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Optimal Collaborative
Mapping of Terrestrial
Transmitters: Receiver
Placement and Performance
Characterization

JOSHUA J. MORALES, Student Member, IEEE
ZAHER M. KASSAS , Senior Member, IEEE
University of California, Riverside, Riverside, CA USA

Mapping multiple unknown terrestrial signals of opportunity
(SOP) transmitters via multiple collaborating receivers is considered.
The receivers are assumed to have knowledge about their own states,
make pseudorange observations on multiple unknown SOPs, and fuse
these pseudoranges through a central estimator. Two problems are
considered. The first problem assumes multiple receivers with random
initial states to pre-exist in the environment. The question of where to
optimally place an additional receiver so to maximize the quality of
the estimate of the SOPs’ states is addressed. A novel, computationally
efficient optimization criterion that is based on area-maximization is
proposed. It is shown that the proposed optimization criterion yields
a convex program, the solution of which is comparable to two classical
criteria: minimization of the geometric dilution of precision (GDOP)
and maximization of the determinant of the inverse of the GDOP ma-
trix. The second problem addresses the optimal mapping performance
as a function of time and number of receivers in the environment. It
is demonstrated that such optimal performance assessment could be
generated off-line without knowledge of the receivers’ trajectories or
the receivers’ estimates of the SOP. Experimental results are presented
demonstrating collaborative mapping of an unknown terrestrial SOP
emanating from a cellular tower for various receiver trajectories
versus the optimal mapping performance.
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I. INTRODUCTION

Optimal mapping is an important objective that arises
in many application domains, such as source localization
[1], target tracking [2], and autonomous vehicle navigation
[3]. The mapping problem can be abstracted to that of esti-
mating desired states in the environment, given information
extracted from a sensor or a sensor network. Map optimality
is furnished by considering a desired performance criterion,
such as minimization of uncertainty, convergence time, and
computational time.

While increasing the number of mapping sensors
typically improves the quality of the produced maps,
introducing additional sensors may be prohibitive due to
economical, physical, or computational constraints. Op-
timal sensor placement has been studied as an enabling
tool to achieve optimal mapping by using only a subset
of available sensors for source localization [4], [5] and
target tracking [6]–[9]. In autonomous vehicle navigation,
environmental features are mapped a priori or on-the-fly,
and these maps are used to estimate the vehicle’s motion
within the environment. These features could posses 1)
a static state space, such as stationary landmarks (e.g.,
traffic lights, poles, buildings, etc.) or 2) a dynamic state
space, such as transmitters of radio signals of opportunity
(SOPs), which are not intended for positioning, navigation,
or timing (e.g., AM/FM radio, cellular, and television
signals). This paper considers the problem of optimal
collaborative mapping of unknown terrestrial SOPs. This
problem is important in two contexts: 1) unknown emitter
localization and 2) opportunistic navigation.

Opportunistic navigation aims to exploit ambient radio
frequency SOPs in the environment to improve navigation
robustness and accuracy in global navigation satellite
system (GNSS)-challenged environments [10]–[13].
Opportunistic navigation treats all ambient radio frequency
signals as sources of information for navigation, such as
AM/FM radio [14], cellular [15], [16], television [17],
Iridium [18], and Wi-Fi [19]. SOPs are abundant, powerful,
and available at various frequencies and geometric config-
urations, making them an attractive stand-alone navigation
system whenever GNSS signals become inaccessible or
untrustworthy. Even when GNSS signals are available,
SOP observables can be coupled with GNSS observables
to significantly improve the accuracy of the navigation
solution [20].

In contrast to GNSS signals, SOPs are not intended for
navigation. In particular, while information about GNSS
space vehicle (SV) states are readily accessible, the states
of SOPs may not be known a priori. Therefore, a first
step in exploiting SOPs is to map their states. This can
be accomplished either in 1) a mapping framework in
which receivers have knowledge of their own states (by
having access to GNSS signals, for example) [21] or 2)
a simultaneous localization and mapping framework in
which the receivers’ states are simultaneously estimated
with the SOPs’ states [22].
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Collaboration generally improves navigation. In collab-
orative opportunistic navigation, multiple receivers share
their observations of SOPs in the environment to construct
and continuously refine a global signal landscape map. Such
signal landscape could be cloud-hosted, such that whenever
GNSS signals become inaccessible or untrustworthy, the re-
ceivers continue navigating with the aid of this map [23].
The quality of the constructed map depends on the quality
of the observations and the spatial geometry between the
SOPs and receivers. The quality of the constructed map
could be improved by prescribing the receivers’ motion to
minimize the uncertainty about the SOPs’ together with the
receivers’ states assuming the initial states of all receivers to
be unknown [24]. This motion planning could be generated
in a greedy [25] or a receding horizon fashion [26].

This paper considers the following two problems. The
first problem assumes that multiple receivers with random
initial states are dropped in a planar environment com-
prising multiple unknown terrestrial SOPs with a random
configuration. Each receiver has a priori knowledge about
its own states (e.g., from GNSS observables). The receivers
draw pseudorange observations from each SOP, which are
fused through a centralized estimator that estimates the
states of all SOPs. It is desired to reduce the uncertainty of
the produced state estimates. However, in many practical
scenarios, the receivers may be prevented from moving to
more favorable locations to achieve the best reduction in
uncertainty, e.g., if their motion is constrained or moving
to new locations would consume a considerable amount of
time or energy. Instead, it may be more efficient to deploy an
additional collaborating receiver. Where should this addi-
tional receiver be placed to minimize the uncertainty about
the SOPs’ states?

The second problem considers a planar environment
comprising N mobile receivers with knowledge about
their own states, making pseudorange observations on one
unknown terrestrial SOP, and fusing their observations
through a centralized estimator. What is the optimal map-
ping performance as a function of time and N? The answer
to this question would enable one to determine the minimum
number of receivers that must be deployed in an environ-
ment to achieve a desired estimation uncertainty within a
specified period of time.

Similar questions to the first problem this paper con-
siders have arisen in other contexts, such as optimal GNSS
SV distribution and selection [27]–[30] and optimal sen-
sor placement for target localization and tracking [9], [31],
[32]. Common metrics to assess the quality of the spatial
geometry of GNSS SVs and range-based sensors are the
geometric dilution of precision (GDOP) [33] and the deter-
minant of the inverse of the GDOP matrix [27]. The GDOP
is related to the sum of the variances of a position estimate.
Therefore, smaller GDOP values (or larger determinants of
the inverse of the GDOP matrix) correspond to more fa-
vorable geometries for localization. It was demonstrated in
[28] that the GDOP at the center of an N-sided polygon
is minimized when the sensors’ locations form the vertices
of a regular polygon. In [34], this sensor configuration was

also shown to achieve the upper bound of the determinant of
the Fisher information matrix (FIM), which is proportional
to the inverse of the GDOP matrix. In [35], the area of a
polygon inscribed in the unit circle whose vertices are the
line of sight (LOS) vectors from the receiver (target) to the
SVs (sensors) was presented as an alternative optimization
function for selecting the best SVs.

While previous work considered optimizing the loca-
tion of a constellation of SVs or a group of sensors with
respect to a specified criterion, this paper assumes that N of
the receivers are arbitrarily placed, and treats the problem
of optimal placement of an additional (N + 1)st receiver to
improve the estimate of the SOPs’ states. This introduces
two main challenges when compared to optimizing the lo-
cation of all available sensors. First, the optimal placement
of the (N + 1)st sensor is dependent on the distribution of
the pre-deployed sensors, whereas the optimal placement
of all available sensors is only dependent on the number of
sensors whose optimal configuration is a regular polygon.
Second, the optimal placement of the (N + 1)st sensor is
dependent on the optimization criterion employed, whereas
the optimal placement of all available sensors is invariant
to the optimization criterion (GDOP minimization, deter-
minant of the inverse of the GDOP matrix maximization,
and area maximization).

A preliminary study comparing the problems of GDOP
minimization, determinant of the inverse of the GDOP
matrix maximization, and area maximization, for opti-
mal placement of an additional (N + 1)st receiver was
conducted in [36]. It was demonstrated that these three
optimization problems are comparable and that the area
maximization problem is piecewise-concave with a simple
analytical solution. However, only an environment com-
prising a single SOP was considered. Optimal sensor place-
ment for multiple target positioning was considered in [37]
by maximizing the determinant of the FIM. However, the
optimization was performed over the entire set of sensors.

This paper makes two contributions. First, the optimal
receiver placement problem is extended to environments
comprising multiple SOPs. To this end, a novel optimiza-
tion criterion, namely, the product of areas maximization
is derived. This optimization criterion is intimately related
to the classical GDOP minimization and determinant of the
inverse of the GDOP matrix maximization criteria, making
it a good alternative for optimal receiver placement. The
proposed optimization criterion yields a family of paral-
lelizable convex programs and is computationally cheaper
compared to the classical optimization criteria, which do
not yield convex programs. Second, the optimal mapping
performance in an environment comprising N mobile re-
ceivers estimating the states of one unknown terrestrial SOP
is characterized as a function of time and N . The opti-
mal mapping performance was originally demonstrated in
[36], but was offered without a proof or an experimental
demonstration. This paper presents a rigourous proof for the
optimal mapping performance together with simulation
and experimental results illustrating various receiver tra-
jectories versus the optimal mapping performance. The
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experimental results demonstrate collaborative mapping of
an unknown cellular code division multiple access (CDMA)
SOP transmitter to an unprecedented degree of accuracy. It
is important to note that while this paper focuses on map-
ping SOPs for opportunistic navigation purposes, the devel-
oped techniques are widely applicable to other application
domains involving range-type sensors.

The remainder of this paper is organized as follows.
Section II describes the SOPs’ dynamics and receivers’
observation model. Section III formulates the optimal re-
ceiver placement problem for an arbitrary number of SOPs
in the environment as GDOP minimization and determi-
nant of the inverse of the GDOP matrix maximization. The
placement problem is reformulated as an area maximiza-
tion for the single SOP case and a product of areas maxi-
mization for the multiple SOP case. The area and product
of areas optimization problems are compared against the
GDOP optimization problems and their optimal solution
is specified. Section IV derives the optimal mapping per-
formance as a function of time and number of receivers.
Section V presents experimental results for collaboratively
mapping an unknown SOP. Concluding remarks are given
in Section VI.

II. MODEL DESCRIPTION

The following nomenclature and conventions will be
used throughout this paper. Vectors will be column and
represented by lower-case, italicized, and bold characters,
e.g., x. Matrices will be represented by upper-case bold
characters, e.g., A.

A. SOP Dynamics Model

The SOP clock error dynamics will be modeled ac-
cording to the two-state model composed of the clock bias
δts and clock drift δ̇t s . The clock error states xclk,s evolve
according to

ẋclk,s(t) = Aclk xclk,s(t) + w̃clk,s(t),

xclk,s =
[

δts

˙δts

]
, w̃clk,s =

[
w̃δts

w̃δ̇t s

]
, Aclk =

[
0 1

0 0

]
,

where the elements of w̃clk,s are modeled as zero-mean,
mutually independent white noise sequences, and the
power spectral density of w̃clk,s is given by Q̃clk,s =
diag [Sw̃δts

, Sw̃ ˙δts
], where diag[a, b] is an appropriately sized

square matrix with diagonal elements a and b and zeros
elsewhere. The power spectra Sw̃δts

and Sw̃ ˙δts
can be related

to the power-law coefficients {hα}2
α=−2, which have been

shown through laboratory experiments to be adequate to
characterize the power spectral density of the fractional
frequency deviation y(t) of an oscillator from nominal fre-
quency, which takes the form Sy(f ) = ∑2

α=−2 hαf α [38].
It is common to approximate the clock error dynamics by
considering only the frequency random walk coefficient
h−2 and the white frequency coefficient h0, which lead to
Sw̃δts

≈ h0
2 and Sw̃ ˙δts

≈ 2π2h−2 [39].

The SOP will be assumed to emanate from a spatially-
stationary terrestrial transmitter, and its state vector will
consist of its planar position states rs � [xs, ys]T and
c xclk,s , where c is the speed of light. Hence, the SOP’s
dynamics can be described by the state space model

ẋs(t) = As xs(t) + Dsw̃s(t) (1)

where xs � [rT
s , c xT

clk,s]
T, w̃s � w̃clk,s

As =
[

02×2 02×2

02×2 Aclk

]
, Ds =

[
02×2

I2×2

]
.

Discretizing the SOP’s dynamics (1) at a constant sam-
pling interval T yields the discrete-time (DT)-equivalent
model

xs (k + 1) = Fs xs(k) + ws(k), k = 1, 2, . . . , (2)

where ws �
[
wxs

, wys
, wδts , w ˙δts

]T
is a zero-mean white

noise sequence with covariance Qs , and

Fs = diag [I2×2, Fclk] , Qs = diag
[
02×2, c

2Qclk,s

]
,

Fclk =
[

1 T

0 1

]
, Qclk,s =

[
Sw̃δts

T +Sw̃ ˙δts

T 3

3 Sw̃ ˙δts

T 2

2

Sw̃ ˙δts

T 2

2 Sw̃ ˙δts
T

]
.

B. Observation Model

The pseudorange observation made by the nth receiver
on the SOP, after discretization and mild approximations
discussed in [22], is related to the SOP’s states by

zn(k) = ‖rrn
(k) − rs‖ + c · [

δtrn
(k) − δts(k)

] + vn(k)
(3)

where ‖ · ‖ is the Euclidean norm, rrn
� [xrn

, yrn
]T and δtrn

are the position and clock bias of the receiver, respectively,
and vn is the measurement noise, which is modeled as a DT
zero-mean white Gaussian sequence with variance σ 2

n .

III. OPTIMAL RECEIVER PLACEMENT

This section answers the question: where to optimally
place a receiver in an environment comprising N ran-
domly pre-deployed receivers and M unknown SOPs with
an arbitrary configuration? The following section will for-
mulate and compare three optimization problems: GDOP
minimization, determinant maximization, and area maxi-
mization. Subsequently, the convexity of these problems is
analyzed. Finally, an analytical solution to the area maxi-
mization problem is derived for two cases: single (M = 1)
and multiple (M > 1) SOPs.

A. Problem Formulation

Consider a planar environment comprising M unknown
SOPs and N arbitrarily placed receivers with knowledge
about their own states. The receivers draw pseudorange
observations from each SOP, denoted {mzn}Nn=1, for m =
1, . . . , M . These observations are fused through a central-
ized estimator whose role is to estimate the augmented state
vector x′ defined as

x′ �
[
x′T

s1
, . . . , x′T

sM

]T
, x′

sm
�

[
rT

sm
, cδtsm

]T
.
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It is desired to deploy an additional receiver to a location
that will result in the maximum improvement of the estimate
of x′, denoted as x̂′. The measurement residual computed
by the centralized estimator has a first-order approximation
of its Taylor series expansion about x̂′, which is given by

�z = H′ �x′ + v, (4)

where �z � z − ẑ, i.e., the difference between the obser-
vation vector

z �
[

1z1, . . . ,
1zN+1,

2z1, . . . ,
2zN+1, . . . ,

MzN+1
]T

and its estimate ẑ; �x′ � x′ − x̂′, i.e., the difference be-
tween x′ and its estimate x̂′; v � [1v

T
, . . . , Mv

T
]T, where

mv � [mv1, . . . ,
mvN+1]T; and H′ is the Jacobian matrix

evaluated at the estimate x̂′, which is given by H′ =
diag[H′

1, . . . , H′
M ], where

H′
m =−

⎡
⎢⎢⎢⎣

m1̂T
1 1

...
...

m1̂T
N+1 1

⎤
⎥⎥⎥⎦=−

⎡
⎢⎢⎣

cos(mφ1) sin(mφ1) 1

...
...

...

cos(mφN+1) sin(mφN+1) 1

⎤
⎥⎥⎦ .

Without loss of generality, assume an East-North coordinate
frame, denoted {fm}, centered at the mth SOP’s position
estimate r̂sm

. The vector m1̂n � [cos(mφn), sin(mφn)]T =
rrn−r̂sm

‖rrn−r̂sm‖ is geometrically a unit LOS vector expressed
in {fm} to the nth receiver position rrn

. The bear-
ing angle mφn will be measured counterclockwise
with respect to the East axis of {fm} and rrn

will
be expressed in {f1}. The observation noise for the
set of measurements is assumed to be independent
and identically-distributed (i.i.d.) across all channels,
i.e., {σ 2

n }N+1
n=1 ≡ σ 2 and cov(v) = σ 2IM(N+1)×M(N+1). The

weighted least-squares solution to (4) and associated esti-
mation error covariance P′ are given by

�x̂′ = (
H′TH′)−1

H′T�z, P′ = σ 2 (
H′TH′)−1

. (5)

The matrix (H′TH′)−1 is known as the GDOP matrix. Hence,
the quality of the estimate depends on the receiver-to-SOP
geometry and the pseudorange observation noise variance
σ 2. The GDOP is defined as GDOP �

√
tr[(H′TH′)−1],

where tr [·] is the matrix trace. The GDOP provides a simple
scalar characterization of the receiver-to-SOP geometry–
the lower the GDOP, the more favorable the geometry [33].
Therefore, the receiver placement problem can be cast as
the GDOP minimization problem

minimize
rrN+1

√
tr

[[
H′T(rrN+1 )H′(rrN+1 )

]−1
]
, (6)

where rrN+1 is the location of the (N + 1)st receiver.
The GDOP is approximately minimized when the de-
terminant det(H′TH′) is maximized, since (H′TH′)−1 =
adj(H′TH′)/det(H′TH′) and the adjoint adj(H′TH′) varies
less with the geometry of the receiver placement than
det(H′TH′) [33]. Therefore, an alternative optimization

problem to (6) is

maximize
rrN+1

det
[

H′T(rrN+1 )H′(rrN+1 )
]
. (7)

The optimization problems (6) and (7) are equivalent to
the so-called A- and D-optimality criteria, respectively [40].
In (6), the average variance of the estimates are minimized,
whereas (7) is equivalent to minimizing the volume of the
uncertainty ellipsoid, which has a useful geometric inter-
pretation for receiver placement. This interpretation gives
rise to an alternative optimization problem to both (6) and
(7), which is formulated and compared in Sections III-B
and III-C for M = 1 and M > 1, respectively.

B. Case One: Single SOP

For planar environments comprising a single SOP, (6)
and (7) may be reparameterized over 1φN+1, since H′ is
completely determined by the SOP-to-receiver bearing an-
gles. Since the environment consists of only a single SOP,
the superscript will be dropped to simplify notation for the
remainder of this section, i.e., 1φn ≡ φn. It can be shown
that det

(
H′TH′) is related to the area of the polytope in-

scribed in a unit circle, whose vertices are defined by the
SOP-to-receiver unit LOS vector endpoints [27]. Hence,
the optimization problem can be reformulated as a poly-
tope area maximization problem over φN+1. In a planar
scenario composed of three receivers, the relationship is
exact, i.e., maximizing det

(
H′TH′) simultaneously maxi-

mizes the area of the triangle whose vertices are defined by
the unit LOS vectors. This is due to the fact that H′ is now
a square matrix. With the exception of the scenario when
all receivers are collinear with an SOP, H′ is an invertible
matrix and the area is A = 1

2

√
det(H′TH′) = 1

2 det(H′). For
more than three receivers, the relationship is exact for reg-
ular polygons, but approximate for non-regular polygons.
Specifically, a polygon inscribed in the unit circle that si-
multaneously maximizes the determinant and maximizes
the area is a regular polygon [35].

For non-regular polygons, the relationship is “almost
exact” and the discrepancy is minimal. To see this, N + 1
receivers were placed randomly around an SOP, where the
nth receiver position was chosen such that φn ∼ U(0, 2π),
for n = 2, . . . , N + 1, and φ1 = 0, for a total of 105

random configurations, where U(a, b) is the uniform distri-
bution over (a, b). For each configuration, the correspond-
ing GDOP and area were calculated, which are plotted in
Fig. 1(a)–(d) for N = 2, . . . , 5, respectively. Subsequently,
for each of the configurations, the first N receivers’ posi-
tions were fixed and the (N + 1)st receiver was placed so
to optimize the GDOP then to optimize the area. The re-
sulting optimal GDOP versus optimal area are plotted in
Fig. 1(e)–(h) for N = 2, . . . , 5, respectively.

The following can be concluded from the plots in Fig. 1.
First, placing the (N + 1)st receiver to optimize the area si-
multaneously optimizes the GDOP only for N = 2. Second,
for N > 2, placing the (N + 1)st receiver to optimize the
area approximately optimizes the GDOP. Third, the voids
in the “point cloud” in the optimal area versus optimal
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Fig. 1. N + 1 receivers were randomly placed around an SOP for a
total of 105 configurations. Fig. (a)–(d) correspond to N = 2, . . . , 5,

respectively, and Fig. (e)–(h) correspond to N = 2, . . . , 5, respectively.
For each configuration, the resulting area and the resulting GDOP were

computed and plotted in Fig. (a)–(d). Each point in the point cloud
represents the area and corresponding GDOP for a particular

configuration. Then, for each previous configuration, the first N receiver
locations were fixed and the (N + 1)st receiver was optimally placed to

optimize the GDOP and then to optimize the area. Each point in the point
cloud plotted in Fig. (e)–(h) represents the optimal area versus optimal
GDOP for a particular configuration. Dotted red line corresponds to the

theoretical minimum achievable GDOP.

GDOP plot [see Fig. 1(e)–(h)] compared to the area versus
GDOP plot [see Fig. 1(a)–(d)] are due to optimizing the
placement of the (N + 1)st receiver, which effectively in-
creases the area (decreases the GDOP), pushing the “point
cloud” towards the right (bottom). Fourth, when N + 1 re-
ceivers are arranged so that the end-point’s of the unit LOS
vectors form a regular polygon configuration, the theoret-
ical minimum GDOP, given by GDOPmin = √

5/(N + 1)
is achieved (dotted red line in Fig. 1) [28] and the area
simultaneously achieves its maximum value.

Motivated by these results, an alternative optimization
problem to (6) and (7) is proposed, which aims to maximize
the area A of the polygon over the angle of the unit LOS
vector of the (N + 1)st receiver, namely

maximize
φN+1

A (φN+1) = AN + �A (φN+1) , (8)

Fig. 2. (a) Polygon inscribed in the unit circle formed by the endpoints
of the unit LOS vectors from the SOP to four randomly-deployed

receivers for the configuration depicted in Fig. 3(a). The
area AN is highlighted in green. (b) Resulting polygon due to introducing

an additional fifth receiver depicted in Fig. 3(a). The change in area
�A (φN+1) due to introducing the (N + 1)st receiver is highlighted in red.

where AN is the total area for N pre-deployed receivers.
The area AN can be derived from the the sum of triangle
areas as

AN =
N∑

n=1

1

2
sin(θn), (9)

where θn � φn+1 − φn for n = 1, . . . , N − 1; θN � 2π −
φN ; and �A (φN+1) is the change in area resulting from
placing the (N + 1)st receiver at φN+1, where φn ≤ φN+1 ≤
φn+1 < 2π . The change in area �A (φN+1) is given by

�A (φN+1) = 1

2
[sin(φN+1 − φn)

+ sin(θn − φN+1 + φn) − sin(θn)] . (10)

A depiction of A (φN+1) is illustrated in Fig. 2.
Next, it will be shown that while the optimization func-

tions in (6) and (7) are neither convex nor concave, necessi-
tating a general-purpose numerical nonlinear optimization
solver, the optimization function in (8) is piecewise-concave
with a simple analytical solution.

1) Convexity Analysis: The term H′TH′ in the opti-
mization problems (6) and (7) can be readily shown to be

H′TH′ =
N+1∑
n=1

⎡
⎢⎣

cos2 φn cos φn sin φn cos φn

sin φn cos φn sin2 φn sin φn

cos φn sin φn 1

⎤
⎥⎦ .

It is obvious that the optimization functions in (6) and (7)
are neither convex nor concave. However, while the opti-
mization function (8) is neither convex nor concave, it is
piecewise-concave, and the “zero-crossings” occur when
the additional receiver is introduced at the same bearing
angle as a pre-deployed receiver. A depiction of these func-
tions is illustrated in Fig. 3.

2) Optimal Solution to Area Maximization: The spe-
cial property of piecewise-concavity of the area maximiza-
tion problem (8) allows for a simple analytical solution for
the receiver placement problem. This is summarized in the
following theorem.

THEOREM III.1 The optimal placement with respect to
the area maximization criterion (8) of a receiver to an
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Fig. 3. (a) Four randomly placed receivers (green) with respective
angles φn ∈ {0, 1.892, 2.043, 3.295 } rad estimating the state vector of an

unknown SOP (blue). The optimal receiver placement problem is to
place an additional receiver (red) at an angle φN+1 that will minimize the
GDOP (6), maximize the determinant of the inverse of the GDOP matrix
(7), or maximize the area of the polygon (8). The corresponding GDOP,

determinant, and area optimization functions, respectively, due to
sweeping 0 ≤ φN+1 ≤ 2π of the additional receiver, are plotted

in (b)–(d).

environment comprising N arbitrarily placed receivers and
one SOP is anywhere on a LOS vector from the SOP
at an angle φ	

N+1 = 1
2 max

n
θn, for n = 1, . . . , N , where

θn � φn+1 − φn, n = 1, . . . , N − 1 and θN � 2π − φN .

PROOF First, it will be shown that in a particular θn ∈
[0, 2π), the angle that maximizes the change in area is at
φ	(n)

N+1, where φ	(n)
N+1 � φn + α	

n and α	
n = 1

2θn, where αn is
defined as the angle sweeping θn, i.e., αn � φN+1 − φn for
0 ≤ αn ≤ θn.

Parameterizing �A (φN+1) by αn in (10) yields

�A (αn) = 1

2
[sin(αn) + sin(θn − αn) − sin(θn)] (11)

and applying the first-order necessary condition for opti-
mality yields

d�A (αn)

dαn

= 1

2
cos(αn) − 1

2
cos(θi − αn) ≡ 0

⇒ α	
n = 1

2
θn + πk.

Substituting α	 into the definition of 0 ≤ αn ≤ θn yields
− 1

2θn ≤ πk ≤ 1
2θn. Since the angle between any two known

receivers is 0 ≤ θn < 2π , k is bounded by −π < πk < π .
The only value of k that satisfies this inequality is k = 0.
Therefore, α	

n = 1
2θn is the only critical angle in θn.

Furthermore, since 0 ≤ θn < 2π , the critical angle is
0 ≤ α	

n < π . The second-order necessary condition for op-
timality, evaluated at this critical angle is

d2�An

dα2
n

= − 1

2
sin(αn) − 1

2
sin(θn − αn)

= − 1

2
sin(α	

n) − 1

2
sin(2α∗

n − α∗
n)

= − sin(α	
n). (12)

Algorithm 1: Optimal Receiver Placement for One
SOP.

Given: Positions of all pre-deployed receivers and
an estimate of the SOP’s position.
Calculate the angles {θn}Nn=1 sandwiched between
every two consecutive receivers.
Halve the largest of these angles.
Place the (N + 1)st receiver anywhere on a ray
with the angle calculated in the previous step.

Since (12) is always negative, the change in area in (10)
is concave over φn + θn, and α	 is the global maximizer.
The above analysis holds ∀θn, and the change in area
over [0, 2π) is piecewise-concave with N concave regions,
where each region corresponds to {θn}Nn=1.

Next, it will be shown that the largest change in area
�A(φN+1) is achieved when the largest region θn is cho-
sen, i.e., the receiver is positioned at φ	

N+1 = φnmax + α	
nmax

,
where φnmax = φnmax+1 − θnmax , θnmax � max

n
{θn}, α	

nmax
=

1
2θnmax , where n = 1, . . . , N .

Substituting for α	
n = 1

2θn into (11) yields

�A
(
α	

n

) = sin

(
1

2
θn

)
− 1

2
sin (θn) .

Taking the derivative with respect to θn yields

d�A (αn)

dθn

= 1

2
cos

(
1

2
θn

)
− 1

2
cos(θn). (13)

Equation (13) is nonnegative from [0, 4π
3 ], i.e., increasing

the region θn ∈ [0, 4π
3 ] increases the resulting area. Hence,

choosing θnmax in this range guarantees the largest change
in area. In ( 4π

3 , 2π), (13) is negative; therefore, the change
in area begins to decrease as θn sweeps ( 4π

3 , 2π). To verify
that choosing θnmax is the optimal choice, it is shown that
�A(θn) < �A(θnmax ), when θn ∈ [0, 2π − 
], where 
 =
θnmax = 4π

3 + ε, 0 < ε < 2π
3 . Hence

�A
(
θnmax

)
> �A (θn)

sin

(
1

2



)
− 1

2
sin(
)> sin

[
1

2
(2π − 
)

]
− 1

2
sin(2π − 
)

−1

2
sin(
) >

1

2
sin(
).

Since sin(
) < 0, ∀ ε ∈ (0, 2π
3 ), the above inequality holds

and �A(θnmax ) > �A (θn). �
Theorem III.1 provides a simple recipe for the place-

ment problem, which is summarized in Algorithm 1.
It is worth noting that several approaches have been

developed in the literature specifying the optimal con-
figuration of all available sensors to map a single tar-
get. In contrast, Theorem III.1 specifies the optimal
placement of one additional receiver into an environ-
ment comprising arbitrarily placed, pre-deployed receivers.
While these two problems are not directly compara-
ble, in what follows, it is easy to verify that the op-
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Fig. 4. (a) Environment comprised of 3 pre-deployed receivers (green)
estimating the states of 2 unknown SOPs (blue). The optimal receiver
placement problem is to place an additional receiver (red) at a position

rrN+1 that will minimize the GDOP (b) or maximize the determinant (c).

timal GDOP for the two-dimensional (2-D) environ-
ments found in [41] and [28] and the maximum log-
arithm of the FIM determinant in [37] is achieved by
Algorithm 1 when the pre-deployed receivers reside at N

of the vertices of an (N + 1)-sided regular polygon. Specif-
ically, there will be N angles sandwiched between consec-
utive receivers equal to 360/(N + 1) and one angle equal
to 2 × 360/(N + 1). The largest angle 2 × 360/(N + 1) is
halved, which places the receiver anywhere on a ray passing
through the remaining vertex of the regular polygon.

C. Case Two: Multiple SOPs

For planar environments comprising multiple SOPs, it
is obvious that (6) and (7) can not be reparameterized over
1φN+1 as was done in section III-B. As such, the optimiza-
tion functions in (6) and (7) are over rN+1, and are neither
convex nor concave. To see this, an environment compris-
ing three pre-deployed receivers, a candidate receiver po-
sition, and two terrestrial SOPs is illustrated in Fig. 4(a).
The resulting GDOP(rrN+1 ) and det[H′T(rrN+1 )H′(rrN+1 )] for
placing an additional receiver at candidate positions on a
grid sampled at one meter intervals in [−1500, −1000]T ≤
rrN+1 ≤ [1500, 1500]T are plotted in Fig. 4(b) and (c), re-
spectively. The bounds on the grid [−1500, −1000]T and
[1500, 1500]T were chosen to center the environment for
illustration purposes. In general, arbitrary bounds may be
chosen. It is clear from these surfaces that (6) and (7) do not
posses any useful convexity properties. In the following, the
area maximization problem will be generalized and shown
to yield a family of convex programs.

1) Product of Areas Maximization: Recall the block
diagonal structure of the measurement Jacobian H′ =
diag

[
H′

1, . . . , H′
M

]
for environments comprising multiple

SOPs. From this structure, it is readily seen that

H′TH′ =

⎡
⎢⎢⎢⎢⎢⎣

H′T
1 H′

1 03×3 · · · 03×3

03×3 H′T
2 H′

2 · · · 03×3

...
...

. . .
...

03×3 03×3 · · · H′T
MH′

M

⎤
⎥⎥⎥⎥⎥⎦ .

Fig. 5. N receivers were randomly placed around M SOPs for a total of
105 configurations. Next, the (N + 1)st receiver was optimally placed so
to first optimize the GDOP then to optimize the product of areas. Each

point in the point cloud plotted in Fig. (a)–(f) represent the optimal
product of areas versus optimal GDOP for a particular configuration.
Fig. (a)–(c) correspond to N = 2, . . . , 4, respectively, for M = 2, and
Fig. (d)–(f) corresponds to N = 2, . . . , 4, respectively, for M = 3. The

minimum possible GDOP is plotted for each case (red dotted line).

By exploiting the block diagonal structure of H′TH′, the
optimization problem in (7) can be rewritten as

maximize
rrN+1

M∏
m=1

det
[
H′T

m

(
mφrN+1

)
H′

m

(
mφrN+1

)]
. (14)

Note that the optimization problem in (7) for the sin-
gle SOP case generalized to product of determinants in
(14) for the multiple SOP case. As such, a natural ex-
tension of the area maximization problem in (8) to the
multiple SOP case is to consider the product of each
area mA of the polygon formed by the unit LOS vec-
tor endpoints pointing from the mth SOP to each re-
ceiver. To compare this optimization criterion with (6),
N + 1 receivers were placed randomly around multiple
SOPs, where the nth receiver position was chosen ac-
cording to rrn

∼ U([−1500, −1500]T, [1500, 1500]T), for
n = 1, . . . , N , for a total of 105 random configurations.
For each configuration, the first N receivers were fixed.
Next, the (N + 1)st receiver was placed so to first opti-
mize the GDOP then to optimize the product of areas. The
corresponding GDOP and product of areas are plotted for
M = 2 in Fig. 5(a)–(c) for N = 2, . . . , 4, respectively, and
for M = 3 in Fig. 5(d)–(f) for N = 2, . . . , 4, respectively.

The following can be concluded from these plots.
First, placing the (N + 1)st receiver to optimize the prod-
uct of areas approximately optimizes the GDOP and the
loss in optimality is minimal, which is captured by the
thickness of the “point cloud.” The loss in optimality is
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defined as the increase incurred in the GDOP from the op-
timal GDOP value due to optimizing the product of areas∏M

m=1
mA. Second, when N + 1 receivers are arranged so

the endpoints of the LOS vectors approach the formation
of regular polygons for each SOP, the theoretical mini-
mum GDOP, given by GDOPmin = √

5M/(N + 1) (dotted
red line in Fig. 5), and maximum product of areas, given
by [(N + 1) sin[2π/(N + 1)]/2]M are simultaneously ap-
proached. Third, the potential loss in optimality is greater
at smaller values of

∏M
m=1

mA, which is attributed only to
cases when all pre-deployed receivers are approximately
collinear with an SOP.

Motivated by these results, an alternative optimization
problem to (6) and (7) is proposed for M > 1, which aims
to maximize the product of areas AM over the position of
the (N + 1)st receiver, namely

maximize
rrN+1

AM

(
rrN+1

) =
M∏

m=1

mA
(
mφN+1

)
. (15)

Although (15) is not a convex optimization problem, it
can be recast as a family of convex optimization problems
by noting the following. First, by exploiting the preserv-
ing property of the logarithm, an equivalent optimization
function is given by

∑M
m=1 log[mA (mφN+1)]. Second, re-

call from Fig. 2 that mA(mφN+1) is concave over mφN+1

in mφn ≤ mφN+1 ≤ mφn+1, n = 1, . . . , N − 1. Third, the
composition of a non-decreasing concave function, the log-
arithm, and a concave function, mA(mφN+1), is concave [41].
Fourth, the sum of concave functions is concave. Therefore,
(15) can be recast as K convex optimization problems, each
of which is the maximization of a concave function over a
polyhedron Sk , specifically

maximize
rrN+1

Jk

(
rrN+1

) =
M∑

m=1

log
[
mA

(
mφN+1

)]
subject to Sk = {rrN+1 | Pk rrN+1 
 qk}, (16)

for {Sk}Kk=1, where

Pk =

⎡
⎢⎢⎣

pT
1,k

...

pT
L,k

⎤
⎥⎥⎦ , qk =

⎡
⎢⎢⎣

q1,k

...

qL,k

⎤
⎥⎥⎦ .

It can be shown that K is upper-bounded by a classical
equation related to the number of regions formed by inter-
secting lines, namely K ≤ ([NM]2 + [NM] + 2)/2 [42].
The polyhedron Sk is formed by the intersection of L halfs-
paces, where 3 ≤ L ≤ NM , and its geometry is determined
by the positions of the receivers and SOPs [43]. The direc-
tion of the lth halfspace forming Sk is given by − pl,k ,
whereas ql,k accounts for the halfspace’s offset from the
origin of {f1}. The inequality 
 denotes vector (compo-
nentwise) inequality. Fig. 6(a) is an illustration of these
relationships for the same environment in Fig. 4(a). The
resulting

∑M
m=1 log [mA (mφN+1)] for this environment is

plotted in Fig. 6(b). The family of K convex programs in
(16) yields K receiver positions that are optimal over each

Fig. 6. (a) Environment comprising three pre-deployed receivers
(green) estimating the states of two unknown SOPs (blue). The
polyhedron set Sk (gray) is formed by the intersection of L = 4

halfspaces. The direction of the lth halfspace forming Sk is given by
−pl,k . Each halfspace boundary is the line (purple and red) through each
SOP to each receiver. For SOPs other than the reference frame SOP {f1},

the resulting halfspace may not pass through the origin, which is
captured by ql,k .

(b) Resulting
∑M

m=1 log[mA(mφN+1)] for placing an additional receiver
at positions on a grid sampled at one meter intervals in

[−1500,−1000]T ≤ rrN+1 ≤ [1500, 1500]T into an environment
comprised of three pre-deployed receivers and two SOPs.

Sk . Therefore, the global optimal solution J 	 is given by

J 	
(
r	

rN+1

) = max
k

[J 	
k

(
r	

rN+1,k

)]
, (17)

where the optimizer r	
rN+1

is the global optimal receiver
position, and J 	

k and r	
rN+1,k

are the optimal value and the
corresponding optimizer in the kth set, respectively. The
above analysis provides a simple recipe for the optimal
placement of an additional receiver into an environment
comprising multiple, arbitrarily deployed SOPs, which is
summarize in Algorithm 2.

2) Convergence Analysis: To solve the GDOP op-
timization problem, a nonlinear numerical optimization
solver must be relied on. Due to the shape of the GDOP
function in (6), the solver will often undesirably converge
to a local optimal solution. To demonstrate this behavior,
the environment in Fig. 4(a) was simulated and MATLAB’s
numerical nonlinear optimization function fmincon was
used.

The solver’s initial guess was drawn according to
rrN+1 ∼ U([−1500, −1000]T, [1500, 1500]T) and the opti-
mization problem was solved 10,000 times. In addition, the
environment was gridded with a resolution �x = �y = 1
and the optimization problem was solved through exhaus-
tive search to find the global minimum. The solution ob-
tained through the numerical solver failed to converge to
the global minimum 44.1% of the time.

The proposed optimization criterion (16), (17), while
not directly optimizing GDOP, posses the following advan-
tages. First, it decomposes the optimization problem into
a family of independent convex programs, which may be
executed in parallel. Second, the optimal solution of the
optimization criterion (16), (17) is the global optimum to
which the solver would converge in a faster fashion. Third,
the obtained solution from (16), (17) is very “close” to the
global solution of (6).

The global optimizer for the GDOP problem (6) turned
out to be r	

N+1 = [−1500, −630]T, while the optimizer for
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Algorithm 2: Optimal Receiver Placement for Mul-
tiple SOPs.

Given: Positions of N pre-deployed receivers and
estimates of M SOPs’ positions
for m = 1, . . . , M

• Place the origin of a cartesian coordinate frame
at the position of the mth SOP.
• Calculate the angles {mθn}Nn=1 sandwiched

between vectors pointing from the mth SOP to
each receiver.
• Parameterize the area mA for the mth SOP by

the candidate receiver position rN+1 using (27)
in Appendix A.

end for
Divide the environment into K polyhedra using

(28) and (29) in Appendix B.
for k = 1, . . . , K

• Initialize receiver placement guess anywhere in
set k.
• Solve the convex optimization problem (16)

numerically.
• Save the optimal value J 	

k and its
optimizer rr	

N+1,k
.

end for
Place the additional receiver at r	

rN+1
according

to (17).

(16), (17) turned out to be r	
N+1 = [−1500, −657]T. The

GDOP associated with the optimizer of (6) was 2.5517,
while the GDOP evaluated at the optimizer of (16), (17)
was 2.5518. It is worth noting that one could use the optimal
solution from (16), (17) as a good initial guess that is close
to the optimal solution of the GDOP problem (6).

IV. OPTIMAL MAPPING PERFORMANCE CHARACTER-
IZATION

This section characterizes the optimal mapping perfor-
mance of an SOP as a function of the number of mobile
receivers in the environment and time. The objective of this
characterization is to prescribe the optimal achievable map-
ping performance of an SOP within a specified time and for
a certain number of receivers.

A. Problem Formulation

The following problem is considered. A set of N mobile
receivers with knowledge about their own states are mak-
ing pseudorange observations on an unknown terrestrial
SOP. Assuming that these observations are fused through
a dynamic centralized estimator, specifically an extended
Kalman filter (EKF), to estimate the state vector of the
SOP xs with dynamics (1), what is the optimal mapping
performance as a function of N and time?

In contrast to Section III, which analyzed the op-
timal placement of the (N + 1)st receiver, given a

set of N randomly-distributed receivers, the optimal
mapping performance for the problem considered here is a
function of the simultaneous placement of all the receivers.
Specifically, the optimization is over all the receiver angles
{1φn}Nn=1. This optimization enables an off-line character-
ization of the optimal achievable mapping performance,
which is summarized in Theorem IV.1.

THEOREM IV.1 The optimal mapping performance for N

mobile receivers with knowledge of their own states collab-
oratively estimating the state vector of one terrestrial SOP
with dynamics (2) using pseudorange observations (3) with
independent noise with identical measurement noise vari-
ance σ 2 is: 1) independent of the SOP’s state vector estimate
and 2) solvable off-line. The optimal mapping performance
is given by the solution to the discrete-time Riccati equation

P(k + 1|k) = Fs

{
P(k|k − 1) − P(k|k − 1)H	T

·
[
H	P(k|k − 1)H	T + R

]−1

· H	P(k|k − 1)
}
FT

s + Qs (18)

with initial value P(0| − 1), where P is the prediction error
covariance,

H	 =

⎡
⎢⎢⎢⎢⎢⎣

− cos 2π0
N

− sin 2π0
N

−1 0

− cos 2π
N

− sin 2π
N

−1 0

...
...

...
...

− cos 2π (N−1)
N

− sin 2π (N−1)
N

−1 0

⎤
⎥⎥⎥⎥⎥⎦ , (19)

the matrix R is the measurement noise covariance, and Fs

and Qs are the SOP’s state dynamics and process noise
covariance, respectively, which are defined in section II-A.

PROOF Assuming the receivers’ observation noise to be
i.i.d., i.e., {σ 2

n }Nn=1 ≡ σ 2 and R = σ 2IN×N , the optimal
achieved performance is essentially determined by the ge-
ometric placement of the receivers. The lowest GDOP is
achieved when the unit LOS vectors pointing from the SOP
to the receivers reside at the vertices of a regular polygon
[28]. Therefore, an environment consisting of N optimally-
placed receivers, each drawing pseudorange observations
on the same SOP modifies the observation Jacobian matrix
for (3) to take the form of (19).

Next, consider the estimation error covariance update
equation of the EKF in the information form

P−1(k + 1|k + 1)=P−1(k+1|k) + 1

σ 2
HT(k + 1)H(k + 1),

where P(k + 1|k + 1) is the estimation error covariance
and P(k + 1|k) is the prediction error covariance. The in-
formation associated with the latest observation (at time
step k + 1) is ϒ(k + 1) � 1

σ 2 HT(k + 1)H(k + 1). If the re-
ceivers are placed optimally, plugging (19) into ϒ(k + 1)
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yields

ϒ(k + 1)

= 1

σ 2

N−1∑
n=0

⎡
⎢⎢⎢⎢⎣

cos2 2πn
N

cos 2πn
N

sin 2πn
N

cos 2πn
N

0

sin 2πn
N

cos 2πn
N

sin2 2πn
N

sin 2πn
N

0

cos 2πn
N

sin 2πn
N

1 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

(20)

By using the Fourier equations

N−1∑
n=0

cos2 2πn

N
= N

2
,

N−1∑
n=0

sin2 2πn

N
= N

2
,

N−1∑
n=0

cos
2πn

N
sin

2πn

N
= 0,

and the summation equations

N−1∑
n=0

cos
2πn

N
= 0,

N−1∑
n=0

sin
2πn

N
= 0,

the information (20) becomes

ϒ(k + 1) = 1

σ 2
diag

[
N

2
,
N

2
, N, 0

]
,

which is independent of the SOP’s state vector estimate.
Noting that the SOP’s dynamics are linear, the prediction
error covariance, given by

P(k + 1|k) = FsP(k|k)FT
s + Qs,

is also independent of the SOP’s state vector estimate.
Therefore, if the receivers maintain their optimal distri-
bution around the latest SOP’s position estimate r̂s at the
time instants when new observations are taken, the esti-
mation error covariance can be computed without knowl-
edge of the SOP’s state vector estimates. This allows for
solving the Riccati equation (18) governing the evolution
of the estimation error covariance off-line, and the result-
ing estimation error covariance time history is the optimal
mapping performance as a function of time and number of
receivers N . �

B. Simulation Results

This section presents simulation results demonstrating
the optimal mapping performance as a function of time and
N . Moreover, the estimation error due to random receiver
trajectories is compared with the optimal mapping perfor-
mance. The simulation settings are summarized in Table I.

Fig. 7 illustrates the logarithm of the determinant of
the posterior estimation error covariance, log{det[P	(k +
1|k + 1)]}, which is related to the volume of the estimation
uncertainty ellipsoid [24], as a function of time and N . This
plot provides the minimum achievable uncertainty of the
states of an unknown SOP as a function of time and N .
This plot can be utilized to determine the minimum number
of receivers that must be deployed in an environment to

TABLE I
Simulation Settings for Optimal Mapping

Performance of an Unknown SOP

Parameter Value

xs (0) [0, 0, 1, 0.1]T

Ps (0| − 1) (103)·diag [1, 1, 3, 0.3]

x̂s (0| − 1) ∼ N [xs (0), Ps (0| − 1)]{
h0,s, h−2,s

} {
8.0 × 10−20, 4.0 × 10−23

}
σ 2 100 m2

T 0.1 s

Fig. 7. Logarithm of the determinant of the optimal posterior
estimation error covariance log{det[P	(k + 1|k + 1)]} expressed as a

function of time and N ∈ {3, 4, . . . 15} receivers.

TABLE II
Simulation Settings for the Receivers’

Initial Position

Parameter Value

rj
r1 (0) [−150.8, 169.3]T + bj

rj
r2 (0) [24.6,−13.7]T + bj

rj
r3 (0) [−25.6,−45.5]T + bj

rj
r4 (0) [105.7,−29.6]T + bj

b1, b2, b3 [0, 0]T , [125, 0]T , [200, 0]T

achieve a desired estimation uncertainty within a specified
period of time.

To compare the optimal mapping performance versus
random receiver trajectories that do not maintain the opti-
mal receiver placement around the SOP’s position estimate,
four receivers were randomly placed around the SOP. The
initial state vector of the nth receiver was set to xrn

(0) =
[rT

rn
(0), ṙT

rn
(0), cδtrn

(0), cδ̇t rn
(0)]T, where ṙrn

(0) = [0, 0]T,
cδtrn

(0) = 10, and cδ̇t rn
(0) = 1. The receivers’ initial po-

sitions rrn
(0) are specified in Table II. The receivers’ ini-

tial positions were varied across three simulation runs, by
varying an offset {bj }3

j=1 to create varying GDOP qual-
ity. Subsequently, the receivers moved according to a ve-
locity random walk motion with an acceleration process
noise power spectral density q̃x = q̃y = 0.1(m/s2)2 [13].
The receivers’ trajectories across the three simulation runs
(corresponding to j = 1, 2, 3) were the same in order to
analyze the effect of the initial GDOP. The time history
of the resulting log{det[Pj (k + 1|k + 1)]} corresponding
to j = 1, 2, 3 versus the optimal log{det[P	(k + 1|k + 1)]}
are plotted in Fig. 8(a) for the trajectories traversed plotted
in Fig. 8(b)–(d).
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Fig. 8. Logarithm of the determinant of the optimal posterior estimation
error covariance log

{
det

[
P	(k + 1|k + 1)

]}
versus the posterior

estimation error covariance due to three simulation runs corresponding to
the receiver trajectories in (b)–(d). The receivers’ trajectories in (b)–(d)

are the same. The receivers’ initial positions in (b)–(d) were varied
according to an offset bj to yield different initial GDOP quality: (b) low
GDOP with b1, (c) medium GDOP with b2, and (d) high GDOP with b3.

It can be seen from Fig. 8 that although the shape
of the trajectories were the same between each run, the
initial GDOP quality greatly influenced the resulting es-
timation uncertainty. Also note that although the tra-
jectories in Fig. 8(b) corresponded to the lowest initial
GDOP out of all the runs, the resulting estimation un-
certainty for these trajectories never violated the optimal
log{det[P	(k + 1|k + 1)]}.

V. EXPERIMENTAL RESULTS

This section demonstrates collaborative mapping of a
terrestrial SOP emanating from a cellular CDMA base
transceiver station (BTS). This section consists of two sec-
tions. In the first section, the dynamics and observation
models presented in Section II are validated to be suit-
able models in a real-world setting. Such model validation
is crucial, since these models were used in deriving the
optimal collaborative mapping performance of the EKF in
Theorem IV.1. In the second section, collaborative mapping
results demonstrate the bound derived in Theorem IV.1. To
this end, three vehicles were equipped with two antennas
each, to acquire and track multiple GPS signals and a cellu-
lar BTS whose signal was modulated through CDMA. The
GPS and cellular signals were simultaneously downmixed
and synchronously sampled via two National Instruments©R

universal software radio peripherals (USRPs). These front-
ends fed their data to the generalized radionavigation in-
terfusion device software-defined radio (SDR) [44] and the
Multichannel Adaptive TRansceiver Information eXtractor
(MATRIX) SDR [15], which produced pseudorange ob-
servables from all GPS L1 C/A signals in view and the
cellular BTS, respectively, at 1/T = 5Hz. Fig. 10 depicts
the experimental hardware setup.

The MATRIX SDR produced pseudorange observables
to the BTS, modeled according to (3), by exploiting the

Fig. 9. Measurement analysis. (a) Comparison of the true data
produced by the MATRIX SDR, ρ′

1, and the distance from the receiver to
the BTS, d1. (b) The sequence (22) computed by replacing z′

n with the
true data ρ′

1. (c) Resulting sample ACF of the sequence in (b) with the
corresponding ±σ95% confidence bounds. (d) Zoom of (c) illustrating

that only values up to the first two lags of the sample ACF are significant.

cellular CDMA signal structure as described in detail in
[15]. The produced pseudoranges are unambiguous in the
sense that they were associated with a particular BTS by
decoding the BTS’s identification number from the cellu-
lar CDMA paging channel. For this field experiment, the
SOP’s signal structure was known to be cellular CDMA.
If the signal structure is unknown, several SDR modules
(e.g., CDMA, LTE, FM, etc.) may be run in parallel until
a LOS signal is acquired and tracked and data association
for the produced pseudorange and the SOP transmitter is
performed. If the receiver is in an environment subject to
multipath, one of several multipath mitigation methods can
first be employed to improve the LOS time-of-arrival es-
timate, e.g., estimation of signal parameters via rotational
invariance (ESPRIT) [45] and space-alternating generalized
expectation maximization (SAGE) [46].

A. Model Verification

The symbol ρn will be used to denote the nth receiver’s
produced pseudorange measurement (i.e., data by the MA-
TRIX SDR) to contrast the pseudorange model zn in (3).
Consider the nth receiver’s clock bias-compensated pseu-
dorange observation model

z′
n(k) � zn(k) − cδtr (k) = dn(k) − cδts(k) + vn(k), (21)

where dn(k) � ‖rrn
(k) − rs‖. According to (21), the MA-

TRIX SDR’s clock bias-compensated pseudorange ρ ′
n(k) �

ρn(k) − cδtrn
(k) should consist of dn, cδts , and vn. To an-

alyze this, a vehicle traversed a trajectory for 28 s while
producing ρ1 to a single BTS. The receiver’s states cδtr1

and rr1 were estimated by a least-squares solver using the
available GPS pseudoranges and the position rs was sur-
veyed from the BTS’s true location. The true data ρ ′

1 and
the distance d1 are plotted in Fig. 9(a). The initial value
ρ ′

1(0) was aligned with d1(0) to compensate for cδts(0).
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Fig. 10. Experiment hardware setup.

From Fig. 9(a) it can be noted that the profiles of the
curves closely match, indicating that the trend of ρ1 is
mainly due to d1. The receiver’s clock bias-compensated
observation model (21) suggests that the deviation of ρ ′

1
from d1 is attributed to vn and the dynamics of cδts . To ver-
ify this deviation, the measurement noise vn and the process
noise terms wδts and wδ̇ts

driving cδts and cδ̇t s are studied
next by applying the following steps commonly used in
time-series analysis [47]. First, the data is de-trended by
subtracting dn and applying a transformation to obtain sta-
tionary residuals, specifically, a linear combination of wδts ,
wδ̇ts

, and vn. Second, the sample autocorrelation function
(ACF) is computed for the resulting sequence. Third, an
appropriate model is identified by using key attributes from
the sample ACF and is compared with the model presented
in this paper.

The transformation applied is a double-difference
in time defined by λn(k+ 1) � γn(k+1) − γn(k), where
γn(k+ 1) � z̄(k+1) − z̄(k) and z̄(k) � dn(k) − z′

n(k). It is
shown in Appendix C that λn(k) has the form

λn(k) = λn,1(k) + λn,2(k) + λn,3(k), (22)

where λn,1(k) � wδts (k) − wδts (k−1), λn,2(k) � −[vn(k) −
2vn(k−1) + vn(k−2)], and λn,3(k) � T wδ̇ts

(k). The
sequences λn,1 and λn,2 are first-order and second-order
moving averages (MAs), respectively, which have the form

ξi(k) =
qi∑

j=0

βje(k − j ), β0 = 1,

where βj is a constant, e is a DT zero-mean white noise
sequence, and qi is the MA order [48]. The sequence λn,3

is a DT zero-mean white noise sequence, which can be
generalized as an MA with order q3 = 0. It follows that λn

itself is an MA, since the sum of MAs is also an MA with
order q ≤ max{q1, q2, q3} = 2, where qi is the order of λn,i

[49].
The sample ACF of a qth order MA will have signif-

icant values up to lag q, and will become effectively zero
thereafter. Effectively zero implies that the sample ACF
values should be approximately zero-mean and obey the
95th-percentile confidence bounds (±σ95% ≈ ±1.96/

√
L),

where L is the total number of samples [48]. To check if the

collected data agrees with this hypothesis, z′
n was replaced

with ρ ′
1 to produce λ1, which is plotted in Fig. 9(b). The

sample ACF of λ1 and the corresponding ±σ95% bounds are
plotted in Fig. 9(c) and (d) for L = 400 samples.

The following conclusions about the underlying se-
quences can be noted from Fig. 9(c) and (d). First, since
the last significant ACF value is at the second lag, a
second order MA model is appropriate, as hypothesized.
Second, since an MA model is appropriate, the driving pro-
cess noise wδts and wδ̇ts

and the measurement noise vn are
appropriately modeled as white sequences. Third, since a
double-difference in time was required to detrend the data, a
double-integrator SOP clock model is appropriate. Fourth,
since λn is a stationary MA and by invoking a second-
order ergodicity assumption, the measurement noise vari-
ance σ 2

n can be computed from the data, as is shown in
Appendix D, to be

σ 2
n = 1

6
varL (λn) − 1

3
c2

(
Sw̃δts

T +Sw̃ ˙δts

T 3

3

)
, (23)

where varL (λn) is the sample variance of λn using L

samples.

B. Mapping Results

Three separate runs were conducted. In the first run, the
vehicle-mounted receivers began their trajectories in po-
sitions that resulted in a low GDOP. The receivers began
estimating the states of the cellular BTS xs by fusing their
pseudorange observables through a centralized EKF. The
network implementation to fuse these pseudoranges could
be integrated into developing communication standards,
such as the IEEE802.11p dedicated short range communica-
tion, which is designed to support future vehicle-to-vehicle
and vehicle-to-infrastructure communication [50].

The EKF was initialized with an initial estimate given
by x̂s(0| − 1) ∼ N [xs(0), Ps(0| − 1)], where xs(0) =
[rT

s (0), cδts(0), cδ̇t s(0)]T, where rs(0) is the projection
of the BTS’s true position in the earth-centered earth-
fixed coordinate frame to a planar system, cδts(0) ≡
d1(0) + cδtr1 (0) − ρ1(0), cδ̇t s(0) ≡ [cδts(1) − cδts(0)]/T ,
and Ps(0| − 1) ≡ (104) · diag[1, 1, 3, 0.3]. This initializa-
tion scheme is customary in EKFs in which the prior, un-
certain information is utilized. Other initialization schemes
are also possible. For example, a batch nonlinear least-
squares-type approach could be employed in which a batch
of initial measurements are used to produce an initial guess
x̂s(0| − 1) and associated Ps(0| − 1). Alternatively, a par-
ticle filter operating on a batch of measurements could be
employed to produce x̂s(0| − 1) and Ps(0| − 1). The par-
ticles could be initialized by drawing positions from a po-
lar coordinate system fixed at each receiver with an angle
drawn uniformly between 0 and 2π and a radius drawn
uniformly between 0 and the maximum operating range of
the cellular BTS. The initial clock bias for each particle
may be computing using the initial measurements and the
drawn position, while the clock drift for each particle could
be initialized to zero. It is worth noting that since three
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Fig. 11. Experimental results for low GDOP run. Image: Google Earth.

Fig. 12. Resulting log {det [P(k + 1|k + 1)]} produced by the EKF for
each of the three experimental runs plotted against the theoretical lower

bound (red dotted curve), which was found using Theorem IV.1. The
black curve corresponds to low GDOP calculated from the receiver

positions illustrated in Fig. 11. The blue and green curves correspond to
medium and high GDOP, respectively, which were calculated from the

second and third experimental runs, respectively.

noncollinear receivers were collaboratively mapping the
2-D position of a BTS, there will be no local observability
issues with the EKF and the estimates will be unambiguous.

The process noise covariance for the BTS’s oscilla-
tor Qclk,s was assumed to correspond to a typical oven-
controlled crystal oscillator, which is usually the case for
cellular CDMA BTSs [12]. Any mismatch between the
true Qclk,s and the assumed one will be small and will
be included in the measurement noise variances {σ 2

n }3
n=1.

Alternatively, Qclk,s could be estimated off-line through a
batch estimator or online adaptively [51]. The measure-
ment noise variances {σ 2

n }3
n=1 were calculated using (23)

as described in section V-A. These values were found to
be very similar, i.e., {σ 2

n }3
n=1 ≈ σ 2. Moreover, the receivers

were placed sufficiently far from each other to assume in-
dependent channels between the BTS and each receiver.
Therefore, the measurement noise covariance was set to
R ≡ σ 2I3×3.

The final 2-D estimation error of the BTS’s position
was within 3 m from the true BTS position after 70 s.
Fig. 11 is an illustration of the receivers’ trajectories, the
true and estimated BTS position, and the initial and final
95th-percentile estimation uncertainty ellipses of r̂s for the
low GDOP run. Note from Fig. 11 the significant reduc-
tion in the size of estimation uncertainty ellipse from the
initial to the final uncertainty with only three receivers.
The black curve in Fig. 12 illustrates the corresponding
time history of log{det[P(k + 1|k + 1)]} plotted against the

TABLE III
Final BTS Position Errors

Initial GDOP Low (3.8) Medium (8.5) High (12.4)

Mapping Error (m) 3.0 4.7 6.9

theoretical lower bound that was found in Section IV. In
the second and third runs, the receivers were initialized in
positions that resulted in a medium and high GDOP, re-
spectively. A summary of the mapping errors for each run
are tabulated in Table III. The 3 m localization is dependent
on many factors (e.g., type of transmitter being mapped,
noise statistics, number of receivers and corresponding tra-
jectories, elapsed time, etc.). The resulting time history of
log{det[P(k + 1|k + 1)]} are plotted as the blue and green
curves in Fig. 12. Comparable results were noted upon
running the EKF with different initial estimates. These ex-
perimental results demonstrate the expected behavior of: 1)
a worse quality mapping performance for receiver positions
yielding higher GDOP and 2) none of the traversed trajecto-
ries resulted in an estimation uncertainty which violated the
theoretical optimal mapping performance (lower-bound).

VI. CONCLUSION

This paper studied optimal collaborative mapping of
terrestrial SOPs. First, the optimal placement of a receiver
to an environment comprising one SOP and N pre-deployed
receivers with a random initial distribution was considered.
Three optimization problems were formulated and com-
pared: minimizing the GDOP, maximizing the determinant
of the inverse of the GDOP matrix, and maximizing the
area of a polygon inscribed in the unit circle whose ver-
tices are the endpoints of unit LOS vectors from the SOP
to the receivers. It was shown that the area maximization
problem is piecewise-concave with a simple analytical so-
lution. Next, the optimal receiver placement problem was
extended to an environment comprising an arbitrary num-
ber of SOPs. A novel optimization criterion was proposed
for this scenario, namely, the sum of logarithms of polygon
areas. It was demonstrated that while the classical GDOP
and determinant optimization problems do not posses any
useful convexity properties, the proposed optimization cri-
terion 1) yields a family of convex programs and guarantees
a global optimal solution and 2) allows for executing the
solver of the family of convex programs in parallel. This
paper also derived the optimal mapping performance of a
single SOP as a function of time and number of receivers in
the environment and demonstrated the theoretical optimal
mapping performance numerically and experimentally.

APPENDIX A
DERIVATION OF THE AREA OPTIMIZATION FUNC-
TION (16)

The resulting area mA (mφN+1) for the mth SOP after
placing the (N + 1)st is

mA
(
mφN+1

) = mAN + �mA
(
mφN+1

)
, (24)
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where mAN is the area created by the pre-deployed receivers
and �mA (mφN+1) is the change in area from introducing
the (N + 1)st receiver, and is given by

�mA
(
mφN+1

) = 1

2

[
sin(mφN+1 − mφn)

+ sin(mθn − mφN+1 + mφn) − sin(mθn)
]
.

(25)

Using the angle difference identity for the sine function,
sin(α − β) = sin α cos β − cos α sin β, (25) can be rewrit-
ten as

�mA
(
mφN+1

)
= 1

2

{[
sin(mφN+1) cos(mφn) − cos(mφN+1) sin(mφn)

]
+ [

sin(mθn + mφn) cos(mφN+1)

− cos(mθn + mφn) sin(mφN+1)
] − sin(mθn)

}
. (26)

The optimization function (24) can be parameterized by
the candidate additional receiver position rN+1 by substi-
tuting the equality [ cos(mφn), sin(mφn) ]T = rrn−r̂sm

‖rrn−r̂sm‖ into
(26) and substituting the result into (24), giving

mA (rN+1)

= 1

2

{
(xrN+1 − x̂sm

)

‖rrn
− r̂sm

‖
[
sin(mθn + mφn) − sin(mφn)

]
+ (yrN+1 − ŷsm

)

‖rrn
− r̂sm

‖
[
cos(mφn) − cos(mθn + mφn)

]
− sin(mθn)

} + mAN. (27)

Note that since mAN is independent of rN+1, it may be
omitted from the optimization problem. Its values can be
computed off-line if desired.

APPENDIX B
EQUATIONS OF THE POLYHEDRA CONSTRAINTS (16)

The direction of the lth halfspace forming the poly-
hedron Sk is defined by the outward normal vector − pl,k ,
which is determined by the position of the nth pre-deployed
receiver and the position estimate of the mth SOP, specifi-
cally

pl,k = ±
[
− (yrN+1 − ŷsm

)

‖rrn
− r̂sm

‖ ,

(
xrN+1 − x̂sm

)
‖rrn

− r̂sm
‖

]T

. (28)

The corresponding halfspace’s offset from the origin of
{f1} is

ql,k = yrn
− (ŷsm

− yrn
)

(x̂sm
− xrn

)
· xrn

. (29)

APPENDIX C
DERIVATION OF (22)

Given the pseudorange observations zn defined in (3),
define

z̄n(k) � ‖rrn
(k) − rs‖ + cδtrn

(k) − zn(k)

= cδts(k) − vn(k). (30)

The clock bias δts can be removed by a single difference
of (30) in time and substituting for the SOP’s DT clock
bias dynamics cδts(k+1) = cδts(k) + cT ˙δts(k) + wδts (k),
yielding

γn(k+1) � z̄n(k+1) − z̄n(k)

= cδts(k+1) − cδts(k) − [vn(k+1) − vn(k)]

= cT ˙δts(k) + wδts (k) − [vn(k+1) − vn(k)]. (31)

The clock drift ˙δts can be removed by a single differ-
ence of (31) in time and substituting for the SOP’s clock
drift dynamics c ˙δts(k) = c ˙δts(k−1) + wδ̇ts

(k−1), which
yields

λn(k+1)� γn(k+1) − γn(k)

=cT [ ˙δts(k)− ˙δts(k−1)] + [wδts (k) − wδts (k−1)]

− [vn(k+1) − 2vn(k) + vn(k−1)]

= T wδ̇ts
(k−1) + wδts (k) − wδts (k−1)

− [vn(k+1) − 2vn(k) + vn(k−1)].

Note that λn is the sum of three stationary sequences. For
the sample ACF analysis conducted in this paper, each
stationary sequence can be shifted to start with index k,
giving

λn(k) = λn,1(k) + λn,2(k) + λn,3(k) (32)

where λn,1(k) � wδts (k) − wδts (k−1), λn,2(k) � −[vn(k) −
2vn(k−1) + vn(k−2)], and λn,3(k) � T wδ̇ts

(k).

APPENDIX D
DERIVATION OF (23)

Equation (32) can be written as λn(k) = κT y(k) where

κ � [ 1, T , −1, −1, 2, −1]T ,

y(k) �[
wδts(k), wδ̇ts

(k), wδts(k−1), vn(k), vn(k−1), vn(k−2)
]T

.

Assuming second-order ergodicity, i.e., for a sufficiently
large number of samples L, the sample variance of λn,
denoted varL (λn), is equal to the ensemble variance and is
given by

varL (λn) = κT�κ, (33)

where � � cov ( y) = diag
[
c2Qclk,s , c

2b, σ 2
n I3×3

]
and b �

Sw̃δts
T +Sw̃ ˙δts

T 3

3 is the top left element of Qclk,s . Finally, using
(33) to solve for σ 2

rn
gives

6σ 2
rn

= varL (λn) − c2

(
2T Sw̃δts

+ 2

3
T 3Sw̃ ˙δts

)

⇒ σ 2
rn

= 1

6
varL (λn) − 1

3
c2b.
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