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This paper suggests a new approach in designing homing guidance laws to enable direct 

shaping of the pattern of the zero-effort-miss (ZEM) as desired. The proposed approach uses 

the concept of weighted ZEM and its specific desired error dynamics: the former is to 

provide an additional degree of freedom in shaping actual ZEM and the latter is to 

guarantee a finite-time convergence. Utilization of these two concepts allows simple 

determination of the guidance law that can achieve the desired pattern of ZEM. The 

resultant guidance law is shown a type of proportional navigation guidance (PNG) law with 

the specific form of time-varying gain not revealed in previous studies. It provides unique 

information on how the time-varying gain should be shaped to obtain the desired pattern of 

ZEM. Accordingly, the resultant guidance laws can cope with various operational objectives 

in a more direct way compared with the previously existing approaches. This paper also 

performs theoretical analysis to investigate the properties of designed guidance laws 

including the closed-loop solutions of ZEM and acceleration command. Also, we determine 

the feasible set of desired ZEM patterns that can be achieved in the proposed framework. 

Two illustrative examples are considered to show how to design guidance laws using the 

proposed approach. Moreover, the characteristics of the guidance laws designed are 

validated and demonstrated via numerical simulations. 
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I. Introduction 

Proportional navigation guidance (PNG) law [1-2] has been widely applied to many missile systems for the 

terminal homing guidance law and proven its effectiveness in real applications. The most attractive aspect of PNG is 

practicality and simplicity for implementation to real missile systems. Note that the guidance command of PNG is 

expressed only by the multiplications of the navigation constant and two variables, i.e. the line-of-sight (LOS) rate 

and the closing velocity. Those variables can be readily measured or estimated from an on-board seeker. Extensive 

studies on PNG have revealed that specific choice of the navigation constant, 3N = , in PNG is the energy optimal 

solution [1-2]. Recently, it has been shown that PNG with the other navigation constants 3N ≠  are also optimal 

solutions of different energy cost functions [3]. 

As battlefields have been ever evolving, missile systems have been continuously demanded to accommodate the 

changes in the battlefields. Operational goals of guidance have been naturally adapted according to these demands. 

In general, the operational goals are expressed as satisfaction of additional terminal constraints or desired patterns of 

important guidance parameters. For instance, anti-ship missile systems are additionally demanded to meet the 

terminal impact time constraint [4-5]. Satisfaction of a desired terminal impact angle is an additional important 

requirement for the anti-tank missile systems to increase the lethality [6-8]. If the interception condition is only 

consideration for the missile system, additional guidance goals can be typically represented as achieving desired 

patterns of zero-effort-miss (ZEM) or guidance commands: for the surface-to-air missile systems controlled by the 

aerodynamic force only, the decreasing pattern of the guidance command is desirable according to the change of the 

dynamic pressure. For the anti-ballistic missile systems, a rapid convergence of ZEM is important to effectively 

intercept a target within an extremely short engagement time. 

It is found to be difficult to achieve these various operational goals of guidance using the conventional PNG (i.e., 

with a constant gain). Due to its essential property, the patterns of ZEM or guidance command in the conventional 

PNG are standardized depending on the initial engagement condition. Although adjusting navigation constant can 

allow certain changes in the patterns, it is well known that their variations in the conventional PNG are restricted. 
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In order to mitigate this issue, there have been extensive research activities in which new guidance laws were 

suggested. Most of those studies have been based on the optimal control framework. The key focus of this approach 

is how to formulate different cost functions and constraints in a way best accomplishing various guidance 

operational goals. Examples of such formulation include a time-to-go weighted cost function [9], an exponential 

weighted cost function [10-12], a penalty term in cost functions [13], and a cost function weighted by arbitrary 

functions [14]. Additionally, those guidance laws are realized as type of PNG with various forms of time-varying 

guidance gains according to cost functions. 

Despite the reported performance superiority over the conventional PNG, this approach can significantly suffer 

from inherent limitation: the pattern of guidance command can be shaped only by adjusting weighting parameters in 

the cost function and constraints. This implies that shaping the guidance command using the optimal control 

framework is indirect and consequently it is difficult to precisely shape the guidance command as required. In other 

words, it cannot provide a direct relationship between the time-varying gain in PNG and the desired guidance 

command.  

To this end, this paper proposes a new paradigm in designing guidance laws. In the proposed approach, the 

desired pattern of ZEM is first designed in consideration of given operational goals. Note that the behaviors and 

constraints of important parameters for the guidance operation are generally expressed by the terms of ZEM. 

Therefore, mapping from the operational goals to the ZEM pattern is more straightforward and insightful, compared 

with that to weighting parameters in the cost. The proposed approach then determines the guidance command that 

can accomplish the desired ZEM pattern. To enable analytical determination of the guidance command, this paper 

suggests the concept of weighted ZEM, which is the actual ZEM weighted by a class of functions. This weighted 

ZEM provides an additional degree of freedom in shaping the pattern of the actual ZEM. Then, the proposed 

approach chooses a specific desired error dynamics with respect to the weighted ZEM to guarantee a finite time 

convergence of its value. Finally, applying the feedback linearization methodology to the predetermined error 

dynamics completes analytical determination of the guidance command. The obtained guidance law is also 

represented as a type of PNG as similar in the command shaping guidance laws [9-14], however the time-varying 

gain uncovered in this paper is given by the specific form which is not revealed in previous studies. It reveals the 

direct relationship between the time-varying guidance gain and the desired pattern of ZEM, that is, important 

information about how the time-varying gain should change to achieve the desired pattern of ZEM. 
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The properties of the proposed approach are investigated through theoretical analysis. Since the boundedness of 

the commanded acceleration is of paramount in practice, the analysis finds the conditions of the ZEM weighting 

functions that guarantee the bounded guidance command. Also, based on this result, we examine the feasible set of 

desired ZEM patterns that are available. The closed-form solutions of ZEM and guidance command for a given 

weighting function are also obtained. These solutions enable identification of the weighting function of ZEM, which 

fulfils the desired pattern of ZEM designed. The solution of the ZEM weighting functions bridges the desired pattern 

of ZEM to the guidance command, i.e. we can simply determine the guidance command, which achieves the desired 

pattern of ZEM, using the weighting functions. As a part of validation, this paper introduces two illustrative 

application examples and finds their corresponding guidance laws following the proposed design procedure. 

Numerical simulations are conducted to demonstrate the characteristics of the new approach developed in this paper. 

The potential significances of the proposed approach are given as follows. First and clear, it offers the new 

paradigm of designing guidance laws in which the pattern of ZEM can be directly shaped. Second, it allows 

guidance designers to develop new PN-type guidance laws that satisfy the guidance operational goals specific to 

their systems. This is because there exist an extensive number of candidate desired ZEM pattern. Third, as the 

resultant guidance law is a type of PNG, it preserves the most powerful advantages of PNG such as practicability 

and simplicity. This also implies that the time-varying guidance gain in PNG can be interpreted in terms of ZEM. 

Therefore, the proposed approach provides an additional and critical insight to understand the characteristics of PNG 

with a time-varying guidance gain. 

The rest of this paper consists of six sections. In section II, the homing geometry and the concept of weighted 

ZEM are addressed. Section III provides the detailed derivation of the ZEM shaping guidance laws based on the 

proposed approach and their characteristics are analyzed in Section IV. Numerical simulation results are given in 

Section V. Finally, the conclusion of this paper is summarized in Section VI. 

II. Problem Formulation 

A. Engagement Kinematics 

Fig. 1 shows the 2D homing engagement geometry considered in this paper. As shown in the geometry, the 

inertial reference frame is denoted as ( ),I IX Y . For the purpose of deriving the linearized kinematics, a new frame 

called the reference frame ( ),R Rx y  is also defined. This frame is rotated from the inertial frame by 0σ , which is the 
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initial line-of-sight (LOS) angle. Variables with subscripts of M and T represent those of the missile and target, 

respectively. The notations of σ  and Mγ  represent the LOS angle and flight path angle, respectively. R  denotes 

the relative distance between the target and the missile. y  is the relative distance between the target and the missile 

along RY -direction. Ma  and Ta  are the missile and target accelerations normal to the velocity vectors, respectively. 

The variables of Ma σ  and Ta σ  denotes the missile and target accelerations normal to the LOS direction, respectively. 

 
Fig. 1 The homing engagement geometry and parameter definitions. 

In the reference frame, the engagement kinematics can be expressed as follows: 

 ( ) ( )0 0cos cosT M

y v
v a ass ssss  
=

= − − −




 (1) 

where v  is the relative velocity between the target and the missile perpendicular to RX -direction. Under the small 

angle assumption of 0σ σ−  , we have the linearized engagement kinematics as follows: 

 
T M

y v
v a aσ σ

=
= −




 (2) 

In the presented engagement kinematics, ZEM can be expressed from its definition (the achieved miss distance at 

the terminal time when the missile does not control anymore), as follows 

 21
2go T goz y vt a tσ= + +  (3) 

where go ft t t= −  represents the remaining time of interception, which can be approximated as follows: 
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 /go ct R V=  (4) 

Here, cV  denotes the closing velocity. From Eq. (3) with Eq. (2), the time-derivative of ZEM can be determined as 

 M goz a tσ= −  (5) 

 M go Mz a t aσ σ= − +  (6) 

Note that as shown in Eq. (5) the rate of ZEM is directly proportional to the missile acceleration and the time-to-go. 

Therefore, ZEM can be controlled by the missile acceleration. In order to successfully intercept a target, the 

following condition should be achieved. 

 ( ) 0fz t =  (7) 

 In the next section, the proposed guidance law will be derived based on this kinematic equation. 

B. Main Concept 

The purpose of this paper is to devise a homing guidance law that can directly shape the decreasing pattern of 

ZEM as desired. The main idea to accomplish this goal is to introduce the concept of weighted ZEM as follows: 

 ( )wz w t z=  (8) 

where ( )w t  is an arbitrary weighting function and it has a positive value as 

 ( ) 00 for , fw t t t t > ∈    (9) 

According to Proposition 1, for a certain class of weighting functions, the intercept condition in the concept of 

weighted ZEM is equivalently given by 

 ( ) 0w fz t =  (10) 

Proposition 1.  If the inverse of the weighting function is bounded during the flight as: 

 ( )1
0for , fw t t t t−  < ∞ ∈    (11) 

the condition of Eq. (10) holds the interception condition given by Eq. (7). 

Proof. From Eq. (8), it is readily obtained as ( ) 1
wz w t z−= . Here, it is trivial that z  converges to zero as wz  

approaches zero when ( )1w t−  is bounded as in Eq. (11). This completes the proof.              ■ 
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The purpose of introducing this weighting function is to provide an additional degree of freedom in shaping the 

pattern of ZEM. Namely, if we make wz  decreases with some pattern as ( )wz g t� , then the pattern of actual ZEM 

changes as 

    ( ) ( ) ( )1 1
wz w t z w t g t− −= =  (12) 

Therefore, through an appropriate selection of weighting functions, we can achieve a desired pattern of ZEM in this 

framework. Suppose that a desired pattern of ZEM to accomplish specific guidance objectives is given by dz , then a 

desired weighting function is readily determined from Eq. (12) as 

    ( ) ( ) 1
dw t g t z−=  (13) 

Then, in this framework, a guidance command is determined to make wz  decreases with a specific pattern as ( )g t  

and becomes zero in a finite time. 

III. Proposed Guidance Law 

A. Derivation of Proposed Guidance Law 

In this section, the proposed guidance law that satisfies aforementioned conditions is derived using the feedback 

linearization technique [15]. Taking the time-derivative of the weighted ZEM yields 

 ( ) ( )wz w t z w t z= +   (14) 

Substituting Eq. (5) into Eq. (14) gives the following result. 

 ( ) ( )w go Mz w t z w t t a σ= −  (15) 

As shown in Eq. (15), the acceleration command, which is assumed to be the control input in this system equation, 

appears in the first time derivative of the weighted ZEM. Note that there is no internal dynamics because the relative 

degree is equal to the degree of the system [15]. Eq. (15) can be rewritten in the general form of nonlinear system as 

 x f bu= +  (16) 

where  

 ,w Mx z u a σ� �  (17) 

 ( ) ( ), gof w t z b w t t−� �  (18) 
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Since this equation gives a direct relationship between the weighted ZEM and the control input, we can directly 

apply the feedback linearization technique to this system equation. 

 For the nonlinear system represented as Eq. (16), previous studies on the guidance law design using nonlinear 

methodologies [16-18] widely used the following desired error dynamics for x  

 0x kx+ =  (19) 

where k  is a positive constant. This error dynamics enforces that x  exponentially converges to zero: 

     0
kxx x e−=  (20) 

However, this does not guarantee a finite time convergence. Unlike in the control law design, guarantee on the finite 

time convergence is an important requirement in the guidance law design. Accordingly, some modified versions of 

desired error dynamics to guarantee finite time convergence have also been suggested in [19-21]. However, not only 

those are generally given by complicated forms, but they also include many design parameters which could make 

proper tuning of guidance laws intricate. 

 As a remedy, this study suggests desired error dynamics for x  as 

 0
go

kx x
t

+ =  (21) 

where 0k > . It can be regarded as a parameter that determines the convergence speed of weighted ZEM. As shown 

in Lemma 1, note that the proposed error dynamics is to guarantee a finite time convergence. Additionally, the 

decreasing pattern of error is given by the closed-form function as shown in Eq. (24).   

 Lemma 1. Suppose 0k > . Then, the system presented in Eq. (21) is stable and x  converges to zero as 0got → . 

Proof. The stability and finite time convergence of x  will be proven by directly obtaining the closed-loop 

solution of x  whose dynamics is given by Eq. (21). As this differential equation is one of Cauchy-Euler equation, it 

can be converted to an ordinary differential equation  by replacing  got et=  as 

 0dx kx
dτ

− =  (22) 

If we assume a solution of Eq. (22) as x eατ= , then we have the following characteristics equation: 

 0kα − =  (23) 
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Therefore, by using the result of Eq. (23) and the relation got et= , the closed-loop solution of Eq. (21) can be 

determined as 

 
( )0 k

gok
f

x t
x t

t
 

=   
 

 (24) 

where ( )0x t  denotes the initial value and ft  is the final time. From Eq. (24), for 0k > , it is clear that x  converges 

to zero as got  approaches to zero, which completes the proof.                      ■ 

  Then, a straightforward application of Eq. (16) to Eq. (21) gives 

  1

go

ku x f
b t
 

= − −  
 

 (25) 

Using the notational definitions in Eqs. (17) and (18), the proposed guidance command is obtained as 

 ( ) 2M
go

za N t
tσ =  (26) 

where 

 ( ) ( )
( )

gow t t
N t k

w t
+


�  (27) 

In Eq. (27), ( )N t  is the specific form of time-varying guidance gain and given by the function of time-to-go, 

weighting function, time-derivative of weighting function, and value k . 

  In the proposed framework, the weighting function and the value k  can be considered as the design parameters. 

As mentioned above, the value k  is chosen to determine the convergence speed of weighted ZEM. For a chosen k , 

the weighting function is then selected to achieve the desired ZEM pattern. The solution of weighted ZEM bridges 

the desired pattern of ZEM to the weighting functions. Under the proposed guidance law, the decreasing pattern of 

weighted ZEM ( )g t  is determined from Eqs. (8) and (24), as follows.  

 ( ) ( ) ( )0 0 k
w gok

f

w t z t
z g t t

t
 

= =   
 

 (28) 

where ( )0w t  and ( )0z t  are the initial values of weighting function and ZEM, respectively. From Eq. (13), the 

desired weighting function is determined as 
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 ( ) ( ) ( )0 0 1k
go dk

f

w t z t
w t t z

t
−

 
=   
 

 (29) 

This is given by the polynomial function of time-to-go with k  and inverse of desired ZEM pattern dz . Accordingly, 

the desired time-varying gain is determined by substituting Eq. (29) into Eq. (27). It is given by the function of time-

to-go and desired pattern of ZEM, and value k , respectively.   

Remark 1. Although the proposed guidance law is formulated based on the 2D homing engagement geometry, 

this approach can be easily extended to the 3D scenario by using the well-known separation design concept. By 

introducing the LOS frame (it is rotated from the inertial reference frame by the LOS angles), we can decouple the 

homing engagement geometry into two identical and perpendicular planes. Then, we can apply the proposed 

approach to each engagement plane. 

B. Implementation Issues 

 Let us now discuss an alternative representation of the proposed guidance law and implementation issues. From 

Fig. 1, the LOS angle can be expressed as follows: 

 0
y
R

σ σ= +  (30) 

Then, the LOS rate can be obtained by taking time-derivative of Eq. (30) as 

 2

yR Ry
R

σ −
=


  (31) 

Substituting Eq. (4) into Eq. (31) yields 

 2
go

c go

y vt
V t

σ
+

=  (32) 

Putting Eq. (32) into Eq. (3) gives 

 2 21
2c go T goz V t a tσσ= +  (33) 

Finally, combining Eqs. (26) and (33) yields 

 ( ) ( )1
2M c Ta N t V N t a

σσ σ= +  (34) 

As shown in Eq. (34), the alternative form of proposed guidance law becomes a type of augmented proportional 

navigation guidance (APNG) with the specific form of time-varying gain Eq. (27) with Eq. (29). Therefore, it holds 
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the most powerful benefits of APNG such as practicability and simplicity: the LOS rate, the closing velocity and the 

target acceleration are only required for implementing it. Those parameters can be estimated by a well-tuned homing 

filter using seeker measurement and radar measurement. If the estimated target acceleration is not accurate enough, 

as commonly applied in PNG, the proposed guidance law can also be implemented without the target acceleration 

term, i.e. 

 ( )M ca N t Vσ σ=   (35) 

In addition, since Ma σ  represents the missile acceleration normal to the LOS vector, for implementation, it should 

be converted as follows: 

 ( )/ cosM M Ma a s γ s= −  (36) 

where Ma  is the missile acceleration perpendicular to the missile velocity vector. In Eq. (33), the flight path angle 

and the LOS angle can be measured or estimated from a built-in inertial navigation system (INS) and seeker. 

    Remark 2. In the proposed guidance law, the time-to-go information is also required to compute the time-varying 

guidance gain Eq. (27) with Eq.(29). However, it is used only for shaping the pattern of ZEM, so the homing 

performance is insensitive to small errors. Therefore, this study uses a simple time-to-go calculation shown in Eq. 

(4) from a practical point of view. 

Remark 3. Depending on the accuracy of estimated target acceleration in the proposed method, the deviation of 

ZEM pattern between the desired one and achieved one is determined as 

 ( ) 21 ˆ
2d T T goz z z a a t

σ σ
∆ = − = −  (37) 

where ˆTa
σ

 is the estimated target acceleration and used to implement the proposed guidance law. Therefore, as the 

estimation error of target acceleration is made smaller, this deviation decreases. Additionally, if the proposed 

guidance law is implemented without the target acceleration term shown in Eq. (35), then the deviation 

( ) 21/ 2 T goz a t
σ

∆ =  is expected according to the target acceleration Ta
σ

. 

IV. Discussion of ZEM Shaping Guidance Laws 

A. Characteristics of Proposed Guidance Law 



12 
 

As shown in Eq. (34), the proposed guidance law can be characterized as a type of PNG with the specific form of 

time-varying guidance gain which is given by Eq. (27) with Eq. (29). During the course of years, some studies on 

PNG with a time-varying guidance gain have been reported [10-13]. Also, it has been shown that the generalized 

command shaping guidance law is realized as PNG with time-varying guidance gains [14]. Although the proposed 

guidance law is also represented as a type of PNG with a time-varying gain, a new form of time-varying gain not 

revealed in other studies is uncovered in this paper. In other words, the proposed results as shown in Eq. (27) with 

Eq. (29) provide information on how the time-varying gain should be shaped to obtain the desired pattern of ZEM, 

whereas other studies not easily allow this. This is one of key contributions of this study. 

 Next, let us discuss the feasible set of weighting functions that can be used for ZEM shaping. The weighting 

function should be designed in consideration of not only guidance operational objectives, but also physical and 

operational constraints of the missile system. The essential conditions should be met are the interception condition 

and the bounded navigation gain condition: the goal of the missile guidance is to intercept the target; the time-

varying guidance gain should be bounded to avoid the introduction of an abrupt guidance command during the flight 

in practice. Following Proposition gives the condition on the weighting function to guarantee the bounded 

navigation gain. Then, Lemma 2 provides the set of weighting functions satisfying the two aforementioned essential 

conditions. 

Proposition 2.  Suppose ( )w t  satisfies the following condition 

 
( )
( ) 0for ,go

f

w t t
k t t t

w t
 + < ∞ =  


 (38) 

Then, the time-varying navigation gain guarantees the boundedness of navigation gain in the proposed guidance 

law. 

Proof.  If ( )w t  satisfies Eq. (38), it is trivial that the time-varying gain is bounded because the time-varying 

navigation gain is expressed as Eq. (27). This completes the proof.                                 ■ 

 Lemma 2.  Suppose ( )w t is an element of the following set: 

 ( ) ( ) ( )
( )

1
( ) 0| and  for ,go

w t f

w t t
S w t w t k t t t

w t
−

   < ∞ + < ∞ ∈  
  


�  (39) 
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Then, the proposed guidance law whose navigation gain is given by Eq. (27) guarantees the interception of the target 

and bounded navigation gain. 

 Proof.  From Propositions 1, it is trivial that the proposed guidance law with the weighting function holding the 

condition Eq. (39) guarantees the interception of the target. Moreover, from Propositions 2, it is obvious that the 

weighting function satisfying the condition in Eq. (39) ensures the bounded navigation gain. This completes the 

proof.                                                                       ■ 

Based on this result, we can finally determine the feasible set of desired ZEM patterns that can be achieved in the 

proposed approach. The relationship between the desired weighting function and the desired ZEM pattern is given 

by Eq. (29). Therefore, from Eqs. (29) and (39), the feasible set of desired ZEM patterns dz  that satisfy the 

interception condition is determined as      

 0| and  for ,
d

d gok
z d go d f

d

z t
S z t z t t t

z
−   < ∞ < ∞ ∈    


�  (40) 

Accordingly, any desired ZEM patterns that satisfy Eq. (40) can be achieved in the proposed approach. 

 When a weighting function satisfies the condition presented in Eq. (39), Eq. (27) indicates that the time-varying 

guidance gain converges to some constant value fN  as the missile approaches a target, i.e. 

 ( ) ( )
( )0 0

lim lim
go go

go
ft t

w t t
N t k N

w t→ →
= + =


 (41) 

with  

 
( ) ( )
( ) ( )

if /
if /

go
f

go

w t t w t mk m
N

w t t w t mk
=+

=  ≠




 (42) 

where m  is a constant. This means that the proposed guidance law will behave as PNG with a navigation constant  

k m+  or k  and provide similar terminal performance compared to PNG as the missile approaches to the target. 

 Let us now discuss about the closed-form solutions of ZEM and guidance command under the proposed method. 

From Eqs. (12) and (28), it is trivial that the closed-form solution of ZEM is given by 

 
( ) ( )

( )
0 0

k
go

k
f

tw t z t
z

w tt
 

=   
 

 (43) 

This provides the relationship between the weighting function and the actual ZEM. By substituting Eq. (29) into Eq. 

(43), we can readily observe that the actual ZEM achieves the desired ZEM as dz z=  in the proposed approach. 
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Next, substituting Eq. (43) into Eq. (26) provides the closed-form solution of guidance command under the proposed 

guidance law. 

 
( ) ( ) ( )

( ) ( )

2
0 0

k
go go

M k
f

w t t tw t z t
a k

w t w ttσ

−   
= +        


 (44) 

Note that the closed-form solution is given by multiplication of polynomial function of time-to-go with order of 

2k −  and inverse of ( )w t . Eq. (44) enables the prediction of guidance command profile and consequently 

identification of useful information, e.g. where the maximum command occurs during the flight. 

 Now, let us investigate conditions on k  to guarantee certain properties of proposed approach. In order to achieve 

the intercept condition, ZEM obtained in Eq. (43) should be zero at the terminal time. Proposition 3 provides the 

condition k  that makes ZEM to be zero at the terminal time. In practice, it is of paramount to guarantee the bounded 

guidance command during the flight. Under this background, Proposition 4 finds the condition for k  that guarantees 

the bounded guidance command. Also as shown in Proposition 4, for 2k > , the guidance command converges to 

zero as the missile approaches the target. This condition is important since it could provide capability to cope with 

unwanted situations and/or uncertainties near the interception. 

Proposition 3. For 0k >  and ( )w t  satisfying the condition in Eq. (39), ZEM always converges to zero as 

0got → . 

Proof. As shown in Eq. (43), ZEM is given by the function of k
got  multiplied by ( )1w t− . If ( )w t  satisfies the 

condition in Eq. (39), then it is clear that ( )1w t−  is bounded because of its definition. Then, Eq. (43) implies that the 

convergence of ZEM is determined by the pattern of k
got . From Eq. (43), it is obvious that for 0k > , the term of k

got  

approaches zero as 0got → . Therefore, 0z →  as 0got → , which completes the proof.                        ■ 

Proposition 4. Suppose that ( )w t  holds the condition in Eq. (39) and the design parameter k  is selected as 

 2k >=  (45) 

Then, the acceleration command is bounded. 

Proof. From  Eq. (44), it is observed that the acceleration command is given by the function of 2k
got −  multiplied by 

( )1w t−  and the term of ( ) ( )1
gow t t w t k− + . If ( )w t  is naturally chosen to satisfy Eq. (39), then ( )1w t−  and 
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( ) ( )1
gow t t w t k− +  are bounded according to the definition of ( )w t . Therefore, the bound of acceleration command 

is governed by the term, 2k
got − . Since for 2k >  the term of 2k

got −  gradually approaches zero as 0got → , the 

acceleration command converges to zero as 0got → , which means that the acceleration command is bounded for 

2k > . 

 
( ) ( ) ( )

( ) ( )

2
0 0

0 0
lim lim 0
go go

k
go go

M kt t
f

w t t tw t z t
a k

w t w ttσ

−

→ →

   
= + =        


 (46) 

For 2k = , the magnitude of acceleration command is given by  

 
( ) ( ) ( )

( ) ( )
0 0 12go

M k
f

w t tw t z t
a

w t w ttσ

   
= + < ∞        


 (47) 

Since ( )1w t−  and ( ) ( )1
gow t t w t k− +  are bounded from the definition of ( )w t  and Lemma 2, Eq. (47) is also 

bounded. This completes the proof.                                             ■                                                                                                                                                                                           

The behavior of ZEM under the proposed approach can be assessed in terms of the natural frequency and the 

damping ratio. Taking the time derivative of Eq. (26) gives 

 
( ) ( ) ( )
2 3 2

2
M

go go go

N t N t N t
a z z

t t tσ

 
= + + 
  


   (48) 

Substituting Eqs. (26) and (48) into Eq. (6) yields 

 
( ) ( ) ( )

2 0go

go go

N t t N tN t
z z z

t t
 +

+ + = 
  


   (49) 

This equation represents the motion of ZEM under the proposed guidance law. For the analysis purpose, we regard 

the above time varying equation as an instantaneous linear time-invariant system at each time instance. Then, it is 

possible to investigate the tendency of ZEM motion at each time step [22]. Based on this approximation, the motion 

of ZEM can be expressed in terms of nω  and ζ , i.e. 

 22 0n nz z zzω ω+ + =   (50) 
where  

 
( )

( ) ( )
( ) ( )

,
2

go
n

gogo

N t N t tN t
tN t N t t

ζ ω
+

= =
+




 (51) 



16 
 

Here, ζ  and nω  are regarded as the damping ratio and the natural frequency of ZEM motion, respectively. Note that 

these two parameters are expressed as functions of time-to-go and time-varying guidance gain. Furthermore, the 

navigation gain is given as the function of weighting function and time-to-go. This implies that the motion of ZEM 

is a time-varying system. Therefore, the analysis based on the instantaneous linear time-invariant system is not 

rigorous enough. However, it could at least provide some insight about the behavior of ZEM motion. The reason 

behind performing this type of analysis is due to the well-known difficulties in the analysis of time-varying systems. 

 At the initial time, these values are given by 

 
( )

( ) ( )
( ) ( )0 00

0 ,0

0 02
f

n
ff

N t N t tN t
tN t N t t

ζ ω
+

= =
+




 (52) 

where ( )0N t  and ( )0N t  are the time-varying guidance gain and its derivative at the initial time. Also, as the time-

to-go approaches to zero, these values converge to the following values. 

 
( )

( ) ( )
( ) ( )

,0 0
lim , lim

22go go

f go
f n ft t

gogo

N N t N t tN t
tN t N t t

ζ ω
→ →

+
= = = = ∞

+




 (53) 

 The final values of damping and natural frequency are same regardless of weighting function chosen. On the 

other hand, the initial values are significantly affected by the initial values of time-varying guidance gain and its 

derivative. From  Eq. (52) to Eq. (53), it is trivial that the behavior of ZEM motion is greatly affected by the time-

varying-gain and its time derivative, which are functions of weighting function. This confirms that the pattern of 

ZEM could be shaped by appropriate selection of weighting function. 

B. Illustrative Applications of Proposed Guidance Law 

As a part of validation, this section examines two illustrative application examples of proposed approach. The 

guidance problems considered in the examples require specific patterns of ZEM to accomplish their guidance 

objectives. 

Before introducing the two examples, let us first examine a special case of ZEM pattern, which will reveal the 

characteristic of conventional fixed gain PNG in reducing ZEM. In this case, it is assumed that the pattern of ZEM 

needs to be reduced as a polynomial function of time-to-go. Then, the desired pattern of ZEM can be desired as 

 ( ) 1
m

d goz t C t=  (54) 
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where 1C  is an initial condition and 0m >  is a design parameter. Using Eq. (29), the desired weighting function is 

determined as 

 ( ) ( )m k
gow t t− −=  (55) 

In the above equation, m  should be equal to or greater than k , i.e. m k≥ , to satisfy the condition of Eq. (39). 

Finally, from Eq. (27), the desired time-varying guidance gain is computed as 

 ( ) , forN t m m k= ≥  (56) 

The navigation gain is time-invariant and the resultant guidance of proposed approach becomes the well-known 

PNG with a navigation constant m in the first example. This means that the conventional PNG enforces ZEM to 

decrease as the polynomial function of time-to-go. Therefore, the decrease of ZEM is only monotone and thus the 

shaping of ZEM is restricted in the conventional PNG. 

 Now, let us consider the first application example in which the guidance problem for the kill vehicle systems is 

considered. This example will show that the pattern of ZEM can be further shaped in the proposed  approach to cope 

with specific guidance operational objectives. For kill vehicle systems, the guidance strategy, so called the early 

correction, is generally recommended to effectively intercept tactical ballistic missile (TBM) over an extremely 

short engagement time. Following the early correction strategy, it is desirable to actively reduce ZEM rather than 

actively save the control energy. We can thus design the desired pattern of ZEM dz  by additionally introducing an 

exponential decreasing term from Eq. (54) as 

 ( ) 1 , for 0got k
d goz t C e tµ µ= ≥  (57) 

where 1C  is an initial condition and µ  represents a parameter deciding a decreasing speed of exponential term. By 

substituting Eq. (29) and Eq. (57), the corresponding weighting function is obtained as 

 ( ) , for 0gotw t e µ µ−= ≥  (58) 

Since this weighting function is an element of set ( )w tS  given in Eq. (39), it holds the essential conditions to be met. 

Under this weighting function, the time-varying guidance is given by: 

 ( ) goN t t kµ= +  (59) 

The values of µ  and k  represent the slope of guidance gain and its terminal value, respectively. In this case, the 

guidance gain linearly decreases from a large value ft kµ +  to a small value k . 
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Fig. 2 An example of desired pattern of ZEM 

  For some missile systems, the quality of seeker measurement at the beginning of the homing phase is insufficient 

to provide the actual target position. The guidance strategy to rapidly reduce ZEM using incorrect ZEM might cause 

increase in actual ZEM. Therefore, in such a case, the guidance strategy so called the delayed correction is suitable. 

The delayed correction introduces ZEM slowly decreasing at the beginning and ZEM rapidly decreasing when the 

seeker measurement is good enough. To achieve the delayed correction, the desired pattern of ZEM can be designed 

as 

  ( ) ( )( )1 cos / 1 , for 1
k

d fz t C t t
η

π η = + ≥  
 (60) 

The general pattern of this function is shown as Fig. 2. To accomplish this ZEM pattern, the desired weighting 

function is defined as 

 ( )
( )( )cos / 1

k
go

k

f

t
w t

t t
η

π
=
 +  

 (61) 

This weighting function is also valid since it satisfies the condition represented in Eq. (39). Substituting Eq. (61) into 

Eq. (27) yields 

 ( )
( )( )

( )( )
1sin /

1
cos / 1

f

f f
f

t t t tN t k
t tt t

η η

η

π
π η

π

−
  

= −        +  

 (62) 

C. Potential significances of Proposed Guidance Law 

This paper proposes a new paradigm in designing guidance laws (i.e., time-varying guidance gains of PNG). 

Different guidance problems could have their own distinct objectives besides the common operational objectives. 

We showed that these objectives can be directly considered in the design of an appropriate desired pattern of ZEM 
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and formulation of a corresponding weighting function. Moreover, it is shown that the guidance command obtained 

from the weighted ZEM enables the accomplishment of the guidance objectives considered. This implies that given 

the guidance problem and its distinctive operational objectives, one could follow the guidance design procedure 

detailed in section III.A and consequently develop a new guidance law specific to their guidance problem. 

This paper also provides a significant and meaningful clue in understanding the behavior of important guidance 

parameters of PNG with a time-varying guidance gain:  these guidance parameters include, but not being limited to, 

ZEM and guidance command. In practice, time-varying guidance gains in PNG are generally used without a strict 

guarantee on finite time convergence or a clear understanding of guidance loop motion. This is because it is hard to 

obtain the closed-form solutions of ZEM and guidance command when guidance gains are time-varying. The 

analysis results showed that we can readily identify the connection between a time-varying guidance gain and those 

closed-form solutions under the proposed guidance framework. This allows determination of closed-form solutions 

of ZEM and guidance command in case of time-varying guidance gains. Let us suppose a time-varying guidance 

gain ( )N t  is given from a guidance law. From Eq. (27), it is possible to obtain the differential equation with respect 

to the weighting function as follows: 

 ( ) ( ) ( ) 0
go

k N t
w t w t

t
−  + =  (63) 

Then, we could obtain the solution of in Eq. (63), denoted by ( )*w t . Now, the closed-form solutions of ZEM and 

guidance command can be simply determined by substituting ( )*w t  into Eqs. (43) and (44). This indicates that a 

given time-varying guidance gain ( )N t , finding the weighting function satisfying the condition in Eq. (63) should 

enable determination of the analytical solutions of ZEM and guidance command. Furthermore, examining whether 

( )*w t  holds the conditions given in Proposition 3 and 4 will readily determine the finite convergence and the 

boundedness of guidance command, respectively. 

V. Numerical Results 

This section demonstrates the characteristics of guidance laws under the proposed approach through numerical 

simulations. The example guidance laws selected are the two laws designed for the two illustrative application 

examples in Section IV. C. The homing conditions presented in [11] are considered, that is, the initial relative 
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distance 18kmR = , the closing velocity 3000m/ scV = , the initial heading error 2hε = ° , and the flight time 

6sft = , respectively. In all simulations, the design parameter k  is set to be equal to 3: if a chosen weighting 

function holds the second condition in Eq. (42) (that is ( ) ( )/gow t t w t m≠ ) the time-varying guidance gain 

converges to fN k= ; otherwise it converges to fN k m= + . The performance of the two guidance laws is compared 

with that of the conventional PNG with the navigation gain equal to 3.  

A. Basic characteristics of proposed method 

The focus of the performance examination in this simulation is to investigate the capability in shaping the pattern 

of ZEM and the behavior of the corresponding guidance command, which will validate the analysis results in 

Section IV. Therefore, the simulation results include responses of the weighting function, time-varying guidance 

gain,  pattern of ZEM, and acceleration command. Note that all responses are normalized: the time is normalized by 

ft ; the weighting function and ZEM by their initial values; the time-varying guidance gain by the design parameter 

k ; and the acceleration command by ( ) 2
0 / fz t t . 

Fig. 3 depicts the simulation results of the first example guidance law whose weighting function is given in Eq. 

(58). As discussed in Section IV. B, this guidance law is designed for the engagement situations where early 

correction of ZEM is required. An additional design parameter of this guidance law is µ  in the weighting function 

and various values of µ  are tested in the simulations. In case where 0µ = , the weighting function becomes identity 

and thus the first example guidance law is identical to PNG with 3N = , which is confirmed by the simulation 

results. As µ  increases, value of the inverse weighting function more decreases exponentially as shown in in Fig. 3 

(a).  From Fig. 3 (b), it is evident that this type of guidance law results in linearly decreasing patterns of the time-

varying guidance gain. Also, we can observe that its terminal value approaches to the value of k . These results 

validate the analysis results in Section IV. B.  As shown in Fig. 3 (c), the guidance law considered leads to ZEM that 

is more exponentially decreasing than that of PNG, which meets the guidance operational objective. Regarding the 

acceleration command, the proposed guidance law requires more control effort at the beginning of homing phase 

compared with PNG, but it rapidly decreases in the vicinity of a target. Also, it is observed that the acceleration 

command for all cases converges to zero, which agrees with the analysis result in Proposition 4. 
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Fig. 3 Simulation results for an early correction pattern of ZEM 

Fig. 4 demonstrates the simulation results of the second example guidance law of which the pattern of ZEM is 

represented by Eq. (61). This guidance law is designed to meet the delayed correction pattern of ZEM. Since k  is 

set to be equal to 3, the remaining design parameter of this guidance is η . In the simulations, various values of η  

are tested.  As shown in Fig. 4 (a), the pattern of inversed weighting functions initially increases and then converges 

to zero for all values of η  examined. Its peak value and the occurrence time increase as η  increases. Fig. 4 (b) also 

shows that the guidance gain is time-varying: it starts from zero and converges to 2k  for all cases. The analysis 

results explain the reason behind the convergence of the guidance gain to 2k  in this case. We have the condition 

where ( ) ( )/gow t t w t k=  in the second example guidance law, so it is clear the gain converges to 2k  from Eq. (42). 

The results depicted in Fig. 4 (c) verifies that the achieved patterns of ZEM are the same as the desired pattern 
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shown in Fig. 2. This confirms that it is possible to actively control the pattern of ZEM as desired, in this case to 

delay the correction of ZEM at the initial time and accelerate it after a certain point. Accordingly, the acceleration 

command starts to increase from zero at the beginning and converges to zero at the end. Moreover, the peak value of 

the guidance command and its occurrence moment can be controlled by the design parameter η : the peak value and 

its occurrence time increases as η  increases. 

In conclusion, the simulation results demonstrate that the proposed approach enables simple design of new 

guidance laws that can achieve desired patterns of ZEM reflecting various guidance operational goals. These results 

also confirm the validity of the analysis results in Section IV. 
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Fig. 4 Simulation results for a delayed correction pattern of ZEM 

B. Application to realistic case 
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 In this simulation, the proposed guidance laws are tested under the presence of seeker noise and autopilot lag in 

order to demonstrate the finite convergence of guidance command. We assume that the LOS angle and the relative 

distance are measured at 200 Hz from the seeker, and those are corrupted by a white Gaussian noise with zero-mean 

variance ( )22 9 mradvσ =  and 2 225mRv = . A homing filter based on the modified-gain pseudo measurement filter 

(MGPMF) [23] is used to estimate all parameters for implementing the proposed guidance laws. Additionally, the 

autopilot lag is modelled as the first order lag system with the time constant 0.1τ = . 
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Fig. 5 Simulation results for an early correction pattern of ZEM in presence of seeker noise and autopilot lag 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t / t
f

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z(
t) 

/ z
(t

0
)

Normalized Zero-Effort-Miss

PNG with N = 3

 = 1.0

 = 1.5

 = 2.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t / t
f

-0.5

0

0.5

1

a
M

,
 / 

( z
(t

0
) /

 t
f2

 )

Normalized Acceleration Command

PNG with N = 3

 = 1.0

 = 1.5

 = 2.0

 

                            (a) Normalized ZEM                                        (b) Normalized Acceleration Command 

Fig. 6 Simulation results for a delayed correction pattern of ZEM in presence of seeker noise and autopilot lag 
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Figs. 5 and 6 represent sample runs of proposed guidance laws in the noisy environment and the autopilot lag in 

order to show the tendency of performance. In all simulation cases, the proposed guidance laws can meet the finite 

convergence. As shown in Figs. 3, 4, 5, and 6, the proposed guidance laws have the similar performance tendency in 

shaping the pattern of ZEM. These results indicate that the capability in shaping the pattern of ZEM under the 

proposed method is satisfactory in the presence of seeker noise and autopilot lag. 

VI. Conclusion 

This paper proposes a new approach in designing guidance laws. The underlining idea behind this approach is to 

obtain the guidance command that can directly shape the pattern of ZEM depending on guidance operational 

objectives given. To achieve this idea, this paper first introduces the concept of weighted ZEM, which provides an 

additional degree of freedom in shaping the true ZEM. Then, this paper proposes the specific error dynamics to 

guarantee a finite-time convergence of the weighted ZEM. Next, the proposed approach devises a guidance law 

under the feedback linearization framework in which the weighted ZEM and the proposed error dynamics are 

utilized. It is shown that the resultant guidance has the form of PNG with the specific form of time-varying guidance 

gain, which is not revealed in previous studies. It provides important information about how the time-varying 

guidance should be behaved to obtain the desired pattern of ZEM. Accordingly, the design procedure in the 

proposed approach is as follows: first determine a desired pattern of ZEM to accomplish the given guidance 

objectives; find a desired weighting function reflecting the given pattern of ZEM; then the guidance command with 

the corresponding time-varying guidance gain can be simply determined. 

This paper analyses the finite time converge of guidance laws designed by the proposed approach. We also 

theoretically investigate the conditions on the weighting function for which the interception of the target in a finite 

time and bounded guidance command are guaranteed. Also, it allows us the feasible set of desired patterns of ZEM 

that can be achieved in the proposed approach. The closed-form solutions of ZEM and guidance command under 

arbitrary weighting functions are also obtained in this paper. As illustrative examples, two ZEM shaping guidance 

laws are designed for different guidance objectives. The performance of the guidance laws designed and the validity 

of the analysis results are demonstrated through numerical simulations. 

The potential significances of the proposed results are given as follows: First, the proposed approach allows  

guidance designers to devise a new PN-type guidance law perfectly fitting to their own specific guidance problems. 
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Second, the closed-form solution of ZEM, guidance command, and corresponding a time-varying gain can provide 

an useful insight on how the pattern of ZEM behaves with respect to the change in guidance command. Furthermore, 

it provides a significant clue in understanding the properties of PN-type guidance with time-varying guidance gains. 
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