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Abstract

The multi-criteria trajectory planning for Space Manoeuvre Vehicle (SMV) is recognised as a challenging problem. Because
of the nonlinearity and uncertainty in the dynamic model and even the objectives, it is hard for decision makers to balance all of
the preference indices without violating strict path and box constraints. In this paper, to provide the designer an effective method
and solve the trajectory hopping problem, an Interactive Fuzzy Physical Programming (IFPP) algorithm is introduced. A new
multi-objective SMV optimal control problem is formulated and parameterized using an adaptive technique. By using the density
function, the oscillations of the trajectory can be captured effectively. In addition, an interactive decision-making strategy is applied
to modify the current designer’s preferences during optimization process. Two realistic decision-making scenarios are conducted
by using the proposed algorithm; Simulation results indicated that without driving objective functions out of the tolerable region,
the proposed approach can have better performance in terms of the satisfactory degree compared with other approaches like
traditional weighted-sum method, Goal Programming (GP) and fuzzy goal programming (FGP). Also, the results can satisfy the
current preferences given by the decision makers. Therefore, The method is potentially feasible for solving multi-criteria SMV
trajectory planning problems.

Index Terms

Space Manoeuvre vehicle, multi-objective, interactive fuzzy physical programming, density function, satisfactory degree,
trajectory planning.

I. INTRODUCTION

Obviously, the Space Manoeuvre Vehicles (SMV) is going to play an increasingly important role in future exploration of

space. Therefore, a well-designed trajectory, particularly in the skip entry phase, is key to the stable flight and improved

guidance control of the vehicle [1]–[4]. Unlike traditional mission profiles discussed in [5]–[8], the mission scenario investigated

in this paper focuses on the atmospheric skip hopping, targeting the entry into the atmosphere down to a predetermined position

(predetermined altitude given by the industrial sponsor of this project) and the required controls involved in returning back to

the orbit. Studies can be found in the literature regarding the skip reentry of deep-space spacecraft with high speed over first

cosmic velocity. However in the scenario considered in this paper, a high thrust engine would be necessary for SMV to return

to low earth orbit. The authors appreciate the total amount of thrust/energy required will be too high and not practical for real

implementation on today’s space reentry vehicles. However, the aim was to develop methods for use on new generation of

SMV that will be developed over the next 2 or 3 decades, which are reflected by the specific conditions given by the industrial

partner.

The two essential functions of the trajectory planning in the skip phase are to design the trajectory and use it to provide

guidance command references [9], [10]. Given the critical importance of the skip hopping trajectory, it was realized that the

skip trajectory should be designed with a high efficiency and accurate way. Due to the high nonlinear nature of the problem,

numerical methods are usually employed to solve these types of problems. Numerical methods for solving optimal control
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problems are divided into two major classes: indirect methods and direct methods. It is usually hard to apply the indirect

method since the Hamiltonian Boundary-Value Problem (HBVP) should be derived from the original problem formulation.

Therefore, this research mainly focuses on the direct method. In a direct method, the continuous-time optimal control problem

is transcribed to a Nonlinear Programming problem (NLP) [11]–[15]. The accuracy and efficiency of the direct methods

depend largely on the mesh refinement process. Several mesh refinement techniques are proposed in [16]–[18], illustrating

the advantages of such algorithms. When the solution of the SMV trajectory hopping problem exhibits discontinuities in the

state and control or their higher order derivatives, a locally dense mesh grid is typically necessary to achieve better resolution.

Hence, one aspect of the investigation into an adaptive technique is designed in this work to capture accurate estimation of

the location of the discontinuity.

Generally, the traditional design of entry trajectory usually targets a single objective, such as maximizing the cross range,

minimizing the aerodynamic heating, etc. However, for the mission considered in this paper, the expectations for enhancing

performance and saving cost are of significant importance. Therefore, it is desired to have a multi-objective SMV optimization

model with several criteria varying in tolerable regions. In early times, weight-sum method is widely used to convert multi-

objective formulation into traditional single objective problem. However, the determination of weight parameters is difficult

and tends to be sensitive with respect to the solution. In addition, Chen et al. [19] adopt an evolutionary algorithm to transform

a two-objective optimization formulation. However, the computational burden tends to be heavy and the preference of different

objectives cannot be reflected clearly. In 2000, Messac designed a Physical Programming (PP) method to convert the objectives,

which removes the information of priority and weight coefficients [20], [21]. But in practice, usually there are some fuzzy

factors in the real system [22], [23]. Hence, in this paper, the preference function is modified by taking fuzzy factors into

account.

In practice, due to the lack of physical understanding of the problem, it is difficult for the designers to specify preferences

with respect to each objective function. Moreover, in large scale problems, it is almost impossible for the designers to know

explicitly how much to change a given aspiration level in order to obtain a satisfactory solution. Considering these difficulties,

an interactive decision-making procedure is embedded in the proposed fuzzy physical programming framework. In this way,

the decision maker can modify the current preference during the optimization process.

Hereafter, the paper is organized as follows: In Section II, some mathematical preliminaries are provided. A new 3-DOF

multi-objective nonlinear model including different types of constraints for the SMV is established in Section III. Section IV

describes an adaptive shooting method used to discretize the optimal control problem. Then in Section V the Fuzzy Physical

Programming (FPP) procedures of solving multi-objective SMV trajectory problem and an interactive decision-making process

are detailed. Compromised solutions generated by employing the proposed Interactive Fuzzy Physical Programming (IFPP)

approach for two strategic intents are given in Section VI.

II. PRELIMINARIES

Some mathematical preliminaries are necessary to facilitate the presentation of the main results.

Definition 1. (Multi-objective Optimization problems): A general Multi-objective Optimization problems (MOPs) can be written

as follows:
Find design variables 𝑥 = [𝑥1, 𝑥2, ..., 𝑥𝑛]

Minimize objective functions 𝐽(𝑥) = [𝐽1, 𝐽2, ..., 𝐽𝑚]

subject to 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥

ℎ𝑖(𝑥) = 0

𝑔𝑗(𝑥) ≤ 0

(𝑖 = 1, 2, ..., 𝐸)

(𝑗 = 1, 2, ..., 𝐼)

(1)

where 𝑚 is the number of different objective functions. ℎ and 𝑔 are the equality and inequality constraints, respectively. 𝐸 and



3

𝐼 are the number of equality and inequality constraints, respectively. 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 represent the lower and upper bounds of

the design variables.

In contrast to Single-Objective Problems (SOPs), the goal of MOPs is to find a set of solutions known as pareto-optimal

set. A solution in this set is called nondominated solution and is optimal in the sense that no other solutions are superior

(better) to it in the current searching space when all objectives are considered. Consequently, the definition of pareto-optimal

can be stated as follows:

Definition 2. (Pareto optimal) [24]: A point, 𝑥* ∈ 𝑋 , is in the sense of pareto-optimal if and only if there does not exist

another point, 𝑥 ∈ 𝑋 , such that 𝐽(𝑥) ≤ 𝐽(𝑥*), and 𝐽𝑖 < 𝐽𝑖(𝑥
*) for at least one objective function.

According to Definition 2, for a MOP, there may no single optimal solution but rather a set of optimal trade-offs. All the

pareto-optimal solutions are called the pareto-optimal set.

Another primary concept usually used in MOPs is given below:

Definition 3. (Nondominated and Dominated points) [24]: A vector of objective functions, 𝐽(𝑥*) ∈ 𝐹 , is nondominated if

and only if there does not exist another vector 𝐽(𝑥) ∈ 𝐹 , such that 𝐽(𝑥) ≤ 𝐽(𝑥*) with at least one 𝐽𝑖(𝑥) < 𝐽(𝑥*). Otherwise,

𝐽(𝑥*) is dominated by 𝐽𝑖(𝑥).

In Definition 3, 𝐹 stands for the feasible space. It is worth noting that the definition of pareto-optimal is similar to that

of dominance. A pareto-optimal point is often considered the same as a nondominated point.

III. MISSION PROFILE

In this paper, the problem to be analyzed is a skip entry trajectory optimization problem. The general skip entry addressed

is illustrated in Fig.1. Considering the mission of the SMV is to overfly the ground target at specific minimum altitude, the

most challenging down control and up control of the skip flight will be considered.

Fig. 1: General mission profile
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A. Dynamics

By considering the rotation of the Earth, the 3-DOF SMV point mass equations of motion are constructed by the following

set of ordinary differential equations:

𝑟̇ = 𝑉 sin 𝛾

𝜃 = 𝑉 cos 𝛾 sin𝜓
𝑟 cos𝜑

𝜑̇ = 𝑉 cos 𝛾 cos𝜓
𝑟

𝑉̇ = 𝑇 cos𝛼−𝐷
𝑚 − 𝑔 sin 𝛾

+Ω2𝑟 cos𝜑(sin 𝛾 cos𝜑− cos 𝛾 sin𝜓 cos𝜓)

𝛾̇ = 𝐿 cos𝜎+𝑇 sin𝛼
𝑚𝑉 + (𝑉

2−𝑔𝑟
𝑟𝑉 ) cos 𝛾 + 2Ωcos𝜑 sin𝜓

+Ω2𝑟 cos𝜑(cos 𝛾 cos𝜑+ sin 𝛾 cos𝜓 sin𝜑)

𝜓̇ = 𝐿 sin𝜎
𝑚𝑉 cos 𝛾 + 𝑉

𝑟 cos 𝛾 sin𝜓 tan𝜑+ Ω2𝑟 cos𝜑 sin𝜑
cos 𝛾

−2Ω(tan 𝛾 cos𝜓 cos𝜑− sin𝜑)

𝑚̇ = − 𝑇
𝐼𝑠𝑝𝑔

(2)

where 𝑟 is the distance from the center of the earth, 𝜃 and 𝜑 are the longitude and latitude, respectively. 𝑉 is the relative

velocity, 𝛾 is the flight path angle. 𝜓 is the relative velocity heading angle measured clockwise from the north, 𝑚 is the mass

of vehicle. The control variables are angle of attack 𝛼, bank angle 𝜎 and thrust 𝑇 , respectively. The earth’s rotation rate is

Ω = 7.2921151𝑒−5rad/s.

The atmospheric and aerodynamic model can be summarised as:

𝑔 = 𝜇
𝑟2 𝜌 = 𝜌0 exp

𝑟−𝑟0
ℎ𝑠

𝐿 = 1
2𝜌𝑉

2𝐶𝐿𝑆 𝐷 = 1
2𝜌𝑉

2𝐶𝐷𝑆

𝐶𝐷 = 𝐶𝐷0 + 𝐶𝐷1𝛼+ 𝐶𝐷2𝛼
2 𝐶𝐿 = 𝐶𝐿0 + 𝐶𝐿1𝛼

(3)

where 𝑆 = 2690𝑓𝑡2 is reference area, 𝜌 is density of atmosphere and 𝜌0 = 0.002378𝑠𝑙𝑢𝑔/𝑓𝑡3 is the density of the atmosphere

at sea-level. 𝑟0 = 6378.135𝑘𝑚 is earth radius, 𝐿 and 𝐷 are the lift and drag whereas 𝐶𝐿 and 𝐶𝐷 are the corresponding lift

and drag coefficients.

In the model given by Eq.(2), three autopilot equations are introduced by using the technique of first order lag to describe

the rate constraint of the controls.
𝛼̇ = 𝐾𝛼(𝛼𝑐 − 𝛼)

𝜎̇ = 𝐾𝜎(𝜎𝑐 − 𝜎)

𝑇̇ = 𝐾𝑇 (𝑇𝑐 − 𝑇 )

(4)

Therefore, control variables are divided into actual control and demand control. The states and controls are described by:

𝑋 = [𝑟, 𝜃, 𝜑, 𝑉, 𝛾, 𝜓,𝑚, 𝛼, 𝜎, 𝑇 ]𝑇

𝑈 = [𝛼𝑐, 𝜎𝑐, 𝑇𝑐]
𝑇

(5)

B. Box and path constraints

SMV hopping flight should satisfy strict box and path constraints for safety reasons. Also, these conditions are depended

on the mission requirements. The entire mission can be divided into two phases, the descent phase and exit phase. Due to the

mission requirement, the boundary conditions for the states are:

𝑋 = [𝑟, 𝜑, 𝜃, 𝑉, 𝛾, 𝜓,𝑚, 𝛼, 𝜎, 𝑇 ]𝑇

𝑋(0) = 𝑋0 = [𝑟0, 𝜑0, 𝜃0, 𝑉0, 𝛾0, 𝜓0,𝑚0, 𝛼0, 𝜎0, 𝑇0]
𝑇

[𝑟(𝑡𝑓1), 𝑟(𝑡𝑓2)] = [𝑟𝑏, 𝑟𝑓 ]

(6)

where 𝑡𝑓1, 𝑡𝑓2 are time points for the SMV reaching the minimum altitude point and final boundary point, respectively. 𝑟𝑏 and

𝑟𝑓 are the minimum altitude point and final altitude point. During the whole time history, all the variables should satisfy the
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box constraints:
𝑟𝑚𝑖𝑛 ≤ 𝑟 ≤ 𝑟𝑚𝑎𝑥 𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥

𝜑𝑚𝑖𝑛 ≤ 𝜑 ≤ 𝜑𝑚𝑎𝑥 𝑉𝑚𝑖𝑛 ≤ 𝑉 ≤ 𝑉𝑚𝑎𝑥

𝛾𝑚𝑖𝑛 ≤ 𝛾 ≤ 𝛾𝑚𝑎𝑥 𝜓𝑚𝑖𝑛 ≤ 𝜓 ≤ 𝜓𝑚𝑎𝑥

𝛼𝑚𝑖𝑛 ≤ 𝛼 ≤ 𝛼𝑚𝑎𝑥 𝜎𝑚𝑖𝑛 ≤ 𝜎 ≤ 𝜎𝑚𝑎𝑥

𝑚𝑚𝑖𝑛 ≤ 𝑚 ≤ 𝑚𝑚𝑎𝑥 𝑇𝑚𝑖𝑛 ≤ 𝑇 ≤ 𝑇𝑚𝑎𝑥

(7)

Particularly, for the demand control variables, the range should be the same with the actual controls.

𝛼𝑐(𝑚𝑖𝑛) ≤ 𝛼𝑐 ≤ 𝛼𝑐(𝑚𝑎𝑥)

𝜎𝑐(𝑚𝑖𝑛) ≤ 𝜎𝑐 ≤ 𝜎𝑐(𝑚𝑎𝑥)

𝑇𝑐(𝑚𝑖𝑛) ≤ 𝑇𝑐 ≤ 𝑇𝑐(𝑚𝑎𝑥)

(8)

The most important requirement for the SMV is the protection of the vehicle structure integrity, which can be achieved

by setting three path constraints, aerodynamic heating, dynamic pressure and load factor.

𝑄̇𝑑 = 𝐾𝑄𝜌
0.5𝑉 3.07(𝑐0 + 𝑐1𝛼+ 𝑐2𝛼

2 + 𝑐3𝛼
3) < 𝑄̇𝑑𝑚𝑎𝑥

𝑃𝑑 =
1
2𝜌𝑉

2 < 𝑃𝑑𝑚𝑎𝑥

𝑛𝐿 =
√
𝐿2+𝐷2

𝑚𝑔 < 𝑛𝐿𝑚𝑎𝑥

(9)

where 𝑄̇𝑑𝑚𝑎𝑥, 𝑃𝑑𝑚𝑎𝑥 and 𝑛𝐿𝑚𝑎𝑥 represents acceptable maximum heating rate, dynamic pressure and acceleration, respectively.

C. Objective function

To complete for example a reconnaissance mission in the shortest possible time interval, the first objective would be to

minimize the final time. In addition, as mentioned previously, the total aerodynamic heating is very important and is also

considered. On the other hand, a high final velocity will provide more kinetic energy for the vehicle. Moreover, to ensure the

SMV has enough fuel to carry-out several skip hops for future exploration mission, the final objective is chosen as minimizing

the fuel consumption, i.e., maximize final mass value, during the entire mission. Therefore, the four objective functions selected

for the analysis are:

1). Minimizing the final time:

min 𝐽1 = 𝑡𝑓 (10)

2). Minimizing the total aerodynamic heating:

min 𝐽2 =

∫︁ 𝑡𝑓

𝑡0

𝑄̇(𝑡)𝑑𝑡 (11)

3). Maximizing the final velocity:

max 𝐽3 = 𝑉 (𝑡𝑓 ) (12)

4). Maximizing the final mass:

max 𝐽4 = 𝑚(𝑡𝑓 ) (13)

D. Relationship between different objectives

According to the mission objectives established in Eq.(10)-(13), it is observed that the objectives in Eq.(12) and Eq.(13) are

contradicting each other. More precisely, maximizing the final velocity can be achieved at the expense of fuel consumption. This

can also be reflected by the velocity and mass dynamic equations. In addition, it should be noted that one of the parameters, that

can increase aerodynamic heating, is dynamic pressure. Dynamic pressure is functions of density and velocity. Since density

in skip entry phase is relatively small compared to the velocity, maximizing velocity in turn increases aerodynamic heating.

This leads to that the objective functions in Eq.(11) and Eq.(12) are also contradicting.



6

On the other hand, as can be seen from the aerodynamic heating equation, the total amount of heating is largely affected

by the upper limit of integration (𝑡𝑓 ). Therefore, minimizing the terminal time (10) and minimizing the total aerodynamic

heating (11) are highly correlated objectives. Since most of the objectives are contradicting, this lead to the multi-objective

design. That means a pareto-optimal solution with a good compromise between different objectives is desired for this problem.

In this paper, the algorithm used to find the compromised solution is the Interactive Fuzzy Physical Programming (IFPP)

approach. This algorithm uses the function transformation technique and will be further expanded in Section V.

IV. ADAPTIVE MULTIPLE SHOOTING METHOD

To solve the continuous SMV trajectory hopping problem, parametrization algorithms should be implemented so that the

continuous-time problem can be transformed to static Nonlinear Programming (NLP) problem. The discrete method used in

this paper is based on multiple shooting. The basic idea of the direct multiple shooting method is to parameterize only the

control variables. The controls can be approximated by interpolation at 𝑁 th discretized time nodes [𝜏1, 𝜏2, ..., 𝜏𝑁 ]. Then the

equations of motion are integrated with a fourth order Runge-Kutta method. The approximation of controls is given by:

𝑢(𝜏) ≈ 𝑈(𝜏) =

𝑁∑︁
𝑖=1

𝑈𝑖𝐿𝑖(𝜏) (14)

where 𝐿𝑖(𝜏) is a basis of Lagrange polynomials. After using direct multiple shooting method, the resulting NLP can be solved

numerically by well-developed optimization algorithms such as Sequential Quadratic Programming (SQP) [25], [26] or Interior

Point method (IP) [27], [28].

A. Density function

Commonly, practical guidance algorithms based on a reference trajectory which is tracked during entry phase have some

degrees of model independence and do not required fast on-board computation [29]–[32], while it tends to be more sensitive

in terms of initial trajectories. If the trajectory is generated on fixed distribution of mesh points, there may be some segments

having a large value of violation of constraints and the accuracy of the reference trajectory is decreased. To tackle this problem,

a density function technique is applied to the mesh refinement part of the direct multiple shooting process.

A mesh density function [33], [34] should be a nonnegative function 𝑓 : [𝑎, 𝑏] → ℜ+, 𝑎, 𝑏 ∈ ℜ that satisfies
∫︀ 𝑏
𝑎
𝑓(𝑡)𝑑𝑡 = 1

and equals to zero at countably points. Since any nonnegative function 𝑓 : [𝑎, 𝑏] → ℜ+ that has only countably many zeros

can be summarised as:
𝑓(𝑡) =

𝑓(𝑡)∫︀ 𝑏
𝑎
𝑓(𝜏)𝑑𝜏

(15)

the corresponding cumulative distribution function 𝐹 : [𝑎, 𝑏] → [0, 1] is defined as:

𝐹 (𝑡) =

∫︁ 𝑡

𝑎

𝑓(𝜏)𝑑𝜏 (16)

The function 𝐹 can also be treated as a probability density function and its value corresponds to the area under the graph of 𝑓

between the lower and upper bound of the integral. Clearly, 𝐹 (𝑎) = 0 and 𝐹 (𝑏) = 1. Consider a mesh grid 𝑡𝑖, 𝑖 = 0, 1, 2..., 𝑁

containing 𝑁 + 1 mesh points, and let 𝐹 stands for the cumulative distribution function calculated by 𝑓 as in Eq.(16). The

position of the (𝑖+ 1)th point can be determined by:

𝐹 (𝑡𝑖+1)− 𝐹 (𝑡𝑖) =
1

𝑁
(17)

Then, a mesh grid distribution can be generated based on the density function 𝑓 such that the distribution of grid points

conforms to an equidistribution of 𝐹 . Specifically, the mesh distribution is sparse where the value of 𝑓(𝑡) is small whereas

the mesh is dense where the value of 𝑓(𝑡) is large. Note that the mesh point distribution is fixed once the density function

is given. Fig.2 illustrates 20 mesh points distribution generated by two specific density function, 𝑓(𝑡) = 𝑡 and 𝑓(𝑡) =

𝑒−50𝑡2+20𝑡−2 + 𝑒−50𝑡2+80𝑡−32, over [0, 1] time interval.
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Fig. 2: Example of density function

B. Adaptive multiple shooting

In this paper, the density function based on the local curvature is used. As described in [33], assuming the number of nodes

in the 𝑗th iteration is 𝑁𝑗 , the obtained state variables (𝑡𝑖, 𝑥𝑖)
𝑁𝑗

𝑖=1 used in the 𝑗th iteration are applied to calculate the curvature

of the state history. To control the size of resulting NLP problem and capture the oscillation of the trajectory effectively, an

adaptive multiple shooting method based on segmented density function is designed. Several points in the initial time history

are selected as the segmented endpoints and the curvature equation on those subintervals can be described as:

𝜅(𝑘)(𝑡
(𝑘)
𝑖 ) =

| 𝑥̈(𝑘)(𝑡(𝑘)𝑖 ) |
| (1 + 𝑥̇(𝑘)(𝑡

(𝑘)
𝑖 ))3/2 |

(18)

where 𝑘 is the number of subinterval. 𝑥̈ and 𝑥̇ can be calculated using finite difference. Then, the segmented density function

is assumed as:

𝑓 (𝑘)(𝑡) = (

𝑚∑︁
𝑘=1

𝜚2(𝑘)(𝑡))
1
2 (19)

where 𝜚(𝑘) = 𝑐(𝑘)𝜅(𝑘)(𝑡)
1
3 and 𝑐 is a constant [17]. Using the curvature information can determine whether the trajectory is

flat or tends to be very noisy over the current time interval. It is possible to control the size of the resulting NLP problem by

setting the number and position of segmented points. If too many points are selected, the computational time will increase, and

this is seriously undesirable. On the contrary, if only one or two segmented points are selected, the accuracy of the trajectory

may not be increased. Therefore, the number of selected points should be considered carefully.

V. INTERACTIVE FUZZY PHYSICAL PROGRAMMING

Following the discretization of the controls, the original problem has been transformed to a NLP problem with multiple

objective functions described in Eq.(10) to Eq.(13). To extend the work in [35] by taking into account the decision maker’s

preferences during the optimization process; an interactive fuzzy physical programming algorithm is designed in this paper.

A. Physical programming

This Section briefly describes a multi-objective optimization method called physical programming (PP) [36] that is effective

for generating a compromised pareto solution. The way that PP captures the decision maker’s preferences is by defining

preference functions. Compared with other multi-objective methods such as goal programming (GP) or evolutionary methods,

the application of PP does not require the designer to specify weights for different object functions. Rather, the decision maker
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needs to define ranges of differing degrees of desirability for each objective function. In PP, different objective functions are

classified into four types:

1) Class 1-S: smaller-is-better (minimization).

2) Class 2-S: larger-is-better (maximization).

3) Class 3-S: value-is-better (seek value).

4) Class 4-S: range-is-better (seek range).

Take minimization problem as an example, the boundary of the preference region is represented by some values of

objective function and there are six ranges as follows:

1) Ideal range (𝐽𝑖 ≤ 𝐽𝑖1)

2) Desirable range (𝐽𝑖1 ≤ 𝐽𝑖 ≤ 𝐽𝑖2)

3) Tolerable range (𝐽𝑖2 ≤ 𝐽𝑖 ≤ 𝐽𝑖3)

4) Undesirable range (𝐽𝑖3 ≤ 𝐽𝑖 ≤ 𝐽𝑖4)

5) Highly undesirable range (𝐽𝑖4 ≤ 𝐽𝑖 ≤ 𝐽𝑖5)

6) Unacceptable range (𝐽𝑖 ≥ 𝐽𝑖5)

The components of 𝐽𝑖 are called the aspiration levels determined by the decision makers. Once the range parameters

have been determined for each objective function, preference functions are constructed. The preference function 𝑝𝑖(𝐽𝑖(𝑋)) are

defined by using the spline interpolation.

𝑝𝑘𝑖 = 𝐴0(𝜉
𝑘
𝑖 )𝑝𝑖(𝑘−1) +𝐴1(𝜉

𝑘
𝑖 )𝑝𝑖𝑘

+𝐴0(𝜉
𝑘
𝑖 , 𝜆

𝑘
𝑖 )𝑠𝑖(𝑘−1) +𝐴1(𝜉

𝑘
𝑖 , 𝜆

𝑘
𝑖 )𝑠𝑖𝑘

(20)

where 𝜉𝑘𝑖 = (𝐽𝑖−𝐽𝑖(𝑘−1))/(𝐽𝑖𝑘−𝐽𝑖(𝑘−1)) and 0 < 𝜉𝑘𝑖 < 1, 𝜆𝑘𝑖 = (𝐽𝑖𝑘−𝐽𝑖(𝑘−1)), 𝑘 is the number of region and 𝑘 = 2, 3, 4, 5.

The basic functions in Eq.(20) are defined as follows:

𝑠𝑖𝑘 =
𝜕𝑝𝑘𝑖
𝜕𝐽𝑘𝑖

|𝐽𝑘
𝑖 =𝐽𝑖𝑘

(21)

𝐴0(𝜉) =
1

2
𝜉4 − 1

2
(𝜉 − 1)4 − 2𝜉 +

3

2
(22)

𝐴1(𝜉) = −1

2
𝜉4 − 1

2
(𝜉 − 1)4 + 2𝜉 − 1

2
(23)

𝐴0(𝜉, 𝜆) = 𝜆[
1

8
𝜉4 − 3

8
(𝜉 − 1)4 − 1

2
𝜉 +

3

8
] (24)

𝐴1(𝜉, 𝜆) = 𝜆[
3

8
𝜉4 − 1

8
(𝜉 − 1)4 − 1

2
𝜉 +

1

8
] (25)

B. Sensitivity analysis

Generally, the PP method involves converting different objective functions into a single function by using the preference

function presented in the previous Section. Then it is solved to get a compromised pareto point. The sensitivity at the current

pareto point calculated by PP can provide the variation in one objective function given the variation in another objective

function on the pareto surface in a given direction. It can be treated as directional derivatives and is a tangent line to the

pareto surface. At a compromised pareto optimal point 𝑥*, assume 𝑔(𝑥*) stands for the set of active constraints, which can be

determined by using well-developed NLP methods. Let 𝐶 represent the Jacobian matrix of the active constraints at 𝑥*. The

equations of 𝐶 and the projection matrix 𝑃 of the active set are given by:

𝐶 = ∇𝑥𝑔(𝑥
*) (26)

𝑃 = 𝐼 − 𝐶𝑇 (𝐶𝐶𝑇 )−1𝐶 (27)
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where 𝐼 is the identity matrix. It should be noted that, a feasible direction with the greatest improvement of objective function

𝐽𝑖 is achieved by projecting ∇𝑥𝐽𝑖 onto the projection matrix 𝑃

𝑑𝑓𝑖 = 𝑃 (−∇𝑥𝑓𝑖) 𝑖 = 1, 2, ...,𝑚 (28)

where 𝑚 is the total number of objective function. The pareto sensitivity can be described as 𝑑𝐽𝑖/𝑑𝐽𝑗 along the feasible

descent direction of objective 𝐽𝑗 . Then the derivatives of 𝐽𝑖 and 𝐽𝑗 with respect to optimization parameters can be rewritten

as:

𝑑𝐽𝑖 = 𝑑𝑇𝐽𝑖𝑑𝑥 (29)

𝑑𝐽𝑗 = 𝑑𝑇𝐽𝑗𝑑𝑥 (30)

Based on Eq.(29) and Eq.(30), 𝑑𝑥 is solved:

𝑑𝑥 = [𝑑𝐽𝑗𝑑
𝑇
𝐽𝑗 ]

−1𝑑𝐽𝑗𝑑𝐽𝑗 (31)

From Eq.(31), the change in design variables (𝑥) along the feasible decent direction of objective 𝐽𝑗 can be calculated. Therefore,

by replacing 𝑑𝑥 in Eq.(30), the term 𝑑𝐽𝑖/𝑑𝐽𝑗 can be achieved.

𝑑𝐽𝑖
𝑑𝐽𝑗

= 𝑑𝑇𝐽𝑖 [𝑑
𝑇
𝐽𝑗
𝑑𝐽𝑗 ]

−1𝑑𝐽𝑗 𝑖 = 1, 2, ...,𝑚 (32)

Consequently, the sensitivity information can be summarised in a matrix form, called the tradeoff matrix, whose 𝑖th row

stands for the tradeoffs required for an improvement in the 𝑖th objective function.

𝑇 =

⎛⎜⎜⎜⎜⎜⎝
1 𝑑𝐽2

𝑑𝐽1
· · · 𝑑𝐽𝑚

𝑑𝐽1
𝑑𝐽1
𝑑𝐽2

1 · · · 𝑑𝐽𝑚
𝑑𝐽2

...
...

. . .
...

𝑑𝐽1
𝑑𝐽𝑚

𝑑𝐽2
𝑑𝐽𝑚

· · · 1

⎞⎟⎟⎟⎟⎟⎠ (33)

Thus, the pareto optimality can be guaranteed only if the corresponding off-diagonal element in the matrix is negative,

which means the tradeoff between two objective functions exist. On the contrary, if there is a positive element, then both of

the corresponding objective can be improved at the same time.

C. Fuzzy preference function

By taking into account the decision maker’s physical understanding of the desired design outcomes, a fuzzy preference is

introduced during the optimization process. In this way, it will enable the decision maker to control the optimization to some

extent. Take Class-1 as an example, the parameter 𝑓𝑖𝑘 as a normal fuzzy number 𝑓𝑖𝑘 is defined and therefore, its membership

function follows the form:

𝜇𝐽𝑖𝑘(𝐽𝑖) = exp(−[
𝐽𝑖 − 𝐽𝑖𝑘
𝛿𝑖𝑘

]2), 𝛿𝑖𝑘 > 0 (34)

where 𝛿𝑖𝑘 is the fuzzy parameter of the 𝑘th boundary of preference function and it can be defined based on [22], [23], [35].

Then the fuzzy preference function is defined as follows:

𝐽𝑝𝑖𝑘(𝐽𝑖𝑘) =

∫︀ 𝐽𝑖(𝑋)+3𝛿𝑖𝑘
𝐽𝑖(𝑋)−3𝛿𝑖𝑘

𝐽𝑖(𝐽𝑖)𝜇𝐽𝑖𝑘(𝐽𝑖)𝑑𝐽𝑖∫︀ 𝐽𝑖(𝑋)+3𝛿𝑖𝑘
𝐽𝑖(𝑋)−3𝛿𝑖𝑘

𝜇𝐽𝑖𝑘(𝐽𝑖)𝑑𝐽𝑖
(35)

where 𝐽𝑖(𝐽𝑖) is the preference function of 𝑖th objective function without considering fuzzy factor. The fuzzy preference function

is shown in Fig.3.
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Fig. 3: Fuzzy preference function for Class 1-S

D. Interactive fuzzy physical programming formulation

In practice, if a solution from FPP is trusted as an approximate pareto optimal solution, there is no other process to

improve all of the objective functions. Thus, if the designer wants to improve the quality of a specific objective function, it

can only be achieved at the expense of other objectives. To make the proposed algorithm more controllable, an interactive

process has been designed. It should be noted that, this decision making process has to be iterative and interactive since the

designers may change the current preference as they know more about the current problem. The flowchart of the interactive

process is illustrated in Fig.4. As can be seen from the flowchart, the approximate pareto solution is gained by solving a FPP

Fig. 4: Interactive decision-making procedure

model described in Eq(36). ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min𝑃 = log10{ 1
𝑛𝑠

∑︀𝑛𝑠

𝑖=1 𝐽𝑝𝑖𝑘(𝐽𝑖𝑘)},
𝐽𝑖(𝑋) ≤ 𝐽𝑖5, for class 1-S;

𝐽𝑖(𝑋) ≥ 𝐽𝑖5, for class 2-S;

𝐽𝑖5𝐿 ≤ 𝐽𝑖(𝑋) ≥ 𝐽𝑖5𝑅, for class 3-S;

𝐽𝑖5𝐿 ≤ 𝐽𝑖(𝑋) ≥ 𝐽𝑖5𝑅, for class 4-S;

𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢, .

(36)

where 𝑛𝑠 is the number of ranges associated with the problem, 𝑥𝑙 and 𝑥𝑢 are the lower and upper bound of the design variables,

respectively. For the decision-making part, the designer should determine if the approximate pareto points satisfy his/her current

preferences. Once it can satisfy, the iteration will stop. Otherwise, the sensitivity of the current solution should be analyzed as

it can help the decision maker gain a better understanding of relationships between each objective under current preferences.

After that, if the designer decides to make a compromise between some objectives, the new approximate pareto solutions

based on the updated preferences are generated such that it can satisfy the designer’s current preferences. This iterative and

interactive process is continued until the designer is satisfied with one of the potential solutions to be satisfactory.

The overall procedure of the designed IFPP method is detailed below:
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Step 1 Perform a fuzzification for different objectives based on Eq.(34) and Eq.(35).

Step 2 Build the preference function for each objective. The decision maker should specify the class type and region bounds

for each objective function based on his/her preference.

Step 3 Construct the fuzzy physical programming model according to Eq.(36). Calculate the value of aggregate objective

function without violating various constraints. Project the value in objective space and rank the alternatives in terms

of the satisfactory degree.

Step 4 Visualize the obtained optimal solution. Therefore, the decision maker is able to analyze the obtained solution directly,

and specify whether the current solution can meet the designer’s preference. If yes, stop the procedure. Otherwise,

decide which objective should be emphasized or which objective should be sacrificed.

Step 5 Specify the preference for the design objectives after investigating the obtained solution.

Step 6 Generate the preference for each objective by adjusting the value of region bounds based on the newly designed

preference.

Step 7 Modify the new preference function according to the results from Step.6.

Step 8 Go to Step.3 and use the fuzzy physical programming to solve the modified problem.

VI. SIMULATION RESULTS

A. Parameter setting

The initial and terminal conditions of the entire process and boundary constraints can be found in [35]. Only the first hop

is taken into account in the paper. The initial altitude is around 80km, where is the assumed edge of the atmospheric layer.

The drag and lift coefficients, the maximum values of heating, dynamic pressure and load factor are shown in Table I.

TABLE I: Coefficients and maximum value of path constraints

𝐶𝐿0 𝐶𝐿1 𝐶𝐷0 𝐶𝐷1

-0.2070 1.676 0.07854 -0.3529
𝐶𝐷2 𝑐0 𝑐1 𝑐2
2.040 1.067 -1.101 0.6988
𝑐3 𝑄𝑑𝑚𝑎𝑥 𝑃𝑑𝑚𝑎𝑥 𝑛𝐿𝑚𝑎𝑥

-0.1903 200𝐵𝑡𝑢/𝑓𝑡2/𝑠 13406.46𝑃𝑎 2.5

B. Pareto front generation

In order to better show the relationship between different mission objectives (shown in Eq.(10)-(13)), a stochastic-based

MOP solver, named Nondominated Sorted Genetic Algorithm-II (NSGA-II) [24], is applied to generate the approximated pareto

front. These results are plotted in Fig.5-7.

As can be seen from Fig.5 to 7, the simulation results follow the analysis in Section III.D. The pareto fronts are

projected onto three planes: Minimizing terminal time versus minimizing aerodynamic heating, maximizing terminal speed

versus maximizing terminal mass, and minimizing aerodynamic heating versus maximizing terminal speed.

It is worth noting that the solution shown in Figs.5-7 can hardly be accepted as the accurate pareto front. This is

because these solutions were carried out using a stochastic-based MOP solver. When stochastic processes are embedded in

the optimization algorithm, the optimality will be affected to some extent. Moreover, since for a stochastic-based MOP solver,

the solution is obtained under limited computing power, the calculated solution may deviate from the true solution. Therefore,

results shown in Figs.5-7 can only be used to reflect the contradicting relationships.

Since the NSGA-II algorithm computes the entire pareto front and uses evolutionary strategies, it is usually time-consuming

to calculate a high quality solution. Alternatively, the proposed IFPP method can achieve a good compromise by transforming

different objectives.
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Fig. 5: Pareto front obtained via NSGA-II

C. IFPP Results and discussion

The initial aspiration levels for FPP are obtained by solving each corresponding single objective problem. From the

single-objective solutions (as shown in Fig.8), the FPP model can be constructed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min log10{ 1
5

∑︀5
𝑖=1 𝐽𝑝𝑖𝑘(𝐽𝑖𝑘)},

𝐽1(𝑥) ≤ 2086.42

𝐽2(𝑥) ≤ 217.63

𝐽3(𝑥) ≥ 4016.27

𝐽4(𝑥) ≥ 51018.23

𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢, .

𝑄̇𝑑 = 𝐾𝑄𝜌
0.5𝑉 3.07(𝑐0 + 𝑐1𝛼+ 𝑐2𝛼

2 + 𝑐3𝛼
3) < 200𝐵𝑇𝑈

𝑃𝑑 =
1
2𝜌𝑉

2 < 13406.4583𝑃𝑎

𝑛𝐿 =
√
𝐿2+𝐷2

𝑚𝑔 < 2.5

((6), (7), (8) 𝑎𝑛𝑑 (9))

(37)

To verify the effectiveness of FPP, comparative simulations have been conducted applying weighted-sum method, Goal

Programming (GP) [37] and Fuzzy Goal Programming (FGP) techniques [38]. The control parameters of the weighted-sum

method are shown in Table II while the results are demonstrated in Fig.9 and Fig.10 in terms of the designer’s preferences
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Fig. 6: Pareto front obtained via NSGA-II

in the preference space. The values of the vertical axis present the boundaries of preference function from highly desirable

range to unacceptable range, which are quantified in turn as 1,2,3,4,5 by the designer. It is clear from the results that the

proposed FPP has successfully derived the solutions into a tolerable or acceptable region whereas the weighted-sum, GP and

FGP algorithms have failed to move all the objective functions into a tolerable region of the pareto set. This is because for

goal-programming class multi-objective methods, if the designers want to specify his/her preferences in different objectives,

it can only be achieved by setting additional inequality constraints. This is usually undesirable in the optimization procedure.

Moreover, since the pareto tradeoff exist between different objective functions implicitly, the sensitivity analysis can be adopted

at the current approximate pareto point. Based on the discussion and Eq.(33) shown in the previous section, the tradeoff table

is calculated and projected in the objective space as:

𝑇 =

⎛⎜⎜⎜⎜⎝
1.000 0.474 −0.762 −0.889

0.642 1.000 −0.795 −1.118

−0.576 −0.487 1.000 −0.109

−0.201 −0.532 −0.649 1.000

⎞⎟⎟⎟⎟⎠ (38)

As can be seen from the matrix, all the non-diagonal elements in the third and fourth rows are negative. At least one element in

the first and second rows is negative. These results indicate that the approximated pareto solution can be trusted. Specifically,

an improvement in any objective function must associate a decrease in terms of the quality of other objective functions. This
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Fig. 7: Pareto front obtained via NSGA-II

is also proved numerically in [35]. Note that this criterion is only necessary but not sufficient.

TABLE II: Control parameters of weight-sum and FPP methods

Weights Objective degrees(𝐽1, 𝐽2, 𝐽3, 𝐽4)
case 1 (0.25, 0.25, 0.25, 0.25) (3.25, 3.41, 2.42, 2.21)
case 2 (0.40, 0.20, 0.20, 0.20) (2.17, 2.25, 4.08, 3.12)
case 3 (0.20, 0.40, 0.20, 0.20) (2.82, 2.78, 3.78, 2.35)
case 4 (0.20, 0.20, 0.40, 0.20) (2.89, 3.25, 2.21, 3.15)

After generating the initial solutions using FPP, the pareto data are presented to the designers in preference function space

as shown in Fig.9-10. Then the interactive decision making strategy will be applied. This is the key procedure in IFPP since

the decision maker may specify his/her preferences on a specific objective function based on his/her basic satisfaction to the

initial candidate solutions obtained by the normative programming method. Once the decision maker specifies new preference

objectives, the main process is to effectively calculate new pareto solutions, which can satisfy designer’s current preference

based on FPP. For the SMV skip entry mission, two scenarios of decision making are taken into account in this paper:

1. Scenario 1: The SMV needs to get the predetermined position quicker for strategic reasons.

2. Scenario 2: The SMV needs to keep more fuel so that it can do further exploration work.

It is worth noting that both the two case studies are solved by using the proposed IFPP method. These two scenarios

represent two different decision maker’s preferences. In Scenario 1, the goal is to improve the quality of 𝐽4 and it is not desired
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Fig. 8: Single-objective solutions

that other objective functions are sacrificed out of the tolerance regions, which means 𝐽1, 𝐽2 and 𝐽3 can only change up to

𝐽13, 𝐽23 and 𝐽33. Four alternative pareto solutions, which can satisfy the designer’s current interest are presented in Fig.11

and the corresponding time histories in terms of the states and controls are shown in Figs.12-16. According to Figs.12-16,

an attempt is made to analyze characteristic arcs of the trajectories. The trajectory is split into two subintervals: descending

and climbing. In multi-objective SMV trajectory problem, aerodynamic heating tends to reach the peak value at around 200s.

In general, aerodynamic heating is direct functions of angle of attack 𝛼, dynamic pressure 𝑃𝑑 and lateral acceleration. It can

be seen from Fig.13 that both dynamic pressure and lateral acceleration decrease significantly after 200s. Therefore, although

the angle of attack is still increasing after 200s, aerodynamic heating will not surpass its peak value (200𝐵𝑇𝑈 ) and starts to

decrease. On the other hand, increasing the angle of attack will have positive influences in terms of slowing down the vehicle

so that the dynamic pressure and load factor path constraints will not become active. Therefore, the structural integrity of the

SMV can be protected.

After reaching the target point, the engine starts working to ensure the SMV can have enough kinetic energy to go back

to the orbit. With the decrease of air density and mass, the aerodynamic heating, dynamic pressure and load factor will also
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Fig. 9: Comparison between weight-sum and FPP

Fig. 10: Comparison between GP, FGP and FPP

decrease during the climbing phase. It should be noted that, there is a sharp decrease in the thrust curve before the SMV

reaches the final boundary condition. As maximizing the final mass value is one of the objective, there must be some conflicts

between maximizing final mass and other objectives, as illustrated in Eq.(38). Thus, the vehicle cannot use the maximum

acceleration during the whole climbing phase. Moreover, the demand controls are demonstrated in Figs.14-16. By introducing

the three autopilot equations of the control variables, the actual controls become smoother. Since the actual controls appear in

the right hand side of the motion equations, the demand controls will behave in a bang-bang style as shown in Figs.14-16.

In Scenario 2, the aim of this attempt is to improve the quality of 𝐽1 at the expanse of the other three objective functions.

Similarly, four alternative solutions are generated using IFPP and projected onto the preference space illustrated in Fig.17.

Compared to the initial design, it is obvious that the satisfactory degree of 𝐽1 is improved significantly as what designer

desired. However, the satisfactory degree of 𝐽3 and 𝐽4 becomes worse. To achieve a smaller value of final time, the engine

should spend more time on keeping the SMV at maximum acceleration and because of this, the satisfactory degree of 𝐽4 will

reach its edge of tolerable region. After the decision-making process, the designer can ether accept one of the four alternative

solutions as a satisfactory solution based on Fig.4 or modify the current settings and rerun the iterative process.

As for the performance of the adaptive multiple shooting method, the density function based on curvature information is

used for the mesh refinement part for the SMV trajectory optimization problem. The density function is shown in Eq.(19). By
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Fig. 11: Alternative solutions for Scenario 1 generated by IFPP

Fig. 12: Trajectories for altitude, speed, flight path angle and heading angle in five cases

Fig. 13: Trajectories for mass and path constraints in five cases
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Fig. 14: Trajectories for actual AOA and demand AOA in five cases

Fig. 15: Trajectories for actual bank angle and demand bank angle in five cases

Fig. 16: Trajectories for actual thrust and demand thrust in five cases
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Fig. 17: Alternative solutions for Scenario 2 generated by IFPP

applying this strategy, the time history with respect to the state and control variables can be much smoother. This can be seen

from Figs.12-16, where the distribution of grid points tends to be denser at those areas having a high value of curvature. On

the other hand, the distribution of the temporal points tends to be sparser at those flat areas. Therefore, compared with other

direct transcription methods, the proposed strategy is effective in terms of capturing discontinuity in the control derivatives

after each iteration. Another main advantage of using the proposed mesh refinement strategy is that it can control the size

of resulting nonlinear programming problem by fixing the number of subintervals and grid points. Since the current onboard

computational devices may not be able to satisfy the requirement of the large computational power and time needed for solving

large scale NLP problem, it is potentially useful for the adaptive multiple shooting method in terms of real-time applications.

As a result, all the figures and data provided earlier confirm the feasibility of the proposed adaptive multiple shooting

method and IFPP strategy. By applying the combined algorithm, the SMV can reach the target position without violating three

path constraints and boundary conditions. Moreover, the decision maker can specify his/her preferences in different objective

functions during the optimization process and get new solutions, which can satisfy his/her new demands.

VII. CONCLUSION

In this work, in order to design a trajectory which can achieve multiple goals for the SMV, the single objective optimization

formulation was extended to multi-objective optimization, including minimum final time, aerodynamic heating, maximum final

velocity and mass. Considering the fuzzy characteristic of evaluating objectives, an interactive fuzzy physical programming

approach is constructed to generate the compromised solution based on the decision maker’s preference. For a decision maker,

there is no need to specify the weight information. Alternatively, this can be achieved by specifying the boundary aspirations of

each preference region. Simulation results indicated the highly correlated and conflicting relationships between the objectives

investigated in this paper. A compromised solution, where all the objective values can in the acceptable region, is found via

the proposed method. Moreover, by applying the fuzzy physical programming based interactive strategy, two decision-making

scenarios can be achieved successfully. This further confirms the effectiveness of the proposed multi-objective method for

solving the SMV trajectory planning problem.
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