
Group Symmetries of Complementary Code Matrices

Brooke Logan∗†1 and Hieu D. Nguyen‡1

1Department of Mathematics, Rowan University

May 29, 2015

Abstract
We characterize group symmetries of poly-phase complementary code matrices (CCMs), which we use

to classify CCMs in terms of their equivalence classes. We also present classification results for CCMs of
dimension N × 4 where N = 2, 3, 4, 5, 6. Finally, we present a new construction to generate quad-phase
CCMs from ternary CCMs and compare this to other existing constructions that focus on generating
CCMs from those of smaller dimensions.

1 Introduction
In phase-coded pulse-compression radar, signal waveforms can be represented by a string of values (called a
code) consisting of roots of unity. In order to correlate incoming with outgoing signals these codes should
have nice sharp peak-sidelobe characteristics in terms of their auto-correlation functions. Usually in radar
and communications, Barker codes and Golay pairs of codes are employed, but there is increased interest
in more general codes called complementary code sets, i.e., complementary sets of codes whose composite
auto-correlation function has zero sidelobe levels ([1, 4]). When expressed in matrix form, complementary
code sets are referred to as complementary code matrices (CCMs).

In this paper we characterize known symmetries of CCMs in terms of their relations. Previously, Golomb
and Win [5] investigated symmetries of a single polyphase sequence. These symmetries were later extended
to CCMs by Coxson and Haloupek [1]. Let M be a CCM. Here are the five known symmetries of M that
preserves its CCM-property:

(i) Column multiplication by a unimodular complex number.

(ii) Column conjugate reversal.

(iii) Matrix conjugation.

(iv) Progressive multiplication by consecutive powers of a unimodular complex number.

(v) Column permutation.

When viewed as group generators these five symmetries are non-commutative in general, e.g., column mul-
tiplication does not commute with matrix conjugation. Therefore, it is important to characterize their
relations, which we use to classify CCM’s in terms of their equivalence classes.
∗brookelogan974@gmail.com
†Rowan University’s Mathematics Department funded the research during Summer 2013. Bantivolglio Honors Concentration

funded the research during Spring 2014.
‡nguyen@rowan.edu
94A05: Communication theory

1

ar
X

iv
:1

50
6.

00
01

1v
1

 [
cs

.I
T

]
 2

9
M

ay
 2

01
5

Our results describing the group relations between the five symmetries above extend those of Coxson [7]
who determined the group structure for symmetries of Barker codes. Moreover, we obtain an upper bound
on the corresponding group generated by these symmetries, which we call the complementary group G. For
p-phase N ×K CCMs, we establish in Section 3 (Theorem 3.3) that

|G| ≤ 2K+1pK+1K!.

In Section 4, we extend Coxson and Russo’s [2] efficient exhaustive search algorithm for binary CCMs
to p-phase CCMs. This algorithm was implemented for quad-phase N × 4 CCMs in Section 5 to obtain
a classification of all equivalence classes for N = 2, 3, 4, 5, 6 (see Table 1 for a description of the number
of equivalence classes and those that are represented by Hadamard matrices). This extends Gibson’s [3]
classification results for quaternary Golay sequence pairs. In the same section, we present a method to
construct quad-phase CCMs from dual-pairs of ternary CCMs (dual in the sense that their commutator
is diagonally regular). Lastly, we present in Table 2 a list of the number of equivalence classes whose
representatives are dual-pairs.

2 Preliminaries
In this section we present definitions of complementary code matrices based on the auto and row-correlation
functions. Let M be a N ×K p-phase matrix, i.e., one whose entries consists of p-th roots of unity. At times
we will represent M in several different ways: coordinate-wise with M = [mn,k] (1 ≤ n ≤ N, 1 ≤ k ≤ K),
column-wise with M = [x1, x2, x3, . . . , xK], or row-wise with M = [r1, r2, r3, . . . , rN]T .

Definition 2.1. The aperiodic autocorrelation function of a code x = (a1, . . . , aN) is defined to be

Ax(j) =


N−j∑
i=1

aiāi+j , if 0 ≤ j ≤ N − 1;

Ax(−j), if −N + 1 ≤ j < 0.

(1)

Note that Ax(0) = |x|2 = N . Also, a desirable autocorrelation function should have a sharp center peak
(j = 0) and low sidelobes (j 6= 0).

Example 2.1. Let x = {−1,−1,−i}. Then

Ax(−2) = −1(i) = −i
Ax(−1) = −1(−1)− 1(i) = 1− i

Ax(0) = −1(−1)− 1(−1)− i(−i) = 3

Ax(1) = −1(−1)− 1(−i) = 1 + i

Ax(2) = −1(−i) = i.

Example 2.2. An example of a Barker Sequence, where the | Ax(j) |≤ 1 for all j 6= 0, is the following:

x = {1, 1, 1, 1, 1,−1,−1, 1, 1,−1, 1,−1, 1}.

The autocorrelation of x is given by

Ax = {1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 13, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}.

One can observe the peak and sidelobes of this autocorrelation in Figure 1.

The goal in radar coding theory is to construct code with zero sidelobes; however, in the case of Barker
codes, this is impossible since the calculation of the last sidelobe, |Ax(N − 1)| = |a1ān| = 1, shows that Ax
must always equal 1. On the other hand, if we employ a set of two complementary codes, i.e., a Golay pair,
then it is possible to obtain zero sidelobes. This is illustrated in the next example.

2

Figure 1: Autocorrelation of Barker sequence x = {1, 1, 1, 1, 1,−1,−1, 1, 1,−1, 1,−1, 1}.

Example 2.3. Consider two codes of length 4, x1 = {1, 1,−1, 1} and x2 = {1, 1, 1,−1}. Their autocorrela-
tions are given by Ax1

= {1, 0,−1, 4,−1, 0, 1} and Ax2
= {−1, 0, 1, 4, 1, 0,−1}. Then (x1, x2) forms a Golay

pair since the sum of their autocorrelations has zero sidelobes:

Ax1
+Ax2

= {0, 0, 0, 4, 0, 0, 0}

The notion of a Golary pair can be generalized to a set containing an arbitrary number of complementary
codes (see [4]).

Definition 2.2. A set of K codes {x1, . . . , xK}, each of length N , is called a complementary code set if

K∑
i=1

Axi(j) = NKδj (2)

for −N + 1 ≤ j ≤ N − 1 and where δj is the Kronecker delta function defined by

δj =

{
0, if j 6= 0;

1, if j = 0.

Next, we review Coxson and Haloupek’s [1] matrix formulation of complementary code sets.

Definition 2.3. An N×K matrixM is a complementary code matrix (CCM) if its columns, x1, . . . , xN ,
form a complementary code set. In that case, we define the composite autocorrelation function of M
by the following

AM (j) =

K∑
i=1

Axi(j) (3)

so that
AM (j) = NKδj (4)

because of (2).

Definition 2.4. Let M be a matrix. Then M ·M∗, where M∗ represents the conjugate transpose of M , is
defined to be the row Gramian of M .

3

Example 2.4. Let M =

 1 1 1 1
1 −1 −1 −1
1 1 −1 −1

. Then the row Gramian of M is given by

M ·M∗ =

 1 1 1 1
1 −1 −1 −1
1 1 −1 −1

 ·


1 1 1
1 −1 1
1 −1 −1
1 −1 −1

 =

 4 −2 0
−2 4 2
0 2 4


Definition 2.5. A N ×N matrix Q is diagonally regular if its off-diagonals, i.e., those diagonals outside
of the main diagonal, sum to zero.

Note that Example 2.3 gives an example of a matrix M whose row Gramian is diagonally regular.
Moreover, M is an example of a complementary code set. This not a coincidence.

Lemma 2.1 (Coxson-Haloupek [2]). An N×K matrixM is a CCM if its row Gramian is diagonally regular,
i.e.,

M ·M∗ = Q,

where Q is diagonally regular.

Next, we present the row-correlation function, which gives an equivalent representation of a CCM in
terms of its rows [2, 6].

Definition 2.6. The row-correlation function of a matrix M consisting of rows {r1, . . . , rK} is defined
by

RM (j) =

N−j∑
i=1

ri · r̄i+j

for 0 ≤ j ≤ N − 1 and RM (j) = RM (−j) for −N + 1 ≤ j < 0.

Note that RM (j) represents the sum of the elements in the j-th diagonal of M · M∗, where j = 0
corresponds to the main diagonal and j > 0 (or j < 0) corresponds to j-th diagonal above (or below) the
main diagonal, respectively. Moreover, these row-correlation functions can also be represented as the sum of
the autocorrelation function of each column in M .

Example 2.5. The row-correlation function of M given in Example 2.4 is given by the following.

RM (0) = r1 · r̄1 + r2 · r̄2 + r3 · r̄3

= [−1,−1,−i] · [−1,−1, i] + [−i,−i, 1] · [i, i, 1] + [−1,−1, 1] · [−1,−1, 1] = [3, 3, 3]

RM (1) = r1 · r̄2 + r2 · r̄3 = [−1,−1,−i] · [i, i, 1] + [−i,−i, 1] · [−1,−1, 1] = [−3i, 1 + 2i]

RM (2) = r1 · r̄3 = [−1,−1,−i] · [−1,−1, 1] = [2− i]

RM (−1) = RM (1) = [3i, 1− 2i]

RM (−2) = RM (2) = [2 + i]

The following theorem characterizes CCMs in terms of the row-correlation function.

Theorem 2.2 ([2, 6]). A N ×K matrix M is a CCM if and only if

RM (j) =

K∑
i=1

Axi(j) = NKδj

for −N + 1 ≤ j ≤ N − 1.

4

3 Symmetries of CCMs
Let CN,K(p) denote the set of all CCMs of dimension N ×K consisting of p-th roots of unity. Any function
f : CN,K(p)→ CN,K(p) that maps CCMs to CCMs of the same dimension will be called a CCM-preserving
symmetry of CN,K(p). In particular, if AM (j) represents the composite autocorrelation of M , then we
require

Af(M)(j) = 0

for all M ∈ CN,K(p) and |j| = 0, 1, . . . , N − 1.
Coxson and Haloupek discussed the different ways to create a new N ×K CCM using its symmetries as

described in the following theorem [1].

Theorem 3.1. Suppose thatM is a p-phase N×K CCM. Then the following operations are CCM-preserving
symmetries, i.e., the resulting matrix is a N ×K CCM.

(i) Take any column x of M and replace, x, with αx where α is any unit-modulus complex number.

(ii) Take any column x = [m1, . . . ,mN] of M and replace x with its conjugate reversal x̂ = [m̄N , . . . , m̄1].

(iii) Form M̄ .

(iv) Form the product Diag[β, β2, β3, . . . , βN]M , with β being any unit-modulus complex number.

(v) Form MP where P any K ×K permutation matrix.

Using this theorem we can see that with one CCM many more can be created. Coxson and Russo created
an algorithm for narrowing down the search space for complementary code matrices using these symmetries
[2] . This is important due to the fact that the search space for p-phase N × K CCMs is pNK ; as the
dimensions increase the search takes exponentially longer to conduct an exhaustive search. For example,
the exhaustive search for 4-phase 4× 4 CCMs, which generated 4300800, took about 24 hours using parallel
processing on 4 cpus. With the help of this theorem, it is possible to narrow down the search space if it is
possible to advoid checking all but one from a set of equivalent CCMs. There is a wonderful example of this
by Gibson where he classified 4-phase Golay pairs into equivalence classes [3]. We aim to do the same, but
for more general CCMs.

A quick example of this is as follows.

Example 3.1. You can see here that we can take one matrix M and make two other matrices out of M ,
though we can make many more besides these two using Theorem 3.1. To get the first matrix we applied (i)
multiplying x1, x2, and x4 by −i and x3 by −1. Then to that matrix we applied (iv) with β = −i. Yet the
other interesting thing about this example is that we were able to make the entire first row ones as well as
m2,1. This is what we call a normalized CCM.

M =


−1 −1 −i −1
−i −i 1 1
−1 −1 1 1
i −i −1 −i

 (5)

M1 = [−ix1,−ix2,−x3,−ix4]

M1 =


i i i i
−1 −1 −1 −i
i i −1 −i
1 −1 1 −1

 (6)

M2 = Diag[−i, 1, i,−1]M1

M2 =


1 1 1 1
1 1 1 i
−1 −1 −i 1
1 −1 1 −1

 (7)

5

3.1 Complementary Codes
We proceeded to find the relationships between different CCM symmetries. Our results generalize Coxson’s
who examined symmetries that preserve low sidelobe levels in Barker codes [7]. We begin with definitions
and notations to express the symmetries mentioned in Theorem 3.1.

Definition 3.1. Let the following assist in representing the different operations Theorem 3.1.

(a) Z = {(α1, α2, . . . , αK) : αpk = 1}.

(b) A = {(t1, t2, t3, . . . , tK) : tk ∈ {0, 1}}.

Definition 3.2. The following are definitions that represent the CCM preserving operations, Theorem 3.1,
where U ∈ Z and T ∈ A.

(a) C denotes multiplying columns in M Theorem 3.1 (i)

CUM = [α1x1, α2x2, . . . , αKxK]

(b) ρ denote the conjugate reversals of columns in M . Theorem 3.1 (ii)

ρTM = [ω2−t1(x1), ω2−t2(x2), . . . , ω2−tK (xK)]

(c) S denote the conjugate of the matrix M . Theorem 3.1 (iv)

SM = M̄

(d) Q(β) = N ×N diagonal matrix with values going from β, β2, . . . βN Theorem 3.1 (iv)

Q(β)M = [βr1, β
2r2, . . . , β

NrN] = [Q(β)x1, Q(β)x2, . . . , Q(β)xK]

(e) P = a permutation of the columns. Theorem 3.1 (v)

PM = [xσ(1), xσ(2), xσ(3), . . . , xσ(K)]

(f) Ū = [ᾱ1, ᾱ2, ᾱ3, . . . , ᾱK]

(g) UP = [ασ(1), ασ(2), ασ(3), . . . , ασ(K)]

(h) UT,β = [α1, α2, α3, . . . , αK] such that where tk ∈ T

αk =

{
βN+1 tk = 1
1 tk = 0

(i) TP−1 = [tσ−1(1), tσ−1(2), tσ−1(3), . . . , tσ−1(K)]

(j) UT = [ω2−t1(α1), . . . , ω2−tK (αK)]

We now establish relationships between symmetries by viewing them as group generators.

Lemma 3.2. Let M be a N ×K p-phase CCM, M = [x1, x2, x3, . . . , xK] and
xk = [m1,k,m2,k,m3,k, . . . ,mN,k]T . Then

(i) CUρTM = ρTCUTM

(ii) CUSM = SCŪM

(iii) CUQ(β)M = Q(β)CUM

6

(iv) CUPM = PCUPM

(v) ρTSM = SρTM

(vi) ρTPM = PρTP−1M

(vii) SQ(β)M = Q(β̄)SM

(viii) SPM = PSM

(ix) Q(β)ρTM = CUT,βρTQβM

(x) Q(β)PM = PQ(β)M

proof. (i)
CUρTM = CUρT [x1, x2, x3, . . . , xK]

= CU [ω2−t1(x1), ω2−t2(x2), ω2−t3(x3), . . . , ω2−tK (xK)]
= [α1ω

2−t1(x1), α2ω
2−t2(x2), α3ω

2−t3(x3), . . . , αKω
2−tK (xK)]

= ρT [ω2−t1(α1)x1, ω
2−t2(α2)x2, ω

2−t3(α3)x3, . . . , ω
2−tK (αK)xK]

= ρTCUT [x1, x2, x3, . . . , xK]
= ρTCUTM

(v)
ρTSM = ρTS[x1, x2, x3, . . . , xK]

= ρT [x̄1, x̄2, x̄3, . . . , x̄K]
= [ω2−t1(x̄1), ω2−t2(x̄2), ω2−t3(x̄3), . . . , ω2−tK (x̄K)]
= S[ω2−t1(x1), ω2−t2(x2), ω2−t3(x3), . . . , ω2−tK (xK)]
= SρT [x1, x2, x3, . . . , xK]
= SρTM

(vi)
ρTPM = ρTP [x1, x2, x3, . . . , xK]

= ρT [xσ(1), xσ(2), xσ(3), . . . , xσ(K)]
= [ω2−t1(xσ(1)), ω

2−t2(xσ(2)), ω
2−t3(xσ(3)), . . . , ω

2−tK (xσ(K))]

= P [ω2−tσ−1(1)(x1), ω2−tσ−1(2)(x2), ω2−tσ−1(3)(x3), . . . , ω2−tσ−1(K)(xK)]
= PρTP−1 [x1, x2, x3, . . . , xK]
= PρTP−1M

(ix)

Q(β)ρTM = Q(β)ρT [x1, x2, x3, . . . , xK]
= Q(β)[ω2−t1(x1), ω2−t2(x2), ω2−t3(x3), . . . , ω2−tK (xK)]
= [Q(β)ω2−t1(x1), Q(β)ω2−t2(x2), Q(β)ω2−t3(x3), . . . , Q(β)ω2−tK (xK)]
= CUT,β [ᾱ1Q(β)ω2−t1(x1), ᾱ2Q(β)ω2−t2(x2), ᾱ3Q(β)ω2−t3(x3), . . . , ᾱKQ(β)ω2−tK (xK)]
= CUT,βρT [ω2−t1(ᾱ1Q(β)ω2−t1(x1)), ω2−t2(ᾱ2Q(β)ω2−t2(x2)), . . . , ω2−tK (ᾱKQ(β)ω2−tK (xK))]
= CUT,βρT [ω2−t1(ᾱ1Q(β))x1, ω

2−t2(ᾱ2Q(β))x2, . . . , ω
2−tK (ᾱKQ(β))xK]

= CUT,βρTQ(β)[x1, x2, x3, . . . , xK]
= CUT,βρTQβM

The proofs for parts (ii), (iii), (iv), (vii), (viii), and (x) are analogous and will be omitted.

Definition 3.3. The complementary group G of the set of all N ×K p-phase CCMs is defined to be the
group generated by the symmetries S, P,CU , ρT , Q(β) and their relations given in Lemma 3.2.

7

Theorem 3.3. The cardinality of the complementary group G of CN,K(p) is bounded by

|G| ≤ 2K+1pK+1K! (8)

Proof. Each CCM preserving operation on the matrix M can be represented in the following form.

SPCuρTQ(β)

Since S represents the conjugate of the matrix there are two possibilities, i.e., |S| = 2. P represents
permutations of the columns |P | = K!. CU is multiplying columns by different unit-modulus complex
number i.e. |CU | = pK . Whether or not the conjugate reversal of a column is take has |ρT | = 2K . And if we
do progressive multiplication there is |Q(β)| = p. So this will will produce a max of

|G| ≤ |S||P ||CU ||ρT ||Q(β)| = 2K!pK2Kp = 2K+1pK+1K!

CCMs from M .

4 CCM Search Algorithm
The following is an explanation of our exhaustive search algorithm for CCMs. Our search algorithm is based
on the search algorithm of Coxson and Russo [2]. While their work searches for the binary CCMs, ours
focuses on any poly-phase. We begin by presenting how a CCM can be represented in a normalized form as
shown in the following lemma an example of which was expressed in Example 7.

Lemma 4.1 (Normalized CCM). Any N ×K CCM can be normalized by transforming the matrix into
another matrix (using Theorem 3.1) where the entire first row consists of 1s and the first element in the
second row is a 1.

Proof. LetM be a N ×K CCM with r1 = [m1,1,m1,2,m1,3, . . . ,m1,K] and r2 = [m2,1,m2,2,m2,3, . . . ,m2,K].
In this proof it is sufficient to just show the operations being applied to the first two rows, but the reader
may note that these operations will be applied to the other rows as well.

Here we used (i) in Theorem 3.1 multiplying each column of M by the conjugate of the first value of each
column. This makes the entire first row ones since xx̄ = 1. m1,1 m1,2 m1,3 . . . m1,K

m2,1 m2,2 m2,3 . . . m2,K

...
...

...
...

...

⇒
 m̄1,1m1,1 m̄1,2m1,2 m̄1,3m1,3 . . . m̄1,Km1,K

m̄1,1m2,1 m̄1,2m2,2 m̄1,3m2,3 . . . m̄1,Km2,K

...
...

...
...

...


Next we uses (iv) in Theorem 3.1 and the fact that Diag(m2,1m̄1,1) =Diag(m̄2,1m1,1). m̄2,1m1,1 m̄2,1m1,1 m̄2,1m1,1 . . . m̄2,1m1,1

(m̄2,1m1,1)2m̄1,1m2,1 (m̄2,1m1,1)2m̄1,2m2,2 (m̄2,1m1,1)2m̄1,3m2,3 . . . (m̄2,1m1,1)2m̄1,Km2,K

...
...

...
...

...


The final step is to now multiply each column by m̄2,1m1,1 = m2,1m̄1,1 to bring the first row back to all 1’s.
Note now though that in this new matrix, M ′, m′2,1 = (m̄2,1m1,1)2(m̄1,1m2,1)2 also known as m′2,1 = 1 The
normalized version of M can now be written as M ′.

M ′ =

 1 1 1 . . . 1
1 m′2,2 m′2,3 . . . m′2,K
...

...
...

...
...



8

4.1 Short summary of search algorithm
The algorithm is an exhaustive search for all representations of CCMs. The search implements the known
symmetries to avoid finding a mass amount of equivalent CCMs. We construct the matrix from the outside
in. We start with making sure the matrix is normalized, setting the first row all equal to ones and first
element of second row a one. We then force the last row to sum to zero. Next we imagine the unit circle and
name the first angle, between the origin and the first of the p-phase, ω. We can define a method of sorting
where 0ω < ω < 2ω < . . . < (p− 1)ω. When constructing r2 we want the corresponding K-tuples to follow
this sorting process. We then construct rN−1 by only using K-tuples whose sum is equal to the opposite of
the partial sum of the row-correlation function of the second to last off diagonal, meaning summing up all
of the off diagonal minus the one that includes the row that we are on. We save time here by not looking
at K-tuples that we know will make the N − 2 off diagonal not sum to zero. From here we create r3 based
off of r2. If r2 has consecutive values that are equal, then at those positions in r3 the values need to be
sorted. Finally we continue searching for values for the other rows by continuously looking at their partial
sum of their row-correlation function. Once we have created all of these rows we just need to check that the
remaining N − 1− N

2 off diagonals also sum to zero. If so the matrix is a CCM.
There are many similarities and one major difference between our search algorithm and Jon Russo’s. The

similarities consist of constructing the code from the outside in and calculating the autocorrelation functions
as the search progresses. Both algorithms normalize the first row, to account for Theorem 3.1 (i), and set
the sum of the last row to zero. They also make sure the conjugate reversal of the column is less than
the column, accounting for Theorem 3.1 (ii). Both also make sure that the columns are ordered to avoid
permuting the rows. The difference between the search algorithms is that ours is generalized for all N ×K
poly-phase CCMs.

One of the most difficult parts of this algorithm to understand is the sorting by increasing angles. For
this reason we will begin with an example for the reader. Another way one might think of the increasing
angles is by increasing exponents. In a 4-phase CCM we deal with {1, i,−1,−i} or {i0, i1, i2, i3}.

Definition 4.1. Let rn be the n-th row of a matrix M .

Example 4.1. Let rn = [1, 1, i] Then the options for the increasing exponents of rn are as follows:
{[1, 1, 1], [1, i, 1], [1,−1, 1], [1,−i, 1], [i, i, 1], [i,−1, 1], [i,−i, 1], [−1,−1, 1], [−1,−i, 1], [−i,−i, 1], [1, 1, i],
[1, i, i], [1,−1, i], [1,−i, i], [i, i, i], [i,−1, i], [i,−i, i], [−1,−1, i], [−1,−i, i], [−i,−i, i], [1, 1,−1], [1, i,−1],
[1,−1,−1], [1,−i,−1], [i, i,−1], [i,−1,−1], [i,−i,−1], [−1,−1,−1], [−1,−i,−1], [−i,−i,−1], [1, 1,−i],
[1, i,−i], [1,−1,−i], [1,−i,−i] [i, i,−i], [i,−1,−i], [i,−i,−i], [−1,−1,−i], [−1,−i,−i], [−i,−i,−i]}

Instead of there being 43 possibilities for the next row there are 3 × 42. As the rows get longer or rn
changes, this can save more and more time. All we are doing here is sorting the columns as Theorem 3.1 (v)
allows.

The beauty of constructing the matrix from the outside in is that this construction method allows for
the next key part of this algorithm. We can sum up the elements off diagonals of the partially constructed
matrices dot product with its conjugate transpose. If we sum up all of the terms except the term that is
multiplied to row one. This sum will first have to be less than or equal to K by in order for this to happen.

r1

r2

r3

r4

 · (r̄1 r̄2 r̄3 r̄4

)
=


r1r̄1 r1r̄2 r1r̄3 r1r̄4

r2r̄1 r2r̄2 r2r̄3 r2r̄4

r3r̄1 r3r̄2 r3r̄3 r3r̄4

r4r̄1 r4r̄2 r4r̄3 r4r̄4


(a) Increasing exponents (E(rn)): creates a list of new rows such that for each row rn′ , rn′ = [ip1 , . . . , ipK]

such that rn′ is sorted based off of rn. Represent rn = [mn,1,mn,2, . . . ,mn,K] for any consecutive equal
m’s in rn the rn′ of those values must be in increasing exponential form mod 4. If rn happens to be
normalized then E(rn) = a list of rn′ ’s where rn′ = [ip1 , ip2 , . . . , ipK] and pk mod 4 ≤ pk+1 mod 4. If
rn = [1, 1, i,−i] = [i0, i0, i1, i3] then E(rn) = a list of rn′ ’s where rn′ = [ip1 , ip2 , . . . , ipK] where p1 mod
4 ≤ p2 mod 4 and 0 ≤ p3 ≤ 3, 0 ≤ p4 ≤ 3.

9

(b) Define the absolute value of a complex number as the Taxicab Distance: ‖(a+ bi)‖ = |a|+ |b|

4.2 The Search
This search was implemented in C++ using the adaptation of the Coxson-Russo search algorithm mentioned
in this section. Since we used the symmetries to speed up the search, we did not exhautively apply the
symmetries. So once the search was completed, a Mathematica program was implemented on the matrices
found where all combinations of symmetries being applied to them. The purpose was to narrow it down to
the exact number of equivalence classes. The results of which are shown in Table 1.

5 Equivalence Classes of CCMs
Definition 5.1 (Equivalent CCMs). Let M1,M2 ∈ CN,K(p) and g ∈ G, where G is the complementary
group. Then M1 and M2 are said to be equivalent if

g(M1) = M2

We define CM to be the equivalence class of CN,K(p) containing M , i.e.,

CM = {M̃ ∈ CN,K(p) : gM = M̃, g ∈ G}

The number of N × 2 4-phase CCMs for N = 1, 2, 3, . . . , 22 are already known as previously discussed [3].
So we will look at what this definition means for N × 4 CCMs. The order of the symmetry group of 4-phase
N × 4 CCMs 786432. We must check each of the resulting matrices to ensure that the set of CCMs is
narrowed down to the simplest number of equivalence classes. With this theorem we able to narrow down
the 4-phase 4×4 CCMs to 24 and 4-phase 6×4 CCMs to 1448 with the assurance that these are the number
of equivalence classes, no more, no less. We also found the number of equivalence classes for other, easier
N ’s. We then looked at the equivalence classes to see how many of them could be formed using a Hadamard
matrix. It is interesting to mention here that the entire equivalence class need not be Hadamard matrix in
order to have a Hadamard matrix representation. This is because taking the conjugate reversal of a column
does not always preserve the Hadmard matrix property

Table 1: Equivalence Classes
N ×K p-phase CCMs *CR Algorithm Number of Equivalency Classes Hadamard Representations

2x4 4-phase 36 2 2
3x4 4-phase 95 5 5
4x4 4-phase 231 24 17
5x4 4-phase 5246 133 0
6x4 4-phase 23448 1448 0

*Coxson and Russo’s adapted search algorithm

5.1 Constructing Quaternary CCMs
When dealing with CCMs, many times it is useful to look at constructions that can be used to create larger
CCMs from smaller ones since the search space for the smaller CCM is, of course, smaller. It is here that the
reader could think back to some of the more well known constructions. The Kronecker product, represented
by the symbol ⊕, can take matrix M1 that is a N1 ×K1 CCM and M2 that is a N2 ×K2 CCM to create
a new matrix M where M1 ⊕ M2 = N1N2 × K1K2. In the concatenation theorem you can take M1 to
be a N × K1 CCM and M2 to be a N × K2 CCM. The concatenation theorem gives us the following:

10

Algorithm 1 Search Algorithm for N ×K CCMs
Normalize r1 {from this point forward we will write r̄1 as r1}
for all K-tuples that sum to zero do

set rN equal to this K-tuple
if N = 2 then

This is a CCM
end if
Set m2,1 = 1 {now the matrix is fully normalized}
for all K-tuples in E(r1) do

set r2 equal to this K-tuple; {Partial sum of the rows 2}
if N = 3 then
if RM (1) = 0 then

This is a CCM
else

NOT A CCM
end if

end if
if ‖RM (2−N)− r[N−1]r1‖ ≤ K then
for all K-tuples that are equivalent to −(RM (2−N)− r[N−1]r1) do

set rN−1 equal to this K-tuple
while 2 ≤ k ≤ K, m2,k = iP and m̄N−1,kmN,k = iP

′
where 0 ≤ P ≤ 3 and 0 ≤ P ′ ≤ 3 do

if P > P ′ then
Not the CCM we are looking for; {This step is taking into account the conjugate reversals
of a column}

end if
end while
for all K-tuples in E(r2) do

set r3 equal to this K-tuple
for t = 1, t ≤ N

2 − 2, t+ + do
if ‖RM (t+ 2−N)− r[N−t−1]r1‖ ≤ K then
for all K-tuples whose sums are equivalent to −(RM (t+ 2−N)− r[N−t−1]r1) do

set r[N−t−1] equal to this K-tuple
end for

end if
end for
for s = 1, s ≤ N − 1− N

2 , s+ + do
if RM (s) 6= 0 then

NOT A CCM; {Check that the remaining off diagonals sum to zero}
end if

end for
This is a CCM

end for
end for

end if
end for

end for

11

[M1,M2] = N × (K1 +K2) [1]. There are even more that you can read about yet all the ones from Coxson
and Haloupek focus, as we said, on creating a CCM from a smaller dimension CCM to decrease the search
space [1]. We can also look at creating a quad-phase CCM from the ternary CCMs. These are a looser
definition of CCMs whose entries consist of the values {−1, 0, 1} and their off diagonals sum to zero. Here
we decrease the search space, 3NK as opposed to 4NK . Say we have a matrix M that is a 4-phase CCM.

M =


−1 −1 −i −i
−i −i i i
i −i −1 1
i −i i −i


We can decompose M into the matrix’s real and imaginary parts M = A+ iB, where A and B are ternary
CCM’s.

A =


−1 −1 0 0
0 0 0 0
0 0 −1 1
0 0 0 0

 , B =


0 0 −1 −1
−1 −1 1 1
1 −1 0 0
1 −1 1 −1


Though using the ternary CCMs may seem trivial, they can have power.

Theorem 5.1 (Dual Pair Theorem). Assume that A and B are NK ternary CCMs. Then Z = A+ iB
is a N ×K quad-phase CCM if
(i) | An,k | + | Bn,k |= 1 {∀n, k|1 ≤ n ≤ N and 1 ≤ k ≤ K}
(ii) BA∗ −B∗A is Diagonally regular

NOTE: Any pair of matrices (A,B) that satisfy condition (i) is called a dual pair.

Proof. We first prove that Z is quad-phase by considering two cases:
Case 1:Ai,j = 0 and Bi,j = ±1. Then Zi,j = Ai,j + iBi,j ⇒ Zi,j = 0± i⇒ Zi,j ∈ {1, i,−1,−i}. Hence, Z is
quad-phase.
Case 2: Ai,j = ±1 and Bi,j = 0. Then Zi,j = Ai,j + iBi,j ⇒ Zi,j = ±1 + i0 ⇒ Zi,j ∈ {1, i,−1,−i}. Again,
this proves that Z is quad-phase.
Next, we prove that ZZ∗ is diagonally regular by first calculating

ZZ∗ = (A+ iB)(A+ iB)∗

= (A+ iB)(A∗ − iB∗)
= AA∗ + i(BA∗ −B∗A) +BB∗

Since A and B are ternary CCMs, AA∗ and BB∗ are diagonally regular. Moreover, by assumption BA∗−B∗A
is also diagonally regular. Thus, ZZ∗ must be diagonally regular.

In the following table, a large portion, and in some cases all, of our CCM equivalence classes can be
represented as a dual pair, which has a smaller search space. This is represented in the following table that
compares the results of implementing different types of construction methods.

Table 2: CCM Equivalence Classes
N ×K p-phase CCMs Equivalence Classes A⊕B [A,B] Dual Pair Representatives

2x4 4-phase 2 n/a 2 2
3x4 4-phase 5 n/a 1 5
4x4 4-phase 24 2 6 22
5x4 4-phase 133 n/a 3 94
6x4 4-phase 1448 2 27 471

12

6 Acknowledgements
The authors would like to give special thanks to Gregory Coxson for his guidance and help over the months
that this research has taken place. We also thank Jon Russo for his wonderful search algorithm and Long
(Winston) Cheong for his assistance in the programming.

7 Appendix
I. 2× 4 Equivalence Class Representations:

1. [[1, 1, 1, 1], [1, 1,−1,−1]]

2. [[1, 1, 1, 1], [1, i,−1,−i]]

NOTE: Both classes can be represented by dual pairs.

II. 3× 4 Equivalence Class Representations:

1. [[1, 1, 1, 1], [1,−1,−1,−1], [1, 1,−1,−1]]

2. [[1, 1, 1, 1], [1,−1,−1,−1], [1, i,−1,−i]]

3. [[1, 1, 1, 1], [1, i,−1,−i], [1,−1, 1,−1]]

4. [[1, 1, 1, 1], [1,−1,−1,−i], [i, i,−i,−i]]

5. [[1, 1, 1, 1], [1, i, i,−1], [−1, 1, 1,−1]]

NOTE: All classes can be represented by dual pairs.

III. 4× 4 Equivalence Class Representations:

1. [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1,−1,−1], [−1,−1, 1, 1]]

2. [[1, 1, 1, 1], [1, 1, 1, i], [−1,−1,−i, 1], [1,−1, 1,−1]]

3. [[1, 1, 1, 1], [1, 1, i, i], [1,−1, i,−i], [−1, 1, 1,−1]]

4. [[1, 1, 1, 1], [1, 1, i, i], [i,−i, 1,−1], [1,−1,−1, 1]]

5. [[1, 1, 1, 1], [1, 1,−1,−1], [1,−1, 1,−1], [1,−1,−1, 1]]

6. [[1, 1, 1, 1], [1, i, i,−1], [−1, i, i, 1], [−1, 1, 1,−1]]

7. [[1, 1, 1, 1], [1, 1, 1, 1], [1, i,−1,−i], [−1,−i, 1, i]]

8. [[1, 1, 1, 1], [1, 1, i, i], [1,−1, 1,−1], [−1, 1,−i, i]]

9. [[1, 1, 1, 1], [1, 1, i, i], [i,−1, 1,−i], [1,−1,−i, i]]

10. [[1, 1, 1, 1], [1, 1, i, i], [−1,−1, 1, 1], [1,−1, i,−i]]

11. [[1, 1, 1, 1], [1, 1, i, i], [i,−i, i,−i], [1,−1,−i, i]]

12. [[1, 1, 1, 1], [1, 1,−1,−1], [1,−1, i,−i], [1,−1,−i, i]]

13. [[1, 1, 1, 1], [1, 1, i,−1], [1,−i,−1, 1], [i,−1, 1,−i]]

14. [[1, 1, 1, 1], [1, 1, i,−1], [1,−i,−i, i], [i,−1, 1,−i]]

15. [[1, 1, 1, 1], [1, 1, 1, i], [i,−1,−i,−i], [−i, i, 1,−1]]

16. [[1, 1, 1, 1], [1, 1, 1, i], [−1,−1,−i, 1], [i,−i, 1,−1]]

17. [[1, 1, 1, 1], [1, 1, i,−1], [i,−1, 1,−1], [1,−i,−1, i]]

18. [[1, 1, 1, 1], [1, 1, i, i], [i,−i, i,−i], [−i, i, 1,−1]]

19. [[1, 1, 1, 1], [1, 1, 1, 1], [i, i,−i,−i], [−i,−i, i, i]]

20. [[1, 1, 1, 1], [1, 1,−1,−1], [i,−i, i,−i], [i,−i,−i, i]]

21. [[1, 1, 1, 1], [1, i, i,−1], [−i,−1,−1, i], [−i, i, i,−i]]

22. [[1, 1, 1, 1], [1, i,−1,−i], [−i, i,−i, i], [−i,−1, i, 1]]

23. [[1, 1, 1, 1], [1, i,−1,−i], [−1, 1,−1, 1], [−1, i, 1,−i]]

24. [[1, 1, 1, 1], [1, i,−1,−i], [1,−1, 1,−1], [1,−i,−1, i]]

NOTE: All classes, except classes 23 and 24, can be represented by dual pairs.

IV. 5× 4 and 6× 4 Equivalence Class Representations: These representations can be downloaded from our
website at the following address: http://elvis.rowan.edu/datamining/ccm/equivalence/

References
[1] G. Coxson and W. Haloupek Construction of Complementary Code Matrices for Waveform Design.

Aerospace and Electronic Systems, IEEE Transactions on (Volume:49 , Issue: 3) November 25, 2012.

13

http://elvis.rowan.edu/datamining/ccm/equivalence/

[2] G.E. Coxson and J.C. Russo Efficient Exhaustive Search for Binary Complementary Code Sets. Infor-
mation Sciences and Systems (CISS) 47th Annual Conference (2013), 20-22.

[3] R. Gibson Quaternary Golay Sequence Pairs Master’s Thesis. Simon Fraser University (Fall 2008).

[4] K. Feng, P. Shiue, and Q. Xiang, On Aperiodic and Periodic Complementary Binary Sequences, IEEE
Transactions on Information Theory 45 (1999), No. 1, 296-303.

[5] S.W. Golomb and M.Z. Win, Recent Results on Polyphase Sequences, IEEE Transactions on Information
Theory 44 (1998), No. 2, 817-824.

[6] G. Coxson, B. Logan, H. Nguyen Row-Correlation Function: A New Approach to Complementary Code
Matrices, Proceedings of 52nd Annual Allerton Conference on Communication, Control, and Computing
(2014), 1358-1361.

[7] G. Coxson The Structure of Sidelobe-Preserving Operator Groups, Excursions in Harmonic Analysis,
Volume 1 (2013), 311-328.

14

	1 Introduction
	2 Preliminaries
	3 Symmetries of CCMs
	3.1 Complementary Codes

	4 CCM Search Algorithm
	4.1 Short summary of search algorithm
	4.2 The Search

	5 Equivalence Classes of CCMs
	5.1 Constructing Quaternary CCMs

	6 Acknowledgements
	7 Appendix

