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Spectrum Sharing Radar: Coexistence via Xampling

Deborah Cohen, Kumar Vijay Mishra, and Yonina C. Eldar

Abstract—This paper presents a spectrum sharing technology
enabling interference-free operation of a surveillance radar and
communication transmissions over a common spectrum. A cog-
nitive radio receiver senses the spectrum using low sampling and
processing rates. The radar is a cognitive system that employs a
Xampling-based receiver and transmits in several narrow bands.
Our main contribution is the alliance of two previous ideas, CRo
and cognitive radar (CRr), and their adaptation to solve the
spectrum sharing problem.

Index Terms—Spectrum sharing, spectral coexistence, cogni-
tive radar, cognitive radio, Xampling, SSPARC

I. INTRODUCTION

The unhindered operation of a radar that shares its spectrum
with communication (“comm”, hereafter) systems has captured
a great deal of attention within the operational radar com-
munity in recent years [1-3]. The interest in such spectrum
sharing radars is largely due to electromagnetic spectrum
being a scarce resource and almost all services having a need
for a greater access to it. With the allocation of available
spectrum to newer comm technologies, the radio-frequency
(RF) interference in radar bands is on the rise. Spectrum
sharing radars aim to use the information from coexisting
wireless and navigation services to manage this interference.

Recent research in spectrum sharing radars has focused
on S and C-bands, where the spectrum has seen increasing
cohabitation by Long Term-Evolution (LTE) cellular/wireless
commercial comm systems. Many synergistic efforts by major
agencies are underway for efficient radio spectrum utilization.
The Enhancing Access to the Radio Spectrum (EARS) project
by the National Science Foundation (NSF) [3] brings together
many different users for a flexible access to the electro-
magnetic spectrum. A significant recent development is the
announcement of the Shared Spectrum Access for Radar and
Comm (SSPARC) program [2, 4] by the Defense Advanced
Research Projects Agency (DARPA). This program is focused
on S-band military radars and views spectrum sharing as a
cooperative arrangement where the radar and comm services
actively exchange information and do not ignore each other.
It defines spectral coexistence as equipping existing radar
systems with spectrum sharing capabilities and spectral co-
design as developing new systems that utilize opportunistic
access to the spectrum [3].

A variety of system architectures have been proposed for
spectrum sharing radars. Most put emphasis on optimizing
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the performance of either radar or comm while ignoring the
performance of the other. The radar-centric architectures [6—
8] usually assume fixed interference levels from comm and
design the system for high probability of detection (FPy).
Similarly, the comm-centric systems (e.g. “CommRad” [9])
attempt to improve performance metrics like the error vector
magnitude (EVM) and bit/symbol error rate (BER/SER) for
interference from radar [10]]. With the introduction of the
SSPARC program, joint radar-comm performance is being
investigated [[11-13]], with extensions to MIMO radar-comm
[14]]. In nearly all cases, real-time exchange of information
between radar and comm hardware has not yet been integrated
into the system architectures. Exceptions to this are automotive
solutions where the same waveform is used for both target
detection and comm [[15} |16]]. In a similar vein, our proposed
method, described below, incorporates handshaking of spectral
information between the two systems.

Conventional receiver processing techniques to remove RF
interference in radar employ notch filters at hostile frequencies.
If only a few frequencies are contaminated, then this method
does not introduce exceedingly large signal distortion in radars
that use wide bandwidths (e.g. FOPEN [17]). An early work
by [18]] suggests the use of step-frequency polyphase codes for
ultrawideband radar waveforms to obtain a thinned spectrum
with nulls at interfering frequencies. Later design solutions
use convex optimization of radar performance metrics for
given spectral constraints (see [[19] and references therein; [20}
21]]). The objective functions in such (convex and nonconvex)
optimization procedures vary, where previous studies have
considered signal to noise ratio (SNR) [22], transmit energy
in stopband [7], sidelobe levels [23], a weighted sum of
suppressed band spectral energy and range sidelobes [24, [25]],
and information theoretic metrics [26, 27|]. A recent line of
research focuses on constrained quadratic program techniques
to obtain a waveform that fulfills more complex spectral
constraints that take into account disturbance from overlaid
licensed emitters [[22, 28|]. The radar is assumed to be aware of
the radio environment map (REM) and optimization provides
a coded transmit waveform. In all the above works, spectrum
sharing is achieved by notching out the radar waveform’s
bandwidth causing a decrease in the range resolution.

Our spectrum sharing solution departs from this baseline.
The approach we adopt follows the recently proposed Xam-
pling (“compressed sampling”) framework [29, 30], a system
architecture designed for sampling and processing of analog
inputs at rates far below Nyquist, whose underlying structure
can be modeled as a union of subspaces (UoS). The input
signal belongs to a single subspace, a priori unknown, out of
multiple, possibly even infinitely many, candidate subspaces.
Xampling consists of two main functions: low rate analog to
digital conversion (ADC), in which the input is compressed



in the analog domain prior to sampling with commercial
devices, and low rate digital signal processing, in which the
input subspace is detected prior to digital signal processing.
The resulting sparse recovery is performed using compressed
sensing (CS) [31] techniques adapted to the analog setting.
This concept has been applied to both comm [32-35] and
radar [36, [37]], among other applications.

Time-varying linear systems, which introduce both time-
shifts (delays) and frequency-shifts (Doppler-shifts), such as
those arising in surveillance point-target radar systems, fit
nicely into the UoS model. Here, a sparse target scene is
assumed, allowing to reduce the sampling rate without sacrific-
ing delay and Doppler resolution. The Xampling-based system
is composed of an ADC which filters the received signal to
predetermined frequencies before taking point-wise samples.
These compressed samples, or “Xamples”, contain the infor-
mation needed to recover the desired signal parameters. In 36}
38|, a multiple bandpass sampling approach was adopted that
used four groups of consecutive coefficients.

Here, we capitalize on the simple observation that if only
narrow spectral bands are sampled and processed by the
receiver, then one can restrict the transmit signal to these.
The concept of transmitting only a few subbands that the
receiver processes is one way to formulate a cognitive radar
(CRr) [37]]. The delay-Doppler recovery is then performed as
presented in [36]. The range resolution obtained through this
multiband signal spectrum fragmentation is identical to that
of a wideband traditional radar. Further, by concentrating all
the available power in the transmitted narrow bands rather
than over a wide bandwidth, the CRr increases SNR. In the
CRr system, as detailed by [37]], the support of subbands
varies with time to allow for dynamic and flexible adaptation
to the environment. Such a system also enables the radar
to disguise the transmitted signal as an electronic counter
measure (ECM) or cope with crowded spectrum by using a
smaller interference-free portion. In this work, we focus on
this latter feature.

The CRr configuration is key to spectrum sharing since
the radar transceiver can adapt its transmission to available
bands, achieving coexistence with comm signals. To detect
such vacant bands, a comm receiver is needed, that performs
spectrum sensing over a large bandwidth. Such a task has
recently received tremendous interest in the comm community,
which faces a bottleneck in terms of spectrum availability.
To increase the efficiency of spectrum managing, dynamic
opportunistic exploitation of temporarily vacant spectral bands
by secondary users has been considered, under the name of
Cognitive Radio (CRo) [39 40]. In this work, we use a
CRo receiver to detect the occupied comm bands, so that
our radar transmitter can exploit the spectral holes. One of
the main challenges of spectrum sensing in the context of
CRo is the sampling rate bottleneck. This issue arises since
CRos typically deal with wideband signals with prohibitively
high Nyquist rates. Sampling at this rate would require very
sophisticated and expensive ADCs, leading to a torrent of
samples. In this context, the Xampling framework provides an
analog preprocessing and sub-Nyquist sampling front-end, and
subsequent low rate digital recovery processing, that exploits

the sparsity of the sensed signal in the frequency domain [32].

Here, we propose a waveform design and receiver process-
ing solution for spectral coexistence (a la SSPARC) composed
of a comm receiver and radar transceiver implementing the
Xampling concepts. The CRo comm receiver senses the spec-
trum from sub-Nyquist samples and provides the radar with
spectral occupancy information. Equipped with this spectral
map as well as a known REM detailing typical interference
with respect to frequency, the CRr transmitter chooses narrow
frequency subbands that minimize interference for its trans-
mission. The delay-Doppler recovery is performed at the CRr
receiver on these subbands. The combined CRo-CRr system
results in spectral coexistence via the Xampling (SpeCX)
framework, which optimizes the radar’s performance without
interfering with existing comm transmissions.

The main contribution of this work is combining two
previously proposed concepts, CRo and CRr, to solve an
existing practical problem, comm-radar spectrum sharing.
Beyond simple combination, the CRo and CRr are adapted
to the task at hand and the specific comm-radar setting.
First, the CRo processing is modified to the spectrum sharing
scenario of comm signal detection in the presence of radar
transmissions with known support. In addition, we consider
the radar transmit band selection problem conditioned to the
comm detected spectrum. Finally, the CRr detection criterion,
previously presented in terms of CS measures, is expressed
here with respect to a radar setting.

This paper is organized as follows. Section reviews
spectrum sharing research. Section [[II] formulates the spectrum
sharing problem and presents the comm and radar signal
models. Section introduces our CRo comm receiver that
performs blind spectrum sensing. In Section we describe
the CRr transmitted band selection and corresponding delay-
Doppler recovery. Software and hardware simulations are
presented in Section We conclude with a discussion on
future scope in Section

II. SPECTRUM SHARING ACROSS IEEE RADAR BANDS

Spectral interference to radars has drastically increased with
mobile comm technology but existed long before the latter. In
this section, we review some of the main spectrum sharing
applications. In the VHF (30-300 MHz) and UHF (300-
1000 MHz) bands, interference comes from broadcast and
TV services. A common example is the FOliage PENetration
(FOPEN) radar, where the receiver is conventionally designed
to notch out the interfering TV/radio frequencies [41]. Recent
introduction of the IEEE 802.11ah protocol at 900 MHz for
the Internet of Things (IoT), and 802.11af in 54-790 MHz
for cognitive radio technology makes VHF/UHF bands too
crowded for smooth radar operation [42].

From L-band (1-2 GHz) onward, the radars begin to witness
spectral intrusion from LTE. An example is the Air Route
Surveillance Radar (ARSR) used by Federal Aviation Admin-
istration (FAA) sharing frequencies with WiMAX (Wireless
Interoperability Microwave Access) devices [43]. Military ra-
dio services such as the Joint Tactical Information Distribution
System (JTIDS) in the 969-1206 MHz band are also known



to interfere with L-band radars [44]. However, a majority
of LTE waveforms, e.g. 802.11b/g/n (2.4 GHz) WCDMA
(Wide-band Code Division Multiplexing Access), WiMAX
LTE, LTE GSM (Global System for Mobile comm), EDGE
(Enhanced Data rates for GSM Evolution), coexist within the
S-band (2-4 GHz). Therefore, most of the spectrum sharing
studies are concerned with S-band radars. A recent work
[45] explores spectral cohabitation of Wi-Fi networks and S-
band surveillance radars. LTE spectrum sharing is also being
investigated for S-band shipborne air traffic control radars [46].

Spectral coexistence systems for C-band (4-8 GHz) are
gradually gaining at traction due to the latest 5 GHz band al-
location to 802.11a/ac VHT (Very High Throughput) wireless
LAN (WLAN) technology. In particular, this is of significant
concern to the Terminal Weather Doppler Radar (TDWR)
network, which is co-located with the US airports [47]]. In
fact, a recent study [48]] identifies spectral interference threats
from licensed transmitters to many other existing weather radar
networks at S, C and X-bands.

At present, spectral crowding for surveillance or weather
radars at frequencies higher than X-band is not under major
investigation. However, in these bands, the automotive radar
community has been more active in incorporating spectral co-
habitation with comm services. For example, [15] describes the
“RadCom” system that combines a traffic sensing K-band au-
tomotive radar with a comm link to other vehicles. At V-band,
another interesting study by [16] shows that the 802.11ad Wi-
Fi (60 GHz) Golay complementary sequence waveforms can
also be used for radar remote sensing. Recently, applications of
spectrum sharing in inter-vehicular comm and radar have also
been proposed at W-band [49} 50]. Furthermore, with current
waveform proposals for the 5G networks, centimeter (Ka) and
millimeter (V and W) wave bands are expected to become
dense in the future, thus requiring innovation in shared access
to the spectrum [S1]]. In the next section, we formulate the
spectrum sharing problem, where comm and radar transmit
over a common bandwidth.

III. PROBLEM FORMULATION

Denote the set of all frequencies of the available common
spectrum by F. The comm and radar systems occupy subsets
Fc and Fr of F, respectively. Our goal is to design the radar
waveform and its support Fpr, conditional on the fact that the
comm occupies frequencies Fc. We further assume that F¢
itself is unknown to the comm receiver, which has to first
detect these frequencies. The REM is assumed known to the
system as a measure of the typical spectral interference with
respect to frequency. Once F¢ is identified, the comm receiver
provides a spectral map of occupied bands to the radar.
Equipped with the detected spectral map and known REM,
the radar waveform generator then selects the available bands
with least interference for its transmission and notifies the
radar receiver of its selection. The latter processes only these
spectral bands using Xampling-based delay-Doppler recovery.
The radar conveys the frequencies Fr to the comm receiver
as well, so that it can ignore the radar bands while sensing
the spectrum. Using our recovery methods, the radar can
achieve delay-Doppler recovery performance similar to that

AL 1. Ta

_f Nyq f 3 f 2 2 f 3 M
2 2

Fig. 1. Multiband model with K = 6 bands. Each band does not exceed the bandwidth
B and is modulated by an unknown carrier frequency | f;| < fnyq/2, for i = 1,2, 3.

of a radar transmitting over the entire band F despite using
only a fraction of this bandwidth.

Our model is that of a “friendly” spectral coexistence where
an active cooperation between radar and comm is required,
as also envisaged by the SSPARC program. This is different
than the spectrum sharing techniques where the two systems
operate independently of each other and attempt to minimize
interference in their respective spectra.

A. Multiband Communication Signal

Let z¢(t) be a real-valued continuous-time comm signal,
supported on F = [—1/2Tyq, +1/2TNyq] and composed of
up to N transmit waveforms such that

Niig
vo(t) = si(t). )

i=1

Formally, the Fourier transform of x¢(t), defined by
1 T/2 -
lim — / x(t)e 72t e, 2)
T—o0 \/T -T /2
is zero for every f ¢ F. We denote by fnyg = 1/Tnyg
the Nyquist rate of x(¢). The waveforms, respective carrier
frequencies and bandwidths are unknown. We only assume
that the single-sided bandwidth B! for the ith transmission
does not exceed an upper limit B, namely B! < B for all 1 <
1 < Niig. Such sparse wideband signals belong to the so-called
multiband signal model (32} 52]. Figure |1| illustrates the two-
sided spectrum of a multiband signal with K = 2N, bands
centered around unknown carrier frequencies |f;| < fnyq/2.
Let Fo C F be the unknown support of z¢(t), where

Fo={fIlf — fil < Bi/2, forall 1 <i < Ng}. (3)

The goal of the comm receiver is to retrieve F¢, while
sampling and processing z¢(t) at low rates in order to reduce
system cost and resources.

B. Pulse Doppler Radar

Consider a standard pulse-Doppler radar that transmits a
pulse train

P-1
rry(t) =Y h(t—pr), 0<t<Pr )
p=0

consisting of P uniformly spaced known pulses h(t). The
interpulse transmit delay 7 is the pulse repetition interval
(PRI) (or “fast time”); its reciprocal being the pulse repetition
frequency (PRF). The entire duration of P pulses in (@) is
known as the coherent processing interval (CPI) (or “slow
time”).

Assume that the radar target scene consists of L non-
fluctuating point-targets, according to the Swerling-O target



model [S53]. The transmit signal is reflected back by the L
targets and these echoes are received by the radar processor.
The latter aims at recovering the following information about
any of the L targets from the received signal: the time delay
71, which is linearly proportional to the range of the target
from the radar; Doppler frequency v;, proportional to the radial
velocity of the target with respect to the radar; and complex
amplitude «;, proportional to the target radar cross section,
atmospheric attenuation and other propagation factors. The
target locations are defined with respect to the polar coordinate
system of the radar and their range and Doppler are assumed
to lie in the unambiguous time-frequency region, i.e. the time
delays are no longer than the PRI and Doppler frequencies are
up to the PRF. The received signal can then be written as

P—1L-1
TRy (1) = Z Z ah(t — 7 — pr)e P70 <t < Pr.

p=0 1=0
&)
It will be convenient to express 7r, () as a sum of single
frames

P-1
rry(t) =Y 1h (1), ©6)
p=0
where
L1
TR () = Z ah(t — 7 —pr)e MPT pr <t < (p+ 1)1,
1=0
(7

is the return signal from the pth pulse.

In a conventional pulse Doppler radar, the pulse
h(t) = hnyg(t) is a time-limited baseband function whose
continuous-time Fourier transform (CTFT) is Hnyg(f) =
S5 hngg(t)e 9277t dt. Tt is assumed that most of the signal’s
energy lies within the frequencies + By, /2, where B}, denotes
the effective signal bandwidth, such that the following approx-
imation holds:

By /2
Hyyq(f) = hyq ()27t (8)

A classical radar signal processor samples each incoming
frame rf, (t) at the Nyquist rate Bj, to yield the digitized
samples T%X [n,0 < n < N —1, where N = 7By. The
signal enhancement process employs a matched filter for the
sampled frames 1%, [n]. This is then followed by Doppler
processing where a P-point discrete Fourier transform (DFT)
is performed on slow time samples. By stacking all the N DFT
vectors together, a delay-Doppler map is obtained for the target
scene. Finally, the time delays 7; and Doppler shifts v; of the
targets are located on this map using a constant false-alarm
rate (CFAR) detector.

The bandwidth Bj of the transmitted pulses governs the
range resolution of the radar. Large bandwidth is necessary to
obtain high resolution, but such a spectral requirement is at
odds with the coexisting comm. We, therefore, propose an
alternative efficient spectral utilization method wherein the
radar transmits several narrow frequency bands instead of a
full-band radar signal. In particular, we propose exploiting

only a fraction of the bandwidth B}, for both transmission and
reception of the radar signal, without degrading its range res-
olution. In our spectrum-sharing solution, the radar transmits
a pulse h(t) supported over N, disjoint frequency bands, with
bandwidths { B}, centered around the respective frequen-
cies {f2} N, such that Zivz"l B! < By,. The number of bands
Ny is known to the receiver and does not change during the
operation of the radar. The location and extent of the bands
B! and f! are determined by the radar transmitter through
an optimization procedure to identify the least contaminated
bands (see Section [V-A). The resulting radar transmit signal
can be written as

Hp(f) = { ngNyq(f)a

where Fi, = [f! — B%/2, fi + B{ /2] is the set of frequencies
in the ith band. The parameters 5; > 1 are chosen such that
the total transmit power Pr of the spectrum sharing radar
waveforms remains the same as that of the conventional radar:

By /2 Ny
[ v nPar =Y [ e s =Pr 0
—Bn/2 i=17,

JEFL for 1<i<N,
otherwise,

(©))

In particular, if we choose 5; = S for all 1 < i < N, [54],
we obtain

Bn/2

- —Bp/2 |HNyq(f)|2df 11
P\ T T HaDRAF (an
Fr
where
Ny
Fr=JFk (12)

i=1

IV. COGNITIVE RADIO

Consider the comm signal (I). When the frequency support
of z¢(t) is known, sampling methods such as demodulation,
undersampling ADCs and interleaved ADCs [30 [33] can
be used to reduce the sampling rate below Nyquist. When
the frequency locations of the transmissions are unknown, a
classic processor samples x(t) at its Nyquist rate fyyq, Which
can be prohibitively high. To overcome the sampling rate
bottleneck, several blind sub-Nyquist sampling and recovery
schemes have been proposed that exploit the signal’s structure
and in particular its sparsity in the frequency domain. It has
been shown [52] that the minimal sampling rate for perfect
blind recovery in multiband settings is twice the Landau rate
[155]], or twice the occupied bandwidth, namely fi, = 2K B =
4N, B. This rate can be significantly lower than Nyquist, by
orders of magnitude.

In this work, we focus on one such technique - the mod-
ulated wideband converter (MWC) - that achieves the lower
sampling rate bound. The main advantage of the MWC is
that it overcomes practical issues presented by other methods,
allowing its hardware implementation. We first describe the
MWC sub-Nyquist sampling scheme and then turn to signal
recovery from low rate samples. We begin with a scenario
where the radar is silent so that the signal sensed by the comm
receiver is z¢(t) and then extend our approach to include
spectrum sensing in the presence of a known radar signal.
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Fig. 2. Spectrum slices of the input signal x¢ (f) multiplied by the coefficients a;
of the sensing matrix A, resulting in the measurements z; (f) for the ith channel.

A. Sub-Nyquist Sampling

The MWC [32] is composed of M parallel channels. In
each channel, an analog mixing front-end, where x¢(t) is
multiplied by a mixing function p;(t), aliases the spectrum,
such that each band appears in baseband. The mixing functions
pi(t) are periodic with period T}, such that f, = 1/7, > B
and have thus the following Fourier expansion:

oo

j2m
pi(t) = Z cue’

l=—o0

13)

In each channel, the signal goes through a lowpass filter (LPF)
with cut-off frequency f5/2 and is sampled at the rate f, > f,,
resulting in the samples z;[n]. Define

N =2 ’Vﬁqu-‘rﬁq—‘ , (14)
2fp
and Fs = [—fs/2, fs/2]. Following the calculations in [32],

the relation between the known discrete time Fourier transform
(DTFT) of the samples z;[n] and the unknown X (f) is given
by

z(f) = Axc(f),

where z(f) is a vector of length N with ith element z;(f) =
Z;(€927F15) and the unknown vector xc(f) is given by

xoi(f) = Xe(f + (0= [N/2))fp), [ EFs,

for 1 < ¢ < N. This relation is illustrated in Fig. The
M x N matrix A contains the known coefficients c¢;; such
that

[ eFs, (15)

(16)

Ail = Ci,—l = C;kl. (17)

The minimal number of channels to recover the K -sparse
vector xo(f), for f € F, dictated by CS results [31], is
M > 2K with f; > B per channel. The overall sampling

rate, given by
M
ftot = Mfs = FfNyqa

with M < N, can thus be as low as fmin = 2K B < fnyq-

(18)

The number of branches M dictates the total number of
hardware devices and thus governs the level of hardware
complexity. Reducing the number of channels is thus a crucial
challenge for the practical implementation of a CRo receiver.
The MWC architecture presents an interesting flexibility prop-
erty that permits trading channels for sampling rate, allowing
to drastically reduce the number of channels. Consider a
configuration where fs = qfp, with odd ¢. In this case,
the ith physical channel provides ¢ equations over F, =
[—f»/2, f»/2]. Conceptually, M physical channels sampling
at rate f; = qf, are then equivalent to M ¢ channels sampling
at fs = fp. The output of each of the M physical chan-
nels is digitally demodulated and filtered to produce samples
that would result from M¢q equivalent virtual branches. This
happens in the so-called expander module, directly after the
sampling stage. The number of channels is thus reduced at
the expense of higher sampling rate f; in each channel and
additional digital processing. At its brink, this strategy allows
to collapse a system with M channels to a single branch with
sampling rate f; = M f, (further details can be found in [30,
32, 156]).

The MWC analog mixing front-end, shown in Fig. |3} results
in folding the spectrum to baseband with different weights for
each frequency interval. The goal is now to recover x¢(t), or
alternatively x¢(f), from the low rate samples. In the next
section, we provide a reconstruction algorithm that achieves
the minimal rate of 2K B.

B. Signal Recovery

It is interesting to note that @ which is written in the
frequency domain, is valid in the time domain as well. We
can therefore reconstruct x¢(f) in the frequency domain, or
alternatively, recover x¢[n] in the time domain using

z[n] = Axc(n)]. (19)

The systems (I3) and (I9) are underdetermined due to the
sub-Nyquist setup and known as infinite measurement vectors
(IMV) in the CS literature [30, 31]. With respect to these two
properties, the digital reconstruction algorithm encompasses
the following three stages [30} 52] that we explain in more
detail below:

1) The continuous-to-finite (CTF) block constructs a finite

frame (or basis) from the samples.

2) The support recovery formulates an optimization prob-

lem whose solution’s support is identical to the support
Sc of x¢[n], that is the active slices.

3) The signal can then be digitally recovered by reducing

to the support of x¢[n].

The recovery of x¢[n| for every n or x¢(f) for each f
independently is inefficient and not robust to noise. Instead, the
support recovery paradigm from [52] exploits the fact that the
bands occupy continuous spectral intervals so that x¢(f) are
jointly sparse for f € F,, that is they have the same spectral
support Sc. The CTF block [52] then produces a finite system
of equations, called multiple measurement vectors (MMYV)
from the infinite number of linear systems or (I9).

From (13) or (I9), we have

Q=®Z " (20)
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Fig. 3. Schematic implementation of the MWC analog sampling front-end and digital signal recovery from low rate samples. The CRo inputs are the comm signal z ¢ (t) and

radar support F . The comm support output F¢ is shared with the radar transmitter.

where
Q= 2(f)z" (H)df =D znlz"n] @1
feFp n=oo
is a M x M matrix and
Zc - /f xR = 3 xelnlxinl @2

is a N x N matrix. The matrix Q is then decomposed to
a frame V such that Q = VVT, Clearly, there are many
possible ways to select V. One possibility is to construct it
by performing an eigendecomposition of Q and choosing V
as the matrix of eigenvectors corresponding to the non zero
eigenvalues. The finite dimensional MMV system

V = AU, (23)

is then solved for the sparsest matrix U with minimal number
of non-identically zero rows using CS techniques [30, 31].
The key observation of this strategy is that the support of the
unique sparsest solution of is the same as the support
of our original set of equations (I3) [52]. Recovering U¢
from (23) can be performed using any MMV CS algorithm
such as simultaneous orthogonal matching pursuit (SOMP)
and simultaneous iterative hard thresholding (SIHT) [31].

Note that xc(f) is K-sparse for each specific frequency
f € F,, whereas x¢[n] is 2K -sparse since each transmission
can split between two bins, as shown in Fig. [2| for the blue
trapeze. After combining the frequencies, the matrix U¢ is
2K -sparse (at most) as well. Therefore, the above algorithm,
referred to as SBR4 in [52] requires a minimal sampling
rate of 2f,. In order to achieve the minimal rate f;,, the
SBR2 algorithm regains the factor of two in the sampling rate
at the expense of increased complexity [52]. In a nutshell,
SBR2 is a recursive algorithm that alternates between the CTF
described above and a bi-section process. The bi-section splits
the original frequency interval into two equal width intervals
on which the CTF is applied, until the level of sparsity of
Upg¢ is less or equal to K. As opposed to SBR4 which can be
performed both in time and frequency, SBR2 can obviously be
performed only in the frequency domain. We refer the reader
to [52] for more details.

Once the support S is known, the slices of xc(t) are
recovered either in the frequency or time domain by reducing
the system of equations (I3) or (I9), respectively, to Sc. In
the time domain, we have

x°n] = AL zn), (24)
)'ic,i[n} = O7 Vi¢Sc.

Here, ch [n] denotes the vector x¢[n] reduced to its support,
Ag, is composed of the columns of A indexed by Sc and
1 is the Moore-Penrose pseudo-inverse. The occupied comm
support is then given by

Fo = {0lIf = G+ N/2)5] < 22, foralli € 50} @29)

A finer support can be estimated by performing energy de-
tection on the recovered bands 5(30( f) for f € F,. Last,
if needed, the Nyquist rate samples z[n] = x(nTkyq) can
be reconstructed by summing the modulated and interpolated
sequences X¢[n| to the Nyquist rate, as

Z (ici [n] * hp [n])ejQﬂ'fT’nTNyq’
€S,

z[n] (26)

where hr[n] is the digital interpolation filter. The MWC
sampling and recovery processes are illustrated in Fig. 3]

C. Communication Signal Recovery in the Presence of Radar
Transmission

In the previous section, we considered the scenario where
the radar is silent and only the comm signal x¢(t) is received.
Here, we treat a more general setting in which the received
signal is given by

z(t) =z (t) + zr(t), 27

where xr(t) = r1, (t) + rry (t) is the radar signal sensed by
the comm receiver, composed of the transmitted and received
radar signals defined in (@) and (3)), respectively. Following
the derivations from the previous section, we can write the
sub-Nyquist samples in the Fourier domain as

z(f) = Alxc(f) +xr(f),  feFs (28



where

xri(f) = Xr(f + (@ = [N/2])fp), 1<i<N,feFs
(29)

The equation solved by the CTF then becomes

V = A(U¢ + Ugpg). 30)

The frequency support Fr, of zx(t), given by (12)), is known
at the comm receiver. From Fpr, we derive the support Sg of
the radar slices xg(f), which is identical to the support of

Ug, such that
_ IR fs+ By
SR—{n n 7, (N/ﬂ‘ < 27, } 31

for 1 < ¢ < Np. Our goal can then be stated as recovering
the support of Ugx from V, given the known support Sp of
Ug. This can be formulated as a sparse recovery with partial
support knowledge, studied under the framework of modified
CS [57, 158]. From [57]], the minimal number of channels
required for the exact reconstruction of the K -sparse matrix
Uc is M > 2K + |Sg|. Note that [57] considers a single
measurement vector (SMV) and we extend this result to MMV.

The modified-CS idea has been used to adapt CS recovery
algorithms to exploit the partial known support a priori in-
formation. In particular, greedy algorithms, such as OMP and
IHT have been modified to OMP with partial known support
(OMP-PKS) [59] and THT-PKS [60], respectively. In OMP-
PKS, instead of starting with an initial empty support set, one
starts with S as being the initial support set. The remainder
of the algorithm is then identical to OMP. In each iteration of
IHT-PKS, the estimator over the known support is kept and
the thresholding is performed only over the complementary
support. Algorithm [l| summarizes the resulting sub-Nyquist
comm signal recovery in the presence of radar transmission,
using OMP-PKS for support recovery.

Algorithm 1 Cognitive Radio Spectrum Sensing

Input: Observation vector z(f), f € F, radar support Fr
Output: Comm signal support F¢ and slices estimate X [n]
1: Compute the support Sp as in (31)
2: Compute Q from and extract a frame V such that
Q = VVH using eigendecomposition
3: Compute the estimate

Ufr=AL v, U, =0, Vi¢Sk
4: Compute the residual
Vi=V-As U,

5: Find the total signal support Sg|JSc using OMP from
the 2nd iteration with sampling matrix A, residual V; and

support Sp
6: Find the comm (and radar) slices estimate from
)f\(SCUSR [n] = ALCUSRZ[TL]’

0, VigSc|JSa

7: Compute the comm signal support F¢ from (25)

)A(,L' [n] =

V. COGNITIVE RADAR

Once the set F¢ is estimated, the objective of the radar is
to identify an appropriate transmit frequency set Fr C F \Fo
such that the radar’s probability of detection Py is maximized.
For a fixed probability of false alarm P, the P; increases
with higher signal to interference and noise ratio (SINR)
[61]]. Hence, the frequency selection process can, alternatively,
choose to maximize the SINR or minimize the spectral power
in the undesired parts of the spectrum. At the receiver of this
spectrum sharing radar, we employ the sub-Nyquist approach
described in [36]], where the delay-Doppler map is recovered
from the subset of Fourier coefficients defined by Fg.

A. Optimal Radar Transmit Bands

The REM is assumed to be known to the radar transmitter
in the form of typical interfering energy levels with respect to
frequency bands, represented by a vector y € R?, where ¢ is
the number of frequency bands with bandwidth b, £ |F|/q. In
addition, the information available from the CRo indicates that
the radar waveform must avoid all the frequencies in the set
Fc. Therefore, we further set y to be equal to oo in the bands
that coincide with Fc. The goal is now to select subbands
from the set F \ F¢ with minimal interference energy. We
thus seek a block-sparse frequency vector w &€ RP with
unknown block lengths, where p is the number of discretized
frequencies, and whose support provides frequency bands with
low interference for the radar transmission. Each entry of w
represents a frequency subband of bandwidth b,, £ |F|/p.

To this end, we use the structured sparsity framework from
[62] that extends standard sparsity regularization to struc-
tured sparsity. We adopt the one-dimensional graph sparsity
structure whose nodes are the ordered entries of w, so that
neighbor nodes are indexed by adjacent frequency bands. The
graph dimension is therefore the frequency and its size is
p. Block sparsity may be enforced by allowing the graph
to contain connected regions. In contrast to traditional block
sparsity approaches [30], this formulation does not require
a priori knowledge on the location of the non-zero blocks.
This is achieved by replacing the traditional sparse recovery
£y constraint by a more general term ¢(w), referred to as the
coding complexity, such that

¢(w) = min{c(F)|supp(w) C F},

where F' C {1,...,p} is a sparse subset of the index set of the
coefficients of w. In particular, for graph sparsity, the choice
of ¢(F) is simply

(32)

c(F) = glogp+|F|, (33)

where ¢ is the number of connected regions, or blocks, of F'.
This coding complexity favors blocks within the graph.

The resulting optimization problem for finding the block-
sparse frequency vector w can then be expressed as

min ||y — DW|[3 + Ae(w), (34)

where A is a regularization parameter and c(w) is defined
in with ¢(F) in . Here, yi, contains element-wise
reciprocals of y, namely (yin); = 1/yi, so that small values
in yj, induce corresponding zero blocks in w, and D is a



q X p matrix that maps each discrete frequency in w to the
corresponding band in yj,,. That is, the (¢, j)th entry of D is
equal to 1 if the jth frequency in w belongs to the ¢th band in
y; otherwise, it is equal to 0. If we choose p = ¢, then D =1
is the ¢ x ¢ identity matrix.

Problem (34) can be solved using a structured greedy
algorithm, structured OMP (StructOMP), presented in [[62] and
adapted to our setting in Algorithm [2] In [62]], the algorithm
proceeds by greedily adding blocks one at a time to reduce
the loss, scaled by the cost of the added block. Here, we
consider single element blocks for simplicity but larger blocks
can be considered to increase the algorithm’s effectiveness. In
the original StructOMP [62], the stopping criterion is based
on additional a priori information on the overall sparsity and
number of non-zero blocks. We adopt an alternative stopping
criterion, based only on the number of blocks, which is known
to be equal to N, in our problem. This leads to N, bands
in Fr as dictated by the hardware constraints. In the above,
additional requirements of transmit power constraints, range
sidelobe levels, and minimum separation between the bands
may also be imposed and, if needed, alternative structured
greedy algorithms that require very little a priori knowledge
of block sparsity can be used [|63] |64]. Once the support Fr
is identified, a suitable waveform code may be designed using
optimization procedures described by e.g. [22] [25]].

Algorithm 2 Cognitive Radar Band Selection
Input: REM vector y and subbands bandwidth b,, shared
support F, comm support F¢, mapping matrix D, number
of discretized frequencies p, number of bands IV,
Output: Block sparse vector w, radar support Fr
1: Sety; = oo, forall 1 <i < ¢ such that [ib, —|F|/2, (i +
1)by — |F|/2[N Fo # 0 and compute (yin); = 1/y;
2: Initialization Fy =0, w=0,t=1
3: Find the index A; so that A\; = arg max ¢(i), where

6(i) = [P:(DWr;—1 — yin)3
C(Z U thl) — C(thl)

4: Augment index set Fy = A\ |J Fi—1

5: Find the new estimate

A _nt - _
wt\Ft = DFtyinva Wt|Ftc =0

6: If the number of blocks, or connected regions, g(w) > Ny,
go to step 7. Otherwise, return to step 3

7: Remove the last index A; so that F; = F;_; and w; =
W1

8: Compute the radar support

Fr= U b — F/2.G + Dbu — | F1/2]
JjEF:

B. Delay-Doppler Recovery

We now turn to the radar receiver design and describe how a
delay-Doppler map can be recovered from only NV, transmitted
narrow bands. The radar receiver first filters the transmitted
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Fig. 4. Sum of exponents |g(v|v;)| for P = 200, 7 = 1sec and v; = 0.

bands supported on Fp given by (I2) and computes the
Fourier coefficients of the received signal.

Consider the Fourier series representation of the aligned
frames 7 (t + p7), with _(t) defined in :

oplk] = /OT%X(t+pT)67j27rkt/Tdt

1 L—1
,H[k;} Z ale_jQﬂle/Te_jl’lpT,

T
=0

{k = {fN%qNH fe ]—'R}. From
(35), we see that the unknown parameters {cy, 7,1 }E,
are embodied in the Fourier coefficients c,[k]. The goal is
then to recover these parameters from c,[k] for £k € x and
0<p<P-1.

To that end, we adopt the Doppler focusing approach from
[36]. Consider the DFT of the coefficients c,[k] in the slow
time domain:

(35)

for £ € Kk, where Kk =

P-1
U [k] = ) cplkle? (36)
p=0
1 L—-1 P-1
— *H[k] Z alefj27rk'rl/'r Z ej(ufl/l,)p'r'
=
=0 p=0

The key to Doppler focusing follows from the approximation:

p-1 p
g(vlv) = Z CACC S { 0
p=0

as illustrated in Fig. 4] Denote the normalized focused mea-
surements W, [k] so that

lv —u| < 7w/P1

lv —v| > n/PT, (37)

As in traditional pulse Doppler radar, suppose we limit
ourselves to the Nyquist grid so that 7;/7 = r;/N, where
r; is an integer satisfying 0 < r; < N — 1. Then, (38)) can be
approximately written in vector form as

T, [k]. (38)

‘Ill/ = FHXI/7 (39)

where ¥, = [U,[ko]... U [kx_1]], ki € k for 0 < i <
K —1, F, is composed of the K rows of the N x N Fourier
matrix indexed by x and x,, is a L-sparse vector that contains



the values o at the indices r; for the Doppler frequencies v,
in the “focus zone”, that is |v — v;| < w/P. It is convenient
to write (39) in matrix form, by vertically concatenating the

vectors W,,, for v on the Nyquist grid, namely v = —% + %,
into the K x P matrix W, as
¥ =F.X. (40)

The P equations can be solved simultaneously using
Algorithm (3| where in each iteration, the maximal projection
of the observation vectors onto the measurement matrix are
retained. The algorithm termination criterion follows from
the generalized likelihood ratio test (GLRT) based framework
presented in [65]]. For each iteration, the alternative and null
hypotheses in the GLRT problem define the presence or
absence of a candidate target, respectively. In the Algorithm,
Qx3(p) denotes the right-tail probability of the chi-square
distribution function with 2 degrees of freedom, AC is the
complementary set of A and

Pr
0| PRl
is the SNR with o2 the noise variance and Py defined in (10}).

The following theorem from [36] derives a necessary con-

dition on the minimal number of samples K and pulses P for
perfect recovery in a noiseless environment.

o= @1)

Theorem 1. [36|] The minimal number of samples required
for perfect recovery of {«ay, 7, v} with L targets in a noiseless
environment is 412, with K > 2L and P > 2L.

Theorem [I] translates into requirements on the total bandi-
wdth of the transmitted bands, such that

BlOt - N ’774“ 2 2L.
= | Bn

The multiband design strategy, besides allowing a dynamic
form of the transmitted signal spectrum over only a small
portion of the whole bandwidth to enable spectrum sharing,
has two additional advantages. First, our CS reconstruction
achieves the same resolution as traditional Nyquist processing
over a significantly smaller bandwidth. Second, since we only
use narrow bands to transmit, the whole power is concentrated
in them. Therefore, the SNR in the sampled bands is improved.

Our resulting spectrum sharing SpeCX framework is sum-
marized in Algorithm [

(42)

VI. SOFTWARE AND HARDWARE EXPERIMENTS

In this section, we present software and hardware simula-
tions to illustrate our SpeCX framework. Software experiments
illustrate the comm band detection performance of the CRo
and the target detection by the CRr. Hardware simulations
demonstrate the practical implementation of the SpeCX sys-
tem.

A. Software Simulations

To test the radio receiver, we consider a comm signal
composed of Ng, = 2 transmissions and a radar signal
composed of N, = 4 bands with known support. The Nyquist

Algorithm 3 Cognitive Radar

Input: Observation vectors cp[k], forall 0 <p < P —1 and
k € k, probability of false alarm P, noise variance o2,
transmitted power Pp, total transmitted bandwidth | Fpg|

Output: Estimated target parameters {&;, 71, 7}

1: Create ¥ from c,[k] using fast Fourier transform (FFT)
(36), for k € k and v = —1/(27) + p/(P1) for 0 < p <
P-1

2: Compute detection threshold

P,
p= WJT-H 7= QL= V1 P)
3: Initialization: residual Rg = ¥, index set Ag =0, t =1
4: Project residual onto measurement matrix:

®=FIR, ;

5: Find the two indices A\; = [A¢(1) A¢(2)] such that

Ai(1) A(2)] = arg max, ; |®; ]

6: Compute the test statistic

(F) ) (Re=1)x,2) T (Fr)re 1) T (Ric1)r,2)
2

where (M); denotes the ith column of M
7. If I' >  continue, otherwise go to step 12

8: Augment index set Ay = Ay U{\¢}
9: Find the new signal estimate

I =

Xﬂl\t = (Fﬁ)j\t\lla P(t\A,,C =0
10: Compute new residual

R, =¥ — (F,))X
11: Increment ¢ and return to step 4
12: Estimated support set A = A,

13: 7A'l = %A(l, 1), ﬁl = %ZA\(Z,2), (34[ = Xf\(l,l),f\(lﬁ)

Algorithm 4 Spectral Coexistence via Xampling (SpeCX)

Input: Comm signal z¢ ()
Output: Estimated target parameters {dy, 1, 7}
1: Initialization: perform spectrum sensing at the receiver on
xc(t) using Algorithm [1| with S = ()
2: Choose the least noisy subbands for the radar transmit
spectrum with respect to detected F¢ using Algorithm 2]
3: Communicate the transmitted radar signal support Fr to
the comm and radar receivers
4: Perform target delay and Doppler estimation using Algo-
rithm
5: Perform spectrum sensing at the comm receiver on z(t) =
zc(t) + zr(t) using Algorithm
6: If Fo changes, the radar transmitter goes back to step 2

rate iS fnyq = 10GHz. Each comm transmission has a two-
sided bandwidth B}, = 50 MHz and is modulated with a carrier
f& drawn uniformly at random between =+ fnyq/2 = £5 GHz.
The CRo receiver is composed of M = 25 analog channels,
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Fig. 6. Multiband versus wideband radar.

each sampling at rate f; = 154MHz and with K = 91
samples per channel. This leads to N = 195 spectral bands.
Figure [5] shows the performance of the detector for different
values of the SNR, where the probability of detection is
computed as the ratio of the correctly detected support. It
can be seen that OMP-PKS, that exploits the knowledge of
the radar signal’s support, outperforms traditional OMP, as
expected.

For the radar receiver, we consider a transmission with
N, = 4 spectral bands, each of bandwidth 81 KHz, yielding
a total bandwidth of 324 KHz. For comparison, we simulate
a wideband Nyquist pulse Doppler radar transmitting over a
bandwidth B;, = 1.62 MHz. The cognitive radar thus transmits
over only 20% of the wideband. We consider P = 100 pulses
with PRI 7 = 10psec. We use a hit-or-miss criterion as
performance metric. A “hit” is defined as a delay-Doppler
estimate circumscribed by an ellipse around the true target
position in the time-frequency plane. We used ellipses with
axes equivalent to £3 times the time and frequency Nyquist
bins, defined as 1/Bj, and 1/ P, respectively. Figure @ shows
the hit rate performance of our recovery method for different
combinations of the transmitted spectral bands, which outper-
forms traditional wideband radar transmission and processing.
Obviously, transmitting over adjacent bands yields poor re-
sults.

B. Hardware Demo

The SpeCX prototype, shown in Fig. |/} is composed of a
CRo receiver and a CRr transceiver. The CRo hardware real-
izes the system shown in Fig. [3] At the heart of the system lies

H Low Rate Aliased Signal - Spectrum

Fig. 8. SpeCX comm system display showing (a) low rate samples acquired from one
MWC channel at rate 120 MHz, and (b) digital reconstruction of the entire spectrum
from sub-Nyquist samples.

the proprietary developed MWC board [56] that implements
the sub-Nyquist analog front-end receiver. The card first splits
the wideband signal into M = 4 hardware channels, with an
expansion factor of ¢ = 5, yielding M ¢ = 20 virtual channels
after digital expansion. In each channel, the signal is then
mixed with a periodic sequence p;(t), generated on a dedicated
FPGA, with f, = 20MHz. The sequences are chosen as
truncated versions of Gold Codes [66], commonly used in
telecommunication (CDMA) and satellite navigation (GPS).
These were heuristically found to give good detection results
in the MWC system [67], primarily due to small bounded
cross-correlations within a set. This is useful when multiple
devices are broadcasting in the same frequency range.

Next, the modulated signal passes through an analog anti-
aliasing LPF. Specifically, a Chebyshev LPF of 7th order
with a cut-off frequency (—3dB) of 50 MHz was chosen
for the implementation. Finally, the low rate analog signal
is sampled by a National Instruments©® ADC operating at
fs = (g +1)f, = 120MHz (with intended oversampling),
leading to a total sampling rate of 480 MHz. The digital
receiver is implemented on a National Instruments© PXle-
1065 computer with DC coupled ADC. Since the digital
processing is performed at the low rate 120 MHz, very low
computational load is required in order to achieve real time
recovery. MATLAB®and LabVIEW® platforms are used for
the various digital recovery operations.

The prototype is fed with RF signals composed of up to
Ngg = 5 real comm transmissions, namely K = 10 spectral
bands with total bandwidth occupancy of up to 200 MHz
and varying support, with Nyquist rate of 6 GHz. Specifi-
cally, to test the system’s support recovery capabilities, an
RF input is generated using vector signal generators (VSG),
each producing a modulated data channel with individual
bandwidth of up to 20 MHz, and carrier frequencies ranging
from 250 MHz up to 3.1 GHz. The input transmissions then
go through an RF combiner, resulting in a dynamic multiband
input signal, that enables fast carrier switching for each of the
bands. This input is specially designed to allow testing the
system’s ability to rapidly sense the input spectrum and adapt
to changes, as required by modern CRo and shared spectrum
standards, e.g. in the SSPARC program. The system’s effective
sampling rate, equal to 480 MHz, is only 8% of the Nyquist
rate and 2.4 times the Landau rate. This rate constitutes a
relatively small oversampling factor of 20% with respect to the
theoretical lower sampling bound. The main advantage of the
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Xampling framework, demonstrated here, is that the sensing
is performed in real-time from sub-Nyquist samples for the
entire spectral range, which results in substantial savings in
both computational and memory complexity.

Support recovery is digitally performed on the low rate
samples. The prototype successfully recovers the support of
the comm transmitted bands, as demonstrated in Fig. @ Once
the support is recovered, the signal itself can be reconstructed
from the sub-Nyquist samples in real-time. We note that the
reconstruction does not require interpolation to the Nyquist
rate and the active transmissions are recovered at the low rate
of 20 MHz, corresponding to the bandwidth of the slices z(f).

By combining both spectrum sensing and signal recon-
struction, the MWC prototype serves as two separate comm
devices. The first is a state-of-the-art CRo that performs real
time spectrum sensing at sub-Nyquist rates, and the second is
a unique receiver able to decode multiple data transmissions
simultaneously, regardless of their carrier frequencies, while
adapting to spectral changes in real time.

The CRr system [36-38] includes a custom made sub-
Nyquist radar receiver board composed of N, = 4 parallel
channels which sample distinct N, = 4 bands of the radar
signal spectral content. In the ith channel, the transmitted band
with center frequency f! and bandwidth B! = 80 KHz is fil-
tered, demodulated to baseband and sampled at 250 KHz (with
intentional oversampling). This way, four sets of consecutive
Fourier coefficients are acquired. More details on the hardware
design can be found in [38]]. After sampling, the spectrum
of each channel output is computed via FFT and the 320
Fourier coefficients are used for digital recovery of the delay-
Doppler map [36]. The prototype simulates transmission of
P = 50 pulses towards L = 10 targets. The CRr transmits
over N, = 4 bands, selected according to the procedure
presented in Section [V-A] after the spectrum sensing process
has been completed by the comm receiver. We compare the
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compared with the full-band radar spectrum, and (c) range-velocity display of detected
and true locations of the targets.

target detection performance of our CRr with a traditional
wideband radar with bandwidth B;, = 20MHz. The CRr
transmitted bandwidth is thus equal to 3.2% of the wideband.

Figure 0] shows windows from the GUI of our CRr system.
Figure [Of(a) illustrates the coexistence between the radar trans-
mitted bands in red and the existing comm bands in white.



The gain in power is demonstrated in Fig. [9(b); the wideband
radar spectrum is shown in blue, our CRr in red and the
noise in yellow in a logarithmic scale. The true and recovered
range-velocity maps are shown in Fig. [9[c). All 10 targets are
perfectly recovered and clutter, shown in blue, is discarded.
Below the map, the range recovery accuracy is shown for 3
scenarios: from left to right, CRr in blue (2.5m), 4 adjacent
bands with same bandwidth (12.5m) and wideband (4m). The
poor resolution of the 4 adjacent bands scenario is due to
its small aperture. Our CRr system with non-adjacent bands
yields better resolution than the traditional wideband scenario.

VII. SUMMARY

Our SpeCX model proposes a comm and radar spectral
coexistence approach through the well-established theory of
Xampling. We demonstrated that the two networks can ac-
tively cooperate through handshaking of information on RF
environment and optimize their performances. Unlike previous
approaches, we presented a complete solution that shows
signal recovery in both systems with the minimum of known
information about the spectrum. We showed that the SpeCX
is practically feasible through the development and real-time
testing of our hardware prototype.

Some of the other elements of signal model that were not
considered in this work include performance of the comm
receiver when the radar signal is also contaminated with
clutter and hostile jamming. Extensions to MIMO radar-comm
spectrum sharing as described by [14] are also interesting,
especially since that we recently demonstrated a hardware
prototype of a cognitive sub-Nyquist MIMO radar [68]. It
would also be useful to incorporate additional optimization
constraints in the radar waveform design.
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