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A track-before-detect labelled multi-Bernoulli
particle filter with label switching

Ángel F. García-Fernández

Abstract—This paper presents a multitarget tracking particle
filter (PF) for general track-before-detect measurement models.
The PF is presented in the random finite set framework and
uses a labelled multi-Bernoulli approximation. We also present a
label switching improvement algorithm based on Markov chain
Monte Carlo that is expected to increase filter performance if
targets get in close proximity for a sufficiently long time. The PF
is tested in two challenging numerical examples.

Index Terms—Particle filters, MCMC, random finite sets,
multitarget tracking, Kullback-Leibler divergence

I. INTRODUCTION

In surveillance applications it is important to accurately
estimate the number of targets along with their states at each
time step based on a sequence of measurements. A relevant
difficulty in this multitarget tracking (MTT) problem is the
fact that the number of targets is unknown and time varying.
Yet, Bayesian inference on multiobject systems, such as MTT,
can be done in a mathematically rigorous way using the
random finite set (RFS) formulation [1]. Here, the multitarget
state is a set that contains the single target states and all
the available information about the targets is included in the
posterior probability density function (PDF), i.e., the PDF of
the state given all available measurements [2]. In most cases
of interest, calculating the posterior PDF is intractable due
to nonlinear/non-Gaussian dynamic and measurement models
and the difficulty of handling target births and deaths. Conse-
quently, it must be approximated.

If a unique identifying label is added to each single target
state, we can estimate the states of specific targets at different
time steps [3], [4]. Moreover, the resulting Bayesian recursion
is more easily performed because of the simplification of
the set integrals in the prediction step [3], [5]. This implies
that it can be useful to include target labels, which could be
considered as auxiliary variables, even if we are only interested
in performing inference on the unlabelled collection of targets.
Importantly in this case, we have an extra degree of freedom
that can be used to improve the posterior PDF approximation:
we can choose any labelled posterior PDF as long as the
corresponding unlabelled posterior PDF remains unaltered.
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This kind of idea, which we refer to as label switching
improvement, was first introduced for fixed and known number
of targets and Gaussian approximations in [6]. It can lead to
benefits in performance if there is mixed labelling [7], i.e.,
when targets get in close proximity for a sufficiently long time
and then separate. An extension of [6] for MTT, with Gaussian
multi-Bernoulli PDFs, has been proposed in [8].

In this paper, we first design an efficient particle filter
(PF) [9] for track-before-detect MTT with no assumptions in
the measurement model. Then, we develop an algorithm for
label switching improvement for this PF based on Markov
chain Monte Carlo (MCMC) [10]. We proceed to review the
literature and explain our contributions more thoroughly.

As we focus on general track-before-detect applications,
MTT algorithms for the radar point detection measurement
model, such as the probability hypothesis density (PHD) filter
[2], cardinalised PHD (CPHD) filter [11], multiple hypothesis
tracking [12], the labelled RFS filters in [3], [13], [14] or
the sequential Monte Carlo (SMC) algorithms in [15], [16]
cannot be applied. There are multiple track-before-detect MTT
algorithms that are not general as they require specific mea-
surement models such as superpositional sensors [17], [18],
models with likelihood factorisation over single targets [19],
pixelised sensors [20]–[22] or the model of the histogram
probabilistic multi-hypothesis tracker [23].

We address the track-before-detect problem for general
measurement models by considering an approximation to the
posterior PDF based on SMC methods or particle filters
(PFs). Markov chain Monte Carlo (MCMC) methods can
also be applied to perform Bayesian filtering with the same
flexibility as PFs [24] but we focus on PFs. A PF provides
an SMC approximation to the posterior which converges to
the posterior as the number of particles tends to infinity under
some conditions [25]. In practice however, it is desirable to
keep the number of particles low to reduce the computational
burden as well as increasing the speed of the filter. Due to the
curse of dimensionality, direct generalisations of single target
PFs to MTT do not work well for a reasonably low number of
particles [4]. One way of alleviating this problem is to make
the posterior independence assumption (PIA), in which target
states are independent [4], [20], [26]–[28]. While PIA implies
that the PF is no longer asymptotically optimal, it is usually
beneficial for low sample sizes [27].

In order to account for the unknown and variable number
of targets in PFs, one possibility is to sample target existences
directly from the prior [29]. Yet, this is highly inefficient
as it removes and adds targets regardless of the current
measurement. In [20]–[22], the current measurement is taken
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into account to draw samples from target existences by an
existence grid, and in [4], by a two-layer PF. However, in
these cases, sampling of target existences and states is done
via separate procedures, which can imply detrimental effects
on performance if several targets are in close proximity. In
this paper, we handle target states and label existences jointly
using the labelled RFS framework by assuming a labelled
multi-Bernoulli (LMB) posterior, which implies that target
states and existences are independent [3]. The proposed PF,
the generalised parallel partition (GPP) PF, is an extension of
the parallel partition (PP) PF, which was developed for fixed
and known number of targets [4, Sec. III]. In contrast to the
PP method, the GPP method does not require a two-layer PF
[4, Sec. IV] to take into account variable target number as the
target states and existences are handled jointly. We generalise
the PP method due to its computational efficiency and high
performance [4], [27], [28].

As mentioned before, we can make use of label switching
improvement techniques, which are useful if targets move in
close proximity for a long time and we are not interested
in labelling information [30]. In this respect, we propose an
algorithm to obtain a PDF that does not alter the unlabelled
target information and can be more accurately approximated as
LMB than the original posterior PDF. This improvement in the
LMB approximation enhances the performance of the particle
filter. This algorithm is based on iterated Kullback-Leibler
divergence (KLD) minimisations and is a generalisation of
[31], which considers a fixed and known number of targets.

The remainder of the paper is organised as follows. We
formulate the problem in Section II. Section III explains the
recursion for improving the LMB approximation. In Section
IV, we develop the GPP particle filter. The implementation
of the label switching improvement algorithm for the particle
filter is developed in Section V. Numerical examples are
provided in Section VI. Finally, conclusions are drawn in
Section VII.

II. PROBLEM FORMULATION

In this paper, labelled RFS densities are denoted as π,
unlabelled RFS densities as π̌ and densities over a vector
space as π, which are referred to as vector densities. A
brief introduction to the RFS framework with unlabelled and
labelled sets can be found in Sections II and III in [3]. Without
loss of generality, we remove the time index of the filtering
recursion for notational simplicity. Variables and densities at
the previous time step have a superscript −.

The collection of targets at the current time step is repre-
sented by the unlabelled set X = {x1, ..., xt}, where xi ∈ Rnx
is the state of the ith target. The multiobject transition den-
sity f̌ (· |X− ) encapsulates the underlying models of target
dynamics, births and deaths. Targets are observed through
noisy measurements, which can be vectors or sets. Once the
measurement has been observed, the resulting multi-target
likelihood ` (·) depends on X and with this notation we
highlight that it is not a PDF on X . For the sake of notational
simplicity, we omit the explicit value of the measurement in
the likelihood.

The objective of this paper is to compute the unlabelled RFS
posterior density π̌, whose argument is X , for general track-
before-detect measurement models. The PDF π̌ contains all
information regarding the unlabelled states given the sequence
of measurements. The filtering recursion is [1]

π̌ (X) ∝ ` (X)

ˆ
f̌
(
X
∣∣X− ) π̌− (X−) δX− (1)

where ∝ denotes proportionality.
Even though our objective is to calculate the unlabelled RFS

posterior, using a labelled posterior is beneficial to perform the
filtering recursion because set integrals are easier to compute
[3], [5]. In this case, labels can be seen as auxiliary variables
that aid in computation. We denote the labelled set as X =
{(x1, l1) , ..., (xt, lt)} where li ∈ L is the label for the ith
target, no two targets can have the same label and L is a
countable set. The filtering recursion becomes [1]

π (X) ∝ ` (X)

ˆ
f
(
X
∣∣X− )π− (X−) δX− (2)

where π is the labelled RFS posterior at the current time step
and f (· |X− ) is the labelled RFS transition density. It should
be highlighted that f (· |X− ) has the property that the labels
of the surviving targets do not change with time. This is the
main reason why the set integrals in (2) are easier to compute
than in (1). Based on [6], we make the following definition.

Definition 1. The unlabelled RFS family [π] of π is [π] =
{ϕ : ϕ ∼ π}, where ϕ ∼ π if and only if ϕ and π have the
same unlabelled PDF, which is obtained by integrating out the
labels [3, Eq. (9)]:∑

(l1,...,lt)∈Lt
ϕ ({(x1, l1) , ..., (xt, lt)})

=
∑

(l1,...,lt)∈Lt
π ({(x1, l1) , ..., (xt, lt)}) ∀t ∈ N.

Set [π] is an equivalence class as ∼ is reflexive, symmetric
and transitive. If the targets move independently with the
same dynamics and measurements do not provide labelling
information, we can calculate (1) using (2) by a labelled RFS
density π− such that if we integrate out the labels we obtain
π̌−. Importantly, at any time step, we can change the labelled
RFS density π− with another labelled density ϕ− ∈ [π−] at
our convenience. These ideas were first used in [6] to provide
more accurate Gaussian approximations in MTT with fixed
and known number of targets.

In order to approximate the unlabelled posterior for general
measurement models, this paper proposes a PF with LMB
approximation. The prediction and update step are therefore
performed via Monte Carlo sampling and the resulting PDF
is approximated as LMB via KLD minimisation. Instead of
performing the LMB approximation on the labelled posterior
provided by the PF, we can choose another labelled PDF
within its unlabelled RFS family that can be approximated as
LMB more accurately to improve performance. This algorithm
is designed based on KLD minimisations and implemented via
MCMC. The resulting LMB-PF recursion is illustrated in Fig-
ure 1. The label switching improvement algorithm is explained
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Theorems 3 and 4)
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(Theorem 3)

Figure 1: Diagram of the proposed LMB-PF recursion. The label switch-
ing improvement algorithm is optional as it is only useful if targets get
in close proximity for a sufficiently long time and then separate.

in Section III, the PF in Section IV and the implementation of
the label switching improvement for the PF based on MCMC
in Section V.

III. IMPROVEMENT OF LMB APPROXIMATION

In this section we describe the label switching improvement
algorithm, see Figure 1. That is, given a labelled RFS density
π, we provide a recursion of PDFs to select a labelled PDF that
belongs to [π] that is more accurately approximated as LMB
than π. First, we write a simplified expression for the KLD
for labelled RFS in Section III-A. Second, we review LMB
RFS in Section III-B. Third, we provide the required iterated
optimisations in Section III-C. Fourth, in Section III-D, we
provide an example to illustrate the results of this section.

A. Kullback-Leibler divergence
In this section, we derive a decomposition of the KLD for

labelled sets. First, we introduce the required notation. Given
a labelled RFS density π and t different labels l1, ..., lt, we
define the PDF (over a vector space) [5]

π (x1:t; l1, ..., lt) ,
π ({(x1, l1) , ..., (xt, lt)})

Pπ ({l1, ..., lt})
(3)

where

Pπ ({l1, ..., lt}) =

ˆ
π ({(x1, l1) , ..., (xt, lt)}) dx1:t (4)

is the probability of having a labelled set with labels {l1, ..., lt}
and x1:t = (x1, ..., xt).

Proposition 2. Given two labelled RFS densities π and ν,
the KLD [1]

D (π ‖ν ) =

ˆ
π (X) log

π (X)

ν (X)
δX (5)

can be written as

D (π ‖ν ) = D (Pπ ‖Pν )

+
∑
L⊆L

Pπ (L) D
(
π
(
·;
−→
L
)∥∥∥ν (·;−→L)) (6)

where
−→
L is a vector whose components are the elements of L

arranged in ascending order.

Proposition 2 is proved in Appendix A. We want to remark
that Proposition 2 holds for any ordering

−→
L of L. As pointed

out in Section III-C, we use labels that are natural numbers,
as in [4], [32], so we can use ascending order without loss
of generality. If labels are vectors as in [3], we can define

−→
L

based on lexicographical order [33].

B. Labelled multi-Bernoulli RFS

An LMB density ν is defined under the assumption
• A1 There is a maximum number κ of targets.

An LMB RFS includes a target with label j ∈ L with
probability pj and, if this target exists, its state is distributed
according to a density ν (·; j) independently from the rest of
targets [3]. In this paper, we characterise its RFS density by

Pν ({l1, ..., lt}) =

κ∏
j=1

(1− pj)
t∏

j=1

plj
1− plj

(7)

ν (x1:t; l1:t) = ν (x1; l1) ...ν (xt; lt) (8)

where we have assumed without loss of generality that L =
{1, ..., κ}.

C. Iterated optimisations

In this section, ideally, we would like to find the best LMB
approximation ν to any density ϕ ∈ [π]. Therefore, given π,
we would like to find

ν? = arg min
ν

D (ϕ ‖ν ) (9)

subject to ϕ ∈ [π] and ν is LMB. However, this optimisation
problem is difficult to solve.

Instead, in this paper, we provide a sequence of PDFs
ϕ0 = π, ν0, ϕ1, ν1,... such that at each step of the
iteration the KLD is lowered. Specifically, based on ϕn, νn is
obtained by minimising D (ϕn ‖νn ) with constraints (7) and
(8). How to perform this minimisation will be indicated by
Theorem 3. Note that the result of this theorem provides us
with the best LMB approximation to a labelled RFS density
according to the KLD. Given νn, ϕn+1 is calculated as
follows. First, the algorithm sets Pϕn+1 = Pπ so that the
original probability mass function (PMF) of the labels does
not change. Second, we set ϕn+1 (·; l1:t)=ϕn (·; l1:t) for all
the labels {l1, ..., lt} ⊆ {1, ..., κ}. Then, we go through all the
labels and modify ϕn+1 (·; l1:t) by minimising D

(
ϕn+1 ‖νn

)
with constraint ϕ ∈ [π]. How to perform these minimisations
will be indicated by Theorem 4. The resulting sequence is
quite suitable for PF implementations, as will be seen in
Section V. Due to how the minimisations are performed,

D (ϕn ‖νn ) ≥ D
(
ϕn+1 ‖νn

)
≥ D

(
ϕn+1

∥∥νn+1
)
. (10)

This implies that the final LMB approximation is equal or
more accurate than the original. As D (ϕ ‖ν ) ≥ 0, this
sequence converges. The required optimisations are given
below.

Theorem 3. For a given labelled RFS density ϕ, the solution
to

arg min
ν

D (ϕ ‖ν )

subject to ν being LMB, which implies (7) and (8), is

pj =
∑
L3j

Pϕ (L) (11)

ν (x1; j) ∝
∑
L3j

Pϕ (L)ϕj

(
x1;
−→
L
)

j = {1, ..., κ} (12)



where ϕj
(
·;
−→
L
)

denotes the marginal PDF of the state that

corresponds to label j given the labels
−→
L .

This theorem is proved in Appendix B. We want to remark
that ϕ

(
·;
−→
L
)

is a vector density so the marginal ϕj
(
·;
−→
L
)

simply corresponds to integrating out the states except the one
with label j. In [13, Sec. III.B], an LMB approximation from
a δ-generalised LMB PDF is proposed. Theorem 3 implies
that the approximation provided in [13] actually minimises
the KLD in that particular case.

Theorem 4. For given labelled RFS densities ν and π, PMF
Pϕ = Pπ , label set L and vector densities ϕ

(
·;
−→
L′
)
L′ ⊆ L\L

the solution to
arg min
ϕ
(
·;
−→
L
) D (ϕ ‖ν )

subject to ϕ ∈ [π] is

ϕ
(
x1:|L|;

−→
L
)

= α
(
x1:|L|;

−→
L
)
π̌
({
x1, ..., x|L|

}
;
−→
L
)

(13)

α
(
x1:|L|;

−→
L
)

=
ν
(
x1:|L|;

−→
L
)

ν̌
({
x1, ...x|L|

}
;
−→
L
) (14)

where the RFS density given the labels is

π̌
({
x1, ...x|L|

}
;
−→
L
)

=

|L|!∑
p=1

π
(

Γp,|L|
(
x1:|L|

)
;
−→
L
)

(15)

and Γp,t (·) indicates the pth permutation for t elements.

Theorem 4 is proved in Appendix C. We want to clarify that,
according to (3)-(4), ϕ is characterised by Pϕ and ϕ

(
·;
−→
L
)

L ⊆ L. In Theorem 4, we are given all these densities except
one, which is the one we optimise. Finally, the steps of the
recursive optimisations are given in Algorithm 1.

Algorithm 1 Improved LMB approximation
Input: Initial labelled density π.
Output: LMB approximation ν?.

- Set ϕ0 = π.
for n = 0 to I1 − 1 do . I1 is the number of steps.

- Calculate νn using ϕn and Theorem 3.
- Set ϕn+1 = ϕn.
for all L ⊆ L do

- Calculate ϕn+1
(
·;
−→
L
)

using νn, ϕn+1
(
·;
−→
L′
)

L′ 6= L and Theorem 4.
end for

end for
- Set ν? = νI1−1.

D. Illustrative example

In this section we consider an illustrative example to show
how the previous algorithm for lowering the KLD works. Let
us assume κ = 2,

π (x1:2; 1, 2) = N
(
x1:2; [10, 11]

T
,

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

])
(16)

π (x1; 1) = N
(
x1; 10, σ2

1

)
(17)

Table I: PMF Pπ for the illustrative example

Ø {1} {2} {1, 2}
Case 1 0.1 0.05 0.05 0.8
Case 2 0.1 0.3 0.3 0.3

x
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x
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11

12

13

14

(b)

Figure 2: Joint PDF for labels 1, 2 for Cases 1 and 2: (a) initial PDF
ϕ0 (·; 1, 2) and (b) its best LMB approximation ν0 (·; 1, 2)

π (x1; 2) = N
(
x1; 11, σ2

2

)
(18)

where σ1 = σ2 = 1, ρ = −0.8, and N (x;x,Σ) is the
Gaussian PDF with mean x and covariance matrix Σ evaluated
at x. We consider two cases that differ in the PMF of the
labels, see Table I. An important feature is that Pπ ({1, 2}) is
considerably larger than the rest in Case 1.

The PDFs for labels 1 and 2 for the original PDF ϕ0

and its best LMB approximation ν0 are shown in Figure 2.
Both cases have the same PDF for labels 1 and 2 in the
best LMB approximation because π (·; 1), π (·; 2) correspond
with the marginal PDFs of π (·; 1, 2), although this is not
necessarily this case. It should be noted that in both cases,
ϕn (·; 1) = π (·; 1) and ϕn (·; 2) = π (·; 2) ∀n. This is due to
the fact that the previous recursion only performs changes in
the PDFs that represent more than one target. As we iterate,
the KLD gets lower as shown in Table II. The PDFs for labels
1 and 2 for ϕ5 and ν5 in Case 1 are shown in Figure 3. It is
clear that there are considerable differences between ϕ0 and
ϕ5 that enable the significant lowering of the KLD, although
they contain the same information regarding the corresponding
unlabelled set. In case 2, the KLD is also reduced but much
less, see Table II. The reason behind this behaviour is that,
in Case 1, it is highly likely that two targets exist and the
weight of the PDFs with labels with a single target are quite
low. Therefore, the resulting optimisation is quite similar to
the case in which there are always two targets, see [31].
On the contrary, in Case 2, the single target PDFs have a
more important weight and the best LMB approximation is
clearly influenced by π (·; 1) and π (·; 2) so the KLD cannot
be reduced much. Nevertheless, the recursion always ensures
that the new PDFs are more accurately approximated as LMB
than the original ones.

Table II: KLD of νn from ϕn

Iteration number n 0 1 2 3 4 5
Case 1 0.542 0.467 0.408 0.382 0.375 0.374
Case 2 0.184 0.164 0.160 0.159 0.159 0.159
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Figure 3: Joint PDF for labels 1, 2 for Case 1: (a) PDF ϕ5 (·; 1, 2) and
(b) its best LMB approximation ν5 (·; 1, 2)

IV. LABELLED MULTI-BERNOULLI PARTICLE FILTER

In this section, we describe the generalised parallel partition
(GPP) particle filter, which is a generalisation of the parallel
partition (PP) particle filter [4, Sec. III] that accounts for target
births and deaths. The PP-PF corresponds to the GPP-PF with
a known and fixed number of targets. Note that for fixed
and known number of targets, a vector representation of the
multitarget state is equivalent to a labelled RFS [30], so, in
this case, an LMB RFS density is equivalent to a density on
a multitarget vector state with independent targets. In Section
IV-A, we provide the posterior PDF and explain the use of
an auxiliary variable in GPP-PF. The importance density to
sample the posterior and the resulting particle weights are
provided in Section IV-B.

A. Posterior density

We assume
• A2 The posterior at the previous time step is LMB

with existence probabilities p−j and densities π− (·; j)
j ∈ {1, ..., κ−}.

• A3 The PDF of the new born targets is LMB with
existence probabilities pj and densities η (·; j) j ∈
{κ− + 1, ..., κ}.

We recall that we assume without loss of generality that
L = {1, ..., κ}. In a PF, we draw N particles

{
X1, ...,XN

}
from an importance density, where Xi represents the ith
particle, and in order to evaluate the weight of the ith particle
we need to evaluate π

(
Xi
)
. Note that these particles are

usually stored in matrices in a computer implementation [5,
Sec. III.A]. In the following, we represent the posterior PDF
using decomposition (3)-(4). For evaluating the posterior for a
specific particle, we find it useful to denote by

−→
Li and xi1:|Li|

the vector of labels of Xi arranged in ascending order and
xi1:|Li| their corresponding states [5]. Therefore,

π
(
Xi
)

= Pπ
(
Li
)
π
(
xi1:|Li|;

−→
Li
)
. (19)

Under A2 and considering Section III-B, the posterior at
the previous time is characterised by

Pπ− (L) =

κ−∏
j=1

(
1− p−j

) |L|∏
j=1

p−Lj
1− p−Lj

(20)

π−
(
x1:|L|;

−→
L
)

=

|L|∏
j=1

π− (xj ;Lj) (21)

where Lj indicates the jth component of
−→
L =

(
L1, ..., L|L|

)
.

Let us assume that we have a Monte Carlo (MC) approxi-
mation of the posterior at the previous time such that

π−
(
x1:|L|;

−→
L
)
∝
|L|∏
j=1

N−Lj∑
i=1

δ
(
xj − x−iLj

)
(22)

where δ (·) is the Dirac delta, x−iLj is the ith particle and N−Lj is
the number of particles of density π− (·;Lj) and the weights
are even. Then, making the usual assumptions that targets
move independently with single target transition density g (·|·)
and probability of survival γ, the prior PDF ξ of the surviving
targets, which is also called the predicted PDF of the surviving
targets, is also LMB with [13]

Pξ (L) =

κ−∏
j=1

(1− pj)
|L|∏
j=1

pLj
1− pLj

(23)

ξ
(
x1:|L|;

−→
L
)
∝
|L|∏
j=1

N−Lj∑
i=1

giLj (xj) (24)

where

pLj = γ · p−Lj (25)

gij (·) = g
(
·|x−ij

)
j ∈

{
1, ..., κ−

}
. (26)

Under A3, the prior PDF ω at the current time step, which
is the predicted PDF of the surviving targets and the new born
targets, is also LMB with [13]

Pω (L) =

κ∏
j=1

(1− pj)
|L|∏
j=1

pLj
1− pLj

(27)

ω
(
x1:|L|;

−→
L
)
∝
|L|∏
j=1

N−Lj∑
i=1

giLj (xj) (28)

where

gij (·) =η (·; j) j ∈
{
κ− + 1, ..., κ

}
(29)

N−Lj =N j ∈
{
κ− + 1, ..., κ

}
. (30)

Note that in (28) we write the PDFs of the new born targets
also as a mixture of PDFs to deal with surviving and new born
targets jointly with the same notation. Applying Bayes’ rule,
we obtain the posterior [5]

π
(
x1:|L|;

−→
L
)
Pπ (L) ∝ `

({
x1, ..., x|L|

})
× Pω (L)

|L|∏
j=1

N−Lj∑
i=1

giLj (xj) . (31)

As in the PP method [4], we use an auxiliary vector a1:|L| =(
a1, ..., a|L|

)
such that we write

π
(
x1:|L|, a1:|L|;

−→
L
)
Pπ (L) ∝ `

({
x1, ..., x|L|

})



× Pω (L)

|L|∏
j=1

g
aj
Lj

(xj) (32)

where aj ∈
{

1, ..., N−Lj

}
and each component of a1:|L| is

an index on the mixture in (31). In other words, in (32), the
state xj of target j comes from particle aj at the previous
time step. The auxiliary vector is quite useful because it
lowers the computational complexity by removing the sum in
(31) and allows for subparticle crossover [4]. As illustrated
in [4, Fig. 1], subparticle crossover refers to the fact that
a (multitarget) particle of the posterior can be formed by
propagating subparticles, part of the multitarget particle that
represents a target, that belonged to different particles at the
previous time step. As expected, integrating out a1:|L| in (32),
we obtain (31). In general, samples from (32) cannot be
obtained directly, so we proceed to describe an importance
density to draw samples from.

B. Importance density and particle weights

The predicted state of the target with label j is1

x̂j =
1

Nk−1
j

N−j∑
i=1

E
[
gij (x)

]
j ∈ {1, ..., κ} . (33)

The set of predicted states with labels in L is

X̂L =
{
x̂L1 , ..., x̂L|L|

}
.

We first write the importance density q in terms of its
decomposition (3)-(4) and then we explain it:

Pq (L) ∝ Pω (L) `
(
X̂L

)
(34)

q
(
x1:|L|, a1:|L|;

−→
L
)

=

|L|∏
j=1

g
aj
Lj

(xj) `
(
{xj} ∪ X̂L\Lj

)
βLj

(35)

βLj =

N−Lj∑
aj=1

ˆ
g
aj
Lj

(xj) `
(
{xj} ∪ X̂L\Lj

)
dxj

(36)

where L \ Lj indicates label set L without label Lj and βLj
is a normalising constant. Sampling from is q performed in
two steps. First, we obtain N samples L1, ..., LN from (34).
As L is a discrete set, this task can be performed easily.
Each of these samples contains the labels of the targets whose
states have to be sampled to obtain the final particles from
the posterior. An important characteristic of Pq is how it takes
into account the current measurement and target states. It uses
the predicted target states for each configuration of labels (hy-
potheses), represented by X̂L, and the current measurement,
included in `

(
X̂L

)
, to draw possible existences, see Figure

4. This way, we draw more particles with hypotheses which
are predicted to have a higher posterior weight.

1If we cannot obtain E
[
gij (x)

]
in closed-form, we can instead draw x̂j

as a sample from gij (·) as discussed in [28] for the PP method or in [34] for
the auxiliary PF.
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Figure 4: Illustration of the sampling of the label set. The position
particles of two targets at the previous time step are shown as blue and
red circles. The crosses denote the predicted positions at the current
time step for each target, which are obtained using these particles and
the dynamic model, see (33). Based on these predicted positions and the
current measurement, we sample the label PMF using (34).

Once we have obtained N samples L1, ..., LN from (34),
we have H different label sets L̇1, ..., L̇H and NL̇h particles
with label set L̇h. Then, for all the particles with label set L̇h,
we use (35) to obtain NL̇h samples of the target states. The
density (35) is the importance density of the PP method given
the label set L̇h. How target state sampling is performed and
the properties of the PP method are thoroughly discussed in [4,
Sec. III]. Target states are sampled independently, this is why
there is a product over the target index j, and the other target
states are taken into account in the likelihood by their predicted
states, see (33) and Figure 4. It should be noted that in (35),
we include the normalising constant βLj . The reason behind
this is that the importance density (35) for each L̇h is different
so we have to consider the normalising constants in the final
particle weight. The normalising constants are approximated
as [15]

βLj ≈
1

N−Lj

N−Lj∑
i=1

`
({
x̃ij
}
∪ X̂L\Lj

)
(37)

where x̃ij ∼ giLj (·).
The final particles are represented by{(
L1, x11:|L1|, a

1
1:|L1|

)
, ....,

(
LN , xN1:|LN |, a

N
1:|LN |

)}
. Using

(32) and (34)-(36), the weight of the ith particle becomes

wi ∝
`
({
xi1, ..., x

i
|Li|

})
`
(
X̂Li

)∏|Li|
j=1 bj

(
Li, xij

) (38)

bj
(
Li, xij

)
=
`
({
xij
}
∪ X̂Li\Lij

)
βLij

. (39)

where Lij denotes the jth component in ascending order of

Li, i.e.,
−→
L i =

(
Li1, ..., L

i
|Li|

)
.

The steps for drawing samples in the GPP method are
provided in Algorithm 2. Finally, in order to be able to perform
the filtering recursion, at the next time step, we need a prior
of the form (28). This can be achieved by first performing



resampling to obtain evenly distributed weights and directly
approximate the current particle approximation as LMB using
Theorem 3. This results in an LMB approximation such that
the particles and existence probability for the target with label
j are:{

x1j , ..., x
Nj
j

}
=
{
xip : Lip = j, p ∈

{
1, 2, ...,

∣∣Li∣∣}} (40)

pj =
Nj
N

(41)

where (40) simply takes the particles which have label j and
(41) indicates that the probability of existence of the jtarget
is proportional to the number of particles that contain it.

If we are not interested in target labels instead of using (40)-
(41), we can use the label switching improvement algorithm
explained in Section V. The overall steps of the PF are
indicated in Algorithm 3.

Algorithm 2 GPP particle filter subroutine

Input: Existence probability p−j and N−j particles
{
x−1
j , ..., x

−N−j
j

}
for j =

{
1, ..., κ−

}
, which represent (28).

Output: N particles with even weights{(
L1, x1

1:|L1|, a
1

1:|L1|
)
, ....,

(
LN , xN

1:|LN |, a
N

1:|LN |
)}

, which
approximate (32).

- Calculate pj = γ · p−j for j =
{
1, ..., κ−

}
.

- Calculate x̂j for j = {1, ..., κ} using (33). . This step includes
new born targets
- Obtain N samples L1, ..., LN from (34).
- From L1, ..., LN , obtain the different label sets L̇1, ..., L̇H and
the number NL̇h of particles with L̇h.
- Set r = 1 . r is an index on the particles of the posterior.

. Go through all the sampled label sets.
for h = 1 to H do

. Go through the targets indicated by L̇h.
for j = 1 to

∣∣∣L̇h∣∣∣ do
. Draw the particles for the jth target in L̇h.

for l = 1 to N−
L̇hj

do

- Obtain a sample x̃lj ∼ glL̇hj (xj).

- Calculate c
(
x̃lj
)
= `

({
x̃lj
}
∪ X̂L̇h\L̇hj

)
.

end for
- Normalise c

(
x̃lj
)

to sum to one over l = 1 to N−
L̇hj

.

for l = 1 to NL̇h do
. Resampling stage for the jth target in L̇h.

- Sample an index p from the distribution defined by
c
(
x̃ij
)

over i = 1 to N−
L̇hj

.

- Set xrj = x̃pj , Lrj = L̇hj and arj = p.

- Set bj
(
L̇hj , x

r
j

)
= N−

L̇hj
· c
(
x̃pj
)
.

- Set r = r + 1.
end for

end for
end for

. Weight calculation
for i = 1 to N do

- Calculate the weight wi using (38).
end for
- Perform resampling to obtain even particle weights.

V. LABEL SWITCHING IMPROVEMENT USING MCMC
In this section, we apply the label switching algorithm to

improve the LMB approximation described in Section III to

Algorithm 3 LMB particle filter algorithm

Input: Existence probability p−j and N−j particles
{
x−1
j , ..., x

−N−j
j

}
for j =

{
1, ..., κ−

}
, which represent (28).

Output: Existence probability pj and Nj particles
{
x1j , ..., x

Nj
j

}
for

j = {1, ..., κ}, which approximate (32) as LMB.
- Use Algorithm 2 to obtain N particles with even weights{(
L1, x1

1:|L1|, a
1

1:|L1|
)
, ....,

(
LN , xN

1:|LN |, a
N

1:|LN |
)}

, which ap-
proximate (32).

. Obtain LMB approximation
if Label switching improvement then

. Useful when targets get in close proximity
- Use Algorithm 4 to obtain pj and Nj particles

{
x1j , ..., x

Nj
j

}
for j = {1, ..., κ}.
else

- Use (40)-(41) to obtain pj and Nj particles
{
x1j , ..., x

Nj
j

}
for j = {1, ..., κ}.
end if

the output of the PF developed in the previous section, see
Figure 1. More specifically, we use MCMC to approximate
the sequence ϕ0 = π, ν0, ϕ1, ν1... indicated in Algorithm
1. The resulting algorithm is called improved LMB MCMC
(ILMB-MCMC).

First, we calculate the RFS density given the labels, which
is given by (15), using the posterior (31) to obtain

π̌
({
x1, ..., x|L|

}
;
−→
L
)
∝ `

({
x1, ..., x|L|

})
×
|L|!∑
p=1

|L|∏
j=1

N−Lj∑
i=1

giLj
(
xφ|L|,p,j

)
(42)

where [φt,p,1, ..., φt,p,t]
T
p ∈ {1, ..., t!} represents the permu-

tations of vector [1, ..., t]
T . We recall from Theorem 4 that

any density ϕn
(
·;
−→
L
)

of the recursion can be written as

ϕn
(
·;
−→
L
)

= αn
(

;
−→
L
)
π̌
(
·;
−→
L
)

. Using the auxiliary vector
a1:|L|, which was defined in (32), we get

ϕn
(
x1:|L|, a1:|L|;

−→
L
)
∝ αn

(
x1:|L|;

−→
L
)
`
({
x1, ..., x|L|

})
×
|L|!∑
p=1

|L|∏
j=1

g
aj
Lj

(
xφ|L|,p,j

)
(43)

From the MC approximation{(
L1, x11:|L1|, a

1
1:|L1|

)
, ....,

(
LN , xN1:|LN |, a

N
1:|LN |

)}
to

the density π, which is obtained using the GPP PF, we can
directly get the PMF Pπ and rearrange the particles to get the
PDFs of the states and auxiliary variables given the label set
for the initial PDF:

Pπ (L) = NL/N (44)

ϕ0
(
x1:|L|, a1:|L|;

−→
L
)
∝

NL∑
i=1

δ
(
a1:|L| − aL,i1:|L|

)
× δ

(
x1:|L| − xL,i,01:|L|

)
(45)

where NL is the number of particles with label set L and(
xL,i,n1:|L| , a

L,i
1:|L|

)
denotes the ith particle of the PDF ϕn

(
·;
−→
L
)

.



The recursion can be performed if, given an MC approxi-
mations to ϕn

(
·;
−→
L
)

, we can obtain an MC approximation to

ϕn+1
(
·;
−→
L
)
∀L. In order to get samples from ϕn+1

(
·;
−→
L
)

,
see (43), we need to find αn+1 (·) using Theorems 3 and
4. In Section V-A, we explain how to approximate αn+1 (·).
In Section V-B, we describe the MCMC algorithm to obtain
samples from (43) once αn+1 (·) is obtained.

A. Approximation of αn+1 (·)
In order to be able to run the MCMC algorithm that gives

samples from ϕn+1
(
·;
−→
L
)

, we need to calculate αn+1 (·)

based on the MC approximation to ϕn
(
·;
−→
L
)
∀
−→
L and The-

orems 3 and 4.
Using (44) and (45) and Theorem 3, we get

νn (x1; j) =
1

Nj

∑
L3j

NL∑
i=1

δ
(
x1 − xL,i,nj

)
(46)

Nj =
∑
L3j

NL (47)

where xL,i,nj indicates the ith particle of the target with

label j in ϕn
(
·;
−→
L
)

. Theorem 4 provides αn+1 (·) based on

νn
(
·;
−→
L
)

=
∏|L|
j=1 ν

n (·;Lj). However, we cannot evaluate

νn
(
·;
−→
L
)

directly because the PDF is represented by Dirac
delta functions. We solve this by approximating (46) as a
Gaussian PDF

νn (x1; j) ≈ N
(
x1;xnj , P

n
j

)
(48)

where xnj and Pnj are obtained by moment matching

xnj =
1

Nj

∑
L3j

NL∑
i=1

xL,i,nj (49)

Pnj =
1

Nj

∑
L3j

NL∑
i=1

(
xL,i,nj − xnj

)(
xL,i,nj − xnj

)T
. (50)

This approximation is accurate enough to improve the LMB
approximation in the examples of [31] and Section VI. Oth-
erwise, we can regularise (46) [9]. Using Theorem 4, we get

αn+1
(
x1:|L|;

−→
L
)
≈

∏|L|
j=1 ν

n (xj ;Lj)∑|L|!
p=1

∏|L|
j=1 ν

n
(
xφ|L|,p,j ;Lj

) . (51)

B. MCMC steps to improve the LMB approximation

In the previous subsection, we indicated how to approximate
αn+1 (·) based on the MC approximations to ϕn

(
·;
−→
L
)

. In
this section, we design an MCMC algorithm to sample from
ϕn+1

(
·;
−→
L
)

, which is given by (43). In principle, we can
use any MCMC algorithm, e.g., Metropolis-Hastings [10].
Nevertheless, we can perform the MCMC sampling more
efficiently due to the characteristics of the PDF (43).

In any MCMC algorithm, we evaluate the target PDF
up to a proportionality constant. When we evaluate (43)

for a state
(
x1:|L|, a1:|L|

)
, we compute the same terms we

would calculate to evaluate (43) for any of its permutations(
Γp,|L|

(
x1:|L|

)
, a1:|L|

)
p = 1, ..., |L|!. Therefore, as evaluat-

ing (43) for all the permutations comes at practically no extra
cost, it is of high interest to develop an MCMC algorithm that
accounts for all the permutations at the same step.

Conditioned on a1:|L|, the proposed MCMC algorithm
performs moves in the state. The algorithm requires the
specification of a transition rule w.r.t. which the target PDF
is invariant [10]. For a given x1:|L|, we propose the following
transition rule to the next state y1:|L|. First, we sample x̃1:|L|
from a density q

(
x̃1:|L|

∣∣x1:|L| ) =
∏|L|
j=1 q

′ (x̃j |xj ). Then,
we set y1:|L| = Γp,|L|

(
x1:|L|

)
or y1:|L| = Γp,|L|

(
x̃1:|L|

)
with

probabilities β′p and β̃′p for p = 1, ..., t!

y1:|L| =

 Γp,|L|
(
x1:|L|

)
β′p =

βp∑t!
p=1(βp+β̃p)

Γp,|L|
(
x̃1:|L|

)
β̃′p =

β̃p∑t!
p=1(βp+β̃p)

(52)

where

βp =ϕn+1
(

Γp,|L|
(
x1:|L|

)
, a1:|L|;

−→
L
)

(53)

β̃p =ϕn+1
(

Γp,|L|
(
x̃1:|L|

)
, a1:|L|;

−→
L
)

(54)

and ϕk,n+1 (·) is given by (43). It is shown in Appendix D
that this transition rule is invariant if q′ (· |· ) is symmetric and
therefore leads to a valid MCMC algorithm.

To sum up, the ILMB-MCMC has three design parameters:
the number I1 of steps of the recursion explained in Section
III, the number I2 of steps that allow for the MCMC burn-in
period to get samples from ϕk,n (·) and the transition density
q
(
·
∣∣x1:|L| ). Its steps are given in Algorithm 4.

C. Discussion

In this paper, we have developed a PF, which is called GPP,
that approximates the labelled posterior based on an LMB
posterior at the previous time step. This PF can be used on
its own without the need of any MCMC or label switching
improvement algorithm. Nevertheless, if we are interested in
the unlabelled posterior, we can make use of the recursion
explained in Section III to improve the LMB approximation.
Section V explains an algorithm based on MCMC to ap-
proximate the recursion in Section III. The complexity of the
MCMC algorithm depends on the number of targets through
the number of possible permutations. Nevertheless, the benefits
of the MCMC algorithm are only expected to happen when
targets get in close proximity and then separate because of the
mixing of the labels [7]. As a result, in practice, we should
only apply the MCMC algorithm for targets in close proximity,
e.g., by clustering [4], [21], [27].

We also want to mention that, in some cases, the
dimensionality of the PF can be reduced by applying
Rao-Blackwellisation [21]. In this case, measurement non-
linearities can only be a function of some elements of the
state, e.g., they apply to the position but not the veloc-
ity. Function αn (·) in (43) would prevent the use of Rao-
Blackwellisation even when the measurement and dynamic
models allow for it. This could be sorted out by looking for a



Algorithm 4 MCMC algorithm to improve the LMB approx-
imation (ILMB-MCMC)
Input: N particles with even weights{(
L1, x1

1:|L1|, a
1

1:|L1|
)
, ....,

(
LN , xN

1:|LN |, a
N

1:|LN |
)}

, which
approximate (32).
Output: Existence probability and Nj particles which represent the
density of the target with label j.

- Obtain Pπ using (44).
for all L do

- Obtain
(
xL,i,01:|L| , a

L,i
1:|L|

)
, see (45).

end for
for n = 0 to I1 − 1 do

- Calculate xnj and Pnj for j ∈ {1, ..., κ} using (49) and (50).
for all L do

- Calculate αn+1
(
·;
−→
L
)

using (51).

- Set xL,i,n+1
1:|L| = xL,i,n1:|L| i = 1, ..., NL.

for h = 0 to I2 − 1 do
for i = 1 to NL do

- Sample x̃i1:|L| from q
(
·
∣∣∣xL,i,n+1

1:|L|

)
.

- Use xL,i,n+1
1:|L| and x̃i1:|L| to calculate βp and β̃p by

(53), (54) and (43).
- Select y1:|L| according to (52).
- Set xL,i,n+1

1:|L| = y1:|L|.
end for

end for
end for

end for
- Obtain the existence probabilities for j = {1, ..., κ} using Pπ
and Theorem 3.

labelled PDF within the unlabelled RFS family that allows for
Rao-Blackwellisation. Nevertheless, the development of this
idea is beyond the scope of this paper.

VI. NUMERICAL SIMULATIONS

In this section, we evaluate the performances of the GPP
method and the ILMB-MCMC algorithm in MTT using a
sensor network. We analyse two examples. In the first one,
we set aside the problem of target births and study the
performance of the proposed algorithms when targets get
in close proximity and then separate. The second example
considers target births.

Both examples are based on the following
dynamic/measurement models. In this section, we use a
superindex to denote the time step k. The state vector of
the jth target at time k is xkj =

[
pkx,j , ṗ

k
x,j , p

k
y,j , ṗ

k
y,j

]T
. The

dynamic model of the target is the nearly-constant velocity
model:

xk+1
j = Fxkj + vk (55)

F = I2 ⊗
(

1 τ
0 1

)
(56)

where ⊗ is the Kronecker product, In is the identity matrix of
size n and vk is the process noise at time k. The process noise
is zero-mean Gaussian distributed with covariance matrix

Q = qI2 ⊗
(
τ3/3 τ2/2
τ2/2 τ

)
(57)

where q is a parameter of the model and τ is the sampling
period.

There are M = 252 sensors, so the measurement vector at
time k is zk =

[
zk1 , ..., z

k
M

]T
where zkj is the measurement of

the jth sensor at time k. Sensor m is located at [ξx,m, ξy,m]
T

and measures an acoustic signal emitted by the target with
measurement model

zkm =

√√√√ t∑
j=1

hm
(
xkj
)

+ wkm (58)

where

hm
(
xkj
)

=

{
P0d

2
0

d2m(xkj )
d2m
(
xkj
)
> d20

P0 d2m
(
xkj
)
≤ d20

(59)

and wkm is an independent zero-mean Gaussian noise with
variance σ2

s , P0 is the saturation power, d0 is the distance
at which this saturation power is produced and d2m

(
xkj
)

is the
square distance from the target xkj to the mth sensor

d2m
(
xkj
)

=
(
pkx,j − ξx,m

)2
+
(
pky,j − ξy,m

)2
. (60)

Measurement equation (58) models the amplitude of the
received acoustic signal at a sensor from incoherently emitting
targets [35] and is not superpositional so filters such as [17],
[18] cannot be used.

A. Targets in close proximity for a long time

The main objective of this section is to analyse algorithm
performances when targets get in close proximity for a suf-
ficiently long time and then separate. In this case, there is
mixing of the labels so the labelling switching algorithm based
on MCMC is expected to be useful. In order to study this case
in an isolated way, we assume that there are no target births

We have implemented the GPP method followed by a
usual MCMC algorithm (U-MCMC GPP) after resampling
and the GPP method with the ILMB-MCMC algorithm. The
U-MCMC algorithm corresponds to the Metropolis-Hastings
algorithm with 20 steps [9]. We have implemented 3 versions
of ILMB-MCMC GPP that differ in their parameters I1 and I2,
see Table III. They have roughly the same number of MCMC
steps, indicated by I1×I2, but different number I1 of iterations
in the sequence of Section III. We recall that U-MCMC im-
proves sample diversity while ILMB-MCMC improves sample
diversity and the required LMB approximation. Therefore, we
approximately use the same number of MCMC steps in both
methods such that the improvement is not due to sample
diversity but improvement in LMB approximation, which is
what we want to assess. U-MCMC and ILMB-MCMC use
the transition density

q′
(
x̃kj
∣∣xkj ) = N

(
x̃kj ;xkj , Q

)
. (61)

We compare these algorithms with the two-layer parallel
partition (PP) PF, which has been demonstrated to outperform
a variety of filters in track-before-detect applications [4]. For
this filter, we use the same parameters as in [4]. We have also
implemented the sampling importance resampling PF (SIR-
PF) [36].



Table III: ILMB-MCMC GPP parameters

Version I1 I2
1 1 20
2 2 10
3 3 6

Table IV: Parameters of the simulation

Parameter τ q P0 σ2
s d0 γ

Value 0.5 s 3.24 m2/s3 15.85 W 1 20 m 0.99

The estimation error is evaluated using the optimal sub-
pattern assignment (OSPA) metric with c = 120 m, Eu-
clidean distance and p = 2 [37]. In order to estimate target
states, we first obtain the most likely cardinality from the
PF. If the cardinality is known and c → ∞, the minimum
MSOSPA (MMSOSPA) estimator corresponds to the mean of
the unlabelled RFS density in a Voronoi region [30], [38].
Therefore, we integrate out the labels of the particles and
then use k-means clustering on the particles as in [20] as
an approximation to the MMSOSPA estimator. Importantly,
this clustering is only performed to estimate target states, it
does not affect the approximation of the posterior PDF at the
following time steps as done in [20].

The target trajectories are shown in Figure 5. The target
with blue trajectory in Figure 5 dies at time step 85 while the
other two targets are alive at all time steps. The algorithms’
performances are evaluated based on Monte Carlo simulation
with 500 runs. The simulation parameters are those given in
Table IV, where we recall that γ is the probability of survival.
The prior PDF of the jth target at time step 0 isN

(
x0j ;x

0
j ,Σ

0
)

where x0j and Σ0 are the mean and covariance matrix of the
jth target at time 0. In each Monte Carlo run, x0j is drawn from
Gaussian distribution whose mean is the true target position
and Σ0 = 100I4. In addition, the filters are also initiated with
another target, which does not exist, whose PDF is Gaussian
with mean x0j = [600, 0, 200, 0]

T and covariance 100I4 in
international system units. The initial probability of existence
of all targets is set to one.

First, we assess the filters’ performances using 500 particles
except for the SIR-PF, which uses 10000 particles. The aim
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Figure 5: Scenario of the simulations. The target positions every ten time
steps is represented by a circumference. The targets move from left to
right. The sensor positions are represented by black crosses.
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Figure 6: RMSOSPA position error (a) and average cardinality (b) against
time for the scenario in Fig. 5. ILMB filters perform best especially after
the targets have been in close proximity for some time. The two-layer
PP PF has an inherent delay in removing tracks. SIR-PF with 10000
particles does not perform well.

of this is to clearly demonstrate the benefits of using LMB as-
sumption and how it can improve filter performance. The root
mean square OSPA (RMSOSPA) position errors [39] against
time and average cardinality are shown in Figure 6. SIR-PF
does not perform well even though it uses 10000 particles
instead of 500. The two-layer PF in [4] has a bias to remove
targets as it always requires several time steps. Therefore, error
increases significantly when a target disappears. ILMB-GPP
methods do not have this drawback and are able to provide
a low error when targets disappear. In Figure 6 (a), there are
several spikes in the error for ILMB-GPP algorithms. These
spikes arise due to errors in cardinality estimation, as seen
in Figure 6 (b). All the versions of GPP-ILMB provide an
improvement over U-MCMC specially after time step 40 until
around time step 90. The former corresponds to a time step
in which the targets have been in close proximity for a while,
see Figure 5. The GPP-ILMB implementations perform quite
similarly. This implies that in this scenario one step of the
LMB improvement sequence, described in Section III, makes a
difference but further steps provide a negligible improvement.

Now, we analyse the effect of the number of particles on
filter performance. We show the RMSOSPA error averaged
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Figure 7: RMSOSPA position error averaged over time against the
number of particles. ILMB performance is higher than the rest of the
algorithms for different number of particles.

over time against the number of particles in Figure 7. Due
to the bias in target state estimation of the two-layer PF,
increasing the number of particles is not sufficient to lower
the error. ILMB-MCMC algorithms have similar performance
and outperform the U-MCMC. As expected, this improvement
decreases as the particle number increases. For example, for
300 particles, the difference in error between U-MCMC and
the best ILMB-MCMC is around 2.7 m while for 1000
particles it is 0.6 m. In addition, we want to recall that ILMB-
MCMC and U-MCMC have basically the same error until
time step 40 so the averaged error over time does not really
show the differences between the filter performances when
they really occur.

The computational complexity of ILMB-MCMC algorithms
is slightly higher than for U-MCMC and the two-layer PF. For
example, for 500 particles, the execution times in seconds of
our Matlab implementation of the algorithms on an Intel Core
i7 laptop are: Two-layer PP (11.4), U-MCMC GPP (10.29),
ILMB-MCMC GPP 1 (12.1), 2 (12.7), 3 (12.0). Nevertheless,
according to Figure 7, the error achieved by ILMB method
using 500 particles is not achieved by U-MCMC even with
1000 particles. This implies that for a given objective error,
we can lower the number of particles and the execution times
if we use the MCMC algorithm developed in this paper. We
also want to remark that the execution time of the SIR-PF
with 10000 particles is 12.5s and has a significantly worse
performance than the previous filters.

B. Example with target births

We proceed to analyse the performance of the proposed
algorithms in the scenario shown in Figure 8, which has target
births, deaths and crossings though no targets are in close
proximity for a long time. Therefore, as was demonstrated
in the previous simulations, the improvement of the MCMC
algorithm is expected to be negligible as there is no mixing of
labels [7]. The objectives of this example are: show that the
MCMC algorithm is only needed if there is mixing of labels
and assess how the filters work if there are target births.

We use the same parameters as in the previous section.
There are four possible locations of target births with birth
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Figure 8: Scenario of the simulations with target births. Target positions
at time step 10k are marked by k. Targets are born at time steps
(5, 10, 15, 20) and they die at time steps (90, 60, 80, 50). The sensor
positions are represented by black crosses.

probability 10−3 and densities η (·; j) = N (·; ,mj , 100I4),
with m1 = (85, 2, 140, 2), m2 = (250, 0, 280, 0), m3 =
(145, 0, 575, 0) and m4 = (420, 0, 200, 0) in international
system units.

The proposed algorithms are implemented with 500 parti-
cles while the SIR-PF uses 10000 particles. We do not compare
with the two-layer particle filter in [4] as it was designed for
uniform birth models not for this kind of birth model. GPP
has been implemented with and without U-MCMC and in
this scenario both have similar performance. The RMSOSPA
position error and average cardinality for the algorithms are
shown in Figure 9. As before, SIR-PF has a much lower
performance than the proposed algorithms. GPP and ILMB-
GPP algorithms perform similarly. As indicated before, this is
expected as targets are not in close proximity for a long time,
as in Figure 5, so the effect of ILMB-MCMC is expected to
be negligible as there is no mixing of labels [7]. GPP methods
estimate the cardinality quite accurately at most time steps and
provide low position errors.

In this case the execution times in seconds are: GPP (4.8),
ILMB-MCMC GPP 1 (25.2), 2 (25.3), 3 (25.3) and SIR-PF
(40). SIR-PF has a higher computational complexity because
of the number of particles and possible labels it generates.
The GPP method is able to sample labels more efficiently by
the importance density (34). ILMB-MCMC algorithms have a
high computational burden w.r.t. GPP because we perform the
MCMC algorithm on all possible targets, which is inefficient.
As we mention in Section V-C, in practice, we would apply
clustering so that we only perform the MCMC steps for the
targets that exhibit label mixing.

VII. CONCLUSIONS

We have proposed the GPP-PF, which is a PF for general
track-before-detect models under an LMB assumption. The
GPP-PF can be applied on its own without the need of a label
switching improvement algorithm, has a low computational
burden and efficiently deals with target births and deaths.



10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

Time step

R
M

S
O

S
P

A
 p

os
iti

on
 e

rr
or

 (
m

)

 

 
GPP

ILMB−MCMC GPP 1

ILMB−MCMC GPP 2

ILMB−MCMC GPP 3

SIR−PF

(a)

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time step

A
ve

ra
ge

 c
ar

di
na

lit
y

 

 
True
GPP
ILMB−MCMC GPP 1
ILMB−MCMC GPP 2
ILMB−MCMC GPP 3
SIR−PF

(b)

Figure 9: RMSOSPA position error (a) and average cardinality (b)
against time for the scenario in Fig. 8. GPP methods with 500 particles
outperform SIR-PF with 10000 particles.

We have also derived a label switching improvement algo-
rithm. This kind of algorithm can be applied when we use
a labelled posterior to approximate the unlabelled posterior.
It is based on a sequence of PDFs that improves the LMB
approximation from a member of the unlabelled RFS family of
the posterior based on recursive KLD optimisations. The label
switching improvement algorihtm has been implemented and
incorporated to the GPP-PF using an MCMC algorithm called
ILMB-MCMC. The benefits of the ILMB-MCMC algorithm
are expected to happen when targets get in close proximity for
a long time and separate. As a result, if targets are not in close
proximity for a sufficiently long time, we should use the GPP-
PF without ILMB-MCMC to save computational resources. If
targets get in close proximity for a sufficiently long time, we
should use the GPP-PF along with ILMB-MCMC to improve
tracking performance.

Future work should address how to perform clustering effi-
ciently such that we only perform the ILMB-MCMC steps for
the targets with labelling mixing. In addition, the algorithms
should be adapted for Rao-Blackwellisation.

APPENDIX A

In this appendix, we prove (6). We have that

D (π ‖ν ) =

ˆ
π (X) log

π (X)

ν (X)
δX

=

∞∑
t=0

1

t!

∑
[l1,...,lt]∈Lt

ˆ
π ({(x1, l1) , ..., (xt, lt)})

× log
π ({(x1, l1) , ..., (xt, lt)})
ν ({(x1, l1) , ..., (xt, lt)})

dx1:t. (62)

Using (3), we get

D (π ‖ν )

=

∞∑
t=0

1

t!

∑
l1:t∈Lt

ˆ
π (x1:t; l1:t)Pπ ({l1, ..., lt})

× log
π (x1:t; l1:t)Pπ ({l1, ..., lt})
ν (x1:t; l1:t)Pν ({l1, ..., lt})

dx1:t

=

∞∑
t=0

1

t!

∑
l1:t∈Lt

[
Pπ ({l1, ..., lt}) log

Pπ ({l1, ..., lt})
Pν ({l1, ..., lt})

+Pπ ({l1, ..., lt})
ˆ
π (x1:t; l1:t) log

π (x1:t; l1:t)

ν (x1:t; l1:t)
dx1:t

]
= D (Pπ ‖Pν ) +

∞∑
t=0

1

t!

∑
l1:t∈Lt

Pπ ({l1, ..., lt})

×D (π (·; l1:t) ‖ν (·; l1:t) ) . (63)

As the last term is permutation invariant w.r.t. l1:t, we get (6).

APPENDIX B

In this appendix we prove Theorem 3. Due to the fact that
the constraints are not coupled, we can first obtain the best
PMF of the labels and then the PDF of the states given the
labels. Then, we consider

arg min
Pν

D (Pϕ ‖Pν ) (64)

subject to (7). Substituting (7) into (64), we can rewrite the
optimisation problem in terms of the parameters p1, ..., pκ
subject to the constraint 0 ≤ pi ≤ 1 i ∈ {1, ..., κ}. According
to (7), for the sets in which i is included, Pν is proportional
to pi and otherwise it is proportional to 1− pi, then, we have
to minimise

arg min
p1,...,pκ

κ∑
i=1

f (pi)

where

f (pi) = ct−
∑

L⊆L:i∈L
log (pi)Pϕ (L)

+
∑

L⊆L:i/∈L

log (1− pi)Pϕ (L) (65)

for all i ∈ L subject to 0 ≤ pi ≤ 1, where ct represents all
the terms that do not depend on pi. Function f (·) is convex
as it has the form of a KLD over a PMF of a discrete variable



with two states [40]. Calculating the derivative and setting it
to zero, we get

pi =
∑

L⊆L:i∈L
Pϕ (L) (66)

which completes the proof as 0 ≤ pi ≤ 1.
Second, for a given collection of PDFs ϕ (x1:t; l1:t),

{l1, ..., lt} ⊆ {1, ..., κ}, we obtain ν (·; 1) ...ν (·;κ), which
meet (8), that minimise

∑
L⊆L

Pϕ (L)

ˆ
ϕ
(
x1:|L|;

−→
L
)

log
ϕ
(
x1:|L|;

−→
L
)

ν
(
x1:|L|;

−→
L
) dx1:|L|

We obtain the minimisation for ν (·; 1) although the result is
general. Expanding the logarithm, we want to minimise the
functional

A [ν (·; 1)]

= ct−
∑

L⊆L:1∈L
Pϕ (L)

ˆ
ϕ1

(
x1;
−→
L
)

log ν (x1; 1) dx1

(67)

where ct represents all the terms that do not depend on
ν (·; 1) and ϕ1

(
·;
−→
L
)

is the marginal PDF of the first variable

of ϕ
(
·;
−→
L
)

. By KLD minimisation over vector spaces, this
functional is minimised by [41]

ν (x1; 1) ∝
∑

L⊆L:1∈L
Pϕ (L)ϕ1

(
x1;
−→
L
)
. (68)

APPENDIX C

In this appendix, we prove Theorem 4. Given ϕ, its corre-
sponding unlabelled density is [3]

ϕ̌ ({x1, ..., xt})

=
∑
l1:t∈Lt

ϕ ({(x1, l1) , ..., (xt, lt)})

=
∑
l1:t∈Lt

Pϕ ({l1, ..., lt})ϕ (x1:t; l1:t)

=
∑

{l1,...,lt}⊆L
l1<...<lt

t!∑
p=1

Pϕ ({Γp,t (l1, ..., lt)})ϕ (x1:t; Γp,t (l1:t))

=
∑

{l1,...,lt}⊆L
l1<...<lt

Pϕ ({l1, ..., lt}) ϕ̌ ({x1, ...xt} ; l1:t) . (69)

Given ν̌, Pϕ = Pπ , L and ϕ
(
·;
−→
L′
)
∀L′ 6= L, we want to

obtain ϕ
(
·;
−→
L
)

that minimises D (ϕ̌ ‖ν̌ ) subject to ϕ ∈ [π].
Due to the way the sequence is constructed, constraint ϕ ∈ [π]
can be written as

ϕ̌
(
{x1, ..., xt} ;

−→
L
)

= π̌
(
{x1, ..., xt} ;

−→
L
)
. (70)

In the KLD, there is only one term that depends on ϕ
(
·;
−→
L
)

so we only need to minimise the functional

A
[
ϕ
(
·;
−→
L
)]

=

ˆ
ϕ
(
x1:t;
−→
L
)

log
ϕ
(
x1:t;
−→
L
)

ν
(
x1:t;
−→
L
) dx1:t (71)

subject to constraint (70). This minimisation was solved in
[31, Appendix C] and its result is provided in Theorem 4. A
quite similar proof for a two-target case with Gaussian PDFs
is found in [42].

APPENDIX D

In this appendix we prove that the target PDF is invariant
w.r.t. the transition rule of the MCMC algorithm in Section
V-B. Here, we denote the transition PDF π (·) and the tran-
sition density to go from x1:t to y1:t as A (x1:t, y1:t) and the
number of targets is t. This is proved by the detailed balance
condition [10]

π (x1:t)A (x1:t, y1:t) =π (y1:t)A (y1:t, x1:t) (72)

where π (·) denotes a general objective PDF, e.g., in Section
V-B, this corresponds to ϕn

(
x1:|L|

∣∣a1:|L| ;
−→
L
)

as the MCMC
moves are only proposed in variable x1:|L|.

According to Section V-B, we can write the transition
density A (x1:t, y1:t, ) as

A (x1:t, y1:t, )

=

t!∑
p=1

q (Γp,t (y1:t) |x1:t )
t!

r (x1:t, y1:t)

+

(
1−
ˆ t!∑

p=1

q (Γp,t (y1:t) |x1:t )
t!

r (x1:t, y1:t) dy1:t

)

× 1∑t!
p=1 π (Γp,t (x1:t))

t!∑
p=1

π (y1:t) δ (y1:t − Γp,t (x1:t))

(73)

where the acceptance probability of y1:t 6= Γp,t (x1:t) is

r (x1:t, y1:t) =
π (y1:t)∑t!

p=1 [π (Γp,t (y1:t)) + π (Γp,t (x1:t))]
. (74)

Then,

π (x1:t)A (x1:t, y1:t)

=

t!∑
p=1

q (Γp,t (y1:t) |x1:t )
t!

× π (y1:t)π (x1:t)∑t!
p=1 [π (Γp,t (y1:t)) + π (Γp,t (x1:t))]

+

(
1−
ˆ t!∑

p=1

q (Γp,t (y1:t) |x1:t )
t!

r (x1:t, y1:t) dy1:t

)

× π (y1:t)π (x1:t)∑t!
p=1 π (Γp,t (x1:t))

t!∑
p=1

δ (y1:t − Γp,t (x1:t)) . (75)

As q (y1:t |x1:t ) =
∏t!
j=1 q

′ (yj |xj ), if q′ (· |· ) is symmetric,
we get (72), which completes the proof.
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