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Abstract—Target parameter estimation performance is in-
vestigated for a radar employing a set of widely separated
transmitting and receiving antenna arrays. Cases with multiple
extended targets are considered under two signal model assump-
tions: stochastic and deterministic. The general expressions for
the corresponding Cramer-Rao lower bound (CRLB) and the
asymptotic properties of the maximum-likelihood (ML) estimator
are derived for a radar with Mt arrays of Lt transmitting
elements andMr arrays of Lr receiving elements for both types
of signal models.

It is shown that for an infinitely large product MtMr, and a
finite Lr, the ML estimator is consistent and efficient under the
stochastic model, while the deterministic model requiresMtMr

to be finite and Lr to be infinitely large in order to guarantee
consistency and efficiency.

Monte Carlo simulations further investigate the estimation
performance of the proposed radar configuration in practical
scenarios with finite MtMr and Lr, and a fixed total number
of available receiving antenna elements,MrLr. The numerical
results demonstrate that grouping receiving elements intoprop-
erly sized arrays reduces the mean squared error (MSE) and
decreases the threshold SNR. In the numerical examples consid-
ered, the preferred configurations employMtMr > 1. In fact,
when MtMr becomes too small, due to the loss of the geometric
gain, the estimation performance becomes strongly dependent on
the particular scenario and can degrade significantly, while the
CRLB may become a poor prediction of the MSE even for high
SNR. This suggests it may be advantageous to employ approaches
where neither MtMr nor Lr are too small.

Index Terms—Distributed arrays, array processing, multiple-
input multiple-output (MIMO) radar, Cramer-Rao lower boun d
(CRLB), maximum likelihood (ML) estimate.

I. I NTRODUCTION

During the last decade, multiple-input multiple-output
(MIMO) radars received significant attention from the re-
search community [1]-[10]. MIMO radars employ multiple
transmitted waveforms and jointly process signals received
at the multiple receivers. Two MIMO radar concepts are
commonly considered in the literature: MIMO radar with
widely separated antennas [1]-[3], [10]-[15] and MIMO radar
with colocated antennas [4]-[8]. This work studies the multiple
target parameter estimation performance of a radar configura-
tion with widely separated antenna arrays, which combines
the benefits from viewing the targets from different locations,
called geometric diversity, with the benefits of employing
standard coherent array processing.

This work was supported by the National Science Foundation under Grant
No. ECCS-1405579.

Often, estimation performance is assessed by evaluation
of bounds on the estimation errors. One of the most widely
used bounds is the Cramer-Rao Lower Bound (CRLB). The
CRLB for MIMO radar with widely separated antennas have
been derived for target velocity estimation [11], coherent
and noncoherent target location estimation [12], noncoherent
joint location and velocity estimation [13], and multiple target
parameter estimation [14], [15]. It is important to notice that all
just referenced results consider radars with widely separated
omnidirectional antennas and do not consider widely separated
arrays.

This work derives the CRLB on the joint estimation of po-
sition and velocity of multiple targets with a set of widely sep-
arated antenna arrays. A similar configuration was proposed
in [7], where the idea of the MIMO radar with collocated
antennas was extended to achieve both coherent processing
and spatial diversity gains. While each antenna element in
any closely-spaced array transmits a phase-shifted version of
a common signal to allow coherent processing in the radar
system considered in this paper, the radar system proposed
in [7] consists of multiple widely spaced subarrays where
the closely spaced antennas inside each transmitting subarray
are assumed to transmit different orthogonal waveforms. The
authors developed an iterative generalized-likelihood ratio test
for target detection and parameter estimation, and compared
performance of several spatial spectral estimators including the
Capon and APES approaches. The CRLB was not considered
in [7]. To our knowledge, the CRLB and the asymptotic
properties of the ML estimator have not been discussed in
the literature for the configuration studied in this paper.

This paper derives the CRLB for two commonly used array
processing signal models: stochastic and deterministic [16]-
[22]. The stochastic model assumes the targets’ reflectivi-
ties are random variables. If the reflectivities are normally
distributed, which is the case considered in this paper, the
stochastic model leads to the well known Swerling I and
II target types [3], [23]. The deterministic model assumes
the targets’ reflectivities are deterministic unknowns andis
often used when the assumption about the normality of the
reflectivities is not realistic [5], [6]. Here the signal covariance
matrix and the power of the additive white Gaussian noise are
treated as unknown nuisance parameters under the stochastic
model assumption. Similarly, the nuisance parameters for
the deterministic model are the targets’ reflectivities andthe
noise power. Notice that the previously derived bound in [13]
for MIMO radar with widely distributed antennas under the
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stochastic model does not consider nuisance parameters and
treats the signal covariance matrix and the noise power as
known quantities, while the bounds in [11] and [12] derived for
the deterministic case consider the noise power to be known.

Under the deterministic signal model assumption, the CRLB
depends on the particular realization of the targets’ reflectivi-
ties which makes the application of such a bound complicated.
In this work we consider an extended Miller-Chang bound
(EMCB) [24] which is calculated as the deterministic CRLB
averaged over the different realizations of the targets’ reflec-
tivities. The EMCB provides a bound on the average variance
of any scalar parameter of interest, where the average is taken
using an assumed distribution for the parameter. This paper
uses the same distribution assumed in the stochastic model.
In the numerical results section the EMCB is evaluated for
different configurations of the radar with widely separated
antenna arrays and compared to the corresponding mean
squared error (MSE).

The CRLB is a good prediction of the variance of the
estimation error only in the asymptotic region when SNR
is large or the number of taken data samples is large. The
CRLB and the asymptotic properties of the corresponding ML
estimator for conventional antenna arrays for both stochastic
and deterministic models have been well studied in [17] and
[18]. The asymptotic behavior of the ML estimator for MIMO
radar with widely separated antennas has been considered
only under the stochastic model assumption in a single target
scenario [13]. This work investigates a more general case of
multiple distributed antenna arrays observing multiple targets.
For a radar system withMt transmitting arrays ofLr antenna
elements andMr receiving arrays withLr antenna elements
we study the asymptotic properties of the ML estimator in two
scenarios: largeMtMr and largeLr.

The analysis shows that under the stochastic model as-
sumption the ML estimates of the parameters of interest
become consistent and efficient ifMtMr approaches infinity
while Lr is fixed to some constant value. On the other hand,
having finiteMtMr and infinitely largeLr does not provide
consistency and efficiency. Under the deterministic model
assumption the ML estimator is consistent but not efficient
if MtMr is asymptotically large andLr is constant, while
finite MtMr and infinitely largeLr guarantee consistency and
efficiency.

The asymptotic analysis provides an insight about the
estimation performance of the proposed radar system with
widely separated arrays but does not answer the question of an
optimal allocation of a finite number of antennas into a finite
number of distributed arrays. To further investigate this issue
the paper provides a numerical comparison of the MSE and
the corresponding CRLB and EMCB for a position estimation
of two closely located targets using different configurations of
the radar with distributed arrays and finiteMtMr andLr.

Different configurations of the radar with widely separated
arrays were compared while keeping the number of receiving
antenna elements,MrLr, fixed. The numerical results show
that in the scenarios with sufficiently largeMtMr and targets
which were favorably positioned with respect to the distributed
arrays, the MSE and the threshold SNR tended to decrease

with increasingLr up to a point. WhenMtMr was too small,
the loss of geometric diversity (gains from different orien-
tations between different arrays and a given target) became
apparent. Equivalently, it became difficult to assure the targets
were all well positioned with respect to the arrays. At this
point, further decreases inMtMr degraded performance. This
indicates that it is often more beneficial to group receiving
antenna elements into a small number of receiving arrays and
there is a clear limit on the minimum number of receiving
arrays which should be employed. However for a finiteMtMr

and Lr the MSE may not be well predicted by the CRLB
even at the large SNR. The performance obtained did depend
on the location of the targets with respect to the arrays
and having a larger number of differently oriented arrays
was extremely helpful in providing geometric diversity which
tended to enhance the worst-case performance as targets were
moved over some extensive region.

The obtained simulation results suggest that for a radar with
a fixed finite number of receiving antenna elements the optimal
number of transmit-to-receive array paths and the size of the
arrays depends on the scenario, and it may be advantageous
to use the radar configurations where neitherMtMr nor Lr

are too small.
The main contributions of this paper are: a) new CRLBs for

a radar with widely separated antenna arrays under stochastic
and deterministic signal model assumptions; b) the derived
CRLBs consider joint estimation of the parameters of multiple
targets in the presence of the nuisance parameters; c) the study
of the asymptotic properties of the ML estimator in the two
extreme cases: the productMtMr is large, andLr is large;
d) the numerical study of the performance of ML estimator in
the scenarios with a fixed finite number of receiving antenna
elementsMrLr.

It is worth pointing out that the obtained results can give
the general trade-offs for the case of passive radar where the
transmitters are from existing communication systems [25],
[26]. Assuming the passive system is able to estimate the
transmitted signals with perfect accuracy, the derived CRLBs
and the asymptotic ML results can be applied to predict the
target parameter estimation performance in passive radar.The
assumptions of perfectly estimated waveforms would resultin
a lower bounds on the MSE that a passive radar system can
achieve.

The rest of the paper is organized as follows. Section II
describes the received signal model for a radar with multiple
widely spaced arrays, where each array employs coherent
processing. Section III derives the likelihood functions and
the CRLBs for both the stochastic and deterministic models.
Section IV discusses the asymptotic properties of the ML
estimator for both stochastic and deterministic signal models.
The performance evaluation of the ML estimator using Monte-
Carlo simulations is provided in Section V. Our conclusions
are summarized in Section VI.

II. SIGNAL MODEL

Consider a radar system withMt transmitting andMr

receiving arrays, which are arbitrarily distributed over the two-
dimensional surveillance area. Each transmitting and receiving



3

array consists ofLt and Lr antenna elements respectively.
The center of thekth, k = 1, 2, . . . ,Mt, transmitting array
is located at(xtk, ytk), while the center of thelth, l =
1, 2, . . . ,Mr, receiving array is located at(xrl, yrl). Each array
element of thekth transmitting array transmits a phase shifted

version of the same waveform
√

E
MtLt

sk(t), whereE is the

total transmitted energy. Letwk(θ̄k) be anLt × 1 vector of
beamforming coefficients which steers thekth transmitting
array to point to the direction̄θk. The radar system observes
Q targets with coordinates(xq, yq) and velocities(vqx, v

q
y),

whereq = 1, . . . , Q. The targets may act like non-point targets
by exhibiting different reflections in different directions. Let
atk(θ

q
tk) be anLt×1 vector which represents propagation from

the kth transmitting array toward theqth target located at the
bearing angleθqtk. Letarl(θ

q
rl) be theLr×1 response vector of

thelth receiving array to the plane wave arrived from the target
q at the angleθqrl. Notice that, the anglesθqrl, θ

q
tk and θ̄k are

defined with respect to a given specified direction. For linear
arrays, this could be the direction normal to the corresponding
receiving and transmitting arrays. In order to keep the results
of this paper general for all array configurations, we don’t
assume any particular array geometry, unless stated otherwise.
The targets are assumed to be located in the far-field of the
arrays and narrowband signals are assumed.

Assuming the observedQ targets have constant veloci-
ties, the time delay for the signal traveling from the center
of the kth transmitting array, reflected from theqth tar-
get and received at the center of thelth receiving array
is determined byτqkl = (Rq

tk + Rq
rl)/c, where Rq

tk =
√

(xtk − xq)2 + (ytk − yq)2 is the range from the center
of the kth transmitting array to theqth target, Rq

rl =
√

(xrl − xq)2 + (yrl − yq)2 is the range from theqth target
to the center of thelth receiving array, andc is the wave
propagation velocity. Forvqx, v

q
y ≪ c, the Doppler shift

induced by theqth target on the signal transmitted by the
kth transmitting array and received at thelth receiving array
is defined byΩq

kl = vqxΩ(cosφ
q
tk+cosφq

rl)/c+vqyΩ(sinφ
q
tk+

sinφq
rl)/c, whereφq

tk = tan−1((ytk − yq)/(xtk − xq)), φq
rl =

tan−1((yrl − yq)/(xrl − xq)), andΩ is a carrier frequency.
At every receiving array, the continuous-time baseband signal
is sampled every△t seconds. Due to the sampling, the
time delay and Doppler shift in the sampling domain are
defined asnq

kl = τqkl/△t and ωq
kl = Ωq

kl△t respectively.
The sampled baseband signal at thelth receiving array, due to
the transmission from thekth transmitting array and reflection
from theQ targets, can be modeled as the superposition of the
Q time delayed and Doppler-shifted versions of the transmitted
signalsk(t) as [27]

rkl [n] =

√

E

MtLt

Q
∑

q=1

αq
klζ

q
klarl (θ

q
rl)

·
(

w
H
k

(

θ̄k
)

atk (θ
q
tk)
)

sk [n− nq
kl] e

jnωq

kl + ekl [n]

(1)

whereαq
kl is the complex target reflectivity corresponding to

the (k, q, l)th (kth transmitting array,qth target,lth receiving
array) path,ζqkl = 1/(Rq

tk + Rq
rl)

2 is a propagation loss
coefficient, sk[n] is the sampled version of the continuous

time signalsk(t), ekl[n] is anLr × 1 vector of the additive
receiver noise, and(·)H is a complex conjugate and transpose
operation. To incorporate multiple temporal samples in the
model (1) we define theN × 1 temporal steering vector for
the (k, q, l)th path as

bkl (n
q
kl, ω

q
kl) =

√

E

MtLt

[

sk[1− nq
kl]e

jωq

kl
1,

sk[2− nq
kl]e

jωq

kl
2, . . . , sk[N − nq

kl]e
jωq

kl
N
]T

(2)

where (·)T denotes a matrix or a vector transpose operator.
ConsideringN temporal samples, the signal transmitted by
the kth transmitting array and observed at thelth receiving
array becomes

rkl =

Q
∑

q=1

αq
klζ

q
kla

q
rl ⊗

((

w
H
k a

q
tk

)

b
q
kl

)

+ ekl (3)

where⊗ denotes the Kroneker product, and for the simplicity
of the further presentation the following shorthand notation
is usedaqtk , atk(θ

q
tk), a

q
rl , arl(θ

q
rl), wk , wk(θ̄k), and

b
q
kl , bkl(n

q
kl, ω

q
kl).

Let the coherent processing interval (CPI) beTc = N△t.
The targets’ reflectivitiesαq

kl, ∀k, q, l are assumed to remain
constant during this interval. In addition, the narrowband
assumption in (1) implies that the propagation time of the
signal across the array elements should be smaller than the
reciprocal of the signal’s bandwidth [27].

In the signal model (3), the bearing anglesθqtk andθqrl, the
time delaynq

kl, and the propagation loss coefficientζqkl are
defined by the location of theqth target, while the Doppler
shift ωq

kl, is defined by the both theqth target’s location and
velocity. Letψq be aP × 1 vector of parameters of interest
for the qth target (e.g. ifψq =

[

xq, yq, vqx, v
q
y

]T
thenP = 4),

then the corresponding spatio-temporal steering vector for the
qth target is

h
q
kl(ψ

q) = ζqkla
q
rl ⊗

((

w
H
tka

q
tk

)

b
q
kl

)

. (4)

Now the received signal model in (3) can be rewritten in
the matrix form as

rkl = Hkl(ψ)αkl + ekl (5)

where αkl =
[

α1
kl, α

2
kl, · · · , α

Q
kl

]T

is a vector of tagets’
reflectivities for the klth transmit-to-receive array path,
Hkl(ψ) =

[

h
1
kl(ψ

1),h2
kl(ψ

2), · · · ,hQ
kl(ψ

Q)
]

is a matrix

of spatio-temporal steering vectors, andψ =
[

(ψ1)T ,

(ψ2)T , · · · , (ψQ)T
]T

is a PQ × 1 vector of unknown pa-
rameters for theQ observed targets. Further this paper uses
Hkl to indicateHkl(ψ). For the estimatêψ of ψ we will use
Ĥkl instead ofHkl(ψ̂).

The following assumptions allow for the signals transmitted
by theMt transmitting arrays and received at thelth receiving
array to be considered independently.

Assumption 1 (Orthogonal signals): Assuming sufficiently
large sample supportN , the sampled waveforms transmitted
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by theMt transmitting arrays are orthogonal if

b
H
kl (0, 0)bk′l (0, 0) =

E

MtLr

N
∑

n=1

sk[n]s
∗

k′ [n]

=

{

E
MtLr

∑N
n=1 |si[n]|

2 = E
MtLr

k = k′

0 k 6= k′

(6)

and the orthogonality is approximately maintained for the set
of all possible time delaysnq

kl, n
q
k′l and Doppler shiftsωq

kl,
ωq
k′l as per

b
H
kl (n

q
kl, ω

q
kl)b

H
k′l (n

q
k′l, ω

q
k′l)

=
E

MtLr

N
∑

n=1

sk[n− nq
kl]s

∗

k′ [n− nq
k′l]e

jn(ωq

kl
−ωq

k′l
)

≈

{

E
MtLr

k = k′

0 k 6= k′
.

(7)

The estimation of the parameters of interest in (5) and
the corresponding CRLB on those parameters depend on the
assumptions made about the targets’ reflectivitiesαkl. Two
typical approaches exist in the literature [16]-[22]. The first
is known as the stochastic model which assumes randomly
distributedαkl according to a zero-mean complex Gaussian
distribution with unknown covariance matrix that needs to be
estimated. Such a model is also referred to as unconditional
since the distribution of the received data depends only on
the statistics of the targets’ reflectivities, and remains the
same for different realizations ofαkl. The second approach
is called deterministic and assumesαkl to be deterministic
unknowns. Since the distribution of the received data in this
case is conditioned on the particular values of the targets’
reflectivities such a received signal model is also known as
conditional. This work considers both signal models based on
the following assumptions.

Assumption 2.1 (Stochastic signal model): The stochastic
signal model assumesαkl to be a zero-mean circularly-
symmetric complex Gaussian random vector with a unknown
Q × Q covariance matrix,A = E[αklα

H
kl], equal for all

transmit-to-receive array paths. Since the transmitting and
receiving arrays are widely separated, we assume thatαkl and
αk′l′ are statistically independent ifk 6= k′ or l 6= l′. Thus

E[αq
klα

q′

k′l′ ] =

{

[A]qq′ k = k′, l = l′

0 otherwise
. (8)

Assumption 2.2 (Deterministic signal model): Vectors of
targets’ reflectivitiesαkl are assumed to be deterministic and
unknown.

Assumption 3 (Uncorrelated spatiotemporal noise): The
noise in (5) is spatially and temporally white zero-mean
complex Gaussian random vector uncorrelated for different
transmit-to-receive array paths

E[eklek′l′ ] =

{

σ2
ILrN k = k′, l = l′

0 otherwise
(9)

whereσ2 is an unknown noise power, which is treated as a
nuisance parameter during the target parameter estimationand
ILrN is anLrN × LrN identity matrix.

The rest of the paper develops the CRLBs and studies the
asymptotic properties of the ML estimator for stochastic and
deterministic signal models based on the Assumptions 2.1 and
2.2 respectively.

III. CRLB

The covariance matrix of any unbiased estimatorγ̂ of
the vector of unknown parametersγ satisfies the following
inequality [28]

Cov[γ̂] � I−1(γ) (10)

where

I(γ) = E

[

∂

∂γ
Λ(r;γ)

(

∂

∂γ
Λ(r;γ)

)H
]

(11)

is a Fisher information matrix (FIM),Λ(r;γ) is a likelihood
function, r is a collected data vector, and the symbol�
indicates that the differenceCov[γ̂] − I−1(γ) is a positive
semidefinite matrix. The CRLB for the vector of unknown
parametersγ is defined as an inverse of the FIM

CCRLB(γ) = I−1(γ). (12)

This section presents the CRLBs for the stochastic and the
deterministic signal models for radar with multiple widely
separated arrays.

A. Stochastic Model

According to the the stochastic model in Assumption 2.1,
the vector of targets’ reflectivitiesαkl at theklth transmit-to-
receive array path is a sample from the complex Gaussian
random process with zero-mean andQ × Q non-singular
covariance matrixA = E

[

αklα
H
kl

]

. Since the targets’ reflec-
tivities and the additive noise are mutually independent, the
received signalrkl in (5) is a zero-mean complex Gaussian
with a covariance matrix

Rkl = E
[

rklr
H
kl

]

= HklAH
H
kl + σ2

ILrN . (13)

Under Assumptions 1, 2.1 and 3 the likelihood function
becomes a product of individual likelihood functions for each
transmit-to-receive array path

Λs(r11, r12, . . . , rMtMr
;ψ,A, σ2)

=

Mr
∏

l=1

Mt
∏

k=1

1

πNLr |Rkl|
e−r

H
klR

−1

kl
rkl

(14)

For the stochastic model the unknown parameters can be
gathered in a single vector

γ =
[

ψ,ρ, σ2
]T

(15)

whereρ is theQ2 × 1 vector containing real and imaginary
parts of the elements inA.

The ijth element of the FIM for the vector of unknown
parametersγ in (15) is [28]

[I(γ)]ij =

Mr
∑

l=1

Mt
∑

k=1

Tr

{

dRkl

dγi
R

−1
kl

dRkl

dγj
R

−1
kl

}

. (16)
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The FIM as defined in (16) contains the information about
unknown parameters of interestψ as well as the information
about the nuisance parameters, the elements of the unknown
signal covariance matrixA stored inρ and the noise variance
σ2. Let cq be a qth column of the matrixA, and d

qp
kl =

d
d(ψq)p

h
q
kl be a derivative of the spatio-temporal steering

vecotorhq
kl in (4) with respect to thepth, p = 1, 2, . . . P ,

element of the vectorψq. The following expression for the
CRLB on the estimation errors of the targets’ parameters of
interest only is derived from the FIM in (16) in Appedinx A

C
−1
s (ψ) =

Mr
∑

l=1

Mt
∑

k=1

G
H
klGkl

−G
H
klFkl

(

Mr
∑

l′=1

Mt
∑

k′=1

F
H
k′l′Fk′l′

)−1(Mr
∑

l′=1

Mt
∑

k′=1

F
H
k′l′Gk′l′

)

(17)

where

Fkl =
[

R
−T/2
kl H

C
kl ⊗R

−1/2
kl Hkl vec

(

R
−1
kl

)

]

(18)

and themth, m = P (q − 1) + p, column of matrixGkl is
defined as follow

[Gkl]m = vec
(

R
−1/2
kl

(

Hklc
q (dqp

kl )
H

+ d
qp
kl (c

q)
H
H

H
kl

)

R
−1/2
kl

)

.
(19)

Here vec(·) is a vectorization operator that stacks columns
of a matrix on top of each other, and(·)C denotes a complex
conjugate operation. Notice that the derived bound dependson
the time delaysnq

kl, the bearing anglesθqtk andθqrl, the Doppler
shift ωq

kl, and the propagation loss coefficientsζqkl through the
termsdqp

kl which can be expanded using the differentiation
chain rule as follows

d
qp
kl =

∂hq
kl

∂(ψq)p
=

∂hq
kl

∂nq
kl

∂nq
kl

∂(ψq)p
+

∂hq
kl

∂θqtk

∂θqtk
∂(ψq)p

(20)

+
∂hq

kl

∂θqrl

∂θqrl
∂(ψq)p

+
∂hq

kl

∂ωq
kl

∂ωq
kl

∂(ψq)p
+

∂hq
kl

∂ζqkl

∂ζqkl
∂(ψq)p

.

To our knowledge the general expression for the CRLB in (17)
cannot be significantly simplified since it requires an inverse
of a sum of matrices.

One can observe from (13) that the covariance matrixRkl

of the received radar echoes is different for each transmit-to-
receive array path. Thus, the radar echoes,rkl, are independent
but not identically distributed (i.n.i.d.) random vectors. The
result in (17) is a summation ofMtMr terms, such that each
transmit-to-receive array path contributes information about
the targets’ parameters of interest.

B. Deterministic Model

Assumption 2.2 of the deterministic signal model treats the
vector of targets’ reflectivitiesαkl as a deterministic unknown
nuisance parameter. Both the real and imaginary part ofαkl

has to be estimated for eachk andl jointly with the elements of
ψ, and unknown noise powerσ2. Thus the vector of unknown
parameters for the deterministic model is

γ =
[

ψ,α, σ2
]T

(21)

whereα =
[

Re
{

αT
11

}

, Im
{

αT
11

}

, Re
{

αT
12

}

, Im
{

αT
12

}

,

. . . , Re
{

αT
MtMr

}

, Im
{

αT
MtMr

}]T
is the2QMtMr×1 vec-

tor that contains the real and imaginary parts of the unknown
targets’ reflectivities. In this case the received data at the klth
path (5) has the complex Gaussian distribution with the mean
vectorµkl = Hklαkl and the covarianceRkl = σ2

ILrN . The
corresponding likelihood function is

Λd(r11, r12, . . . , rMtMr
;ψ,α, σ2)

=

Mr
∏

l=1

Mt
∏

k=1

1

πNLr |σ2I|
e−σ−2(rkl−Hklαkl)

H(rkl−Hklαkl)

(22)

For the described signal model, theijth element of FIM has
a following general form [28]

[I(γ)]ij =

Mr
∑

l=1

Mt
∑

k=1

[

Tr

{

R
−1
kl

dRkl

dγi
R

−1
kl

dRkl

dγj

}

+ 2Re

{

dµH
kl

dγi
R

−1
kl

dµkl

dγj

}]

(23)

The FIM in (23) is defined for the vector of unknown param-
etersγ which contains both the parameters of interestψ and
the nuisance parametersα andσ. The corresponding CRLB
for the vector of targets’ parameters of interests only is derived
in Appendix B, and can be written as

C
−1
d (ψ) =

2

σ2
Re

{

Mr
∑

l=1

Mt
∑

k=1

(

D
H
klΠ

⊥

Hkl
Dkl

)

(24)

⊙
(

αklα
H
kl ⊗ 1P×P

)T
}

where
Π⊥

Hkl
= ILrN −Hkl

(

H
H
klHkl

)−1
H

H
kl (25)

is a projection matrix on a subspace orthogonal to a null
space ofHH

kl, Dkl =
[

d
11
kl ,d

12
kl , . . . ,d

QP
kl

]

, 1P×P is the
P × P all-ones matrix, and⊗ denotes the Hadamard matrix
product. The derived CRLB depends on the time delays, the
bearing angles, the Doppler shifts, and the propagation loss
coefficients through the columns of the matricesDkl that can
be explicitly written using the differentiation chain ruleas
shown in (20). The resultant CRLB has a similar form with
the CRLB for the single array case in [18], where instead
of the summation over the multiple snapshots taken at the
same array, the expression in (24) has a summation over the
different transmit-to-receive array paths. Notice that similarly
to the stochastic model case discussed in Section III-A, the
radar echoes received over different transmit-to-receiver array
paths have different distributions, thus the likelihood function
in (24) is a summation of i.n.i.d. terms.

The performance comparison of different radar systems with
multiple distributed arrays requires evaluation of (24) for each
different set of targets’ reflectivities. Making additional as-
sumptions about the nuisance parameters allows us to simplify
the performance evaluation by obtaining a single value of the
bound instead of a set of values. Multiple ways to remove
the dependence of the bound on the nuisance parameters
have been proposed in the literature. For example, the hybrid
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CRLB assumes nuisance parameters to be random with known
prior distribution [16], [29]. Other methods, known as the
modified Cramer-Rao bound, the Miller-Chang bound (MCB)
and the extended MCB (EMCB), are discussed and compared
in [24]. These bounds characterize the estimation performance
averaged over the different values of the vector of nuisance
parameters. The EMCB is shown to be the tightest among the
discussed Cramer-Rao like bounds. The EMCB is calculated
by first deriving the CRLB for the joint estimation of the vector
of prarameters of interestψ and the nuisance parametersα,
and then averaging the result overα assuming it has some
known probability distribution. The resulting expressionis a
bound on the expected value of the variance of the estimator
ψ̂ taken with respect to the targets’ reflectivitiesα

Eα[var[ψ]] < CEMCB(ψ) = Eα [Cd(ψ)] . (26)

The EMCB is used in this work for performance evaluation
of the ML estimator for the deterministic model, since it can
be evaluated using Monte-Carlo simulations.

IV. M AXIMUM L IKELIHOOD ESTIMATION

This section investigates the asymptotic properties of the
ML estimator for both signal models: deterministic and
stochastic as defined in Assumption 2.1 and 2.2, respectively.
Based on the standard theory, the ML estimator is known to
be consistent and efficient if the number of observations ap-
proaches infinity [28] while the number of nuisance parameters
stays fixed. Since the received signal model in (5) assumes
each receiving array takes only a single snapshot, in the
stochastic (14) and the deterministic (22) likelihood functions
the number of observations is equal to the number of transmit-
to-receive array pairs,MtMr. Under the stochastic model
assumption the number of nuisance parameters stays fixed as
MtMr grows, while for the deterministic model it increases.
Hence, asMtMr approaches infinity the standard theory can
only be applied to the stochasitc model. In the following
section we verify the asymptotic results for the stochastic
model whenMtMr is large, and investigate the corresponding
asymptotic properties for the deterministic model. In addition,
we consider the asymptotic properties of ML in the scenario
with fixed MtMr and infinitely largeLr for both models.

A. Stochastic ML Estimator

The ML estimates of the parameters are found by maxi-
mizing the corresponding log-likelihood function. Under the
stochastic signal model assumption, the maximization of the
log of the likelihood function in (14) is equivalent to the
minimization of the following function

Ls

(

ψ,A, σ2
)

=
1

MrMtLr

Mr
∑

l=1

Mt
∑

k=1

[

log |Rkl|+ Tr
{

R
−1
kl rklr

H
kl

}]

.
(27)

To our knowledge the variablesψ, A, andσ2 are not separa-
ble, and in general it is impossible to find closed form solutions
that minimize the function in (27). On the other hand, some
insight about the ML estimates of these parameters can be

obtained by considering the asymptotic performance of the
ML estimator whenMtMr andLr are large.

1) Large MtMr: Consider the function in (27) evaluated
at some given values of̂ψ, Â, and σ̂2

Ls

(

ψ̂, Â, σ̂2
)

=
1

MrMtLr

Mr
∑

l=1

Mt
∑

k=1

[

log
∣

∣

∣
R̂kl

∣

∣

∣
+ Tr

{

R̂
−1
kl rklr

H
kl

}] (28)

whereR̂kl = ĤklÂĤ
H
kl+σ̂2

ILrN is a positive definite matrix.
In order to show that the ML estimates obtained by minimizing
(27) are consistent we first show that the function in (28)
converges to the expected value whenMtMr → ∞, and then
that the resulting expected value achieves its minimum at the
true values of the parameters.

Since the received signals,rkl, at different transmit-to-
receive array paths have different covariance matricesRkl

(13), the function in (28) is the sum of i.n.i.d. random vari-
ables. According to Kolmogorov’s strong law of large num-
bers, the sample mean of i.n.i.d random variables convergesto
its expected value, as long as the variance of each individual
summand is bounded [30]. Appendix C demonstrates that
the variance of theklth term in Ls

(

ψ̂, Â, σ̂2
)

is always
finite. Thus, Kolmogorov’s strong law of large numbers can
be applied to (28) by lettingMtMr → ∞

Ls

(

ψ̂, Â, σ̂2
)

a.s.
−−→ E

[

1

MrMtLr

Mr
∑

l=1

Mt
∑

k=1

[

log
∣

∣

∣
R̂kl

∣

∣

∣

+ Tr
{

R̂
−1
kl rklr

H
kl

}]

]

=
1

MrMtLr

Mr
∑

l=1

Mt
∑

k=1

[

log
∣

∣

∣
R̂kl

∣

∣

∣
+ Tr

{

R̂
−1
kl E

[

rklr
H
kl

]

}]

=
1

MrMtLr

Mr
∑

l=1

Mt
∑

k=1

[

log
∣

∣

∣
R̂kl

∣

∣

∣
+ Tr

{

R̂
−1
kl Rkl

}]

(29)

To show that the ML estimates are consistent,Ls

(

ψ̂, Â, σ̂2
)

in (29) is shown to be minimized by the true values of the
parameters. The lower bound on (29) can be obtained by
applying the inequality (110) stated in Appendix G

1

MrMtLr

Mr
∑

l=1

Mt
∑

k=1

log
∣

∣

∣
R̂kl

∣

∣

∣
+ Tr

{

R̂
−1
kl Rkl

}

≥N +
1

MtMrLr

Mr
∑

l=1

Mt
∑

k=1

log detRkl = const

(30)

while the equality in (30) holds only if̂Rkl = Rkl, ∀k, l.
Thus, for MtMr → ∞, the function in (27) is minimized
when the estimates are equal to the true values of parameters:
ψ̂ = ψ, Â = A, and σ̂2 = σ2. Therefore, the ML estimator
is consistent forMtMr → ∞. In addition, according to the
standard theory, since the number of nuisance parameters is
fixed, the ML estimator for targets’ parameters of interest is
also efficient.
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2) Large Lr: This subsection considers the asymptotic
behavior of the likelihood function in (28) when the size of
the receiving arrays,Lr, approaches infinity and the product
MtMr is finite. Similar to the case with an infinite number
of transmit-to-receive array paths,MtMr, considered in the
previous subsection, we first verify that (28) converges to its
expected value whenLr → ∞. Appendix D shows that asLr

approaches infinity, (28) converges to

Ls

(

ψ̂, Â, σ̂2
)

a.s.
−−→

1

MrMtLr

Mr
∑

l=1

Mt
∑

k=1

[

log
∣

∣

∣
R̂kl

∣

∣

∣

+ Tr
{

R̂
−1
kl

(

Hklαklα
H
klH

H
kl + σ2

I
)

}]

(31)

which is not equal to the expected value in (29), providedMt

andMr are finite. As it can be seen from (31), the summation
also requiresMtMr to be infinitely large in order for the trace
term to converge to the expected value in (29). The consistent
estimates of the targets’ parameters of interest (locations and
velocities) require consistent estimates of the corresponding
bearing angles, time delays and Doppler shifts. The infinite
receiving arrays can provide ideal estimates of the bearing
angles, however for the time delays and Doppler shifts to be
ideally estimated the number of transmit-to-receive arraypairs
must be much greater than the number of observed targets,
MtMr ≫ Q. Therefore, the ML estimates under the stochastic
model assumption and infinitely large receiving arrays are
inconsistent ifMtMr is finite.

B. Deterministic ML Estimator

Under the deterministic model assumption, the estimates of
the unknown parameters can be found by the maximization of
the log of the likelihood function in (22) which is equivalent
to the minimization of the function

Ld(ψ,α, σ
2) =

1

MtMrLr

Mr
∑

l=1

Mt
∑

k=1

[

LrN log
(

πσ2
)

− σ−2‖rkl −Hklαkl‖
2
]

(32)

The estimate of the vectors of targets’ reflectivities can be
obtained by differentiating (32) with respect toαkl, and equat-
ing the resultant derivatives to zero while assuming the two
other parametersσ2 andψ to be equal to their corresponding
estimateŝσ2 andψ̂. This leads to a necessary condition which
expresseŝαkl as a function ofψ̂ as

α̂kl(ψ̂) =
(

Ĥ
H
klĤkl

)−1

Ĥ
H
klrkl. (33)

These steps also provide the estimate of the noise power as a
function of ψ̂ as

σ̂2(ψ̂) =
1

LrNMtMr

Mr
∑

l=1

Mt
∑

k=1

Tr
{

Π⊥

Ĥkl
rklr

H
kl

}

(34)

whereΠ⊥

Ĥkl

= ILrN − Ĥkl

(

Ĥ
H
klĤkl

)−1

Ĥ
H
kl is a projection

matrix Π⊥

Hkl
evaluated at the estimatêψ. Substitutingσ̂2(ψ̂)

and α̂kl(ψ̂) back into (32) instead of the corresponding

variables, the estimate ofψ can be found as the minimizer
of the function

ψ̂ =argmin
ψ

σ̂2(ψ) = argmin
ψ

F (ψ)

= argmin
ψ

1

LrNMtMr

Mr
∑

l=1

Mt
∑

k=1

Tr
{

Π⊥

Hkl
rklr

H
kl

}

(35)

Thus, the ML estimate of the vector of parameters of interestψ

is a vectorψ̂ which minimizes the estimate of the noise power
σ̂2(ψ̂) in (34). The likelihood function in (35) is obtained form
(32) by removing the undesirable dependence on the nuisance
parametersα and σ2. Such a likelihood function is known
as the concentrated [19] or profile [31] likelihood. Notice,
since Assumption 2.2 considers the targets’ reflectivitiesas
deterministic unknowns, the number of unknown variables that
have to be estimated grows with the number of antenna arrays,
MtMr.

1) Large MtMr: Insight about the performance of the ML
estimator in (35) can be obtained by studying an asymptotic
case when the number of transmit-to-receive array pairs,
MtMr, is large. Consider (35) evaluated at some given value
of ψ̂

F
(

ψ̂
)

=
1

LrNMtMr

Mr
∑

l=1

Mt
∑

k=1

Tr
{

Π⊥

Ĥkl
rklr

H
kl

}

. (36)

Similar to Section IV-A1 the consistency of̂ψ can be shown
by first demonstrating that (36) converges to the expected
value whenMtMr → ∞, and then showing that the obtained
expected value is minimized by the true value of the vector
of parameterψ.

Under Assumption 2.2 of the deterministic signal model,
the radar echoesrkl received at different transmit-to-receive
array paths have different means,µkl = Hklαkl. Hence,
(36) is a summation of i.n.i.d. random variables. According
to Kolmogorov’s strong low of large numbers, this sum-
mation converges to the expected value, if the variance of
each summand is finite. Appendix E shows that for targets’
reflectivities with bounded magnitude,|αq

kl|
2 ≤ |αmax|

2,
∀k, q, l, the variance of theklth term in (36) is bounded. Thus,
when the number of transmit-to-receive array paths,MtMr,
is approaching infinity, the function in (36) converges to the
expected value

F (ψ̂)
a.s.
−−→ E

[

1

LrNMtMr

Mr
∑

l=1

Mt
∑

k=1

Tr
{

Π⊥

Ĥkl
rklr

H
kl

}

]

=
1

LrNMtMr

Mr
∑

l=1

Mt
∑

k=1

Tr
{

Π⊥

Ĥkl
E
[

(Hklαkl + ekl)

· (Hklαkl + ekl)
H
]}

=
1

LrNMtMr

Mr
∑

l=1

Mt
∑

k=1

[

Tr
{

Π⊥

Ĥkl
Hklαklα

H
klH

H
kl

}

+ σ2Tr
{

Π⊥

Ĥkl

}]

(37)

where the last identity follows since the noise vectorekl is
zero-mean with the covarianceσ2

ILrN .
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Since the matrix inside the first trace operator in (37)
is positive semidefinite, and using the fact that the trace
of the orthogonal projection matrix is equal to its rank,
Tr
{

Π⊥

Ĥkl

}

= LrN − Q, a bound on the expected value of
(36) follows as

F (ψ̂)
a.s.
−−→ σ2LrN −Q

LrN

+
1

LrNMtMr

Mr
∑

l=1

Mt
∑

k=1

Tr
{

Π⊥

Ĥkl
Hklαklα

H
klH

H
kl

}

≥ σ2LrN −Q

LrN

(38)

FurtherTr
{

Π⊥

Ĥkl
Hklαklα

H
klH

H
kl

}

in (38) is equal to zero if

and only if Ĥkl = Hkl, thus the equality in (38) holds only if
the estimate is equal to the true value of the parameters vector.
Therefore, the estimate of the targets’ parameters vectorψ̂ is
consistent.

However the estimates of the vectors of targets’ reflectivities
αkl are inconsistent. This can be seen from (33) by letting
Ĥkl = Hkl

α̂kl(ψ) = αkl + (HH
klHkl)

−1
H

H
klekl (39)

Additionally, sinceσ2(ψ) = F (ψ) and following the asymp-
toic result in (38), the estimate of the noise power in (34)
converges to

σ̂2(ψ) →
LrN −Q

LrN
σ2. (40)

Thus, infinitely large productMtMr does not provide a
consistent estimate of the noise power. The biased estimates
of the targets’ reflectivities and the noise power for large
MtMr result in the ML estimate ofψ being consistent but
not efficient.

2) Large Lr: This section proves consistency and efficiency
of the estimates ofψ, α and σ2, for a finite number of
transmit-to-receive array paths,MtMr, and infinitely large size
of the receiving arraysLr.

Appendix F proves that asLr → ∞, the functionF (ψ̂) in
(36) converges to the same expected value as in (38) which
is minimized whenψ̂ = ψ. Hence, the estimates ofψ in
(35) are consistent ifLr → ∞. Furthermore, asLr → ∞ the
targets can be considered as sufficiently separated such that
the following assumption holds:

Assumption 4 (Well separated targets): For a given receiving
arrays length,Lr, and a number of temporal samples,N , any
two observed targetsq andq′ are well separated (in space and
Doppler) if the corresponding spatio-temporal steering vectors
are nearly orthogonal

(hq
kl)

H
h
q′

kl ≈

{

LrE
LtMt

|wH
k a

q
tk|

2(ζqkl)
2 q = q′

0 otherwise
. (41)

Thus forQ well separated targets

H
H
klHkl ≈

LrE

LtMt
diag

(

|wH
k a

1
tk|

2(ζ1kl)
2, |wH

k a
2
tk|

2(ζ2kl)
2,

. . . , |wH
k a

Q
tk|

2(ζQkl)
2
)

. (42)

Using (42) it can be shown that the variance of the bias term
in (39) approaches zero asLr → ∞

var
[

(HH
klHkl)

−1
H

H
klekl

]

= σ2(HH
klHkl)

−1 (43)

≈ σ2LtMt

LrE

[

diag
(

|wH
k a

1
tk|

2(ζ1kl)
2, |wH

k a
2
tk|

2(ζ2kl)
2,

. . . , |wH
k a

Q
tk|

2(ζQkl)
2
)]−1

→ 0.

Thus the estimates ofαkl in (39) are consistent whenLr →
∞.

Finally, sinceF (ψ̂) converges to the expected value in (38)
when Lr becomes asymptotically large, the estimate of the
noise power̂σ2(ψ) = F (ψ) converges to (40). One can notice
by observing (40) that if the size of the receiving array is
sufficiently large such thatLrN ≫ Q, the estimate of the
noise power becomes consistent.

Thus the estimates of the targets’ parameters of interest,
the noise variance and the targets’ reflectivities are consistent
when Lr is infinitely large. Unlike adding transmitting and
receiving arrays, increasingLr does not increase the number
of nuisance parameters which have to be estimated. Since for
infinitely large arrays, all targets can be considered as well-
separated, it follows from the standard theory that the ML
estimates ofψ are also asymptotically efficient whenLr →
∞.

To summarize, this section provides a study of the asymp-
totic properties of the ML estimator under the stochastic and
deterministic signal model assumptions for a radar with widely
distributed arrays. The ML estimator ofψ is shown to be
consistent and efficient under the stochastic model assumption
when the number of transmit-to-receive array paths,MtMr,
is infinitely large. On the other hand, whenMtMr is finite,
increasing the receiving array size,Lr, to infinity does not
result in the consistent estimates ofψ.

Under the deterministic model assumption, the ML estima-
tor of ψ is shown to be consistent but not efficient when
MtMr → ∞, since the number of nuisance parameters
increases asMtMr increases. However, whenMtMr is fixed
andLr → ∞ the ML estimator for the deterministic model
becomes consistent and efficient.

The conducted asymptotic analysis provides insight into
the parameter estimation performance of the radar system
with widely separated antenna arrays, whenMtMr and Lr

are infinitely large. However, in practice an infinite number
of antennas is infeasible, and optimal allocation of a finite
number of antennas into a finite number of widely separated
arrays remains an open question. In addition, a sufficiently
large SNR is required in practice for the derived CRLB to be
a good approximate performance measure. In order to further
investigate these problems we conduct numerical simulations
for finite MtMr andLr, and various values of SNR.

V. SIMULATION RESULTS

This section uses the derived CRLB for stochastic and
deterministic signal models and Monte Carlo simulations to
assess the estimation performance of different configurations
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of the radar with widely separated antenna arrays. In order to
compare different radar systems based on the same amount of
transmitted power and occupied bandwidth, we assume that
all radar configurations considered in this section have single
element transmitting arrays (Lt = 1). The results from two
sets of simulation scenarios are presented. In the first set the
number of transmitting arrays isMt = 6, and the total number
of receiving elements isMrLr = 512. In the second set of the
simulation scenariosMt = 2 andMrLr = 128. In both sets
of the simulation scenarios, the target parameter estimation
performance is studied for multiple radar configurations by
changing the number of receiving arraysMr and their size
Lr while keeping the productMrLr, and the number of
transmitting arraysMt fixed.

In all the simulation scenarios considered here, the receiver
and the transmitter arrays are located equidistantly and sym-
metrically with respect to the origin [11], [12]. Such antenna
placements allow for an easy to explain, general methodology
for changing the number of arrays whose performance is easy
to interpret to facilitate validation of the derived CRLBs.The
centers of the transmitting and receiving arrays are

(xtk, ytk) =R (cos ((2k − 1)π/Mt) ,

sin ((2k − 1)π/Mt)) , k = 1, 2, . . . ,Mt

(xrl, yrl) =R (cos (2(l− 1)π/Mr) ,

sin (2(l− 1)π/Mr)) , l = 1, 2, . . . ,Mr

whereR is a distance from the origin to the transmitter or
receiver. In the presented resultsR = 1100m.

All receiving antennas are assumed to be uniformly spaced
linear arrays (ULA) withLr elements and half wavelength
inter-element spacing. The phase center of thelth receiving
array is assumed to be in the geometrical center of the array
located at(xrl, yrl). The orientation of thelth receiving array
is chosen such that its boresight direction points towards the
origin. Examples of such a symmetrical antenna placement are
shown in Fig. 1.

We assume all transmitters use a pulse train waveform of
LFM chirps, which in the time-sampled signal domain have
the following form

sk[n] =

Z−1
∑

z=0

s0

(

n△t− zTr − T̃k

)

s0(t) = ejπ
fB
T0
(t− 1

2
T0)

2

[h(t)− h(t− T0)]

whereZ is the number of transmitted pulses,Tr is the pulse
repetition interval,fB is the bandwidth of the chirp,T0 is
the pulse duration, andh(t) is the Heaviside step function.
Let all transmitted waveforms contain the same number of
pulsesZ = 3 with equal pulse repetition intervalTr = 54ms,
bandwidth offB = 1MHz, and pulse durationT0 = 20µs. The
orthogonality assumption in (7) is satisfied by setting the time
delaysT̃k for each transmitter, such that there is no overlap
between different transmitted waveforms for the set of time
delays of interest. Notice that in such a way the waveform
orthogonality can be achieved only if the surveillance areais
limited. The derived CRLB and ML results are general and do

not depend on the specific type of the transmitted orthogonal
waveforms.

The simulation results are obtained for two different po-
sitions of Q = 2 targets. In the first case the targets are
close to the origin and approximately equidistant from all
transmitting and receiving arrays:(x1, y1) = (−40,−50) and
(x2, y2) = (60, 50). In the second case the targets’ locations
are chosen such that they are closer to some transmitting
and receiving antennas and more remote from the others:
(x1, y1) = (410, 320), and(x2, y2) = (510, 420). The distance
between the targets in both cases isr ≈ 141.42m. Since the
MSE assessment of the ML estimator’s performance requires
computationally intensive Monte Carlo simulations, the sim-
ulation scenarios presented here consider the target location
estimation only. Thus the vector of unknown parameters is
ψ =

[

x1, y1, x2, y2
]T

. Notice that the range resolution of the
LFM waveform with 1MHz bandwidth is△r = c/(2fb) =
150m > r, thus the radar cannot reliably resolve the targets
in range. We consider such targets as closely spaced.

Let the vector of targets’ reflectivities be generated from
the complex circular Gaussian distribution with zero-meanand
diagonal covariance matrixA = σ2

αI. Thus the targets are
assumed to be uncorrelated. The total SNR is defined as an
average of the SNRs over all transmit-to-receiver array pairs
and targets

SNR =
1

MtMrQ

Mt
∑

k=1

Mr
∑

l=1

Q
∑

q=1

SNRq
kl

where

SNRq
kl = E

σ2
α (ζqkl)

2

σ2
.

Recall that the target parameter estimation problem con-
sidered in this paper under Assumption 2.1 of the stochastic
signal model treats the covariance matrixA as an unknown
nuisance parameter. In addition, although the diagonal co-
varaince matrix is used to generate the signals in the simulation
results presented here, no assumptions were made about the
shape of theA while deriving the likelihood function in (14).

A. MrLr = 512 and Mt = 6

This subsection presents a set of simulation scenarios for
different configurations of the radar with multiple widely
separated arrays when the total number of receiving antenna
elements and the number of transmitting arrays are fixed to
MrLr = 512 andMt = 6 respectively. The MSE performance
of the ML estimator as a function of SNR for the stochastic
signal model is shown in Fig. 2. The CRLB is evaluated using
the expression in (17), and the ML estimates are obtained by
minimizing (27). The results are shown for the first target’s
location estimation only, since the results obtained for the
second target are identical. Subplots (a), (c), and (e) of Fig.
2 show the results for the targets located close to the origin,
while subplots (b), (d), and (f) show the results for the targets
located away from the origin. Subplots (a) and (b) demonstrate
the estimation performance of the the radar with the large
number of transmit-to-receive array path,MtMr = 768, but
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Fig. 1. Examples of symmetrical and equdistant antenna placement: (a)Mt = 6 andMr = 8; (b) Mt = 2 andMr = 2; (c) Mt = 2 andMr = 1.
The boresighs of all receiving arrays point at the origin (the placements of the array elements are indicated by the linespassing through the corresponding
receiver). Two targets positions are considered: 1) the targets are placed close to the origin at(−40,−50) and(60, 50); 2) the targets are located away from
the origin at(410, 320) and (510, 420).

short receiving arrays,Lr = 4. The resolution of the receiving
arrays, in such a configuration, is not sufficient to separate
the targets. Thus, the MSE is predicted well by the CRLB
only for large values of SNR. Contrary to this, a configuration
with a relatively small value of the productMtMr = 48,
and the long receiving arrays,Lr = 64, is shown in (e) and
(f). The receiving arrays have sufficient resolution to separate
the targets. The MSE starts converging to the CRLB at the
SNR= −10dB, which is30dB lower, than in the case shown
in (a) and (b). Subplots (c) and (d) of Fig. 2 demonstrate the
transition between the configuration with the large number
of small receiving arrays to the configuration with the long
receiving arrays. One can observe from Fig. 2 that asLr

increases over the limited range shown, for sufficiently large
MtMr and fixedMrLr, and targets well surrounded by the
separated arrays, the location estimation performance of the
radar with widely separated arrays improves in two ways:
1) the CRLB becomes lower, 2) the asymptotic region starts
at lower values of the SNR. Notice, that the estimation
performance does not change significantly when the targets
are moved away from the origin, despite that some of the
transmit-to-receive array pairs become more dominant thanthe
others. This can be explained by the large values ofMtMr

considered in these simulation scenarios, which provide a
sufficient geometric diversity.

Fig. 3 presents results similar to Fig. 2 obtained under
the deterministic signal model assumption. Here we calculate
EMCB instead of the CRLB, as discussed prior to (26),
assuming the targets’ reflectivities are generated from thesame
zero-mean complex Guassian distribution as in the stochastic
case. The radar configurations withMt = 6 andMrLr = 512
are again considered. Since for the deterministic signal model
the number of unknowns grows with the number of transmit-
to-receiver array paths,MtMr, it is expected that the radar
configuration with smallerMtMr and larger receiving arrays
will provide a better estimation performance. This can be
observed by comparing subplots (a) and (b) to subplots (e) and
(f) of Fig. 3. Similar to the MSE performance for the stochastic
model, for sufficiently largeMtMr, asLr increases over the

range shown, the asymptotic region starts at lower values of
the SNR and the overall variance of the estimate decreases.
Fig. 3 shows that even for finiteMtMr and Lr the EMCB
is a good prediction of the MSE when the SNR is high. In
addition, Fig. 3 demonstrates that the results obtained forthe
targets located close to the origin are similar to the results
obtained for the targets located away from origin. Therefore
the estimation performance does not significantly depend on
the targets locations ifMtMr is sufficiently large, and the
targets are well surrounded by transmitting and receiving
antennas.

B. MrLr = 128 and Mt = 2

The MSE results shown in Fig. 2 and Fig. 3 demonstrate
a good convergence to the bounds because the number of
transmit-to-receive array paths,MtMr, is always sufficiently
large. This subsection considers the estimation performance
of the radar configurations withMt = 2 single element
transmitting arrays andMrLr = 128 total receiving antenna
elements.

Fig. 4 shows the MSE and the CRLB for the stochas-
tic signal model under Assumption 2.1. The target parame-
ter estimation performance for the radar configuration with
MtMr = 64 transmit-to-receive array paths is shown in
subplots (a) and (b) for the targets located close to and
away from the origin respectively. In (a) the CRLB provides
a better prediction for the MSE than in (b), however the
MSE is similar in both cases. Subplots (e) and (f) show the
simulation results for the configuration withMtMr = 4, and
Lr = 64. The corresponding antenna placement is given in
Fig. 1b. Due to the chosen placement and the orientation of
the receiving arrays, this radar configuration provides a better
resolution along they axis, and a limited resolution along
the x axis, which is consistent with the MSE results in (e)
and (f). However, because of a small number of transmit-to-
receive array path,MtMr = 4, the estimation performance
of this radar configuration is more sensitive to the targets’
location when compared to the estimation performance of the
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Fig. 2. The CRLB and the MSE of the ML estimator for the stochastic signal model with two targets. The first target’s location estimation results are shown
for two closely spaced targets placed close to the origin in (a), (c) and (e), and away from the origin in (b), (d), and (f). Each configuration of the radar with
widely separated arrays hasMt = 6 single antenna element transmitting arrays and the total number of receiving antenna elements is fixed atMrLr = 512.
The number and the size of the receiving arrays vary: (a) and (b) Mr = 128, Lr = 4; (c) and (d)Mr = 32, Lr = 16; (e) and (f)Mr = 8, Lr = 64.

configuration withMtMr = 64 in (a) and (b). This can be
explained by a loss of the geometric diversity whenMtMr

becomes small. In (c) and (d) the MSE calculated for the radar
configuration withMt = 2, Mr = 8 andLr = 16 exhibits
better convergence to the CRLB, and is more robust to the
targets’ location.

Similar conclusions can be made about the deterministic
signal model and the radar configurations withMt = 2 and
MrLr = 128. The corresponding results of the Monte Carlo
simulations are shown in Fig. 5. In (a) and (b) the number
of transmit-to-receive array path isMtMr = 64, and the

receiving arrays haveLr = 4 antenna elements. The MSE
is well predicted by the EMCB in the high SNR region, and
the prediction is better for the targets located close to the
origin compared to the targets located away from the origin.
Since the number of unknown nuisance parameters (targets’
reflectivities) decreases withMtMr under the deterministic
model assumption, the MSE in (c) and (e) demonstrates better
convergence to the EMCB. The antenna placement used to
obtain results in (e) and (f) withMt = 2, Mr = 2, and
Lr = 64 is given in Fig. 1b. Similar to the stochastic case, such
antenna placement results in a better estimation performance
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Fig. 3. The EMCB and the MSE of the ML estimator for the deterministic signal model with two targets. The first target’s location estimation results are
shown for two closely spaced targets placed close to the origin in (a), (c), and (e), and away from the origin in (b), (d), and (f). Each configuration of the
radar with widely separated arrays hasMt = 6 single antenna element transmitting arrays and the total number of receiving antenna elements is fixed at
MrLr = 512. The number and the size of the receiving arrays vary: (a) and(b) Mr = 128, Lr = 4; (c) and (d)Mr = 32, Lr = 16; (e) and (f)Mr = 8,
Lr = 64.

along they axis than along thex axis, however the estimation
performance becomes significantly dependent on the location
of the targets with respect to the receiving arrays.

From the presented results, one might conclude that group-
ing all receiving antenna elements into one receiving array
would provide the smallest MSE. In order to demonstrate
that this assumption is generally false, we consider a radar
with Mt = 2 single element transmitting arrays andMr = 1
receiving array withLr = 128 antenna elements. The antenna
placement chosen for the simulations is shown in Fig. 1c.
Since such a radar system has onlyMtMr = 2 transmit-to-

receive array paths, the geometric gain due to observing targets
from multiple angles is much smaller compared to the other
configurations withMtMr ≫ 1. We provide target location
estimation Monte Carlo simulation results in Fig. 6. In (a)
and (b) we show the MSE and the CRLB for the stochastic
model, while in (c) and (d) we present the MSE and the EMCB
curves for the deterministic model.

Comparing the MSE curves shown in Fig. 6 with those in
subplots (e) and (f) in Fig. 4 and Fig. 5 indicates that the
MSE performance of the ML estimator for the radar with
one large receiving array is worse than the performance of
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Fig. 4. The CRLB and the MSE of the ML estimator for the stochastic signal model with two targets. The first target’s location estimation results are shown
for two closely spaced targets placed close to the origin in (a), (c), and (e), and away from the origin in (b), (d), and (f).Each configuration of the radar with
widely separated arrays hasMt = 2 single antenna element transmitting arrays and the total number of receiving antenna elements is fixed atMrLr = 128.
The number and the size of the receiving arrays vary: (a) and (b) Mr = 32, Lr = 4; (c) and (d)Mr = 8, Lr = 16; (e) and (f)Mr = 2, Lr = 64.

the radar with two receiving arrays for both stochastic and
deterministic signal models. The MSE is much higher in the
single receiving array case, and the CRLB provides a poor
prediction of the MSE. Since the receiving array is oriented
parallel to they-axis it provides good resolution along the
y-axis, with very limited resolution along thex-axis. Thus,
the MSE results for they coordinates of the targets in Fig.
6 are much better than the corresponding results for thex
coordinates. This demonstrates a loss in the geometric gaindue
to having only a single receiving array. Since the targets have
two unknown coordinates, two appropriately oriented arrays

are required to obtain accurate estimation performance forboth
x and y coordinates.

The simulation results shown in Fig. 6 show that grouping
all receiving antenna elements in one array does not gener-
ally provide better estimation performance, since the product
MtMr = 2 is too small. The MSE depends significantly on
the positions of the targets with respect to the receiving array.
Therefore, in terms of the MSE, it is generally more bene-
ficial to have multiple distributed transmitting and receiving
arrays such that the targets are observed from multiple angles
providing geometric gain in all directions.
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Fig. 5. The EMCB and the MSE of the ML estimator for the deterministic signal model with two targets. The first target’s location estimation results are
shown for two closely spaced targets placed close to the origin in (a), (c), and (e), and away from the origin in (b), (d), and (f). Each configuration of the
radar with widely separated arrays hasMt = 2 single antenna element transmitting arrays and the total number of receiving antenna elements is fixed at
MrLr = 128. The number and the size of the receiving arrays vary: (a) and(b) Mr = 32, Lr = 4; (c) and (d)Mr = 8, Lr = 16; (e) and (f)Mr = 2,
Lr = 64.

VI. CONCLUSIONS

This paper studies the parameter estimation performance
of a radar with widely separated antenna arrays in multiple
target scenarios. The CRLB is derived under the stochastic
and the deterministic signal model assumptions. The derived
expressions are general and can be used to obtain bounds
for different scenarios including a variety of radar system
configurations.

The asymptotic properties of the ML estimator are studied
under the stochastic and the deterministic signal model as-
sumptions. The stochastic ML estimates are shown to become

consistent and efficient if the number of transmit-to-receive
array paths,MtMr, approaches infinity. However, keeping
MtMr finite and increasing the size of the receiving arrays,
Lr, does not provide consistency. Under the deterministic
signal model assumption the ML estimates are consistent
but not efficient whenMtMr is infinitely large andLr is
fixed, while finiteMtMr, and infinitely largeLr guarantee
consistency and efficiency.

The asymptotic study conducted here provides useful insight
into the parameter estimation performance of a radar system
with distributed arrays. However, the question of the optimal
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Fig. 6. Results of the Monte Carlo simulations for a radar configuration with all receiving antenna elements grouped intoone receiving array. The first
target’s location estimation results are shown for two closely spaced targets: (a) the targets are close to the origin and the stochastic model is assumed; (b)
the targets are away from the origin and the stochastic modelis assumed; (c) the targets are close to the origin and the deterministic model is assumed; (d)
the targets are away from the origin and the deterministic model is assumed. Each configuration of the radar with widely separated arrays hasMt = 2 single
antenna element transmitting arrays andMr = 1 receiving array withLr = 128 antenna elements.

allocation of the antennas into arrays when only a finite
number of antenna elements is available cannot be answered
by considering the asymptotic performance. This issue is
addressed by conducting numerical simulations of scenarios
with finite MtMr and Lr, and a fixed number of available
receiving antenna elements,MrLr.

The simulation results show that the MSE and the threshold
SNR decrease asLr increases for both signal models ifMtMr

is sufficiently large. The MSE for both stochastic and deter-
ministic signal models is shown to be well predicted by the
corresponding CRLB and the EMCB in the large SNR region.
However, if MtMr is too small, the estimation performance
becomes strongly dependent on the targets’ positions and for
certain locations even an infinitely largeLr cannot provide
performance close to that with asymptotically largeMtMr.
This suggests that when the number of available receiving
antenna elements is fixed, the configurations where neither
MtMr nor Lr are too small provide better target parameter
estimation performance.

The CRLB and the asymptotic analysis of the ML estimator
is the first step toward understanding the parameter estimation
performance of a radar system with multiple widely separated
arrays. This paper introduces a number of questions and shows
that further analysis is required in some directions.

APPENDIX A

The derivation of the Cramer-Rao bound for the stochastic
model presented in this appendix follows the derivation fora
single phased array case developed in [32]. Using (99) and
(100), the expression for theijth element of the FIM in (16)
can be rewritten as

[I(γ)]ij =

Mr
∑

l=1

Mt
∑

k=1

(

vec

(

dRkl

dγi

))H
(

R
−T
kl ⊗R

−1
kl

)

· vec

(

dRkl

dγj

)

.

(44)

Applying (100) also to (13) we can define

vkl = vec (Rkl) = (Hc
kl ⊗Hkl) vec (A) + σ2vec (ILrN ) .

(45)
Using (45) in (44) thePQ× PQ FIM follows

I(γ) =

Mr
∑

l=1

Mt
∑

k=1

(

dvkl

dγT

)H
(

R
−T
kl ⊗R

−1
kl

)

(

dvkl

dγT

)

. (46)

Further, the matrixI(γ) can be partitioned

I(γ) =

Mr
∑

l=1

Mt
∑

k=1

[

G
H
kl

∆
H
kl

]

[

Gkl ∆kl

]

(47)
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where

Gkl =
(

R
−T/2
kl ⊗R

−1/2
kl

)

(

dvkl

dψT

)

(48)

∆kl =
(

R
−T/2
kl ⊗R

−1/2
kl

) [

dvkl

dρT
dvkl

dσ2

]

. (49)

The CRLB for the vector of the targets’ parameters of interest
can be found by applying a matrix factorization lemma [33]
to (47)

C
−1
s (ψ) =

Mr
∑

l=1

Mt
∑

k=1

G
H
klGkl

−G
H
kl∆kl

(

Mr
∑

l′=1

Mt
∑

k′=1

∆
H
k′l′∆k′l′

)−1(Mr
∑

l′=1

Mt
∑

k′=1

∆
H
k′l′Gk′l′

)

.

(50)

Further we define derivatives ofvkl with respect to the
elements ofψ and ρ, and σ2. Let (ψq)p be thepth, p =
1, 2, . . . , P , parameter of interest of the targetq, then from
(45)

dvkl

d(ψq)p
= vec

(

Rkl

d(ψq)p

)

= vec
(

d
qp
kl (c

q)H H
H
kl +Hklc

q (dqp
kl )

H
)

(51)

wherecq is a qth column ofA, anddqp
kl = d

d(ψq)p
h
q
kl. Thus

themth column of the matrixGkl in (48), wherem = P (q−
1) + p, becomes

[Gkl]m =
(

R
−T/2
kl ⊗R

−1/2
kl

) dvkl

d(ψq)p
(52)

= vec

(

R
−1/2
kl

Rkl

d(ψq)p
R

−1/2
kl

)

= vec
(

R
−1/2
kl

(

Hklc
q (dqp

kl )
H

+ d
qp
kl (c

q)
H
H

H
kl

)

R
−1/2
kl

)

.

The derivative of (45) with respect toρ can be simplified after
making the following observation:vec (A) = Jρ, whereJ is
a Q2 × Q2 constant block diagonal nonsingular matrix that
maps elements of the vectorρ into the elements ofvec (A)
[32]. Thus

dvkl

dρ
= (Hc

kl ⊗Hkl)J. (53)

Finally, the derivative of (45) with respect to the noise variance
is

dvkl

dσ2
= vec (ILrN ) . (54)

Using (53) and (54) in (49), the matrix∆kl can be written as

∆kl =
[(

R
−T/2
kl H

c
kl ⊗R

−1/2
kl Hkl

)

J vec
(

R
−1
kl

)

]

= FklJ̄

(55)

where

Fkl =
[

R
−T/2
kl H

c
kl ⊗R

−1/2
kl Hkl vec

(

R
−1
kl

)

]

(56)

J̄ =

[

J 0Q2×1

01×Q2 1

]

. (57)

After substituting∆kl back into (50) we obtain

C
−1
s (ψ) =

Mr
∑

l=1

Mt
∑

k=1

G
H
klGkl

−G
H
klFkl

(

Mr
∑

l′=1

Mt
∑

k′=1

F
H
k′l′Fk′l′

)−1

·

(

Mr
∑

l′=1

Mt
∑

k′=1

F
H
k′l′Gk′l′

)

.

(58)

One can observe that the result in (58) does not depend on
the matrix J, and the explicit form ofJ is not important.
To our knowledge the expression in (58) in general cannot
be significantly simplified because it requires inversion ofthe
sum of matrices.

APPENDIX B

The general expression for the deterministic FIM is given
in (23). Under Assumption 2.2 the mean and the covariance
matrix of the received signal for theklth transmit-to-receive
array path areµkl = Hklαkl andRkl = σ2

ILrN respectively.
The derivatives ofµkl andRkl with respect toψ, α, andσ2

follow

dµkl

dψT
=
[

d
11
klα

1
kl . . . d

qp
klα

q
kl . . . d

PQ
kl αQ

kl

]

(59)

dµkl

dαT
=
[

0LrN×2Q . . . Hkl jHkl . . . 0LrN×2Q

]

(60)

dµkl

dσ2
= 0LrN×1 (61)

dRkl

dψqp =
dRkl

dRe {αq
kl}

=
dRkl

dIm {αq
kl}

= 0LrN×LrN (62)

dRkl

dσ2
= ILrN . (63)

Notice (59) can be written in a more compact form

dµkl

dψT
= DklPkl (64)

where

Dkl =
[

d
11
kl . . . d

PQ
kl

]

(65)

Pkl = diag(αkl ⊗ 1P×1) (66)

and1P×1 is aP × 1 all-ones column vector. Using (59)-(63)
in (23), the FIM under the deterministic model assumption can
be written as

I(γ) =
2

σ2

Mr
∑

l=1

Mt
∑

k=1

Re









dµH
kl

dψ

dµ
kl

dψT

dµH
kl

dψ

dµ
kl

dαT 0

dµH
kl

dα

dµ
kl

dψT

dµH
kl

dα

dµ
kl

dαT 0

0 0
LrN
2σ2









.

(67)
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Using a matrix factorization lemma the FIM for the vector of
parameters of interestψ becomes

I(ψ) =
2

σ2

[

Mr
∑

l=1

Mt
∑

k=1

Re

{

dµH
kl

dψ

dµkl

dψT

}

(68)

−

(

Mr
∑

l=1

Mt
∑

k=1

Re

{

dµH
kl

dψ

dµkl

dαT

}

)

·

(

Mr
∑

l=1

Mt
∑

k=1

Re

{

dµH
kl

dα

dµkl

dαT

}

)−1

·

(

Mr
∑

l=1

Mt
∑

k=1

Re

{

dµH
kl

dα

dµkl

dψT

}

)]

.

It can be verified that

Re

{

Mr
∑

l=1

Mt
∑

k=1

dµH
kl

dψ

dµkl

dψT

}

=







Y11 · · · 0

...
. . .

...
0 · · · YMtMr






(69)

Re

{

Mr
∑

l=1

Mt
∑

k=1

dµH
kl

dψ

dµkl

dαT

}

=
[

T11 . . . TMtMr

]

(70)

Re

{

Mr
∑

l=1

Mt
∑

k=1

dµH
kl

dα

dµkl

dψT

}

=
[

U
T
11 . . . U

T
MtMr

]T
(71)

where

Ykl =

[

Re
{

H
H
klHkl

}

−Im
{

H
H
klHkl

}

Im
{

H
H
klHkl

}

Re
{

H
H
klHkl

}

]

(72)

Tkl =
[

Re
{

P
H
klD

H
klHkl

}

−Im
{

P
H
klD

H
klHkl

}]

(73)

Ukl =

[

Re
{

H
H
klDklPkl

}

Im
{

H
H
klDklPkl

}

]

. (74)

Substituting (69)-(71) and (64) into (68) we obtain

I(ψ) =
2

σ2

Mr
∑

l=1

Mt
∑

k=1

Re
{

P
H
klD

H
klDklPkl

}

−TklY
−1
kl Ukl.

(75)
Using identities (101) and (102) the FIM can be written as

I(ψ) =
2

σ2

Mr
∑

l=1

Mt
∑

k=1

Re
{

P
H
klD

H
klDklPkl (76)

− P
H
klD

H
klHkl

(

H
H
klHkl

)−1
H

H
klDklPkl

}

=
2

σ2

Mr
∑

l=1

Mt
∑

k=1

Re
{

P
H
klD

H
klΠ

⊥

Hkl
DklPkl

}

=
2

σ2

Mr
∑

l=1

Mt
∑

k=1

Re
{

D
H
klΠ

⊥

Hkl
Dkl

⊙
(

αklα
H
kl ⊗ 1P×P

)T
}

where
Π⊥

Hkl
= ILrN −Hkl

(

H
H
klHkl

)−1
H

H
kl (77)

and 1P×P is a P × P all-ones matrix. An inverse of (76)
results in the CRLB expression in (24).

APPENDIX C

This appendix shows that theklth summand in (28) has a
finite variance. Consider aklth summand in (28)

Lskl
=

1

MtMrLr

(

log
∣

∣

∣
R̂kl

∣

∣

∣
+ Tr

{

R̂
−1
kl rklr

H
kl

})

. (78)

Only the trace term in (78) is random, thus the variance of
Lskl

is

var [Lskl
] =var

[

1

MtMrLr
Tr
{

R̂
−1
kl rklr

H
kl

}

]

=var

[

1

MtMrLr
r
H
klR̂

−1
kl rkl

] (79)

where to obtain the last identity the cyclic property of the trace
operator was used. Using the expression for the variance of
the quadratic form in (105)

var [Lskl
] =

2

(MtMrLr)2
Tr
{

R̂
−1
kl RklR̂

−1
kl Rkl

}

. (80)

Further in order to obtain an upper bound on the variance, the
matrix trace inequality (108) can be applied to the trace in
(80) yielding

var [Lskl
] ≤

2

(MtMr)2

(

Tr
{

R̂
−1
kl Rkl

})2

. (81)

Let ν̂klmax
andνklmax

be the largest eigenvalues of the matri-
cesR̂−1

kl andRkl respectively. Applying the Von Neumanns
inequality from (109) to the trace in (81), another bound on
the variance ofLskl

can be obtained

var [Lskl
] ≤

2

(MtMrLr)2
(Nν̂klmax

νklmax
)
2
. (82)

Since the matriceŝRkl and Rkl are positive definite the
eigenvalueŝνklmax

andνklmax
have to be finite, which leads

to the variance ofLskl
being finite.

APPENDIX D

This appendix verifies (31). Using (5) in (28)

Ls

(

ψ̂, Â, σ̂2
)

=
1

MrMtLr

Mr
∑

l=1

Mt
∑

k=1

[

log
∣

∣

∣
R̂kl

∣

∣

∣

+Tr
{

R̂
−1
kl ekle

H
kl

}

+ 2Re
{

Tr
{

R̂
−1
kl Hklαkle

H
kl

}}

+ Tr
{

H
H
klR̂

−1
kl Hklαklα

H
kl

}]

(83)

By the definition of a trace operator the second, the third,
and the fourth terms of the function in (83) can be written as
summations

Ls

(

ψ̂, Â, σ̂2
)

=
1

MrMtLr

Mr
∑

l=1

Mt
∑

k=1

[

log
∣

∣

∣
R̂kl

∣

∣

∣

+

LrN
∑

i=1

LrN
∑

j=1

[

R̂
−1
kl

]

ij
(eHkl)i(ekl)j

+ 2

LrN
∑

i=1

Q
∑

j=1

Re

{

[

R̂
−1
kl Hkl

]

ij
(eHkl)i(αkl)j

}

+

Q
∑

i=1

Q
∑

j=1

[

H
H
klR̂

−1
kl Hkl

]

ij
(αH

kl)i(αkl)j





(84)



18

The first term in (84) is deterministic, while the second, the
third and the fourth terms depend on the random targets’
reflectivities and the noise. LettingLr → ∞ Kolmogorov’s
strong law of large numbers [30] can be applied to the second
and the third terms in (84) yielding

LrN
∑

i=1

LrN
∑

j=1

[

R̂
−1
kl

]

ij
(eHkl)i(ekl)j

a.s.
−−→E





LrN
∑

i=1

LrN
∑

j=1

[

R̂
−1
kl

]

ij
(eHkl)i(ekl)j





=

LrN
∑

i=1

LrN
∑

j=1

[

R̂
−1
kl

]

ij
E
[

(eHkl)i(ekl)j
]

=

LrN
∑

i=1

[

R̂
−1
kl

]

ii
σ2 = Tr

{

R̂
−1
kl

}

σ2

(85)

and

LrN
∑

i=1

Q
∑

j=1

Re

{

[

R̂
−1
kl Hkl

]

ij
(eHkl)i(αkl)j

}

a.s.
−−→E





LrN
∑

i=1

Q
∑

j=1

Re

{

[

R̂
−1
kl Hkl

]

ij
(eHkl)i(αkl)j

}





=

LrN
∑

i=1

Q
∑

j=1

Re

{

[

R̂
−1
kl Hkl

]

ij
E
[

(eHkl)i(αkl)j
]

}

= 0

(86)

where (86) follows from the independence of the noise and
the targets’ reflectivities. However Kolmogorov’s strong law
of large numbers cannot be applied to the fourth term in
(84) since there is no summation overLr. Therefore asLr

approaches infinity,Ls

(

ψ̂, Â, σ̂2
)

does not approach the
expected value in (29)

Ls

(

ψ̂, Â, σ̂2
)

a.s.
−−→

1

MrMtLr

Mr
∑

l=1

Mt
∑

k=1

[

log
∣

∣

∣
R̂kl

∣

∣

∣

+ σ2Tr
{

R̂
−1
kl

}

+αH
klH

H
klR̂

−1
kl Hklαkl

]

=
1

MrMtLr

Mr
∑

l=1

Mt
∑

k=1

[

log
∣

∣

∣
R̂kl

∣

∣

∣

+ Tr
{

R̂
−1
kl

(

Hklαklα
H
klH

H
kl + σ2

I
)

}]

(87)

APPENDIX E

This appendix verifies that the variance of theklth term in
(36) is bounded. Consider aklth summand in (36)

Fkl =
1

LrNMtMr
Tr
{

Π⊥

Ĥkl
rklr

H
kl

}

=
1

LrNMtMr
r
H
klΠ

⊥

Ĥkl
rkl

(88)

Under the deterministic signal model assumption the vector
rkl has the meanµkl = Hklαkl and the covariance matrix

Rkl = σ2
ILrN . Using the expression for the variance of the

quadratic form in (107)

var[rHklΠ
⊥

Ĥkl
rkl] = Tr

{

Π⊥

Ĥkl
RklΠ

⊥

Ĥkl
Rkl

}

+ 2µH
klΠ

⊥

Ĥkl
RklΠ

⊥

Ĥkl
µkl

= σ4Tr
{

Π⊥

Ĥkl

}

+ σ2µH
klΠ

⊥

Ĥkl
µkl

= σ4(LrN −Q) + σ2Tr
{

Π⊥

Ĥkl
µklµ

H
kl

}

(89)

where the last identity follows since the trace of the orthogonal
projection matrix is equal to its rankTr

{

Π⊥

Ĥkl

}

= LrN−Q.

In order to show that the variance in (89) is bounded we
first state a number of inequalities. Since the propagation loss
coefficient ζqkl is always positive and smaller than one, and
the norm of the temporal steering vectorbq

kl according to
Assumption 1 is E

MtLt
, the following inequality holds forQ

targets and theklth transmit-to-receive array path

Tr
{

H
H
klHkl

}

=

Q
∑

q=1

(hq
kl)

H
h
q
kl

=

Q
∑

q=1

(ζqkl)
2
(

(aqrl)
H
a
q
rl

) (

(bq
kl)

H
b
q
kl

)

|wH
k a

q
tk|

2 ≤ QE
LtLr

Mt
.

(90)

If the magnitudes of the targets’ reflection ceofficients are
bounded such that|αq

kl|
2 ≤ |αmax|

2, ∀k, l, q then

Tr
{

αklα
H
kl

}

≤ Q|αmax|
2. (91)

Combining (90) and (91) and using the matrix trace inequality
in (108) yields:

Tr
{

µklµ
H
kl

}

= Tr
{

Hklαklα
H
klH

H
kl

}

≤ Tr
{

H
H
klHkl

}

Tr
{

αklα
H
kl

}

= Q2E
LtLr

Mt
|αmax|

2.

(92)

Applying the matrix trace inequality in (108) to the trace in
(89) and then using (92), the bound on the variance ofFkl

follows

var[Fkl] ≤
σ4(LrN −Q) + σ2Tr

{

Π⊥

Ĥkl

}

Tr
{

µklµ
H
kl

}

(LrNMtMr)2

≤
σ2(LrN −Q)

(LrNMtMr)2

(

σ2 +Q2E
LtLr

Mt
|αmax|

2

)

< ∞.

(93)

APPENDIX F

Verification thatF (ψ̂) in (36) converges to (38) asLr →
∞. Using (5) in (36) the functionF (ψ̂) can be written as

F (ψ̂) =
1

LrNMtMr

Mr
∑

l=1

Mt
∑

k=1

[

αH
klH

H
klΠ

⊥

Ĥkl
Hklαkl

+ e
H
klΠ

⊥

Ĥkl
ekl + 2Re

{

e
H
klΠ

⊥

Ĥkl
Hklαkl

}]

(94)
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By the definition of the trace operator

F (ψ̂) =
1

LrNMtMr

Mr
∑

l=1

Mt
∑

k=1

[

αH
klH

H
klΠ

⊥

Ĥkl
Hklαkl

+

LrN
∑

i=1

LrN
∑

j=1

[

Π⊥

Ĥkl

]

ij
(eHkl)i(ekl)j

+ 2Re







LrN
∑

i=1

Q
∑

j=1

[

Π⊥

Ĥkl

]

ij
(eHkl)i(αkl)j











(95)

Note that in (95) only the second and the third terms are
random variables since they depend on the noise vectorekl

and according to the deterministic signal model the targets’
reflectivities αkl are non-random. By lettingLr → ∞,
Kolmogorov’s strong law of large numbers can be applied to
the second and the third terms in (95) yielding

LrN
∑

i=1

LrN
∑

j=1

[

Π⊥

Ĥkl

]

ij
(eHkl)i(ekl)j

a.s.
−−→E





LrN
∑

i=1

LrN
∑

j=1

[

Π⊥

Ĥkl

]

ij
(eHkl)i(ekl)j





=

LrN
∑

i=1

LrN
∑

j=1

[

Π⊥

Ĥkl

]

ij
E
[

(eHkl)i(ekl)j
]

=σ2Tr
{

Π⊥

Ĥkl

}

= σ2(LrN −Q)

(96)

and
LrN
∑

i=1

Q
∑

j=1

[

Π⊥

Ĥkl

]

ij
(eHkl)i(αkl)j

a.s.
−−→E





LrN
∑

i=1

Q
∑

j=1

[

Π⊥

Ĥkl

]

ij
(eHkl)i(αkl)j





=

LrN
∑

i=1

Q
∑

j=1

[

Π⊥

Ĥkl

]

ij
E
[

(eHkl)i(αkl)j
]

= 0

(97)

Thus asLr approaches infinityF (ψ̂) converges to the ex-
pected value

F (ψ̂)
a.s.
−−→

σ2(LrN −Q)

LrN

+
1

LrNMtMr

Mr
∑

l=1

Mt
∑

k=1

αH
klH

H
klΠ

⊥

Ĥkl
Hklαkl

(98)

APPENDIX G
USEFUL IDENTITIES AND INEQUALITIES

• Vectorization operator [32]

Tr {AB} = (vec(AH))Hvec(B) (99)

vec(ABC) = (CT ⊗A)vec(B). (100)

• For a nonsingular complex matrixA and its inverseB =
A

−1 the following identity was shown to hold in [18]
[

Re {A} −Im {A}
Im {A} Re {A}

]−1

=

[

Re {B} −Im {B}
Im {B} Re {B}

]

.

(101)

• For complex matricesA, B andC it can be verified that
[18]

[

Re {A} −Im {A}
]

[

Re {B} −Im {B}
Im {B} Re {B}

] [

Re {C}
Im {C}

]

= Re {ABC} .
(102)

• Expected value and variance of a quadratic form [34].
For ann-dimensional complex Gaussian random vector
x with a zero-mean and a covariance matrixΣ, and a
Hermitian matrixA

E
[

x
H
Ax
]

= Tr {AΣ} (103)

E
[

(xH
Ax)2

]

= Tr {AΣAΣ}+ (Tr {AΣ})
2 (104)

thus
var

[

x
H
Ax
]

= 2Tr {AΣAΣ} . (105)

It can be shown that ifx has a meanµ and covariance
matrix Σ then

E
[

x
H
Ax
]

= Tr {AΣ} + µH
Aµ (106)

var
[

x
H
Ax
]

= Tr {AΣAΣ} + 2µH
AΣAµ (107)

• A matrix trace inequality [35]. For the positive
semidefinite matricesA andB

Tr {AB} ≤
(

Tr {A}
2
Tr {B}

2
)1/2

. (108)

• Von Neumann’s trace inequality [36]. Form×m matrices
A andB with singular valuesα1 ≥ α2 ≥ . . . ≥ αn and
β1 ≥ β2 ≥ . . . ≥ βn respectively

|Tr {AB}| ≤

n
∑

i=1

αiβi ≤ nα1β1. (109)

• For any arbitrary givenn×n positive definite matrixA,
the inequality below holds for any positive definiten×n
matrix B [19]

ln detB+ Tr
{

B
−1

A
}

≥ n+ ln detA. (110)
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