. The phase center of lthereceiving o

array is assumed to be in the geometrical center of the arrayRecall that the target parameter estimation problem con-
located at(,., y,1). The orientation of théth receiving array sigered in this paper under Assumption 2.1 of the stochastic
is chosen such that its boresight direction points towalés tsignal model treats the covariance matxas an unknown
origin. Examples of such a symmetrical antenna placement afjisance parameter. In addition, although the diagonal co-
shown in Fig[1. varaince matrix is used to generate the signals in the stionla

We assume all transmitters use a pulse train waveform @kyits presented here, no assumptions were made about the

LFM chirps, which in the time-sampled signal domain havgnhape of theA while deriving the likelihood function i {14).
the following form

Z-1 . A M.L,=512and M; =6
sp[n] = Z S0 (nAt — 2T, — Tk) t

= This subsection presents a set of simulation scenarios for

different configurations of the radar with multiple widely
so(t) = ej?rfT—ﬁ(t—%To)2 [h(t) — h(t — Tp)] separated arrays when the total numb_er of receiving qntenna

elements and the number of transmitting arrays are fixed to
where Z is the number of transmitted pulse€s, is the pulse M, L, = 512 andM, = 6 respectively. The MSE performance
repetition interval,fg is the bandwidth of the chirply is of the ML estimator as a function of SNR for the stochastic
the pulse duration, and(¢) is the Heaviside step function.signal model is shown in Fi§l 2. The CRLB is evaluated using
Let all transmitted waveforms contain the same number tife expression i (17), and the ML estimates are obtained by
pulsesZ = 3 with equal pulse repetition intervdl, = 54ms, minimizing (21). The results are shown for the first target's
bandwidth offg = 1MHz, and pulse duratiofiy, = 20us. The location estimation only, since the results obtained far th
orthogonality assumption ifn](7) is satisfied by setting theet second target are identical. Subplots (a), (c), and (e) of Fi
delaysT}, for each transmitter, such that there is no overl&@ show the results for the targets located close to the grigin
between different transmitted waveforms for the set of timehile subplots (b), (d), and (f) show the results for the ¢dsg
delays of interest. Notice that in such a way the waveforlncated away from the origin. Subplots (a) and (b) demotestra
orthogonality can be achieved only if the surveillance dseathe estimation performance of the the radar with the large
limited. The derived CRLB and ML results are general and dwumber of transmit-to-receive array pathl; M, = 768, but
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Fig. 1. Examples of symmetrical and equdistant antennaepieat: (a)M; = 6 and M, = 8; (b) My = 2 and M, = 2; (c) My = 2 and M, = 1.
The boresighs of all receiving arrays point at the origire (flacements of the array elements are indicated by the fiassing through the corresponding
receiver). Two targets positions are considered: 1) thgetarare placed close to the origin(at40, —50) and (60, 50); 2) the targets are located away from
the origin at(410, 320) and (510, 420).

short receiving arrayd,,. = 4. The resolution of the receiving range shown, the asymptotic region starts at lower values of
arrays, in such a configuration, is not sufficient to separatee SNR and the overall variance of the estimate decreases.
the targets. Thus, the MSE is predicted well by the CRLBig.[3 shows that even for finitd/, M, and L, the EMCB
only for large values of SNR. Contrary to this, a configunatiois a good prediction of the MSE when the SNR is high. In
with a relatively small value of the produdi/; M, = 48, addition, Fig[8 demonstrates that the results obtainedhior
and the long receiving array4,. = 64, is shown in (e) and targets located close to the origin are similar to the result
(f). The receiving arrays have sufficient resolution to saefga obtained for the targets located away from origin. Therefor
the targets. The MSE starts converging to the CRLB at thiee estimation performance does not significantly depend on
SNR= —10dB, which is30dB lower, than in the case shownthe targets locations if\f, M, is sufficiently large, and the
in (a) and (b). Subplots (c) and (d) of FIg. 2 demonstrate thargets are well surrounded by transmitting and receiving
transition between the configuration with the large numbantennas.
of small receiving arrays to the configuration with the long
receiving arrays. One can observe from Hiyj. 2 thatlas
increases over the limited range shown, for sufficientlgédar B. M, L, =128 and M; =2
M;M, and fixed M, L,, and targets well surrounded by the The MSE results shown in Fig] 2 and Fig. 3 demonstrate
separated arrays, the location estimation performancéef & good convergence to the bounds because the number of
radar with widely separated arrays improves in two waygansmit-to-receive array patha/,M,, is always sufficiently
1) the CRLB becomes lower, 2) the asymptotic region staitgrge. This subsection considers the estimation perfoceman
at lower values of the SNR. Notice, that the estimatiosf the radar configurations witd/, = 2 single element
performance does not change significantly when the targetsnsmitting arrays and/,.L, = 128 total receiving antenna
are moved away from the origin, despite that some of thgements.
transmit-to-receive array pairs become more dominantti@n  Fig. [4 shows the MSE and the CRLB for the stochas-
others. This can be explained by the large valuesol/, tic signal model under Assumption 2.1. The target parame-
considered in these simulation scenarios, which providet& estimation performance for the radar configuration with
sufficient geometric diversity. M,M, = 64 transmit-to-receive array paths is shown in
Fig. [@ presents results similar to Figl 2 obtained undsubplots (a) and (b) for the targets located close to and
the deterministic signal model assumption. Here we caleulaway from the origin respectively. In (a) the CRLB provides
EMCB instead of the CRLB, as discussed prior [0](26p better prediction for the MSE than in (b), however the
assuming the targets’ reflectivities are generated fronséinee MSE is similar in both cases. Subplots (e) and (f) show the
zero-mean complex Guassian distribution as in the stoichastimulation results for the configuration with/; M, = 4, and
case. The radar configurations with, = 6 andM,. L, = 512 L, = 64. The corresponding antenna placement is given in
are again considered. Since for the deterministic signaleho Fig. [Ib. Due to the chosen placement and the orientation of
the number of unknowns grows with the number of transmithe receiving arrays, this radar configuration providesttebe
to-receiver array pathsy/;M,., it is expected that the radarresolution along the, axis, and a limited resolution along
configuration with smallei/; M,. and larger receiving arraysthe = axis, which is consistent with the MSE results in (e)
will provide a better estimation performance. This can bend (f). However, because of a small number of transmit-to-
observed by comparing subplots (a) and (b) to subplots @) aeceive array path); M, = 4, the estimation performance
(f) of Fig.[3. Similar to the MSE performance for the stociastof this radar configuration is more sensitive to the targets’
model, for sufficiently largeVi; M,., as L,. increases over the location when compared to the estimation performance of the
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Fig. 2. The CRLB and the MSE of the ML estimator for the stotibasignal model with two targets. The first target’s locatiestimation results are shown
for two closely spaced targets placed close to the origira)n(€) and (e), and away from the origin in (b), (d), and (fck configuration of the radar with
widely separated arrays hagd; = 6 single antenna element transmitting arrays and the totabeu of receiving antenna elements is fixedVatL,. = 512.
The number and the size of the receiving arrays vary: (a) Bhd4. = 128, L, = 4; (¢) and (d)M, = 32, L, = 16; (e) and (M, =8, L, = 64.

configuration withM; M, = 64 in (a) and (b). This can be receiving arrays havd., = 4 antenna elements. The MSE
explained by a loss of the geometric diversity whghM, is well predicted by the EMCB in the high SNR region, and
becomes small. In (c) and (d) the MSE calculated for the rad&we prediction is better for the targets located close to the
configuration withM; = 2, M, = 8 and L,, = 16 exhibits origin compared to the targets located away from the origin.
better convergence to the CRLB, and is more robust to t&énce the number of unknown nuisance parameters (targets’
targets’ location. reflectivities) decreases with/, M, under the deterministic
model assumption, the MSE in (c) and (e) demonstrates better
Similar conclusions can be made about the deterministionvergence to the EMCB. The antenna placement used to
signal model and the radar configurations with = 2 and obtain results in (e) and (f) withi/;, = 2, M, = 2, and
M, L, = 128. The corresponding results of the Monte Carld.,,. = 64 is given in Fig[lb. Similar to the stochastic case, such
simulations are shown in Fig] 5. In (a) and (b) the numbeantenna placement results in a better estimation perfarenan
of transmit-to-receive array path i8/,M, = 64, and the



12

Targets close to the origin, Ml =6, Lt =1, Mr =128, Lr =4 Targets away from the origin, M =6, Lt =1, Mr =128, Lr =4

4 oMSEX A oMSEX
-x-EMCB)< .x.EMCB)<
20 *ea = MSE, 207 = MSE,
5 _+_EMCBy % _+_EMCBy
w O w O
[%))] [%))]
= =
—-20¢ 3 -20¢ '3
-40 1 -40 1
-20 -10 0 10 20 30 -20 -1 0 10 20 30
SNR [dB] SNR [dB]
@ (b)
Targets close to the origin, Ml =6, Lt =1, Mr =32, Lr =16 Targets away from the origin, M =6, Lt =1, Mr =32, Lr =16
0 | | | | | | | oMSEX | | | | | | |
.x.EMCB)<
20F - = MSE,
5 IR _+_EMCBy 5
w O w
%)) %))
= =
_20,
]
-40 1 -40 1
-20 -1 0 10 20 30 -20 -10 0 10 20 30
SNR [dB] SNR [dB]
(c) (d)
Targets close to the origin, M[ =6, Lt =1, Mr =8, Lr =64 Targets away from the origin, M =6, Lt =1, Mr =8, Lr =64
" | | | | | | | oMSEX 0 | | | | | | |

.x.EMCB)<
-|:|-MSEy 2
..... +EMCBy

0o 10 0 10

SNR [dB] SNR [dB]
(e) ®

Fig. 3. The EMCB and the MSE of the ML estimator for the deteistic signal model with two targets. The first target’s lidma estimation results are

shown for two closely spaced targets placed close to thenoirig(a), (c), and (e), and away from the origin in (b), (d)daff). Each configuration of the

radar with widely separated arrays ha&% = 6 single antenna element transmitting arrays and the totalbeu of receiving antenna elements is fixed at

M, L, = 512. The number and the size of the receiving arrays vary: (a)(Bpd/,. = 128, L, = 4; (c) and (d)M, = 32, L, = 16; (e) and ()M, = 8,

L, = 64.

along they axis than along the axis, however the estimationreceive array paths, the geometric gain due to observiggtsr
performance becomes significantly dependent on the latatfoom multiple angles is much smaller compared to the other
of the targets with respect to the receiving arrays. configurations withM; M, > 1. We provide target location

From the presented results, one might conclude that gro§stimation Monte Carlo simulation results in Fig. 6. In (a)
ing all receiving antenna elements into one receiving arr@d (b) we show the MSE and the CRLB for the stochastic
would provide the smallest MSE. In order to demonstraf8odel, while in (c) and (d) we present the MSE and the EMCB
that this assumption is generally false, we consider a radat’ves for the deterministic model.
with M; = 2 single element transmitting arrays afd. = 1 Comparing the MSE curves shown in Fig. 6 with those in
receiving array withZ,. = 128 antenna elements. The antennaubplots (e) and (f) in Fig]4 and Figl 5 indicates that the
placement chosen for the simulations is shown in Eig. 1IMSE performance of the ML estimator for the radar with
Since such a radar system has oflig M, = 2 transmit-to- one large receiving array is worse than the performance of
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Targets close to the origin, M[ =2, Lt =1, Mr =32, Lr =4 Targets away from the origin, M =2, Lt =1, Mr =32, Lr =4
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Fig. 4. The CRLB and the MSE of the ML estimator for the stotibasignal model with two targets. The first target’s locatiestimation results are shown

for two closely spaced targets placed close to the origir)n(€), and (e), and away from the origin in (b), (d), and Bxch configuration of the radar with

widely separated arrays hag; = 2 single antenna element transmitting arrays and the totabeu of receiving antenna elements is fixedVatL,. = 128.
The number and the size of the receiving arrays vary: (a) Bhd4- = 32, L, = 4; (c) and (d)M, = 8, L, = 16; (e) and (M, =2, L, = 64.

the radar with two receiving arrays for both stochastic arate required to obtain accurate estimation performandedtr
deterministic signal models. The MSE is much higher in theand y coordinates.
single receiving array case, and the CRLB provides a poor
prediction of the MSE. Since the receiving array is oriented The simulation results shown in Figl 6 show that grouping
parallel to they-axis it provides good resolution along theall receiving antenna elements in one array does not gener-
y-axis, with very limited resolution along the-axis. Thus, ally provide better estimation performance, since the pebd
the MSE results for they coordinates of the targets in Fig.M;M, = 2 is too small. The MSE depends significantly on
are much better than the corresponding results forathethe positions of the targets with respect to the receivimgyar
coordinates. This demonstrates a loss in the geometricigain Therefore, in terms of the MSE, it is generally more bene-
to having only a single receiving array. Since the target®haficial to have multiple distributed transmitting and recety
two unknown coordinates, two appropriately oriented arayprrays such that the targets are observed from multiplesangl
providing geometric gain in all directions.
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Targets away from the origin, M =2, Lt =1, Mr =32, Lr =4
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Fig. 5. The EMCB and the MSE of the ML estimator for the deteistic signal model with two targets. The first target's liima estimation results are
shown for two closely spaced targets placed close to thenoirig(a), (c), and (e), and away from the origin in (b), (d)daff). Each configuration of the
radar with widely separated arrays h&f = 2 single antenna element transmitting arrays and the totadbeu of receiving antenna elements is fixed at
M, L, = 128. The number and the size of the receiving arrays vary: (a)(Bhd/, = 32, L, = 4; (c) and (d)M, = 8, L, = 16; (e) and ()M, = 2,

L, = 64.

VI. CONCLUSIONS consistent and efficient if the number of transmit-to-reeei

This paper studies the parameter estimation performarfé&y paths,M;M,, approaches infinity. However, keeping
of a radar with widely separated antenna arrays in multipld/:}, finite and increasing the size of the receiving arrays,
target scenarios. The CRLB is derived under the stochaskic: does not provide consistency. Under the deterministic
and the deterministic signal model assumptions. The dériv@/gnal model assumption the ML estimates are consistent
expressions are general and can be used to obtain boupidisnot efficient whena/; M, is infinitely large andL, is
for different scenarios including a variety of radar systefed, while finite M, M,, and infinitely largeL, guarantee
configurations. consistency and efficiency.

The asymptotic properties of the ML estimator are studied The asymptotic study conducted here provides useful imsigh
under the stochastic and the deterministic signal model asto the parameter estimation performance of a radar system
sumptions. The stochastic ML estimates are shown to becomi¢h distributed arrays. However, the question of the optim
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Targets close to the origin, |\/|t =2, |_t =1, Mr =1, |_r =128 Targets away from the origin, M =2, Lt =1, Mr =1, Lr =128
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(c) (d)
Fig. 6. Results of the Monte Carlo simulations for a radarfigomation with all receiving antenna elements grouped e receiving array. The first
target’s location estimation results are shown for two @lpspaced targets: (a) the targets are close to the origintten stochastic model is assumed; (b)
the targets are away from the origin and the stochastic misde$sumed; (c) the targets are close to the origin and theendigiistic model is assumed; (d)
the targets are away from the origin and the deterministidehs assumed. Each configuration of the radar with widepassted arrays hak/; = 2 single

antenna element transmitting arrays ang = 1 receiving array withL,, = 128 antenna elements.

allocation of the antennas into arrays when only a finite APPENDIXA

number of antenna elements is available cannot be answereﬁ;lhe derivation of the Cramer-Rao bound for the stochastic
by considering the a;ymptotlc perfor_mancg. This issue Model presented in this appendix follows the derivationdor
addressed by conducting numerical simulations of scesrargngle phased array case developed[in [32]. Using (99) and
with finite M;M, and L,., and a fixed number of availablem)' the expression for thigth element of the FIM in[{16)

receiving antenna elementd/,. L,.. can be rewritten as
The simulation results show that the MSE and the threshold M, M, H

SNR decrease &5, increases for both signal modelshif, M, Z(7)),; = Z Z (vec (dRm )) (RI;ZT ® R,;ll)

is sufficiently large. The MSE for both stochastic and deter- =1 k1 d; (44)

ministic signal models is shown to be well predicted by the dR

corresponding CRLB and the EMCB in the large SNR region. rvec ( dv, ) :

However, if M, M, is too small, the estimation performance _ _
becomes strongly dependent on the targets’ positions and A®plying (100) also to[(II3) we can define

certain locations even an infinitely large. cannot provide _ R 9
performance close to that with asymptotically larggMs,.  * ¥ = V¢° (Ry) = (Hy, ® Hy) vec (A) + o"vec (ILTN()4'5)

This suggests that when the number of available receiving. .
antenna elements is fixed, the configurations where neitrllﬂ(%mg (43) in [44) thePQ x PQ FIM follows

MM, nor L, are too small provide better target parameter M, My dvig\ 7 AV
estimation performance. I(y) = ZZ (ch/—T) (R, @Ry (ch/—T> . (46)
The CRLB and the asymptotic analysis of the ML estimator =t kzll N

is the first step toward understanding the parameter estimatFurther, the matrixZ(~y) can be partitioned
performance of a radar system with multiple widely separate M. M

. . . T t GH
arrays. This paper introduces a number of questions andsshow I(y) = Z Z { 1;4 (Gl A (47)
that further analysis is required in some directions. = A
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where After substitutingA; back into [50) we obtain

_ dvkl
Gu = (R, oR,"? (—) (48) M, M,
(R ) dy” =3 clicy
A _ R_T/2 QR 1/2) |dvyy  dvig | (49) 1=1 k=1
o = (o) [ 4] L
The CRLB for the vector of the targets’ parameters of interes ~ GHFy, <Z Z Fk,l,FW> (58)
can be found by applying a matrix factorization lemrnal [33] I'=1k'=1

to (41) M,
M, M; (Z Z Fk/l/Gk’l’> .
Z Z G le I'=1k=1

=1 k=1 . One can observe that the result in](58) does not depend on
My M M M the matrix J, and the explicit form ofJ is not important.
- Gl Ak (Z Z Agl'Ak/l/> <Z Z Agl/Gk/l/> - To our knowledge the expression in{58) in general cannot
U=1k'=1 U=1k'=1 50 be significantly simplified because it requires inversiorihef
(50)  sum of matrices.

Further we define derivatives of; with respect to the
elements ofyy and p, and o2. Let (¢7), be thepth, p =

1,2,...,P, parameter of interest of the targgt then from APPENDIXB
@3) The general expression for the deterministic FIM is given
dvi, Ry in 23). Under Assumption 2.2 the mean and the covariance
d(?), (), (51) matrix of the received signal for thelth transmit-to-receive

array path argi,; = Hyay; andRy; = %I, y respectively.
The derivatives ofu,, and Ry, with respect toy, , ando?

hkl Thus follow

= vec (dff ()" Hff + Hyc! (aff)")

wherec? is agth column of A, andd}) =

<¢q>
the mth column of the matrixGy,; in ( -) wherem = P(g— dpsy P
1) + p, becomes T [dijag, .. dfjad, dg o] (59)
T dvi
Gul, = (Rer”)gun 6D g, -
R P ol = 00, nx2¢ - Hi jHw ... 0p nx2]
—1/2 kl —1/2
= wec|R R (60)
)
= vec (Rl;ll/2 (Hklcq (dqp)H % = 0p,.nx1 (61)
+ 4 (Cq) HH R 1/2 ) dRy; _ dRy; _ dRy; _ 62
. ) ) Dy dRe{al} ~ dim{aly ~ OE-vxt.n(82)
The derivative of[(45) with respect {@ can be simplified after dRy;
making the following observationiec (A) = Jp, whereJ is Tz = oy (63)

a Q* x Q?* constant block diagonal nonsingular matrix that _ _
maps elements of the vectprinto the elements ofec (A) Notice [59) can be written in a more compact form
[32]. Thus

v c W _p, p 64
dp = (Hy; ® Hyy) J. (53) T k1P (64)
Finally, the derivative of[(45) with respect to the noiseiaace where
is
d
W e (11, n). (54) Dy = [dij ... d;7] (63)
Pu = diag(am @ 1px1) (66)

Using [53) and[(54) in[(49), the matri&,; can be written as

and1py; is a P x 1 all-ones column vector. Using (569)-(63)

o —T/21yc —1/2 —1
At = [(R’” Hj, @ Ry, HM) T vee (R )} (55) in (23), the FIM under the deterministic model assumptiam ca

=FyJ be written as
where dpr dpty R ARy,
—1/2 12 A d dgt g dat
R = R R e (R)] 60 76— 23S e i, i g

j — [ J OQ2><1:| . (57) =1 k=1 0 0 LTZ2V

01,02 1



Using a matrix factorization lemma the FIM for the vector of

parameters of interesb becomes

% dpg dp
W = = [ZZ o
1=1 k=1 A dyp
M, M,
- (zzRe{duu )
T
1=1 k=1 dy do
M, M, -1
ZZRe dpy dpsgg
do daT
=1 k=1
M, M,
Z Z {dﬂﬁ dpy } '
o Udeay
It can be verified that
M, M, At dp 0
Re haland 1 ialand 18 69
{ZZ T dpT )
=L e= Y u1,m,
M, M; du d[l/
Aty Gy
Re {;; T daT} (T4 T, 1] (70)
M, M;
d d
{ZZ dirg “’”} Ut . ULt
1=1 k=1
where
Re {HHHM} —Im{H Hkl}:|
Y — kl kl 72
Kl [Im{Hlekl} Re {HEHy } (72)
T = [Re{PEDEH,} —Im{PEDIH,;}](73)
RG{H DklPkl}:|
U = ki . 74
kt [Im {HnglPkl} ( )
Substituting [(6R)E(A1) and(64) int6_(68) we obtain
D) M, M,
()= > Y Re{PiD{iDuPr} — T Y Un.
1=1 k=1
(75)
Using identities[(101) and_(1D2) the FIM can be written as
M, M;
I(y) = QZZRG {P{DiDLP (76)
R
1
- PUDIH, (HiHL) HﬁDkszl}
M, M;
L
1=1 k=1
M, M;
= 5 ZZRe{DMHHMDM
1=1 k=1
T
©) (ak1a5®1pxp) }
where .
HIJiM =I;.~n —Hpg (HﬁHkl) Hﬁ (77)

and1p«p is a P x P all-ones matrix. An inverse of (76)
results in the CRLB expression in{24).
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APPENDIXC

This appendix shows that thdth summand in[{28) has a
finite variance. Consider Alth summand in[(28)

1 - o
= 7MtMrLT (log ’Rkl‘ +Tr {lerklrg}) .
Only the trace term in[(718) is random, thus the variance of
L, is

c (78)

Skl

Skl

1 o
var [Ls,,] =var [mTT {Rkllrklrg}}
1 o
=var [mrngllrkl}
where to obtain the last identity the cyclic property of trece

operator was used. Using the expression for the variance of
the quadratic form in((105)

(79)

2 o o
var [Ls,,| = WTT{szlRmszlRm}- (80)
Further in order to obtain an upper bound on the variance, the
matrix trace inequality[{Z08) can be applied to the trace in

(80) yielding

2 L 2
var [ﬁskl] S W (T’f‘ {Rkllel}) .
Let o Dl andvy,,.. be the largest eigenvalues of the matri-
cestl and Ry; respectively. Applying the Von Neumanns
inequality from [[Z0B) to the trace i _(B1), another bound on
the variance ofZ,,, can be obtained

2
S m (Nyklnlar klmam)2 °

Since the matriceRy; and Ry, are positive definite the
eigenvaluesy, and vy, have to be finite, which leads

(81)

Skl

(82)

var [Ls,,]

max max

to the variance of,,, being finite.
APPENDIXD
This appendix verified (31). Usin@](5) in_(28)
M, M;

L. ({[;,A,&Q) = T Mt ZZ [log‘Rkl‘
+Tr {f{,;llekzekl} +2Re {TT {Rl;l Hklakleg}}
+ Tr { iR Hyanaf }]

By the definition of a trace operator the second, the third,
and the fourth terms of the function ih_{83) can be written as
summations

£(A,

L

(83)

5_2

,{T
) M M ¢

53" s
=1 k=1
~N

[R;z } (ekl) (ext);

Z
z

+

g

N
Il
-

=1

ZRe

i=1 j=1

Q Q
+2.2 [Hgf{/;llﬂkl} . (af)iom);

i=1

(84)

J
N

~
3

+
[N}

{[Rkl Hkl} 7(eﬁ) (ekt); }

j=1
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The first term in [8Y) is deterministic, while the second, thRy; = 21, n. Using the expression for the variance of the
third and the fourth terms depend on the random targetgladratic form in[(107)

reflectivities and the noise. Lettinfy, — oo Kolmogorov's

strong law of large numbers [B0] can be applied to the second

and the third terms il (84) yielding
R (efhiten),

L,.N L,.N
Rk 2 [RIZIILJ (ekl) (ekl)

i=1 j=1 (85)
L,NLN
= [RIZII} E [(e,ﬁ)i(ekl)j}
i=1 j=1 Y
L.N
= [lf{,;ll] » c“=1Tr {f{kll} o?
=1
and
L.N Q R
> Re { {RIQIsz} u (efn)i(ow); }
i=1 j=1
LN R
=m0 3 e {[Ru] (efhiten) |
i=1 j=1 '
L.N

ZQ:RS { [R;ZlekzLj E [(efp)i(au); ]} =0

(86)

where [[86) follows from the independence of the noise and

the targets’ reflectivities. However Kolmogorov’s strorayvl

of large numbers cannot be applied to the fourth term

(84) since there is no summation ovEy. Therefore asl,
approaches infinity,C, (w, A, 52
expected value if_(29)

M, M;

(w’A )“ MMtL Zz[k’g‘R“‘

+ o2Tr {RIZZ } + aleklR,;l Hklakl]

M, M;

= M, M,L, Mt 2.2 {k’g‘R“‘

" 1=1 k=1

(87)

+Tr {R,;l (Hpoo H + 021)}}

APPENDIXE

This appendix verifies that the variance of thigh term in
(38) is bounded. Consider/dth summand in[(36)

_ 1 1 H
F = LN, Tr {Hﬁklrklrkl}
1 Hyrl
TNz ey,

(88)
Tyl

Under the deterministic signal model assumption the vector
= H;;ay; and the covariance matrix

ri; has the mean,,

does not approach the

var[rﬁl’[%‘lklrkl] =Tr {HIJ:_IMRMHIJ{IMRM}
+2pilly Rully  p
= 0'4TT {HI%I)@L } + qugnﬁkluk}l

=o' (L,N = Q) +0°Tr {Hﬁklﬂklﬂg}

(89)

where the last identity follows since the trace of the orthay
projection matrix is equal to its rarikr {Hl } =L.N—-Q.

In order to show that the variance |E[89) is bounded we
first state a number of inequalities. Since the propagates |
coefficient(}, is always positive and smaller than one, and
the norm of the temporal steering vectbf, according to
Assumption 1 |sM T the following inequality holds foQ
targets and théith transmit-to-receive array path

Q
Tr{Hf{Hu} =) (hi)"hj,
q=1
S q \Hy.q H_q |2 LtLr
Z ()2 ((afpTal) (by)"b]) [wilaf, | < QEWt-
g=1

(90)

If the magnitudes of the targets’ reflection ceofficients are
bounded such that},|? < |mas|?, Yk, 1, ¢ then
Tr {aklaZ} < Qlomaz*- (91)

Combining [[Q0) and{91) and using the matrix trace ineqyalit
i (108) yields:

Tr{mpir} = Tr {Hroog Hg }
<Tr {Hﬁsz} Tr { oo }

=Q’FE

(92)

|amam|2-

Mt
Applying the matrix trace inequality il (108) to the trace in
(89) and then usind (92), the bound on the variance-of
follows

o (LN — Q) + 0T {HI%{M } Tr { it}

(L NM:M,)?

LiL
<02+Q2E i

var[Fy] <

UQ(LTN - Q)
~ (L, NMM,)?

< 0.

(93)

APPENDIXF

Verification thatF(¢)) in (38) converges td_(38) ak, —
0. Using [B) in [36) the functiorF () can be written as

7 Alt

(12’) alele Hklakl
L.NM,M, NMtM ;; { (94)

+ eﬁnﬁkzekl + 2Re {GZHI%IMHMOLM}}



By the definition of the trace operator
7 A4t

P = p NMtM 2>

1
|f'Xkl HI:Ileklakl
=1 k=1

L.N L,N

22

=1 j5=1

5, (efhiCer); (95)

L-N Q

+ 2Re ZZ H}

=1 j=1

u (ern)i(cwkr);
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o For complex matriced, B andC it can be verified that

Note that in [[9b) only the second and the third terms are

random variables since they depend on the noise vegjor

and according to the deterministic signal model the targets

reflectivities «; are non-random. By lettingl, — oo,

Kolmogorov’s strong law of large numbers can be applied to

the second and the third terms [n(95) yielding

L.NL.N
Z Z [Hﬁkl}z (exy)i(ert);
i=1 j=1
LN L.N
a.s. E HJA_ )
- ; ; [ HML (ery)i(er); (96)
LN L.N
- {HIJ—_IM} _E[(exn)ier);]
=1 j5=1 v
=c?Tr {HJﬁM} =o*(L,N - Q)
and
L.N Q
Z {HIJ:_IML (er)i(our);
=1 j=1
L.N Q
“HE > {Hﬁm} (ehr)i(cur) (97)
i=1 j=1
L.N Q 7
- Z {Hﬁlej E [(ekl) (ar);] =0
=1 j=1 -

Thus asL, approaches infinityF'(z) converges to the ex-

pected value

(,(2)) a.s. O (LLiVN Q)

M, M; (98)

1
L NI, 2 2 Ty, Hiao
" 1=1 k=1

APPENDIXG
USEFULIDENTITIES AND INEQUALITIES

« \ectorization operator [32]
Tr {AB} = (vec(A™))H vec(B) (99)
vec(ABC) = (CT @ A)vec(B). (100)
« For a nonsingular complex matri and its inverséB =
A~ the following identity was shown to hold if [1L8]
Re{A} —Im {A}} o [Re (Bl —Im{B}

Im{A} Re{A} Im{B} Re{B}
(101)

(1]

(2]
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[4

[5

6

—

fla.aer

—

—

(7]

[8

-

(18]

Re {B}

[Re{a} ~1m{a}] | iE) ‘Im{B}] [Re{cq

Re{B} | |Im{C}
= Re {ABC}.

(102)
Expected value and variance of a quadratic form [34].
For ann-dimensional complex Gaussian random vector
x with a zero-mean and a covariance matkix and a
Hermitian matrixA

E [x"Ax] = Tr {AS} (103)
E[(x"Ax)?] = Tr {ASAS} + (Tr{AX})® (104)

thus
var [XHAX] =2Tr{AYAY}. (105)

It can be shown that ik has a mean and covariance
matrix X then

E [XH Ax}

var [XH Ax}

=Tr{AX} +pufAp
=Tr{AYAY} +2u AT Ap

(106)
(107)

A matrix trace inequality [35]. For the positive

semidefinite matriceA andB

Tr{AB} < (TT{A}QTr{B}Q)l/Q (108)

Von Neumann'strace inequality [36]. Form x m matrices

A andB with singular valuesy; > as > ... > «, and
B1 > P2 > ... > B, respectively
Tr{AB}| <) i < nanf. (109)

i=1
For any arbitrary givem x n positive definite matrixA,
the inequality below holds for any positive definitex n
matrix B [19]

IndetB+7Tr{B™'A} >n+IndetA.  (110)
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