Path Planning and Collision Avoidance for a Multi-Arm Space Maneuverable Robot | IEEE Journals & Magazine | IEEE Xplore

Path Planning and Collision Avoidance for a Multi-Arm Space Maneuverable Robot


Abstract:

In this paper, a path planning algorithm for a multi-arm space robot is proposed. The robot is capable of maneuvering on the exterior of a large space station. Based on t...Show More

Abstract:

In this paper, a path planning algorithm for a multi-arm space robot is proposed. The robot is capable of maneuvering on the exterior of a large space station. Based on the maneuver strategy, continuous and smooth trajectories of the manipulator end effectors are first determined via the polynomial interpolation method. Then, the kinematics describing the relation between the end effector and the joint angles as well as the platform are formulated. A Moore–Penrose pseudoinverse solution of the joint trajectories is calculated to describe the motion of the manipulators, particularly, considering the singularity avoidance. In addition, a collision detection algorithm is developed to estimate the security during operation. Constraints are formulated by considering collision avoidance, based on which a collision-free trajectory is optimized through the multiplier-penalty method. The numerical results of a triple-arm space robotic system are given to demonstrate the effectiveness of the proposed algorithms.
Published in: IEEE Transactions on Aerospace and Electronic Systems ( Volume: 54, Issue: 1, February 2018)
Page(s): 217 - 232
Date of Publication: 31 August 2017

ISSN Information:


References

References is not available for this document.